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Abstract. We present a study of the two-stage stochastic view selection
problem in database management systems. The objective is to minimize
processing times of the given queries subject to a storage limit. We as-
sume that the queries are given in two or more workloads. We propose a
two-stage stochastic programming (SP) model for this problem and study
the structure and properties of its extensive form, which is an integer pro-
gramming (IP) model. We use these properties to remove variables and
constraints from this IP model, and obtain a smaller model with the
same optimal solution. This allows us to solve realistic-size instances of
the problem using commercial IP solvers. Subsequently, we present ap-
propriate models, and techniques to assess the value of using a two-stage
SP model, and discuss the value of perfect information. We discuss the
properties of these values by conducting a computational experiment.

Keywords: Database management systems, View selection, Stochastic
programming, Integer programming, Value of two-stage versus one-stage,
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1 Introduction

Many data-intensive systems, such as commercial or scientific database systems,
store vast collections of data, whose scale tends to grow massively over time.
Such systems can improve some metric, such as performance, of answering user
queries on stored data by using derived data. Derived data are computed and
stored in the system in advance (that is, are materialized) using the stored base
data and include cached replicas, indexes, and materialized views, which are used
extensively in information integration and data warehouses. Derived data, such
as materialized views in data warehouses and in information-integration systems,
may facilitate greatly the repurposing, transformation, and integration of multi-
ple, uncoordinated, and sometimes variously restricted data sources over which
data users may have no control. As such, selecting appropriate derived data for
use in data-intensive systems may contribute to solutions to the problems of cre-
ation, facilitation, visualization, and understanding of the diverse digital content
in a variety of circumstances. For an introduction to the subject, please see [12],
and for more extended discussions please see references therein.
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As an illustration, consider the following scenario. Large retailer companies
(such as Sears, Kmart, Target, andWalMart in the USA) all maintain significant-
size databases storing information about ongoing sales transactions. For instance,
WalMart is known for maintaining database relations whose size is in billions of
rows, or tuples. All these companies generally have significant volumes of mar-
keting analysis going on throughout the year. That is, for accounting, reporting,
and business-intelligence purposes, each company’s database system undergoes
periodic runs of data-analysis queries on the stored information, including the
queries for automatically or manually generated daily, weekly, or monthly sum-
mary reports. In typical data-analysis, or OLAP (see [10] and [5]), queries, users
are interested in obtaining summary information of a measure as a function of
some business aspects, called dimensions. For instance, in a daily volume-of-sales
query in analyses run for Sears, the dimensions could be item sold, date and time
of sale, and customer.

Suppose the Sears sales data are stored in relations Sales, Time, and
Customer. Suppose also that these relations form a star schema, with Sales

as the “fact table” and Time and Customer as “dimension tables” (see [10].
Then the volume-of-sales query for November, 2010 could be expressed in the
relational language SQL as the following grouping and aggregation over the star-
schema join:

Q: SELECT itemCategory, customerType, sum(amount)
FROM Sales NATURAL JOIN Time NATURAL JOIN Customer
WHERE dateMonth = 11 AND dateYear = 2010

GROUP BY itemCategory, customerType;

A data-management system evaluating the query Q on just the base relations
would need to access all the sales information, including the likely large amount
of irrelevant data for the sales before the reporting period. On the other hand,
using derived data could reduce, perhaps significantly, the time to evaluate the
query Q. For instance, using an index I that provides access to all sales events for
all sales IDs for a specific month and year would obviate the need to access the
irrelevant data for sales in months before (or after) November 2010. Note that
evaluating the query Q using the index I would still involve examining sales data
at the granularity of individual sales events. Alternatively, the data-management
system could reduce the evaluation time of the query Q by using a materialized
view V, which stores total sales per item category per customer type per month
per year and is expressed in the relational language SQL as follows.

V: SELECT itemCategory, customerType, dateMonth, dateYear, sum(amount)
FROM Sales NATURAL JOIN Time NATURAL JOIN Customer

GROUP BY itemCategory, customerType, dateMonth, dateYear;

Observe that the query Q can be evaluated using a single relation V – that is,
no joins of relations are required in the evaluation, and therefore the evaluation
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time of Q when using V could be dramatically shorter than when not using V.
Note also that the representation of the base data in the materialized view V no
longer distinguishes between individual items or sales dates.

Naturally in such a setting the problem of selecting an appropriate collection
of derived data has to be addressed in the context of the objectives and lim-
itations of that setting. In recent years several researchers have addressed the
subject and developed exact and inexact methods for solving the problem in a
one-stage deterministic environment, that is, where all queries are assumed to
be known and given in advance, and a one-stage probabilistic environment, that
is, where we have a probability of occurrence associated with each query in a
given collection of queries. See [1], [2], [3], [6], [7], among others. [YF: give addi-
tional references and update current refs]. In this article we study this problem
in a two-stage environment and propose appropriate models and algorithms for
solving the problem.

To illustrate this environment, let us refer to the Sears example described
above. While some data-analysis queries would be posed on Sears’ sales data
throughout the year, some of the queries may be run only at certain times of the
year. The focus of such seasonally relevant queries could include, for instance:
(i) demand for fancy gadgets (such as large-screen TVs) during heavy sales
events (such as Black Friday in the USA); (ii) sales of deeply discounted basic
household appliances during Christmas sale events; and (iii) August sale events
for summertime gear. In such a situation, aside from designing and using derived
data to improve the processing performance of the routine queries occurring
throughout the year, it would be beneficial to design and use additional derived
data in order to reduce the execution time of such seasonal queries as well. Of
course it is natural that sometimes the collection of derived data that is useful
for the queries in one season may be different from those that are useful for the
queries in the subsequent seasons. On the other hand, it is always desirable if
(at least some of) the derived data that is developed for one season can also
be used for the queries in the subsequent seasons, since it would save both
time and resources. After all, creating derived data itself requires both human
and computational resources, and any savings in this regard translates to more
efficiency in the overall operation. Hence, the problem in this context would be
to determine the collection of derived data for two or more seasons (stages) so as
to answer all the queries in an efficient manner while keeping the total volume
of derived data as low as possible. In other words, in this context we need to
propose two or more collections of interrelated derived data so as to minimize the
overall query response time subject to a storage limit on the amount of derived
data produced.

A further complicating factor in this context is the fact that sometimes it
is difficult to predict the specific set of queries that would become relevant and
prominent at a given future point in time. For instance, political, economic, or
environmental factors could all have an impact on the nature of the queries that
become relevant in the future. This could lead the experts to forecast two or
more possible sets of queries for that point in the future, with a probability
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associated with each set. This, in turn, leads to a situation where we need to
carry out the above mentioned analysis in a probabilistic environment, where we
account for various scenarios (that is, query sets) that may occur in the future.

For instance, in a situation where we deal with only two seasons, we may
need to propose a collection of derived data to answer a given set of queries
immediately (first season, or first-stage, queries), and a plan for several collec-
tions of derived data, each collection associated with a possible set of future
queries (second season, or second-stage, queries). In such a situation, in order
to facilitate and expedite the process of creating the second-stage collections of
derived data, it is clear that our decision for the first collection of derived data
(that is, the first-stage decision) should be made with a view and consideration
for various possibilities (queries) that may occur in the second stage. The idea
here is to re-use in the second stage as many of the first-stage derived data as
possible. This leads us to define and address a two-stage stochastic view selection
problem as described in this paper.

Our specific contributions are as follows:

1. We define the two-stage stochastic view selection problem and model this
problem as a two-stage stochastic programming (SP) model.

2. We study the structure and properties of the extensive form of the SP model,
which is an integer programming (IP) model. We develop an algorithm that
effectively reduces the search spaces of potentially beneficial views in the IP
model, and obtain a smaller IP model whose solution is guaranteed to be
optimal of the original SP model.

3. We conduct a computational experiment on the above IP models and dis-
cuss the scalability of the reduced IP model. The reduced search spaces
significantly reduce the size of our original IP model, so that for realistic-
size instances of the problem this IP model can be solved efficiently by a
commercial IP solver such as CPLEX [9].

4. We compare our two-stage SP model with several appropriate models and
present techniques to assess the value of the SP model and the value of
perfect information in this context.

5. We discuss the impact of the replacement mechanism on the optimal solu-
tions in our SP model by conducting a sensitivity analysis.

The remaining sections of this paper are organized as follow. In Section 2, we
define the two-stage stochastic view selection problem and propose a stochas-
tic integer programming model for it. In Section 3, we discuss the structure of
the problem and the corresponding stochastic programming model, and use this
structure to reduce the size of the problem considerably. In Section 4, we provide
the results of a computational experiment with this model and make a few obser-
vations. In Section 5, we present appropriate models and techniques to determine
the value of using a two-stage stochastic programming model and present several
related numeric results. In Section 6, we discuss the value of perfect information
in this context and conduct a related computational experiment. In Sections
7, we present a sensitivity analysis to evaluate the impact of the replacement
mechanism of our model. And Section 8 contains a few concluding remarks.
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2 The two-stage stochastic view selection problem

In this section, we first define the scope of the two-stage stochastic view selec-
tion problem that we consider, i.e., the type of the database, queries and views.
Subsequently, we propose a stochastic programming (SP) model [4] for this prob-
lem. By studying the properties of the SP model, we then rewrite it as a model
with fewer variables and constraints, and the resulting model is equivalent to
the original SP model.

2.1 Formulation of the problem SVS

We consider a star-schema data warehouse (see [10] and [5]) with a single fact
table and several dimension tables. In this context, we consider the evaluation
cost of answering queries using unindexed materialized views such that each
query can be evaluated using just one view and no other data. A query q can be
answered using a view v only if the set of grouping attributes of v is a superset
of the set of attributes in the GROUP BY clause of q and of those attributes in the
WHERE clause of q that are compared with constants. We use v to represent both
a view and the collection of grouping attributes for that view, and we use q to
represent both a query and the collection of attributes in the GROUP BY clause
of that query plus those attributes in the WHERE clause of the query that are
compared with constants. It follows that query q can be answered by view v if
and only if q ⊆ v. In order to evaluate a query using a given view (if this view
can indeed be used to answer the query) we have to scan all rows of the view.
Hence the corresponding evaluation cost is equal to the size of the view itself.
We use ai to denote the size of each view vi. We also use the parameter dij to
denote the evaluation cost of answering query qj using view vi. It follows that
for each query qj we have dij = ai if qj ⊆ vi, and we set dij = +∞ otherwise.

