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Abstract
With today’s petascale supercomputers, applications often exhibit
low efficiency, such as poor communication and I/O performance,
that can be diagnosed by analysis tools. However, these tools either
produce extremely large trace files that complicate performance
analysis, or sacrifice accuracy to collect high-level statistical in-
formation using crude averaging.

This work contributes Scala-H-Trace, which features more ag-
gressive trace compression than any previous approach, particularly
for applications that do not show strict regularity in SPMD behav-
ior. Scala-H-Trace uses histograms expressing the probabilistic dis-
tribution of arbitrary communication and I/O parameters tocapture
variations. Yet, where other tools fail to scale, Scala-H-Trace guar-
antees trace files of near constant size, even for variable communi-
cation and I/O patterns, producing trace files orders of magnitudes
smaller than using prior approaches. We demonstrate the ability
to collect traces of applications running on thousands of proces-
sors with the potential to scale well beyond this level. We further
present the first approach to deterministically replay suchproba-
bilistic traces (a) without deadlocks and (b) in a manner closely
resembling the original applications.

Our results show either near constant sized traces or only sub-
linear increases in trace file sizes irrespective of the number of
nodes utilized. Even with the aggressively compressed histogram-
based traces, our replay times are within 12% to 15% of the runtime
of original codes. Such concise traces resembling the behavior of
production-style codes closely and our approach of deterministic
replay of probabilistic traces are without precedence.

1. Introduction
As supercomputers progress in scale and capability toward exas-
cale levels, characterization of communication and I/O behavior is
becoming increasingly difficult due to system size and complex-
ity. Today, many scientific applications execute in ten thousands
of cores or more. Moreover, modern supercomputers are equipped
with complex network interconnects to improve the speedup of
parallel applications. Apart from the network complexity,different
vendors employ different interconnect designs to improve the over-
all communication performance, thereby achieving better speedup.
For example, the IBM Blue Gene family of supercomputers em-
ploys five different network interconnects [1]. Such interconnects
mandate performance study of applications for efficient useof
available resources. Even finding the most efficient task mapping
to nodes has become difficult with complex, new system designs.

The large numbers of processors/cores, increased aggregate
memory capacity, and optimized interconnects allow applications
to grow not only in targeting larger problem sizes, but to ex-
plore more sophisticated communication models. Extreme-scale
applications are often complex codes, integrating multiple software
components exercising vastly different computation/communica-
tion models. Such codes are becoming more dynamic and diverging
from strict, regular single program, multiple data (SPMD) behav-
ior. Examples include multi-physics or coupled codes, where par-
titions of nodes implement different simulation models, work on
separate datasets, or even conduct analytics tasks such as data re-
duction. Such applications exhibit multiple program, multiple data
(MPMD) behavior as multiple nodes work on multiple sectionsof
the program.E.g., in climate simulations, some nodes simulate cli-

mate changes over land and while other nodes work on sea mod-
els. Hence, different modules, like land and sea, use different input
data and algorithms resulting in different communication behavior
within each module.

Several studies have investigated the communication and I/O
characteristics of applications. They focus on three main classes:
tracing tools, capable of capturing and recording all message events
at the cost of high storage requirements; profiling tools, designed
to provide low-overhead performance summaries trading offstor-
age space for detail level; and communication and I/O kernels that
eliminate computation and retain only application communication
and I/O behavior. Although application kernels are designed to cap-
ture the exact application behavior, it is difficult to keep these ker-
nels up-to-date since the applications constantly evolve over time.
Application traces, in contrast, can be readily generated by sim-
ple instrumentation of an application, to keep up with a changing
code base. This makes performance analysis via traces a preferred
method to analyze parallel applications in practice.

The combination of job scale and application complexity, how-
ever, creates unique challenges for parallel tracing tools. On one
end of the spectrum, traditional tracing tools (such as Vampir [10])
record all events sequentially for each parallel process. For large
application runs on leadership-class supercomputers, this approach
generates unmanageable trace file sizes, introducing prohibitive
overheads,e.g., for copying trace files from temporary to perma-
nent storage, hitting the maximum storage limit, and even the need
for a cluster plus another parallelized tool to perform trace analysis
[2]. On the other end of the spectrum, tools that only report statisti-
cal information (such as mpiP [17]) may fail to deliver the level of
detail needed in performance analysis or debugging.