In this environment we have a query workload Q1 that we must answer at
the present time (stage 1), and a second query workload Q2 that occurs at a
future point in time (stage 2). We assume that the query workload Q1 is known
and given, but that the second query workload Q2 is a random set with a given
probability distribution function. (We use boldface to emphasize that Q2 is a
random set and differentiate it from a deterministic set such as Q1.) We illustrate
all of these notions in Example 1 later in this subsection.

At stage 1, we materialize a collection of views S1 and use these views to
answer the queries in Q1. We assume that we have a storage limit b1 for these
views (that is, the total size of the views selected must not exceed b1). At stage
2, once the actual collection of queries Q2 for this stage are known, we allow for
a partial replacement of some of the view relations that we constructed at stage
1, in order to obtain the collection of views S2 for answering the query set Q2.
(Note that Q2 represents a realization of the random set Q2.) In other words,
at the end of stage 1 we keep some of the view relations that we materialized at
stage 1 to use again at stage 2, while we discard other view relations from stage
1 and replace them with new view relations. We assume that the total size of
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the views that we replace must not exceed a given storage limit b2. Naturally,
b2 ≤ b1.

In this context the technical problem that we need to address prior to stage
1 is to select all views in the set S1 and a replacement plan associated with each
possible realization Q2 of Q2. The objective is to minimize the total evaluation
cost for the queries at stage 1 plus the expected total evaluation cost for the
queries at stage 2. Note that in order to obtain a global optimal solution for this
problem which we call Stochastic V iew Selection (SVS) problem, all decisions
regarding both stages (that is, the view set S1 and the replacement plan for
every possible realization Q2 of Q2) must be made prior to stage 1.

To illustrate, we present the following numeric example for a data cube [7]
with 4 attributes.

Example 1. Given a database with four attributes a, b, c and d, the view lattice
defined in [7] is shown in Figure 1. In this lattice, each node represents a view,
and a directed edge from node v1 to node v2 implies that v1 is a parent of v2,
that is, v2 can be obtained from v1 by aggregating over one attribute of v1. The
space requirement for each view in the lattice is given next to its corresponding
node. In this instance, we assume that at stage 1, we are given two queries
q1 = {a, b} and q2 = {b, c}. At stage 2, q3 = {b} and q4 = {a, c} would occur with
probability 0.5, while q5 = {c} and q6 = {b, d} would occur with probability 0.5.
Equivalently, Q1 =

{
{a, b}, {b, c}

}
, Q1

2 =
{
{b}, {a, c}

}
, and Q2

2 =
{
{c}, {b, d}

}
.

Assume the total space limit b1 = 30 and the space limit b2 = 15. Our objective
is to minimize the cost of answering Q1 plus half of the cost of answering Q1

2

plus half of the cost of answering Q2
2. We need to determine a collection of views

S1 to materialize at stage 1, with the total size less than or equal to 30, and for
each scenario at stage 2, we need to determine a subset of S1 to keep from stage
1 to stage 2, and another set of views to materialize at stage 2, with the total
size less than or equal to 15.

2.2 A mathematical programming model

In this subsection, we describe a stochastic programming model for the above
two-stage stochastic view selection (SVS) problem. Although the general form of
the model that we propose is valid for any probability distribution function for
Q2, in the following model and throughout the rest of this article we assume Q2

is a random query set with L possible values. More specifically, we assume Q2

equals to query set Qℓ
2 with probability pℓ, for ℓ = 1 to L, where

∑L
ℓ=1 p

ℓ = 1.
And we refer to each collection of queries Qℓ

2 as a scenario. We start by defining
the decision variables. For the first stage we define the following decision variables
for all views vi ∈ V (where V is the set of all views) and for all queries qj ∈ Q1.

xi =

{
1 if view vi is materialized at stage 1
0 otherwise

zij =

{
1 if we use view vi to answer query qj at stage 1
0 otherwise
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Fig. 1. Lattice example with view sizes

For the second stage we define the following decision variables for all views
vi ∈ V , and for all queries qj ∈ Qℓ

2, for ℓ = 1 to L.

uℓ
i =

{
1 if view vi is materialized at stage 1 and used in stage 2 for query set Qℓ

2

0 otherwise

yℓi =

{
1 if view vi is materialized at stage 2 for query set Qℓ

2

0 otherwise

tℓij =

{
1 if we use view vi to answer query qj at stage 2 for query set Qℓ

2

0 otherwise

The cardinality of the view set V is 2K , where K is the number of distinct
attributes in the database. Let I = {1, 2, . . . , 2K} be the set of subscripts for
all the views vi ∈ V . Also let J1 be the set of subscripts for all the queries
qj ∈ Q1, and let Jℓ

2 be the set of subscripts for all the queries qj ∈ Qℓ
2, for

ℓ = 1, 2, . . . , L. The problem can now be written as the following stochastic
programming model [4] that we denote by SP .

(SP ) minimize
∑
j∈J1

∑
i∈I

dijzij +EQ2Ψ(x,Q2) (1)

subject to
∑
i∈I

zij = 1 ∀j ∈ J1 (2)

zij ≤ xi ∀i ∈ I and ∀j ∈ J1 (3)∑
i∈I

aixi ≤ b1 (4)

All variables are binary

where Ψ(x, Q2) is the minimum response time for a given set of values of the
first stage variables x =

(
x1, · · · , x|V |

)
and for a realization of the second stage
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queries Q2, and EQ2 denotes mathematical expectation with respect to Q2. If
the probability distribution of Q2 is as discussed above, we have that

EQ2Ψ(x,Q2) =

L∑
ℓ=1

pℓΨ(x, Q
ℓ
2) (5)

and for each value of ℓ, the corresponding value of Ψ(x, Qℓ
2) is obtained by solving

the following view selection problem.

Ψ(x, Qℓ
2) = min

∑
j∈Jℓ

2

∑
i∈I

dijt
ℓ
ij (6)

subject to
∑
i∈I

tℓij = 1 ∀j ∈ Jℓ
2 (7)

tℓij ≤ uℓ
i + yℓi ∀i ∈ I and ∀j ∈ Jℓ

2 (8)

uℓ
i ≤ xi ∀i ∈ I (9)∑

i∈I

aiy
ℓ
i ≤ b2 (10)∑

i∈I

ai(u
ℓ
i + yℓi ) ≤ b1 (11)

All variables are binary (12)

Constraints (2) and (7) state that each query is answered by exactly one view in
the set of materialized views. Constraints (3) and (8) guarantee that a query can
be answered by a view only if the view is already materialized. Constraints (4),
(10), and (11) state the storage limitation of view sets. Constraint (9) guarantees
that the view kept from stage 1 to stage 2 is already materialized at stage 1.

In defining various decision variables in the above model we have used the
subscript i to represent view vi, and in every case we have defined the decision
variables for all values of i in the subscript set I (or equivalently for all views
in the entire view set V ). Naturally, in practice for each decision variable with
a subscript i (associated with view vi) we only need to consider those views vi
that are relevant in the context of that decision variable. For instance, in defining
the decision variable xi at stage 1 we only need to define this variable for those
views vi that can be used to answer at least one query either in the first stage or
in the second stage. In other words, we need not consider view vi (or define the
corresponding variable xi) if this view is not a superset of at least one query in
our entire query set. In the remainder of this section we define various subsets
of the overall view set V (and its corresponding subscript set I) so as to re-write
the above model with few variables and constraints.

Let Q̂ = Q1 ∪
{
∪L
ℓ=1Q

ℓ
2

}
be the collection of all queries (either in stage 1 or

in stage 2). We define

V1 =
{
vi ∈ V : vi ⊇ q for some q ∈ Q̂

}
(13)

V ℓ
2 =

{
vi ∈ V : vi ⊇ q for some q ∈ Qℓ

2

}
, ℓ = 1, . . . , L (14)
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Correspondingly, we define the sets of subscripts associated with V1 and V ℓ
2 as

I1 and Iℓ2, for ℓ = 1 to L, respectively. It follows that V1 is the set of views that
are relevant for stage 1, and V ℓ

2 is the set of views that are relevant for the ℓth

sub-problem (scenario) in stage 2, for ℓ = 1 to L.

Similarly, associated with each query qj in the sets Q1 and/or Qℓ
2 we define

a sub-collection of views that are relevant in answering that particular query.
For each query qj ∈ Q1 we define V1j = {vi ∈ V1 : vi ⊇ qj}, and for each query
qj ∈ Qℓ

2 we define V ℓ
2j =

{
vi ∈ V ℓ

2 : vi ⊇ qj
}
, for ℓ = 1 to L. Again, correspond-

ing to the view sets V1j and V ℓ
2j we define the associated sets of subscripts as

I1j and Iℓ2j , for ℓ = 1 to L, respectively.

Example 1 (Continued). In order to define V1, V
1
2 and V 2

2 , we only consider the

views that could answer at least one query in the query set Q̂ = {q1, q2, q3, q4, q5, q6},
Q1

2 and Q2
2, respectively. Thus, we obtain that

V1 =
{
{b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d},

{b, c, d}, {a, b, c, d}
}

V 1
2 =

{
{b}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}

}
V 2
2 =

{
{c}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}

}
.

For each query, we define the relevant view sets in answering that particular
query. For example, for query q1 = {a, b} ∈ Q1 we define V11 =

{
{a, b}, {a, b, c},

{a, b, d}, {a, b, c, d}
}
, and for query q6 = {b, d} ∈ Q2

2 we define V 2
26 =

{
{b, d},

{a, b, d}, {b, c, d}, {a, b, c, d}
}
.

We can now define the first stage decision variables xi, only for views in the
set V1, and the first stage decision variables zij , only for views vi in the set
V1j . Similarly, we can define the second stage decision variables uℓ

i and yℓi , only
for views vi ∈ V ℓ

2 , and the second stage decision variables tℓij , only for views

vi ∈ V ℓ
2j , for ℓ = 1 to L. It follows that we can now rewrite the above stochastic

programming model SP as the following model that we denote by SP ′.

(SP ′) minimize
∑
j∈J1

∑
i∈I1j

dijzij +EQ2Ψ(x,Q2) (15)

subject to
∑
i∈I1j

zij = 1 ∀j ∈ J1 (16)

zij ≤ xi ∀j ∈ J1 and ∀i ∈ I1j (17)∑
i∈I1

aixi ≤ b1 (18)

All variables are binary (19)
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and the corresponding second stage subproblem can be written as

Ψ(x, Qℓ
2) = min

∑
j∈Jℓ

2

∑
i∈Iℓ

2j

dijt
ℓ
ij (20)

subject to
∑
i∈Iℓ

2j

tℓij = 1 ∀j ∈ Jℓ
2 (21)

tℓij ≤ uℓ
i + yℓi ∀j ∈ Jℓ

2 and ∀i ∈ Iℓ2j (22)

uℓ
i ≤ xi ∀i ∈ Iℓ2 (23)∑

i∈Iℓ
2

aiy
ℓ
i ≤ b2 (24)

∑
i∈Iℓ

2

ai( u
ℓ
i + yℓi ) ≤ b1 (25)

All variables are binary (26)

3 Solving the model SP

We begin this section by introducing an integer programming model [16] ob-
tained from the extensive form [4] of the above stochastic programming model.
Later in this section we study the properties of the integer programming model,
use these properties to remove some variables and constraints, and obtain a
model that is significantly smaller. The optimal solution of the resulting model
is guaranteed to be optimal for the original model SP . This, in turn, allows us
to solve larger instances of the SVS problem.

3.1 An integer programming model

In this subsection we propose an integer programming model [16] for the SVS
problem. In order to solve the stochastic view selection model SP , we write the
extensive form [4] of the stochastic programming model SP ′ that we discussed
above, which is an integer programming model that we denote by IP1.
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(IP1) minimize
∑
j∈J1

∑
i∈I1j

dijzij +
L∑

ℓ=1

pℓ
∑
j∈Jℓ

2

∑
i∈Iℓ

2j

dijt
ℓ
ij (27)

subject to
∑
i∈I1j

zij = 1 ∀j ∈ J1 (28)

zij ≤ xi ∀j ∈ J1,∀i ∈ I1j (29)∑
i∈I1

aixi ≤ b1 (30)

∑
i∈Iℓ

2j

tℓij = 1 ∀j ∈ Jℓ
2, ℓ = 1, . . . , L (31)

tℓij ≤ uℓ
i + yℓi ∀j ∈ Jℓ

2,∀i ∈ Iℓ2j , ℓ = 1, . . . , L (32)

uℓ
i ≤ xi ∀i ∈ Iℓ2, ℓ = 1, . . . , L (33)∑

i∈Iℓ
2

aiy
ℓ
i ≤ b2, ℓ = 1, . . . , L (34)

∑
i∈Iℓ

2

ai(u
ℓ
i + yℓi ) ≤ b1, ℓ = 1, . . . , L (35)

All variables are binary (36)

Note that for an instance with K attributes, n1 queries in Q1 at stage 1 and
nℓ
2 queries in Qℓ

2 at stage 2, for ℓ = 1, . . . , L, there are at most (n1 +
∑L

ℓ=1 n
ℓ
2 +

2L+ 1)|V1| variables and at most (n1 +
∑L

ℓ=1 n
ℓ
2 + 2L)(|V1|+ 1) + 1 constraints

in the integer programming model IP1, where V1 is as defined in Section 2.2.
Thus, even for a relatively small number of K, L, n1 and n1

2, · · · , nL
2 , the size of

the model could be very large and the execution time of solving the IP model
could be excessively long even with a relatively fast IP solver such as CPLEX
11 [9]. The applicability of our model is thus limited to only a small number of
instances. We thus consider to reduce the size of our model by reducing the view
sets V1, V1j , V

ℓ
2 and V ℓ

2j , for ℓ = 1, . . . , L. In section 4, we will provide numerical
results for solving model IP1.

3.2 Reduction of search space

In this subsection, we make a few observations regarding the properties of the
views that appear in an optimal solution for a given SVS problem. Based on
these observations, we identify the reduced search spaces of views, which are
several relatively small subsets of the view sets V1, V1j , V

ℓ
2 and V ℓ

2j . The reduced
search spaces are guaranteed to contain at least one set of the optimal views.
We then redefine the decision variables on the reduced search spaces in model
IP1, and obtain an integer programming model that we denote by IP2. IP2 is
significantly smaller than IP1, and the optimal solution of IP2 is guaranteed to
be optimal for the model SP .
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First reduction In a deterministic view selection problem, Asgharzadeh [1]
proposes that one could reduce the search space of views (set of views to consider)
by eliminating view v that has at least one attribute that is not in any of the
queries answerable by this view. We extend the methods to our SVS problem
and obtain the following observations.

Observation 1 In an instance of SVS problem, given a view vi in the view
set V1, if the number of attributes of vi is strictly greater than the number of
attributes in the union set of the queries in Q̂ that vi could answer, that is, |vi| >
| ∪q∈Q̂

q⊆vi

q|, then there exists an optimal solution such that vi is not materialized

at stage one, or equivalently, xi = 0.

Proof. For each query q ∈ Q̂, if q could be answered by vi, then q ⊆ vi. Thus,
∪q∈Q̂
q⊆vi

q ⊆ vi and | ∪q∈Q̂
q⊆vi

q| ≤ |vi|. If | ∪q∈Q̂
q⊆vi

q| < |vi|, then vi has at least one

attribute, call it attribute a, that is not in any q ∈ Q̂ such that q ⊆ vi. If there
exists an optimal solution such that vi is materialized at stage one, we replace
it with view v \ {a}. Since the size of vi \ {a} is no more than that of vi, the

replacement will not violate the space limitation. And for each query q ∈ Q̂ that
is answered by vi in the optimal solution, q could be answered by vi \ {a} with
cost no more than that of vi. Thus, we obtain an optimal solution such that v
is not materialized at stage one and the corresponding decision variable xi = 0.

Observation 2 In an instance of SVS problem, given a view vi in the view
set V ℓ

2 , if the number of attributes of vi is strictly greater than the number of
attributes in the union set of the queries in Ql

2 that vi could answer, that is, |vi| >
| ∪q∈Qℓ

2
q⊆vi

q|, then there exists an optimal solution such that vi is not materialized

at stage two, or equivalently, yℓi = 0.

Proof. If vi satisfies the above conditions, then vi has at least one attribute, say
attribute a, that is not in any q ∈ Qℓ

2 and q ⊆ v. If vi is materialized at stage
two in an optimal solution, then replace vi by vi \ {a} and the solution remains
optimal.

Second reduction In the deterministic view selection problem, Asgharzadeh,
Chirkova, Fathi [2] and Asgharzadeh [1] propose that one could reduce the search
space of views based on the size of the views and on the total size of the queries
that each view could answer. Let S(·) be the size of a query or a view. Then, we
obtain the following observations.

Observation 3 In an instance of SV S problem, given a view vi in the view set
V1, if vi satisfies the condition that the size of vi is greater than the total size
of the queries in Q̂ that this view can answer, that is, S(vi) >

∑
q∈Q̂,q⊆vi

S(q),
then there exists an optimal solution in which vi is not materialized at stage one,
or equivalently, xi = 0.
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Proof. Assume that vi ∈ V1 satisfies the above inequality condition and that vi
is materialized at stage one in an optimal solution. Note that a query could be
answered by a view with the same set of attributes as the query, and the sizes of
the query and the view are identical. Let V (v,Q) be the set of views that have
the same set of attributes as the queries that a view v could answer in a query set
Q. At stage 1, if we materialize all the views in V (vi, Q̂) instead of vi, then the
space limitation is not violated because of the above inequality condition. And
every query in Q̂ that vi answers could be answered by some view in V (vi, Q̂)
with cost no more than S(vi). Thus, the new solution remains optimal.

Observation 4 In an instance of SVS problem, given a view vi in the view set
V ℓ
2 , if vi satisfies the condition that the size of vi is greater than the total size of

the queries in Qℓ
2 that this view can answer, that is, S(vi) >

∑
q∈Qℓ

2
q⊆vi

S(q), then

there exists an optimal solution such that vi is not materialized at stage two, or
equivalently, yℓi = 0.

Proof. If vi ∈ Qℓ
2 satisfies the above condition and is materialized at stage two

in an optimal solution, then replace vi by the set of views V (vi, Q
ℓ
2) and the

solution remains optimal.

Note that the first and second reductions on the same set of views could be
conducted simultaneously. It follows that we can now derive the reductions on
the view set V1 based on Observations 1 and 3, and derive the reductions on the
view set V ℓ

2 based on Observations 2 and 4. We denote the reduced view sets of

V1 and V ℓ
2 as V1 and V ℓ

2 , for ℓ = 1 to L, respectively.

We further define a new set of views for each scenario ℓ that we refer to as V ℓ
12.

This would be the set of views that are materialized at stage 1 and potentially
utilized for scenario ℓ at stage 2. In the following observation, we show that

V ℓ
12 = V1 ∩ V ℓ

2 .

Observation 5 For each view vi that is materialized at stage one and kept from
stage one to stage two for the ℓth scenario, vi ∈ V1 ∩ V ℓ

2 .

Proof. The proof of Observation 5 is straightforward.

Observation 6 V ℓ
2 ⊆ V ℓ

12 ⊆ V1, for ℓ = 1, . . . , L.

Proof. Firstly, V ℓ
12 ⊆ V1 could be obtained directly from the definition of V ℓ

12.