On-the-fly trace compression [12, 15] provides lossless tracing
and dramatically reduced trace file sizes, and it has recently been
extended to conduct multi-level I/O tracing [19] in addition to cap-
turing communication calls. However, effective compression builds
on the homogeneous behavior across processes (inter-node com-
pression) and repetitive behavior within a process (intra-node com-
pression). With complex, irregular, or self-adjusting applications,
such assumptions do not hold and compression fails due to mis-
matches between traced events.

In this work, we propose Scala-H-Trace, with a novel approach
to collect concise traces for applications exhibitingnon-SPMD be-
havior. In other words, while past approaches proved effective for
the easier problems of tracing SPMD codes, this work focuseson
the much harder problems of tracing non-SPMD codes. Scala-H-
Trace is motivated by the tradeoff between exact details andman-
ageability of trace file size. Although having exact detailshelps in
root cause analysis, lossless tracing becomes increasingly unafford-
able on ultra-scale machines.Histograms in Scala-H-Trace provide
an opportunity to collect overall statistical details,e.g., data send
volume, which can be useful in studying network characteristics of
the application. They provide an overall “big picture” of anapplica-
tion’s communication behavior. Scala-H-Trace employs histograms
with multiple bins whose value ranges are dynamically adapted as
trace data is recorded on-the-fly. In addition to representing a dis-
tribution, each bin also retains certain crude statisticalinformation
(min/max/avg/stddev), potentially useful for root cause analysis.

Scala-H-Trace also enables the user to set amerge precision
level during trace collection. This precision level drives the com-



pression efficiency by collecting statistical informationfor varying
traces in unique histogram bins. The trace precision is alsoensured
to fall within the user set value. If the trace precision falls below the
specified precision, mismatching trace events are recordedwithout
histogram-based compression,i.e., traditional structural compres-
sion techniques are employed and may fail to provide concisetraces
in the absence of SPMD behavior of the code [12] but result in ex-
act event recording. The size of such a trace file then becomesa
function of the desired merge precision level, which can be tuned
to obtain a manageable size while retaining trace artifactssuitable
for performance analysis or even detect root causes in performance.
At the same time, our unique approach to collect histogram-based
statistical information captures the overall trend in communication
and I/O behavior of applications executing on thousands of nodes.
Our histogram-based approach also reduces the tracing overhead as
the time taken to compress smaller histogram-based traces is con-
siderably less than the traditional lossless traces.

While histogram-based tracing can effectively reduce trace data
volumes, it creates several challenges for accurate replayof the
traced events. To ensure the correctness of the captured trace and
to reproduce the communication and I/O behavior, we also provide
a novel replay facility. This replay tool reissues the recorded trace
events without decompressing the compressed trace. If the com-
pressed trace is lossless, sender-destination node information and
communication volume are recorded precisely. Also, the causal or-
dering of the original application is preserved. For lossy,histogram-
based traces, our tool employs a distributed, orchestratedand de-
terministic replay capability. Our goal in the replay of histogram-
based traces is not to capture exact original events but rather the
existence of a sequence of events with comparable timings and
communication endpoints. Resulting information can be useful in
identifying bottlenecks and also the communication pattern of a
particular application.

Contributions: Our contributions are as follows:

• We provide the capability to record lossless and concise com-
munication and I/O traces for non-SPMD programs.

• We create novel capabilities for more aggressive trace compres-
sion based on a precision level, selected by the user, that drives
both compression efficiency and trace accuracy.

• We support a replay technique that reissues trace events without
decompressing the original trace file.

• We provide a distributed approach to replay statistical traces
that does not require back-channel communication to preserve
causal event ordering for correctness.

• We ensure that replay is deterministic by (a) coordinating
sender/receiver activity through receive reordering, (b)letting
a node interpret the events of all other nodes and (c) ensuring
that all nodes use the same random number sequence for prob-
abilistic replay resulting in the same parameter and end-point
choices for communication.

• We proved that deterministic replay after reordering is deadlock
free [20].

We evaluated our approach with the Parallel Ocean Program
(POP) and two benchmarks from NAS parallel benchmark suite.
POP is both computational and I/O intensive and hence a represen-
tative application to evaluate our tool. Our results provide one to
two orders of magnitude smaller trace files than any previousap-
proach. We also evaluated our replay tool by reissuing histogram-
based traced events. The replay time only deviated 12% to 15%
from the original application’s time in most cases, even formost
aggressively merged histogram-based traces.

2. Background
Scala-H-Trace is a novel design of a communication and I/O tracing
tool that shares its methodology for representing the resulting trace
on a single file (instead of one file per node), both otherwise relies
on histogram-based data collection. While Scala-H-Trace was de-
rived from the publicly available code of ScalaTrace/ScalaIOTrace
[12, 15, 19], Scala-H-Trace provides entirely novel compression
capabilities.