Secondly, we show V ℓ
2 ⊆ V1. Noting that V ℓ

2 ⊆ V ℓ
2 ⊆ V1, we obtain that for

all v ∈ V ℓ
2 , v ∈ V1. Assume v ̸∈ V1. Then, v must be eliminated during first

or second reduction. If v satisfies the first reduction condition, that is, |v| >
| ∪q∈Q̂

q⊆v

q|. Since Qℓ
2 ⊆ Q̂, ∪q∈Qℓ

2
q⊆v

q ⊆ ∪q∈Q̂
q⊆v

q. Thus, |v| > | ∪q∈Qℓ
2

q⊆v

q| and v is

eliminated from V ℓ
2 by first reduction. And thus v ̸∈ V ℓ

2 . This contradicts the

condition v ∈ V ℓ
2 . If v doesn’t satisfies the first but second reduction condition,
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that is, S(v) >
∑

q∈Q̂
q⊆v

S(q). Since Qℓ
2 ⊆ Q̂,

∑
q∈Q̂
q⊆v

S(q) ≥
∑

q∈Qℓ
2

q⊆v

S(q). Thus,

S(v) >
∑

q∈Qℓ
2

q⊆v

S(q) and v is eliminated from V ℓ
2 by second reduction. And thus

v ̸∈ V l
2 . This contradicts the condition v ∈ V ℓ

2 . Hence, the assumption does not

hold and v ∈ V1, which proves that V ℓ
2 ⊆ V1. Thirdly, since V ℓ

2 ⊆ V ℓ
2 , we obtain

that V l
2 ⊆ V ℓ

2 ∩ V1 = V ℓ
12.

Correspondingly, we define the sets of subscripts for V1, V ℓ
12 and V ℓ

2 as I1,

Iℓ12 and Iℓ2, for ℓ = 1 to L, respectively.
For each query qj ∈ Q1 we define V1j = {vi ∈ V1 : vi ⊇ qj}, and for each query

qj ∈ Qℓ
2 we define V ℓ

12j = {vi ∈ V ℓ
12 : vi ⊇ qj} and V ℓ

2j = {vi ∈ V ℓ
2 : vi ⊇ qj},

for ℓ = 1 to L. It follows that V ℓ
2j ⊆ V ℓ

12j by Observation 6. Again, we define the

associated sets of subscripts for V1j , V12j and V ℓ
2j as I1j , I12j and Iℓ2j , for ℓ = 1

to L, respectively.

Example 1 (Continued). View {c, d} in the set V1 answers only one query {c} in

Q̂, and contains one more attribute than {c}. As a result, view {c, d} is elimi-
nated from V1 by the first reduction. View {a, b, d} in the set V1 answers query

{b}, {a, b} and {b, d} in Q̂, and the total size of the three queries is less than the
size of view {a, b, d} (4 + 7 + 8 = 19 < 20). As a result, view {a, b, d} is elimi-
nated from V1 by the second reduction. With the same approaches, we obtain
the reduced view sets as follows.

V1 =
{
{b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {b, c, d}, {a, b, c, d}

}
V 1
12 =

{
{b}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {b, c, d}, {a, b, c, d}

}
V 1
2 =

{
{b}, {a, c}, {a, b, c}

}
V 2
12 =

{
{c}, {a, c}, {b, c}, {b, d}, {a, b, c}, {b, c, d}, {a, b, c, d}

}
V 2
2 =

{
{c}, {b, d}

}
.

For each query, we define the relevant view sets in answering that particular
query. For example, for query q1 = {a, b} ∈ Q1 we define V11 =

{
{a, b}, {a, b, c},

{a, b, c, d}
}
, and for query q6 = {b, d} ∈ Q2

2, we define V 2
12 6 =

{
{b, d}, {b, c, d},

{a, b, c, d}
}
and V 2

26 =
{
{b, d}

}
.

In Section 4, we will provide the numerical results of our reductions of the
search space by a number of instances.

Modified integer programming model IP2 We can now redefine the first
stage decision variables xi only for views in the set V 1, and the first stage decision
variables zij only for views vi ∈ V1j . Similarly, we can redefine the second stage

decision variables uℓ
i only for views vi ∈ V ℓ

12, and the second stage decision
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variables yℓi only for views vi ∈ V ℓ
2 . Since V

ℓ
2j ⊆ V ℓ

12j , we can redefine the second

stage variables tℓij only for views vi ∈ V ℓ
12j , for ℓ = 1 to L. It follows that we can

now rewrite the integer programming model IP1 into an integer programming
model that we denote as IP2 with reduced size.

(IP2) minimize
∑
j∈J1

∑
i∈I1j

dijzij +
L∑

ℓ=1

pℓ
∑
j∈Jℓ

2

∑
i∈Iℓ

12j

dijt
ℓ
ij (37)

subject to
∑
i∈I1j

zij = 1 ∀j ∈ J1 (38)

zij ≤ xi ∀j ∈ J1,∀i ∈ I1j (39)∑
i∈I1

aixi ≤ b1 (40)

∑
i∈Iℓ

12j

tℓij = 1 ∀j ∈ Jℓ
2, ℓ = 1, . . . , L (41)

tℓij ≤ uℓ
i ∀j ∈ Jℓ

2,∀i ∈ Iℓ12j − Iℓ2j , ℓ = 1, . . . , L (42)

tℓij ≤ uℓ
i + yℓi ∀j ∈ Jℓ

2,∀i ∈ I l2j , ℓ = 1, . . . , L (43)

uℓ
i ≤ xi ∀i ∈ Iℓ12, ℓ = 1, . . . , L (44)∑

i∈Iℓ
2

aiy
ℓ
i ≤ b2, ℓ = 1, . . . , L (45)

∑
i∈Iℓ

12

aiu
ℓ
i +

∑
i∈Iℓ

2

aiy
ℓ
i ≤ b1, ℓ = 1, . . . , L (46)

All variables are binary (47)

The optimal solution of IP2 is also an optimal solution of IP1. Thus, given an

SVS problem, we could solve it by solving IP2. Since V1j , V ℓ
12j , V

ℓ
2j , V

ℓ
12 and V ℓ

2

are all subsets of V1, we could obtain an upper bound (n1+
∑L

ℓ=1 n
ℓ
2+2L+1)|V1|

for the number of variables and an upper bound (n1+
∑L

ℓ=1 n
ℓ
2+2L)(|V1|+1)+1

for the number of constraints in IP2. Compared with IP1, both numbers are
dramatically reduced, and thus the size of IP2 can be significantly smaller than
IP1. In section 4, we will provide numerical results for the comparisons of IP1
and IP2.

4 Experimental results of solving the SVS problem

In this section, we present the results of a computational experiment with models
IP1 and IP2 in order to examine (i) the effectiveness of the model reductions
that we proposed in Section 3.2, and (ii) the scalability of the model IP2. We
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construct a collection of instances of the SVS problem with varying sizes using a
number of databases of the TPC-H benchmark [15]. We then solve each instance
using models IP1 and IP2. We observe that the search spaces of views are
significantly reduced in IP2 compared with IP1, which allows us to use IP2
to solve several larger instances of the SVS problem of realistic size. We also
observe that some realistic-size instances could not be solved due to insufficient
memory. We have implemented all of our algorithms in C++, and have used
CPLEX 11 [9] to solve the integer programming models IP1 and IP2.

In Section 4.1 we describe how we construct each of the instances in our
experiments. In Sections 4.2 and 4.3 we evaluate the effectiveness of our models
for solving the SVS problem, and report our findings. Finally in Section 4.4 we
present a summary of our experimental results.

4.1 Constructing instances

The input parameters for an instance of the SVS problem are a given database
D, query sets Q1 and Q2 = {Q1

2, . . . , Q
L
2 }, associated probability vector p =

(p1, . . . , pL), and the space limits b1 and b2. Thus, each instance is identified by
(D, Q1,Q2,p, b1, b2).

In this section, all the instances are constructed based on three different
databases of the TPC-H benchmark [15]. More specifically, we use a 7-attribute
database, a 13-attribute database and a 17-attribute database to construct the
collection of instances in our experiments. Each database was obtained by adding,
to the original stored TPC-H tables generated with scale factor one, a single re-
lation, with either 7, 13, or 17 grouping attributes, that results from the natural
join of a subset of the set of these base relations. We measure the size of each
view in terms of the number of bytes that it occupies, and estimate this value
using analytical methods.

For all instances in this section, we set L = 2. Equivalently, there are 2 po-
tential query sets, Q1

2 and Q2
2, that occur at stage 2, with respective probabilities

p1 and p2. We further assume that p1 = p2 = 0.5.
In order to construct query sets Q1, Q

1
2 and Q2

2 for each instance, we comply
with the following principles. In each query set, each query is generated over the
given database randomly. In addition, the total sizes of all the query sets are
“approximately” the same. More specifically, the difference between the sizes of
any two query sets is no more than the size of the raw-data view.

Given a database fact table (that is, stored relation) D with K attributes, in
order to randomly choose a query q, we first determine the number of attributes
in q by randomly generating an integer t from {1, 2, . . . ,K − 1}. Then, we ran-
domly choose t distinct integers a1, . . . , at from {1, 2, . . . ,K} as the attributes
of q. Then, {a1, . . . , at} uniquely defines query q over database D.

To determine the queries in each query set, we first choose an integer n1,
ranging from 20 to 50, as the number of queries in Q1. For some instances,
we also set n1 to several larger values. Then, we randomly generate n1 queries
over database D as query set Q1. In order to obtain query sets Q1

2 and Q2
2, we

randomly generate queries over database D successively, for as long as the total
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size of the generated queries is less than or equal to Size(Q1), but not less than
Size(Q1) − Size(v1), where Size(·) denotes the total size of the queries in a
query set (·), and v1 denotes the raw-data view. Thus, we obtain that

S(v1) + Size(Qℓ
2) ≥ Size(Q1) ≥ Size(Qℓ

2), ℓ = 1, 2 (48)

The difficulty of solving a specific instance of the SVS problem depends on
the relative size of the storage spaces as compared with the size of the queries.
Suppose the size of storage space b1 is expressed as

b1 = α · Size(Q̂) (49)

where α is a non-negative real number and Q̂ = Q1 ∪Q1
2 ∪Q2

2.
If b1 ≥ S(v1), the problem is feasible, since we could always materialize the

raw-data view and use it to answer all the queries. And if b1 < S(v1), there is
no guarantee that the SVS problem is feasible.

If α ≥ 1, the SVS problem becomes trivial, since the best solution could be
materializing all the views with the same sets of attributes as the queries in Q̂
at stage 1. Thus, in order for an instance of the SVS problem to be nontrivial,
we need to have 0 < α < 1.