Scala[IO]Trace collects communication and optionally parallel
I/O traces, using the MPI Profiling layer (PMPI) [9] through Um-
pire [18] to intercept MPI calls and to collect MPI traces. Itfea-
tures aggressive trace compression that generates a single, concise
and lossless trace file from any large-scale parallel application run.
It also preserves timing information in the compressed formalong
with the calling context of events being traced. In this paper, we
develop Scala-H-Trace, which provides even more aggressive trace
compression techniques to serve real-world scientific applications
that do not show strict SPMD regularity.

Scala[IO]Trace performs two types of compression:intra-node
andinter-node. The former exploits the repetitive nature of timestep
simulation in parallel scientific applications. The latterexploits
the homogeneity in behavior (SPMD) among different processes
running the application. Intra-node compression is performed on-
the-fly within a node. Inter-node compression is performed across
nodes by forming a radix tree structure among all nodes and send-
ing all intra-node compressed traces to respective parentsin the
radix tree. This results in a single compressed trace file capturing
the entire application run across all nodes. The compression algo-
rithm is discussed in detail elsewhere [12, 15]. Scala-H-Trace em-
ploys a different intra- and inter-node compression algorithm due
to its reliance on histograms but still shares the reductionover a
radix tree with Scala[IO]Trace.

2.1 Trace Compression
We briefly introduce several techniques used in Scala[IO]Trace to
allow a later comparison with Scala-H-Trace. Repetitive events
in different iteration of loops are collected as Regular Section
Descriptors (RSD) [5] and power-RSDs capture RSD events in
nested loops [8], both of which are represented in constant size.
Consider the following code snippet:
for( i = 0; i < 10; i++ ) {

for( j = 0; j < 100; j++) {
compute1();
MPI_Irecv(...); // Receive from left neighbor
MPI_Isend(...); //Send to right neighbor
MPI_Waitall(...);

}
MPI_Allreduce(...); //Collective reduction operation

}

Trace compression results in the following tuples: RSD1:{100,
MPI Irecv, MPI Isend, MPIWaitall} representing 100 iterations of
MPI Irecv, MPI Isend and MPIWaitall in the inner loop, PRSD1:
{10, RSD1, MPIAllreduce} denoting 10 iterations RSD1 followed
by MPI Allreduce in the outermost loop. The algorithm uses the
calling context of events to match repetitious behavior. This en-
sures that identical MPI functions originating from different call
paths of the application are not compressed together. Sincetrace
events from different nodes are collected and merged in a single
output trace file, thetask rank information of nodes participating
in an event is also compressed and encoded concisely in the com-
pressed trace. This participant node information is represented in a
tuple containing starting rank, total number of participants and an
offset value separating ranks. Even multi-dimensional information
is captured in this encoding format.

Apart from matching calling contexts, the compression algo-
rithm matches function parameters and merges them along with



compressed events ensuring that no information is lost. In typi-
cal parallel applications, communication end-points differ across
nodes as a result of communication with neighboring nodes. These
varying end-points inhibit event compression. Scala[IO]Trace uses
a unique location-independent encoding to represent communica-
tion end-points in events like MPISend and MPIRecv. It also en-
codes MPI opaque pointers like MPIFile and MPIComm, which
do not exhibit repetitive patterns, potentially inhibiting effective
compression. There are special cases in which events with match-
ing calling context can have non-matching function parameters.
These non-matching function parameters are compressed using a
vector representation, so that the particular event can be concisely
represented in the trace.

2.2 Time Preservation
Another important feature of Scala[IO]Trace is the time preserva-
tion of captured traces. Instead of recording absolute timestamps,
the tool records delta time of computation durations between ad-
jacent communication calls. During RSD formation, insteadof ac-
cumulating exact delta timestamps, statistical histogrambins are
utilized to concisely represent timing details across the loop. These
bins are comprised of statistical timing data (minimum, maximum,
average and standard deviation). More details on collecting statis-
tical timing information are provided elsewhere [15].

2.3 Timed Replay
Scala[IO]Trace not only supports scalable tracing, it also supports
a scalable replay engine. Given a single, compressed trace file, the
replay engine allows all I/O and communication calls to be reissued
without trace decompression while preserving event ordering. The
replay engine runs as an MPI job with the same number of tasks as
its original application. It replays I/O and communicationevents in
each node with their original parameters except for actual file con-
tent/message payloads. Instead, a random buffer of the samesize as
the original file/message buffer is used. Additionally, computation
time on each node is simulated by a delay between traced events
based on recorded delta time.