Note that b2 ≤ b1 always holds on the space limits b1 and b2. Suppose b2 is
expressed as

b2 = βb1 (50)

where 0 ≤ β ≤ 1.
If b2 ≥ maxQ∈{Q1

2,...,Q
L
2 } Size(Q), the second stage sub-problem of the SVS

problem becomes trivial, since at stage 2, for each scenario ℓ we can materialize
all the views with the same set of attributes as the queries in Qℓ

2.
In this section, for all instances based on the TPC-H datasets we choose

α = 0.2 and β = 0.5, that is, the storage space limit b1 is equal to one-fifth of
the sum of the sizes of the queries in Q̂, and b2 is one-half of b1. It follows that

b1 = 0.2Size(Q̂) ≤ (0.2)(3Size(Q1)) = 0.6Size(Q1)

b2 = 0.5b1 ≤ (0.5)(0.6Size(Q1)) ≤ 0.3Size(Q1)

which guarantees that the instances of the SVS problem are nontrivial.

4.2 Reducing the search space

In this subsection, we compare the sizes of the models IP1 and IP2 for some
instances of the SVS problem. More specifically, we constructed 8 instances for
the 7-attribute TPC-H database and 8 instances for the 13-attribute TPC-H
database. The number of queries in Q1 for each instance ranges from 20 to 50.
For each instance, we compare the number of decision variables xi, u

ℓ
i and yℓi ,

for models IP1 and IP2, as shown in Table 1 and Table 3. For each instance,
we also report the total number of variables and constraints, as well as the time
that it takes to build the model and time that it takes to solve the model by the
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Table 1. Comparison of search spaces in models IP1 and IP2, for instances over the
7-attribute TPC-H database

inst-
ance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

number of xi number of u1
i number of y1

i number of u2
i number of y2

i

IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2

|V1| |V1| |V 1
2 | |V 1

12| |V 1
2 | |V 1

2 | |V 2
2 | |V 2

12| |V 2
2 | |V 2

2 |
1 (20,17,19) 125 64 80 54 80 24 108 55 108 43

2 (20,25,20) 125 84 122 82 122 47 110 75 110 38

3 (30,35,39) 127 105 124 102 124 65 120 99 120 62

4 (30,26,31) 127 92 120 88 120 42 124 89 124 58

5 (40,45,41) 127 109 122 104 122 72 123 105 123 77

6 (40,38,35) 126 103 120 98 120 62 116 99 116 44

7 (50,48,50) 127 119 121 113 121 91 126 118 126 85

8 (50,47,53) 127 113 124 110 124 74 125 111 125 87

Table 2. Comparison of sizes and computing times in models IP1 and IP2, for in-
stances over the 7-attribute TPC-H database

inst-
ance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

number of number of time to build time to solve
variables constraints model (sec.) model (sec.)
IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2

1 (20,17,19) 1621 901 1425 873 0.015 0.000 0.734 0.469

2 (20,25,20) 1937 1315 1838 1288 0.015 0.000 1.500 1.235

3 (30,35,39) 2575 2135 2527 2076 0.000 0.016 0.938 0.859

4 (30,26,31) 2385 1761 2330 1738 0.000 0.015 8.312 6.969

5 (40,45,41) 2873 2523 2859 2456 0.015 0.016 6.297 5.640

6 (40,38,35) 2600 2139 2556 2139 0.015 0.016 2.031 1.859

7 (50,48,50) 3447 3209 3459 3122 0.016 0.015 8.156 6.110

8 (50,47,53) 3437 3060 3455 3001 0.015 0.015 3.125 1.625

Table 3. Comparison of search spaces in models IP1 and IP2, for instances over the
13-attribute TPC-H database

inst-
ance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

number of xi number of u1
i number of y1

i number of u2
i number of y2

i

IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2

|V1| |V1| |V 1
2 | |V 1

12| |V 1
2 | |V 1

2 | |V 2
2 | |V 2

12| |V 2
2 | |V 2

2 |
1 (20,14,11) 7712 540 5696 525 5696 74 1338 397 1338 43

2 (20,30,22) 7871 1664 6807 1656 6807 391 6212 1604 6212 115

3 (30,30,34) 7672 1484 5769 1461 5769 347 7536 1481 7536 622

4 (30,32,38) 8064 2370 7168 2343 7168 283 7792 2352 7792 682

5 (40,45,34) 8176 3260 7856 3249 7856 1138 7434 3168 7434 284

6 (40,43,38) 8069 3250 6701 3108 6701 743 7968 3232 7968 395

7 (50,45,58) 8144 3335 7213 3233 7213 714 7616 3309 7616 989

8 (50,48,48) 8186 4092 8112 4085 8112 870 8072 4081 8072 938
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Table 4. Comparison of sizes and computing times in models IP1 and IP2, for in-
stances over the 13-attribute TPC-H database

inst-
ance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

number of number of time to build time to solve
variables constraints model (sec.) model (sec.)
IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2

1 (20,14,11) 74,472 6,352 48,114 6,550 0.297 0.266 13.859 1.094

2 (20,30,22) 87,649 21,381 73,129 22,042 0.453 0.391 72.610 10.047

3 (30,30,34) 92,164 24,247 78,437 23,866 0.516 0.453 252.484 50.375

4 (30,32,38) 108,860 36,907 98,057 37,407 0.625 0.516 135.375 46.406

5 (40,45,34) 130,380 58,623 120,144 59,060 0.750 0.672 75.594 25.656

6 (40,43,38) 120,335 54,729 108,966 55,669 0.719 0.672 253.078 69.531

7 (50,45,58) 127,522 62,275 116,430 62,234 0.813 0.766 76.609 39.766

8 (50,48,48) 157,430 86,262 148,999 86,871 0.890 0.813 88.328 27.078

CPLEX IP solver, for models IP1 and IP2. The results are shown in Table 2
and Table 4.

We observe that the number of views in the search space for model IP1 is
significantly reduced in IP2 over all the instances. It is also observed that the size
of IP2, when expressed by the total number of variables and constraints, is much
smaller than that of IP1, yet the optimal solution of IP2 is also optimal for the
model IP1. While there is no significant difference between the time to build the
models IP1 and model IP2, the time to solve IP2 is significantly smaller than
that of IP1, especially for relatively large problems, such as instances based on
the 13-attribute database.

We observe that the reduction in the number of each group of decision vari-
ables and the reduction in the size of the model, expressed by the reduction in
the total number of variables and constraints, are relatively large for instances
with a small ratio of the number of queries over the total number of views in the
database. For instances with larger ratios, the reduction rate decreases. More
specifically, we compare the results for instances over the 7-attribute database
in Tables 1 and 2. When we increase the number of queries in each query set of
the instances, the ratio of the number of queries over the total number of views
increases, and the magnitude of associated reductions in the number of variables
decreases. We also compare the results for the instances with similar number
of queries based on different databases. More specifically, we compare each pair
of instances with same instance ID over the 7-attribute database and the 13-
attribute database. Note that the number of views in the 7-attribute database
and in the 13-attribute database are 128 and 8192, respectively. For each pair
of instances, the one over the 13-attribute database has a relatively small ratio
of the number of queries over the total number of views, and the associated
reductions are relatively large.

We also observe that for instances with a relatively large reduction in the
number of variables and constraints, the corresponding reduction of time to
solve the model is relatively large.
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4.3 Scalability of the model IP2

In this subsection we evaluate the scalability of the model IP2 to solve instances
of the SVS problem. Based on the results in Tables 2 and 4, we could solve all
the instances over the 7-attribute TPC-H database using IP2 within 10 seconds,
and all the instances over the 13-attribute TPC-H database within 80 seconds.
In order to examine the scalability of model IP2, we construct instances with
the number of queries in Q1 varying from 60 to 200 based on the 13-attribute
TPC-H database, and instances with the number of queries in Q1 varying from
20 to 40 based on the 17-attribute TPC-H database. We solved all the instances
using model IP2, and reported the time required to build the model and the time
required to solve the model for the corresponding IP2 based on each instance.
The results are shown in Table 5 and Table 6.

Table 5. Scalability of IP2 for instances over the 13-attribute TPC-H database

instance
query sets

(|Q1|, |Q1
2|, |Q2

2|)
time to build
model (sec.)

time to solve
model (sec.)

1 (60,58,64) 0.922 23.484

2 (60,60,63) 0.875 41.860

3 (70,63,59) 1.000 113.000

4 (70,73,72) 1.093 55.235

5 (80,80,86) 1.453 247.375

6 (80,83,75) 1.328 153.907

7 (90,103,99) 1.671 264.954

8 (90,87,79) 1.406 106.230

9 (100,98,95) 1.547 198.531

10 (100,103,98) 2.078 217.140

11 (120,122,124) 1.797 584.688

12 (140,140,139) 2.125 451.078

13 (160,161,153) 2.485 > 20min

14 (180,191,192) 2.953 > 20min

15 (200,202,215) 3.203 > 20min

Table 6. Time of solving IP2 for instances over the 17-attribute TPC-H database

instance
query sets

(|Q1|, |Q1
2|, |Q2

2|)
time to build
model (sec.)

time to solve
model (sec.)

1 (20,19,21) 20.141 63.297

2 (20,10,15) 18.719 22.844

3 (30,32,28) 21.578 out of memory

4 (30,38,35) 22.219 out of memory

5 (40,48,45) out of memory —

6 (40,31,35) out of memory —
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From Table 5, we observe that we could solve all the instances whose number
of queries in Q1 is no more than 140 based on the 13-attribute database within
10 minutes. However, when we increase the size of the query set, the solver fails
to provide an optimal solution within the time limit of 20 minutes. Moreover,
from Table 6, CPLEX fails to give an optimal solution for the instances based
on the 17-attribute database where the size of the query set grows to 30. The
failure is due to memory limitation. In addition, when the size of the query set
grows further to 40, we are not able to even build the model due to insufficient
memory.

Comparing “the time to build model” with “the time to solve the model” in
Tables 2, 4, and 5, we observe that, as the number of queries in each query set of
the instance increases, the time required to build the model IP2 grows slowly.
At the same time, the time required to solve the model grows relatively fast. For
all the instances, the time required to build the model is smaller than the time
required to solve the corresponding model IP2. For the instances with larger
size of query sets and larger execution times, this difference is quite significant.

4.4 Summary of observations

From the results of the above experiments, we observe that the search spaces
for the view sets are significantly reduced in model IP2 compared with model
IP1. As a result, the size of the model is much smaller in IP2. This allows us to
solve the instances of problem SVS of realistic size using model IP2 to obtain
an optimal solution, while IP1 may not able to solve the problem within the
time limit. It is also observed that there are some realistic-size instances which
could not be solved by IP2.