3. Inter-node Trace Compression
The SPMD nature of the scientific codes causes participants of a
parallel application to produce similar per node traces. E.g., if we
treat a trace as a sequence of MPI events, traces from different
nodes tend to have similar subsequences that contains most of
MPI events. In addition, loop structures captures by PRSDs in
ScalaTrace facilitate compression as traces from different nodes
tend to have similar PRSD nests. ScalaTrace originally required not
just similar but ratheridentical patterns, i.e., it failed to fully exploit
similarities for inter-node trace compression. More specifically,
identical loop structures, i.e., PRSDs with identical length, iteration
count, and MPI event sequence were required. While this approach
works well with the perfect SPMD-style codes, it is subject to
scalability problem when traces slightly diverge between nodes.
For the example below, letTi be traces where each letter in a
trace “string” represents an MPI event and the pair of parentheses
represent the loop structures. The coarse-grained trace matching
algorithm may merge the per-node tracesT1 andT2 to T3. Yet, an
ideal compression would instead be traceT4.

T1 : a(b(bcb)db)a T2 : a(b(beb) f b)a

T3 : a(b(bcb)db)(b(beb) f b)a T4 : a(b(bceb)d f b)a

Only if the inter-node trace matching algorithm does not miss
the structural similarities can the probabilistic communication pa-
rameter compression (discussed below) be fully utilized. Hence,
we have designed a novel, fine-grained event matching algorithm
that recursively compares and merges the nested loop structures.
Algorithm 1 outlines the recursive trace merging technique. This

algorithm traverses traces of two nodes,T1 andT2, to identify the
matching event pairs. Stand-alone events are compared by their
MPI parameter values with the functionPARAM MATCH. If two
events start structurally identical loop nests, i.e., loopnests with
equal depth and equal iteration counts at each nest level, the func-
tion MATCH LOOP is called.MATCH LOOP then matches the loop
bodies at each level starting from the innermost nest and recursively
call itself if new matching loop heads are found. When a pair of
matching events is identified, the preceding unmatched sequences
are sequentially linked byDO MERGE. Since we forward the cur-
sors for both input sequences when a match is found, this algorithm,
in practice, has a complexity ofO(n), wheren is the length of the
input traces given that two input traces are similar.

Algorithm 1 Recursive Trace Matching Algorithm
Precondition: T1 andT2: input per node traces
Postcondition: T1 andT2: recursively merged trace

1: procedure MATCH TRACE(T1, T1)
2: for iter1← T1.head, T1.tail do
3: for iter2← T2.head, T2.tail do
4: if iter1 and iter2 start identical loop neststhen
5: MATCH LOOP(iter1, iter2, depthof nest)
6: else
7: if PARAM MATCH(iter1, iter2)then
8: DO MERGE(iter1, iter2)
9: end if

10: end if
11: end for
12: end for
13: end procedure

14: procedure MATCH LOOP(loop1, loop2, depth)
15: for iter1← loop1.head, loop1.taildo
16: for iter2← loop2.head, loop2.taildo
17: if iter1 == loop1.head && iter2 == loop2.head &&

PARAM MATCH(iter1, iter2)then
18: DO MERGE(iter1, iter2)
19: end if
20: if iter1 and iter2 are single events &&

PARAM MATCH(iter1, iter2)then
21: DO MERGE(iter1, iter2)
22: end if
23: if iter1 and iter2 start identical loop neststhen
24: MATCH LOOP(iter1, iter2, depthof nest)
25: end if
26: end for
27: end for
28: if depth>1 then
29: MATCH LOOP(iter1, iter2, depth-1)
30: end if
31: end procedure

Algorithm 1 may still fail to generate the best inter-node com-
pression because traversing two sequences with the double-nested
loop structure does not guarantee identifying the longest common
subsequence. As an example, considerT1 and T2 below. Algo-
rithm 1 will return the sequenceT3:

T1 : abbbbb T2 : bbbbba T3 : bbbbbabbbbb

The matching eventa is found before the longer subsequence
bbbbb. To solve this problem, we integrated aWeighted Longest
Common Subsequence (WLCS) algorithm into Algorithm 1.
WLCS is adapted from the classicLongest Common Subsequence
(LCS) algorithm. Since the loop structures in the trace should be
treated as a whole, we enhanced LCS such that the matching loop
structures are evaluated with a weight that is equal to the length of
their longest common subsequence. This addresses the aboveex-
ample to compressbbbbb first.



4. Histogram-Based Trace Collection
Noethet al. [12] provide trace compression techniques resulting in
an almost constant sized trace file or sublinear increases intrace file
size with strong scaling (increasing number of nodes). Yet,these re-
sults only hold for SPMD-style benchmarks, not for production size
applications with non-SPMD patterns. ScalaIOTrace [19] provides
mechanisms to collect both the communication and I/O tracesfor
scientific applications like the Parallel Ocean Program (POP) [14].
But for some scientific applications, including POP, the inter-node
compression technique fails to obtain a near-constant sized trace
file with increasing number of nodes. Instead, we see a linearin-
crease in the trace size due to non-SPMD style programming.

POP performs ocean simulation for multiple time steps. Each
time step performs a set of computations and communications
of an inner loop in multiple iterations. Due to different data-
dependent convergence points in the computation across different
timesteps, the number of inner loop iterations varies from timestep
to timestep. Even though all MPI events originate from the same
calling sequence (call stack), varying loop iteration counts in each
timestep inhibit intra-node compression and thus negatively impact
inter-node compression across all nodes. This behavior canalso be
observed in many Adaptive Mesh Refinement (AMR) applications
in which the input set is dynamically rebalanced on a periodic ba-
sis.

To address these problems, we propose a novel method of trac-
ing. We promote histogram-based trace information for a prede-
fined user-tunable merge precision level to obtain higher compres-
sion rates of trace events — at the expense of accuracy. Consider
the following 3 scenarios: (1) If the user sets the merge precision
level to 100%, then only events with perfectly matching function
parameters are merged. (2) If the user sets the merge precision level
to 95%, then events with non-matching function parameters will be
merged if and only if all pairs of parameters differ by no morethan
5%. Should any pair of parameters exceed the 5% threshold, we
fall back to lossless tracing. (3) If the user sets the merge precision
level to 0%, then events with non-matching function parameters are
also merged and the non-matching parameters are collected in his-
togram bins. Note that the function calling contexts alwayshave
to match for two events to be merged. Figure 1 explains the dif-
ference in the merge precision level and the precision levelof the
trace file. A merge precision level of 0% does not mean that theen-
tire meaningful information is lost. Even at a 0% merge precision
level, the statistical function parameters collected in histogram bins
still capture the overall behavior of the application. Depending on
user needs, the smallest traces with high application resemblance
collected using a 0% merge precision level may be much more use-
ful than unmanageably large trace files. We provide the option for
users to decide on the tradeoff between the manageability oftrace
files vs. capturing the exact application behavior.
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Figure 1. Trace precision vs Merge precision
Our approach uses histograms to collect probabilistic informa-

tion on varying trace events and event parameters that otherwise
inhibit trace compression. Histogram-based collection employs a
technique to collect statistical information in dynamically balanced
bins. The online balancing algorithm equalizes the number of items

per bin while adjusting their value range constraints. Thisensures
that the histogram captures outliers and other statisticaldistribu-
tion properties missed by simple aggregate statistical collection like
maximum, minimum, average and variance. We also collect max-
imum and minimum participant rank information along with the
frequency in bins so as to enable root cause detection,e.g., due to
load imbalance. Even with this lossy trace information, histograms
help in providing more insight into the general characteristics of
the traced application. Histogram details can be collectedat vari-
ous levels in the trace. The following explains what trace informa-
tion is collected as histogram and discusses possible tradeoffs in
collecting statistical information versus non-lossy information.

4.1 Intra-node Event Histogram
The loop iteration count denoted by PRSDs can be collected asa
histogram. This enables better compression of repeating events in
many scientific applications that otherwise would fail to compress
due to data dependencies. Although the exact iteration count is lost
in the final trace, the number of loop iterations directly depends
on the computation, which, in turn, varies with different input
sets. Hence, collecting statistical loop iteration countsonly has
a minor impact in capturing the communication behavior of the
application. The main advantage of this approach is the ability to
obtain a concise trace file by allowing a small percentage of lossy
trace collection that otherwise would have resulted in a trace file of
unmanageable size.