5 Value of the two-stage stochastic model

In this section we introduce appropriate models to assess the value of the two-
stage stochastic programming model that we proposed in Section 2.2. In order
to measure the gain obtained from the replacement mechanism of this model,
we introduce the one-stage deterministic model for the SVS problem, and define
the value of two-stage versus one-stage, which evaluates the difference between
the optimal values of the model SP and the one-stage model. This value could
be very significant over some instances, which indicates more benefits from the
replacement mechanism of the two-stage model in units of the expect cost (time)
of answering queries. In order to assess the value of the stochastic properties of
the model SP , we introduce the expected value problem, and define the value of
stochastic solution, which evaluates the difference between the expected response
time achieved by solving the model SP and by solving the expect value problem.
This value could be quite substantial over some instances, which indicates more
benefits from taking into account the stochastic properties in the stochastic
programming model in choosing a decision for the SVS problem.
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In Section 5.1 we compare and contrast the model SP with a correspond-
ing one-stage model, and introduce the value of two-stage versus one-stage. In
Section 5.2 we compare the model SP with a two-stage model which is based
on the expected value of random events, and introduce the value of stochastic
solution. In Section 5.3 we provide several related numerical results.

5.1 Two-stage versus one-stage

In this subsection, we introduce the value of two-stage versus one-stage for solv-
ing the SVS problem. In the two-stage stochastic view selection model, we allow
for a view replacement at stage 2. The value of two-stage versus one-stage mea-
sures the gain obtained via this replacement mechanism. We start by discussing
the one-stage model, that is, the model in which we do not allow to drop or
replace any materialized views at stage 2. In other words, at time 1 (stage 1), we
decide to materialize a set of views S under a given space limit b1. We use the
views in S to answer all queries in Q1, as well as all queries in the query set Qℓ

2

that may occur at time 2 (stage 2), for ℓ = 1 to L. We then compare the optimal
value of this model with the optimal value of the corresponding two-stage model
and define the value of two-stage versus one-stage in this context.

Let the decision variables xi, zij and tℓij be as defined in Section 2.2. It follows
that we could formulate the one-stage problem as an integer programming model
that we denote by OS as follows.

(OS) minimize
∑
j∈J1

∑
i∈I1j

dijzij +
L∑

ℓ=1

pℓ
∑

j∈Jℓ
2

∑
i∈Iℓ

2j

dijt
ℓ
ij

subject to
∑

i∈I1j

zij = 1 ∀j ∈ J1

zij ≤ xi ∀j ∈ J1, ∀i ∈ I1j∑
i∈Iℓ

2j

tℓij = 1 ∀j ∈ Jℓ
2, ℓ = 1, . . . , L

tℓij ≤ xi ∀j ∈ Jℓ
2, ∀i ∈ Iℓ2j , ℓ = 1, . . . , L∑

i∈I1

aixi ≤ b1

All variables are binary
(51)

We note that if we set b2 = 0 in model SP , then the model is equivalent to the
model OS.

Let Optv(·) represent the optimal value of a model (·). We have the following
observation.

Observation 7 The optimal value of OS is an upper bound on the optimal value
of model SP , that is, Optv(SP ) ≤ Optv(OS).

Proof. In model IP1, we add the following constraints:

yℓi = 0, ∀i ∈ Iℓ2, ℓ = 1, . . . , L
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uℓ
i = xi, ∀i ∈ Iℓ2, ℓ = 1, . . . , L

Then, in model IP1, constraints (33)-(35) are redundant, and constraint (32)
becomes

tℓij ≤ xi ∀j ∈ Jℓ
2 , ∀i ∈ Iℓ2j , ℓ = 1, . . . , L.

Note that after adding those constraints to IP1, the new IP model is equiv-
alent to OS. In other words, IP1 is a relaxation of OS. We thus obtain that
Optv(OS) is an upper bound on the optimal value of model SP , that is,Optv(SP ) ≤
Optv(OS).

We define the value of two-stage versus one-stage (V TV O) as the difference
between the optimal values of the one-stage and two-stage models, namely,

V TV O = Optv(OS)−Optv(SP ). (52)

For a given instance of the problem, the corresponding value of V TV O pro-
vides the magnitude of improvement in the optimal response time achieved by
allowing the partial replacement of views at stage 2.

5.2 The value of stochastic solution (V SS)

In this subsection, we introduce the value of stochastic solution for the SVS
problem. In the literature on stochastic programming [4], the value of stochastic
solution (V SS) provides the possible gain obtained from solving the stochastic
programming model as opposed to solving a model based on expected values.
More specifically, for the SVS problem, we consider the model in which we make
the first-stage decisions based on the “expected” scenario of stage 2, instead of
a number of scenarios with associated probabilities as we do in model SP , and
then we make the second-stage decisions given the actual query set occurring at
stage 2. We compare this model with the model SP . The difference between the
expected response times is the value of stochastic solution.

In order to examine the V SS from the perspective of the SVS problem, we
first consider and define the expected value problem. In this model, instead of
having a number of realizations of Q2, we consider the query workload at stage
2 as a deterministic query setQ2 = ∪L

ℓ=1Q
ℓ
2, with cost weight pℓ for query q ∈ Qℓ

2.
If a query is in more than one query set from {Qℓ

2, ℓ = 1, . . . , L}, the weights are
accumulated accordingly. In other words, we can define the weight wj for each
query qj ∈ Q2 as

wj =
∑

ℓ:qj∈Qℓ
2

pℓ (53)

The expected value problem is then defined as follows. At time 1 (stage 1),
we decide to materialize a set of views S1 under a given space limit b1. We use
these views to answer all queries in Q1. Subsequently, at stage 2 we allow for
a partial replacement of the views materialized at stage 1 under space limit b2,
keeping the rest of the views of stage 1, to obtain a set of views S2. We use these
views to answer all queries in Q2. Our objective is to minimize the total cost of
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answering the queries occurring at time 1 and the cost of answering the queries
occurring at time 2. We now construct a mathematical model for this problem
which we refer to as EV .

Let J2 be the set of subscripts for all queries qj ∈ Q2. We define

V2 = {vi ∈ V : vi ⊇ q for some q ∈ Q2}

Note that V2 = ∪L
ℓ=1V

ℓ
2 , where V ℓ

2 is as defined in Section 2.2. Correspondingly,
we define as I2 the set of subscripts associated with V2. For each query qj ∈ Q2

we define V2j = {vi ∈ V2 : vi ⊇ qj}. Similarly, we define as I2j the set of
subscripts associated with V2j .

We can now define the following second stage decision variables for all views
vi ∈ V2.

ui =

{
1 if view vi is materialized at stage 1 and kept at stage 2

0 otherwise

yi =

{
1 if view vi is materialized at stage 2

0 otherwise

In addition, we define the second stage decision variables tij for all queries
qj ∈ Q2, and for all views vi ∈ V2j .

tij =

{
1 if we use view vi to answer query qj at stage 2

0 otherwise

Let the first stage decision variables xi and zij be as defined in Section 2.2.
It follows that the expected value problem could be formulated as an integer
programming model that we denote by EV , as follows.

(EV ) minimize
∑
j∈J1

∑
i∈I1j

dijzij +
∑
j∈J2

∑
i∈I2j

wjdijtij

subject to
∑

i∈I1j

zij = 1 ∀j ∈ J1

zij ≤ xi ∀j ∈ J1, ∀i ∈ I1j∑
i∈I1

aixi ≤ b1∑
i∈I2j

tij = 1 ∀j ∈ J2

tij ≤ ui + yi ∀j ∈ J2, ∀i ∈ I2j
ui ≤ xi ∀i ∈ I2j∑
i∈I2

aiyi ≤ b2∑
i∈I2

ai(ui + yi) ≤ b1

All variables are binary
(54)

We denote by (x̄, z̄) the optimal values of the first stage variables in the
model EV . We refer to (x̄, z̄) as the expected value solution (see [4]). The value
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of the stochastic solution measures how poor a decision (x̄, z̄) is in terms of the
model SP . We define the expected result of using the EV solution as

EEV =
∑
j∈J1

∑
i∈I1j

dij z̄ij +EQ2Ψ(x̄,Q2) (55)

where Ψ (·) is defined in (20)-(26). We make the following observation.

Observation 8 EEV is an upper bound on the optimal value of model SP , that
is, Optv(SP ) ≤ EEV .

Proof. EEV is equal to the optimal value of model IP1 after fixing the first
stage decision variables xi and zij to be x̄i and z̄ij , respectively, for all i and all
j. Thus, EEV is an upper bound on the optimal value of model SP .

We compare EEV and Optv(SP ), and define the value of stochastic solution
(V SS) as the difference between these values, namely,

V SS = EEV −Optv(SP ). (56)

For a given instance of the problem, the corresponding value of V SS provides the
magnitude of improvement in the expected response time achieved by solving
the stochastic programming model versus solving the smaller expected value
problem EV .

5.3 Numerical results

In this subsection we conduct several computational experiments over a number
of instances to assess the V TV O and the V SS for the model SP . We observe
that the magnitudes of both the V TV O and the V SS vary among instances.
This relies on the structure and properties of both the database and the query
workloads. We also observe that for each of the two values, there are some
instance where the corresponding value is very significant. This indicates that
the model SP is very beneficial over these instances.

Numerical results on V TV O In order to obtain V TV O, the value of two-
stage versus one-stage, we need to solve the model OS. Note that the model OS
is equivalent to the deterministic one-stage model OV IP ′ introduced in [2] if we
define the frequency fj for each query qj as follows. For each query occurring
only at stage 1 we define its frequency as 1, for each query occurring only at
stage 2 we define its frequency as wj , and for each query occurring at both stage
1 and stage 2 we define its frequency as 1 + wj , where wj is defined in (53).

fj =


1 ∀j ∈ Q1 −Q2

wj ∀j ∈ Q2 −Q1

1 + wj ∀j ∈ Q1 ∩Q2

(57)
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Thus, we can now apply the exact methods introduced in [2] to solve the model
OS.

Example 1 (Continued). For the example introduced in Section 2.1, the optimal
value of model OS is 40.5. As a result, we obtain that V TV O is 6.5 (=40.5-34).