Consider the code snippet:
for( i = 0; i < 50; i++ ) {

//Perform calculation till the result converges
while(result > convergence_factor) {

do_calculation();
MPI_Irecv(...); //Receive from neighbors
MPI_Send(...); //Send to neighbors
MPI_Wait(...);

} }

In the above example, if the iteration count matches across time-
steps, the resulting PRSD will be of form PRSD1:{50, RSD1}. Due
to mismatching convergence points across different time-steps, the
following sample events can occur:
RSD1: <39, MPI_Irecv, MPI_Send, MPI_Wait>
RSD2: <40, MPI_Irecv, MPI_Send, MPI_Wait>
RSD3: <39, MPI_Irecv, MPI_Send, MPI_Wait>
RSD4: <42, MPI_Irecv, MPI_Send, MPI_Wait> .... till RSD50

The expected PRSD is not formed due to mismatching RSDs
across time steps. This leads to cascading compression failures
across nodes. As a result, the trace file size increases linearly
with the increase in participating nodes. Histogram-basedtrace
collection ensures that the varying iteration count is captured in
histogram bins. Hence, the resulting trace will have just one PRSD
for the entire time-step calculation.

4.2 Inter-node Event Histogram
With inter-node event compression, compressed traces fromdif-
ferent nodes are merged together. During this process, a radix tree
structure is formed among all nodes. Child nodes send their respec-
tive intra-node compressed traces to their parents. A parent node
performs compression of matching events from its child nodes. For
each and every event from the parent node, a matching child event
is searched. If there is a match, the parent event’s participant list is
updated with the rank of the child node and the child event is dis-
carded. Other unmatched events will be reordered accordingto its
dependency with other events.

In applications with non-SPMD behavior, loops created during
intra-node compression can have matching events across nodes, but
fail to compress across nodes due to a mismatch in the loop iteration
count. This prevents the entire loop from being merged, increasing
the trace file size linearly with the number of nodes.



As an example, consider the code snippet from the Section
4.1 again. Table 1 shows one such scenario in which computation
dependent loop iterations fail to merge across nodes. By collecting
loop iterations in histogram, all events merge successfully across
nodes. Note that we enable merge only when all events inside
the loop match perfectly. If events from two loop candidatesdo
not match, then these loops are considered to representdifferent
scenarios in the original application and are hence not merged.

Participants:0-3 Participants:4-7
Loop 50 times Loop 51 times
MPI Irecv from 0-3 MPI Irecv from 4-7
MPI Send to 0-3 MPI Send to 4-7
MPI Wait MPI Wait

Table 1. Varying Loop Iteration

4.3 Function Parameter Histogram
Apart from collecting loop iteration counts in histograms,
MPI function parameters, such as Send/Recv volume, tag and
sender/destination ranks, can also be recorded in histograms.
The Send/Recv data volume is important to capture the network
load due to the communication calls issued by the application.
Send/Recv volumes often vary across different timesteps inAMR
applications. This variation in volume inhibits compression of com-
munication calls originating from the same call stack, thereby in-
hibiting compression across an entire loop due to a small deviation
in the data volume parameters. There are other methods to collect
exact volumes. One such method is to collect the volume informa-
tion in a vector along with the rank information of participating
nodes. But this results in a linear growth with the increase in num-
ber of participating nodes, which is non-scalable.

For applications that do not exhibit a regular communica-
tion pattern, it is impossible to compress repeating communica-
tion events originating from the same call stack with different
sender/destination ranks. The approach of location-independent
relative encoding of communication end-points provides a novel
opportunity for event compression. But even this approach only
succeeds in the case of applications with regular communication
patterns. There are approaches in which the communication func-
tion call can be expressed as a PRSD but different end-pointsin
different loop iterations have to be collected as a vector. Again,
such an approach is not scalable for applications executed on thou-
sands of nodes. An example of collecting function parameters as a
vector is given below:
Loop iterations: 1 - 5
Participants: 0 - 9 (node ranks)
Event: MPI_Send
Data volume: 90 bytes [ranks: 0,1,4,5,8,9],

92 bytes [ranks: 2,3,6,7]
Destination: relative rank 1 [ranks: 0,2,4,6,8],

relative rank 9 [ranks: 1,3,5,7,9]

Assume MPISend is executed in a loop 5 times. With lossless
trace collection, both data volume and destination will be recorded
along with the rank information of the corresponding participant.
The relative ranks shown above is location independent: 1 rep-
resents “the next right neighbor” and 9 represents “the nextleft
neighbor”. This compression results in a more concise representa-
tion than its uncompressed equivalent, but it still suffersfrom in-
creases in the trace size proportional to the number of nodessince
no regularity for rank lists could be deduced.