In a computational experiment we constructed and solved a number of in-
stances of the two-stage problem with varying sizes over different datasets. For
each instance we obtained the corresponding value of V TV O. We observed that
the relative magnitude of V TV O varies among these instances. While in some
instances this value is relatively small, in other instances it is quite significant.
Following is a numeric example in which the value of V TV O is relatively high.

Example 2. We construct this example based on a 13-attribute type I non-
symmetric synthetic dataset [8] DI . The master table contains all the possible
entries by taking different values over the 13 attributes. The numbers of different
values that the 13 attributes take are 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4 and 4, re-
spectively. We apply a similar approach as in Section 4.1 to obtain the query sets
Q1 and Q2 = {Q1

2, Q
2
2} for this instance. The number of queries in each query set

is 20, 15 and 21, respectively. We set p = (0.5, 0.5) and b = (b1, b2) = (1632334,
816167). Then the instance is represented by (DI , Q1,Q2,p, b).

We compare the optimal values of models SP and OS, and we also report
V TV O and the ratio of V TV O over Optv(SP ) in Table 7.

Table 7. Results of V TV O over Example 2

Optv(SP ) Optv(OS) V TV O V TV O/Optv(SP )

1,810,103 10,892,471 9,082,368 501.760%

We observe that in this instance the value of V TV O is more than 5 times the
optimal value of model SP . In other words, in this instance, applying a two-stage
model, that is, model SP , instead of a one-stage model reduces the corresponding
response time by more than 80%. Thus, the stochastic view selection model could
be very beneficial over some instances.

Numerical results on VSS In order to obtain V SS, the value of stochastic
solution, we need to solve the model EV and calculate EEV . In the model
EV , we are given a deterministic query set Q2 at stage 2. Thus, the model
EV could be considered as a special case of the model SP where there is only
one scenario at stage 2. We can apply a similar approach as in Section 3.2 to
reduce the search spaces of views for the model EV , and solve it to obtain the
EV solutions. We then plug the EV solutions into equation (55), and solve the
second stage problem to obtain EEV .

Example 1 (Continued). For the example introduced in Section 2.1 we compare



27

the first stage solutions over models SP and EV . The optimal value of the model
SP is 34. We fix the first stage solutions to be as obtained in model EV , solve
model SP , and obtain EEV = 35. Thus, V SS = EEV −Optv(SP ) = 1.

Again in a computational experiment, we solved model EV and calculated
the corresponding value EEV over a collection of instances of varying sizes
bases on different types of datasets. We then calculated the associated value of
V SS and the ratio of V SS over the optimal value of SP for each instance. We
observed that the relative value of V SS varies among these instances, and that
its magnitude depends on both the structure of the underlying database and on
the corresponding size of the views, as well as on the structure of the query set.
While in some instances the value of V SS is relatively small, in other instances
it can be quite substantial. Following is a specific example in which this value is
relatively high.

Example 3. This example is based on a 13-attribute symmetric synthetic dataset
[8] DS(13; 2) (denoted as DS for short). Each attribute takes 2 different values,
and the master table contains all the possible entries by taking different values
over the 13 attributes. The number of queries in query sets Q1, Q2 = {Q1

2, Q
2
2}

are 20, 19, and 20, respectively. We set b = (17858, 8929) and p = (0.5, 0.5).
Then the instance is represented by (DS , Q1, Q2, p, b).

We compare V SS with the optimal value of model SP and report the results
in Table 8.

Table 8. Results of V SS over Example 3

Optv(SP ) Optv(EV ) EEV V SS V SS/Optv(SP )

27,139 41,841 35,686 8,574 31.49%

As observed in Table 8, it is beneficial to take into account the stochastic
properties of the future when performing model formulation of the stochastic
view selection problems. In this instance, the expected response time would be
more than 31% higher if we used the expected value model EV instead of the
stochastic programming model SP .

6 The expected value of perfect information (EV PI)

In this section, we study the expected value of perfect information (EV PI)
(see [4]) for the stochastic view selection problem as we defined in Section 2.1.
The EV PI evaluates the difference between the expected response time of the
SVS problem and the expected response time under the perfect information of
stage 2. It provides a “budget” for the decision maker to obtain the perfect in-
formation. We first introduce the ℓth scenario problem, and propose an integer
programming model that we refer to as IP ℓ for the problem. We then define the
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EV PI based on the optimal values of the models IP ℓs. Subsequently, we con-
duct a computational experiment on EV PI, and observe that the magnitude of
EV PI varies among instances. For some instances the EV PI is very significant,
which indicates that it is very beneficial in units of the expected response time
by obtaining the perfect information of the actual query workload at stage 2.

In the literature on stochastic programming [4], EV PI measures the max-
imum amount a decision maker would be ready to pay in return for complete
information about the future. More specifically, in the SVS problem, we would
benefit in units of the expected response time from the perfect information of
the actual query workload occurring at stage 2. And these benefits, that is the
EV PI, is the maximum amount a decision maker would pay to obtain the perfect
information of stage 2.

Assume we know in advance which query set will actually occur at stage
two. We study the stochastic view selection model that results from a particular
realization of the scenarios. In other words, for each scenario ℓ we make the
associated first stage and second stage decisions exclusively for it and obtain the
minimum cost of answering queries at stage 1 and stage 2 under the ℓth scenario.
We refer to the problem as the ℓth scenario problem.

We define V ℓ
1 = {vi ∈ V : vi ⊇ q for some q ∈ Q1 ∪ Qℓ

2}. Note that V ℓ
2 ⊆

V ℓ
1 ⊆ V1, where V1 and V ℓ

2 are as defined in Section 2.2. For each query qj ∈ Q1

we define V ℓ
1j = {vi ∈ V ℓ

1 : vi ⊇ qj}. Correspondingly we define the sets of

subscripts associated with V ℓ
1 and V ℓ

1j as Iℓ1 and Iℓ1j , respectively.

We can now redefine the first stage variables of the ℓth sub-problem (sce-
nario) as follows, for ℓ = 1 to L.

xℓ
i =

{
1 if view vi is materialized at time 1 in the ℓth scenario problem
0 otherwise ∀i ∈ Iℓ1

zℓij =

{
1 if we use view vi to answer query qj at time 1 in the ℓth scenario problem
0 otherwise ∀j ∈ J1, ∀i ∈ Iℓ1j .

Let the second stage variables uℓ
i , y

ℓ
i and tℓij be as defined in Section 2.2.

It follows that we can now formulate an integer programming model that we
denote by IP ℓ for the ℓth scenario problem, for ℓ = 1 to L.
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(IP ℓ) minimize
∑
j∈J1

∑
i∈Iℓ

1j

dijz
ℓ
ij +

∑
j∈Jℓ

2

∑
i∈Iℓ

2j

dijt
ℓ
ij (58)

subject to
∑
i∈Iℓ

1j

zℓij = 1 ∀j ∈ J1 (59)

zℓij ≤ xℓ
i ∀j ∈ J1, ∀i ∈ Iℓ1j (60)∑

i∈Iℓ
1

aix
ℓ
i ≤ b1 (61)

∑
i∈Iℓ

2j

tℓij = 1 ∀j ∈ Jℓ
2 (62)

tℓij ≤ uℓ
i + yℓi ∀j ∈ Jℓ

2 , ∀i ∈ Iℓ2j (63)

uℓ
i ≤ xℓ

i ∀i ∈ Iℓ2 (64)∑
i∈Iℓ

2

aiy
ℓ
i ≤ b2 (65)

∑
i∈Iℓ

2

ai(u
ℓ
i + yℓi ) ≤ b1 (66)

All variables are binary (67)

Letting Optv(IP ℓ) denote the optimal value of the objective function of
model IP ℓ under the ℓth scenario, we define the expected optimal value under
perfect information as the expected value of Optv(IP ℓ) over all scenarios. In
the literature on stochastic programming [13] and [4], this value is known as the
wait-and-see solution and it is denoted by WS. We have that

WS =

L∑
ℓ=1

pℓ ·Optv(IP ℓ). (68)

Observation 9 WS is a lower bound on the optimal value of model SP , that
is, WS ≤ Optv(SP ).

Proof. Suppose we redefine xℓ
i for all i ∈ I1, and redefine zℓij for all j ∈ J1 and for

all i ∈ I1j , for ℓ = 1 to L. We now modify model IP ℓ by replacing the subscripts
sets Iℓ1 and Iℓ1j in the objective function (58) and constraints (59)-(61) by I1 and

I1j , respectively. The resulting model that we denote by modified-IP ℓ has the
same optimal solutions as IP ℓ. Thus, it is equivalent to IP ℓ. We combine the
L modified-IP ℓ models into one integer programming model that we refer to as
IP ∗. It is to minimize

L∑
ℓ=1

pℓ(
∑
j∈J1

∑
i∈I1j

dijz
ℓ
ij +

∑
j∈Jℓ

2

∑
i∈Iℓ

2j

dijt
ℓ
ij)
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subject to the collection of all the constraints of submodel modified-IP ℓ for ℓ = 1
to L. Note that the optimal value of the model IP ∗ is equal to the expected value
of Optv(IP ℓ) over L scenarios. It follows that WS = Optv(IP ∗). Suppose we
add the following constraints into model IP ∗ to obtain modified-IP ∗.

zij = zℓij , ∀j ∈ J1 ∀i ∈ I1j , ℓ = 1, . . . , L

xi = xℓ
i , ∀i ∈ I1, ℓ = 1, . . . , L

We can now rewrite the objective function of modified-IP ∗ as

∑
j∈J1

∑
i∈I1j

dijzij +
L∑

ℓ=1

pℓ
∑
j∈Jℓ

2

∑
i∈Iℓ

2j

dijt
ℓ
ij

which is the same as the objective function of IP1. We compare the constraints
of modified-IP ∗ and model IP1 and observe that modified-IP ∗ is equivalent
to IP1. In other words, model IP ∗ is a relaxation of IP1. Thus, the wait-
and-see solution is a lower bound on the optimal value of model SP , that is,
WS ≤ Optv(SP ).