Using histograms to collect relative end-points and data volume
allows better compression of repeating events originatingfrom the
same call stack. For this example, histograms will record both
destinations 1 and 9 in bins along with its frequency. In addition to
binning communication end-points, we also collect relative ranks in
a bitmap and encode it in the trace file. This provides information

on exact values that are missing from the histograms and aids
post-mortem analysis tools. In the above example, an analysis tool
may choose relative ranks of either 1 or 9 while relative ranks
between 2 and 8 are excluded from the pseudo-random selection.
We reiterate that we provide this lossy trace collection as afeature
and the decision to use this feature is entirely upon the users.
Users may choose to enable histogram-based tracing and configure
the merge precision level in response to their application analysis
needs, overheads and storage availability.

4.4 Histogram Construction
We have designed our system in a way to collect exact trace in-
formation as much as possible. Users can set a target merge preci-
sion level expressed as a percentage. Our compression algorithm
attempts to match events originating from the same call stack
and compresses events only if all function parameters match. His-
togram collection is triggered only if there is a mismatch infunction
parameters or in the loop information. In such cases, the difference
between two non-matching values is checked in terms of the user
specified merge precision level. If the difference is withinthe target
precision range, then events are merged and the non-matching pa-
rameters are recorded in a histogram from there on. If the difference
falls out of the target precision range, then either event compression
will fail or data is recorded in a vector as shown in the example in
4.3.

In our current implementation, the number of histogram binsis
fixed at the start of the application run, but the value rangesin bins
are dynamically adjusted. We provide an option to set an interval
after which bins are adjusted. Two bins with the lowest frequencies
are combined and the bin with maximum frequency is split intotwo
bins. We further store auxiliary information in bins, such as mini-
mum/maximum/average/variance, which are adjusted accordingly.
Apart from per-bin statistical information, we also collect maxi-
mum/minimum values over the entire value range (all bins) and the
node ranks associated with those. This provides outlier informa-
tion and can be used in the replay studies and other performance
analysis tools.

5. Deterministic Replay
While histogram-based trace collection is powerful in compress-
ing irregular or dynamically changing events, the collected traces
themselves create challenges for replaying and subsequentperfor-
mance analysis. The core challenge of histogram-based replay is
to ensure that events are issued in a deterministic manner across
nodes and with coordinated parameter value selections for common
communication end-points of sends and receives. Since Scala-H-
Trace collects statistical values for communication volume, tags,
and end-points, the conventional ScalaTrace replay designfor loss-
less traces, which takes an independent, uncoordinated approach
among nodes, can lead to potential deadlocks due to statistical un-
certainty, or may fail to re-create the original communication or I/O
pattern with reasonable proximity. The nature of histogram-based
traces mandates a distributed, orchestrated replay with coordina-
tion among all participating nodes to ensure deterministicevent se-
quences during replay for Scala-H-Trace. All nodes must read all
trace events. They need to agree on a specific value selected from
the statistical information found in the trace.

We have fundamentally redesigned the replay tool [12] to reis-
sue MPI calls from lossless traces such that the trace data collected
using histograms is honored during event replay. Our replaytool
issues MPI calls using the compressed trace independent of the
original application and without decompressing the trace.This tool
verifies the correctness of the collected trace. It can also assist in
the performance tuning of MPI communication and facilitates pro-
jections of network requirements for future procurements.Apart
from replaying MPI calls, this basic replay framework can also be



extended to integrate with other performance analysis/tuning tools
and it can be used to perform automated communication and net-
work metric calculations.

Before we discuss the design of our new Scala-H-Trace replay
tool, we first review the conventional design of replay for lossless
traces in ScalaTrace [12]. For lossless traces, all participating nodes
parse the trace file andonly act on events if the current node is a
member of the participant list. Then all nodes reissue MPI events
one by one by identifying loops using the PRSD information and
extracting individual MPI function parameters from the recorded
trace. This replay tool also reads the delta time information from
the trace and simulates the computation time by sleeping in place
of computation. This simulates the exact communication andI/O
behavior of the application in terms of interconnect characteristics,
such as contention. The replay tool helps to verify the correctness of
the trace. By design, it ensures absence of deadlocks if the original
application did not have any deadlocks for a given trace. Replay
also preserves the time taken in terms of the original application’s
runtime.