In the literature on stochastic programming [4], the difference between the
optimal value of the stochastic programming model and its corresponding wait-
and-see solution is referred to as the expected value of perfect information. We
denote it by EV PI:

EV PI = Optv(SP )−WS. (69)

6.1 Experimental results on EV PI

To obtain EV PI, the expected value of perfect information, we first solve each
submodel IP ℓ. Note that the IP ℓ subproblem could be considered as an SV S
problem with only one potential query set Qℓ

2 (that is, scenario) occurring at
stage 2. Thus, we apply here approaches similar to those of Section 3.2. The
focus of our approaches is to conduct first and second reductions to solve IP ℓ

more efficiently.

Example 1 (Continued). The optimal value of the model SP is 34, while the
optimal values of IP 1 and IP 2 are 33 and 30, respectively. Thus, WS = 0.5(33+
30) = 31.5. We obtain that EV PI is 2.5 units.

In a computational experiment, we compared WS with the optimal value
of model SP on a collection of instances with varying sizes using a number of
different datasets. For each instance we evaluated the EV PI and the ratio of
EV PI over the optimal value of SP . Similar to the earlier measures, we observed
that the value of EV PI could vary significantly, depending on the specifics of
database and the query instance. In the following example this value is relatively
large compared with other instances in our experiment.
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Example 4. This example is based on a type I non-symmetric dataset [8],DI(10; 2, 2, 3, 3, 4, 4, 5, 5, 6, 6)
denoted by DI for short. We randomly choose queries of 4, 5 or 6 attributes over
DI to obtain Q1 and Q2 = {Q1

2, Q
2
2}. We set p = (0.5, 0.5) and b = (b1, b2) =

(62174, 20174). Then the instance is represented by (DI , Q1,Q2,p, b).
In Table 9 we report WS and the optimal value of SP , as well as the EV PI

and the ratio EV PI/Optv(SP ).

Table 9. Results of EV PI over Example 4

Optv(SP ) WS EV PI EV PI/Optv(SP )

120,601 86,892 33,709 27.95%

EV PI gives the expected response time that we gain by using perfect infor-
mation of the future, that is, the information of the actual query workload at
stage 2. Thus, the decision maker can compare the EV PI with the cost of ob-
taining actual query workload occurring at stage 2, and then make the decision
to minimize the expected cost globally.

7 Sensitivity analysis on solutions

In the two-stage stochastic view selection problem, the amount of space limit for
the replacement of views at stage two, denoted by b2, affects the optimal cost of
answering the input queries. In this section we make sensitivity analysis for the
impact of this space limit on solutions. We conduct a computational experiment
over a number of instances, and observe that the impact of the space limit b2
on the optimal values varies among instances. We then compare this impact
with the impact of b2 on the cost of creating additional materialized views. This
allows the decision maker to choose an appropriate space limit of replacement
to make the expected total cost as low as possible.

Given an instance of the SVS problem, we fix b1, the total storage space, but
we vary b2, the available space to materialize views at stage 2, between 0 and b1.
Equivalently, given the database D, query sets Q1 and Q2, probabilities p and
the total space limit b1, we examine the impact of the rate of b2/b1 (denoted as
β) on the solutions by changing β over the interval [0, 1].

If β = 0, the replacement of views is not allowed at stage 2. It follows that
the corresponding model SP does not have second stage decision variables. And
thus it is equivalent to the one-stage deterministic problem introduced in Section
5.1.

If β = 1, the problem is equivalent to two one-stage deterministic view se-
lection problems, as follows. At stage 1, we decide to materialize a set of views
S1 under space limit b1 in order to answer queries in Q1; at stage 2, when the
actual query set Q2 for this stage is known, we decide another set of views S2

under space limit b1 in order to answer queries in Q2. In other words, for each
stage, we solve a separate one-stage deterministic view selection problem.
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Given an instance (D, Q1,Q2,p, b1) and given 0 < β < 1, we denote the
optimal value of the corresponding model SP as SP (β). We have the following
observation.

Observation 10 Given 0 < β1 < β2 < 1, the corresponding model SP (β2) is
a relaxation of model SV S(β1). Thus, if models SP (β1) and SP (β2) are both
feasible, Optv(SP (β2)) ≤ Optv(SP (β1)).

Proof. Note that any feasible solution of model SP (β1) is also a feasible solution
of model SP (β2).

By Observation 10, the optimal value of SP (β) is a non-increasing function
of β.

In a computational experiment, we solved model SP (β) on a collection of
instances with β = 0, 0.1, 0.2, . . . , 1. We observe that the impact of β on the
optimal value of SP (β) varies among these instances, and depends on the struc-
ture of the underlying database and on the query set. Following are two examples
based on two different databases where the impact of β on Optv(SP (β)) varies
as β increases.

Example 5. We construct this instance using the same data as the data of Ex-
ample 2. The data is based on database DI introduced in Section 5.3. Given
(DI , Q1,Q2,p, b1), we evaluateOptv(SP (β)) over this instance, for β = 0, 0.1, 0.2, . . . , 1.
The results are shown in Figure 2. We observed that the optimal value of SP (β)
decreases sharply when β changes from 0 to 0.1. When β is greater than 0.4, the
optimal value of model SP (β) remains the same.

Fig. 2. The impact of β on optimal values over Example 5
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Example 6. This example is based on a 13-attribute TPC-H dataset [15] denoted
by DT . The number of queries in query sets Q1 and Q2 = {Q1

2, Q
2
2} are 20,

17, and 16, respectively. We set the total space limit b1 = 4, 739, 735 and p =
(0.5, 0.5). In Figure 3 we plot the impact of β on the optimal value of SP (β). We
observe that Optv(SP (β)) declines steadily with slope around -1 as β increases
from 0 to 0.9. When β is greater than 0.9, the optimal value of SP (β) remains
the same.

Fig. 3. The impact of β on optimal values over Example 6

Given an instance with 0 < β < 1, the difference between Optv(SP (0)) and
Optv(SP (β)) is the V TV O that we introduced in Section 5.1. SinceOptv(SP (β))
is a non-increasing function of β, V TV O increases as β increases from 0 to
1. Larger value of V TV O indicates more benefits of the two-stage stochastic
programming model. Obviously, larger value of β also implies a larger magnitude
of derived data that has to be materialized at stage 2. This, in turn, implies
higher cost (time) of materializing views at stage 2. In other words, the benefit
accrued by larger value of V TV O is obtained at the cost of creating additional
materialized views. For example, if β = 1, all the views materialized at stage 1
are dropped at stage 2, which induces more cost (time) of materializing views
at stage 2. Thus, the decision makers would compare the cost of materializing
new derived data with the difference of the optimal values between SP (β) and
SP (1) to choose an appropriate value of β. For example, as observed in Figure 2,
the optimal value of SP (β) does not change much when β ≥ 0.3. We can allow
up to roughly 30% of the views to be updated for the second stage, since the
two-stage model gives us almost all the benefits that we could obtain by treating
the problem as a succession of one-stage problems.
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8 Extensions and discussions

In this paper we presented the two-stage stochastic view selection problem
(SVS), and we undertook a systematic study of the problem. We introduced
a stochastic programming model for the problem, and we proposed algorithms
to efficiently prune the search spaces of potentially beneficial views, while keep-
ing at least one globally optimal solution in the search spaces. Thus, we can
utilize the resulting model to solve the SVS problem optimally over a num-
ber of realistic-size instances. We compared our model with several appropriate
models for the SVS problem, and demonstrated using a number of problem in-
stances that our model is dramatically more appropriate than past approaches
for solving the problem SVS. In addition, our proposed model is also beneficial
in making further decisions on the SVS problem. We are now investigating the
impact of the structure of the databases and the input query workload on the
SVS problem, so as to improve the efficiency and scalability of our model. This
will allow for a wider array of potential applications of our problem and models
in the future.

References

1. Asgharzadeh, Zohreh, Exact and inexact methods for solving the view and index
selection problem for OLAP performance improvement, Ph.D. Dissertation, North
Carolina State University, 2010, 108 pages

2. Asgharzadeh, Z., R. Chirkova, Y. Fathi, “Exact and Inexact Methods for Solving
the Problems of View Selection”, International Journal of Business Intelligence
and Data Mining (IJBIDM), Volume 4 Issue 3/4, November 2009

3. Asgharzadeh, Z., R. Chirkova, Y. Fathi, “An integer programming approach to
the view and index selection for aggregate queries”, submitted for publication.
http://www.ise.ncsu.edu/pages/people/directory/fathi/31.pdf

4. Birdge, John, and Francois Louveaux, Introduction to stochastic programming,
Springer 1997.

5. Chaudhuri, S. and U. Dayal, “An overview of data warehousing and OLAP tech-
nology”, SIGMOD Record, 26(1): 65-74, 1997.

6. Gupta, H., V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Index Selection for
OLAP”, In Proceedings of the 13th International Conference on Data Engineering
(1997), pp. 208–219.

7. Harinarayan, V., A. Rajaraman, and J.D. Ullman, “ Implementing Data Cubes
Efficiently”, In Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data (1996), pp. 205–216.

8. Huang, R., R. Chirkova and Y. Fathi, “Synthetic Datasets”, 2011. ftp://ftp.
ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2011/TR-2011-10.pdf

9. ILOG S.A. CPLEX 11.0 software package. http://www.ilog.com,2007
10. Kimball, R. and M. Ross, “The Data Warehouse Toolkit: The Complete Guide

to Dimensional Modeling (Second Edition)”, Wiley Computer Publishing 2002.
11. Li, J., Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi, “A Formal Model for the

Problem of View Selection for Aggregate Queries”, Advances in Databases and
Information Systems, 9th East European Conference, Tallinn, Estonia (2005), pp.
125–138.



35

12. Lightstone, Sam, “Physical Database Design for Relational Databases”, Encyclo-
pedia of Database Systems, Springer, 2009, pp. 2108-2114

13. Madansky, A., “Inequalities for stochastic linear programming problems,” Man-
agement Science 6, 1960, pp. 197-204.

14. Slyke, R. M. Van, and R. Wets, “L-shaped linear programming with applica-
tion to optimal control and stochastic programming”, SIAM Journal on Applied
Mathematics 17 (1969), pp. 638-663.

15. TPC-H Revision 2.1.0, ’TPC Benchmark H (Decision Support)’, http://www.
tpc.org/tpch/spec/tpch2.1.0.pdf

16. Wolsey, Laurence A. , Integer Programming, Wiley, 1998