5.1 Scala-H-Trace Replay
With the histogram-based trace, the existing parallel replay func-
tionality requires a complete overhaul to cope with statistical data
instead of precise data. In our Scala-H-Trace approach, allpartici-
pating nodes parse the entire trace file during replay. In contrast to
ScalaTrace,all nodes read and interpret all MPI events. Such inter-
pretation amounts to the selection of a random value following the
histogram distribution of any recorded events, for each node in the
trace. All nodes “know” the random values used by the other nodes.
However, a given node only issues MPI calls if the current node is
a member of the participant list in the recorded trace. The interpre-
tation of histogram values for events that are not issued is crucial
to provide efficient replay with histograms: It obviates a need to
coordinate value selection across nodes and, hence, back-channel
communication that might otherwise be required due to random-
ization, as discussed after the next paragraph.

During the random selection of replay parameters, end-points of
MPI Send/MPIIsend events are selected. Upon encountering an
MPI Send, once a node identifies itself as a receiver, the receiver
node issues a receive call (MPIIrecv) instead of a MPISend.
Hence, all receive communication events like MPIRecv and
MPI Irecv are ignored. Since a particular receiver can also be
a sender, only MPIIrecv calls are internally issued followed
by an internal MPIWait call when a node rank identifies it-
self as a receiver of a recorded MPISend event. Such inter-
nal MPI Wait calls are issued last, after all ranks have been
parsed and all MPISend/MPIIrecv calls have been issued. Any
MPI Wait/Waitall calls in the original recorded trace are ignored.

The selection of a random value for histogram-recorded param-
eter for any event parameters, such as send/destination rank and
data volume, requires that sending and receiving nodes makethe
same decision on matching end-points for a message exchanged
between them. To ensure that sender and receiver nodes agreeon
their end-points for a message exchange, all nodes use the same
random seed during initialization. Hence, all nodes agree on the
random value upon each selection of a replay parameter within the
range of 0 and total number of elements in the histogram. No co-
ordination via communication is required as all nodes interpret all
events in the same order, even if only a subset of (one or more)
nodes actually issues an MPI call. Our randomization startswith
a common seed across all nodes so that all histogram choices are
deterministic. This alleviates communication overhead that would
otherwise be required to coordinate sender/receiver selection from
histograms. Instead, each node has the same random number se-
quence and interprets traces in the same manner albeit issuing only
calls for events for their respective rank.

The selected random value is internally used to select an appro-
priate bin. The average value recorded for that bin is then chosen
as a parameter for the MPI event. Histograms already record value
distributions (iteration counts, send/recv ranks). By randomly se-
lecting bins and values from bins respecting histogram frequencies,
replay preserves fair value distributions. The following section dis-
cusses distributed coordination for random selection in more detail.

5.2 Challenges for Deterministic Replay: Point-to-Point
Messages

The following code snippet is an example of climate simulation in
which first 50 nodes work on land simulation and the next 50 nodes
work on sea simulation. These simulations are performed in multi-
ple time steps in which nodes perform calculations and communi-
cate the result to surrounding neighbors. The destination nodes and
communication volume can vary for land and sea simulation.
//Land simulation participants - Node 0 to 49
//Sea simulation participants - Node 50-99

int * resultbuf; //Buffer to hold results
for(timesteps from 0 to 100) {
int destination[100]; //Array to hold dest. ranks
int source[100]; //Array to hold source ranks
do_calculations(resultbuf);
if(simulation == land) {

volume = 80 bytes;
get_my_land_neighbors(destination, source);

else {
volume = 90 bytes;
get_my_sea_neighbors(destination, source);

}
for ( i = 0 to total_neighbors_count ) {

MPI_Irecv (resultbuf,volume,source[i],...);
MPI_Isend(resultbuf,volume,destination[i],...);
MPI_Waitall (...); //Wait for Irecv
MPI_Waitall (...); //Wait for Isend

} }

In the code above, all participating nodes perform calculations
and communicate the results to corresponding neighbors. All MPI
function calls originate from the same call stack but communication
volume and source/destination endpoints vary across nodes. This
results in perfectly compressed intra-node traces with thefollowing
events:
RSD1: {MPI_Irecv, MPI_Isend, MPI_Waitall, MPI_Waitall}
PRSD1: {total_neighbors_count, RSD1}
PRSD2: {total_timesteps, PRSD1}

Since communication volume and endpoints vary across nodes,
the inter-node compression fails for the above section. With an
appropriate user-specified merge precision level, communication
volume and endpoints are collected in histogram bins duringinter-
node compression and the trace is compressed across all nodes.
Hence, all nodes need to agree upon the message payload (data
volume) and send/receive endpoints during replay. With such an
agreement between nodes for the selection of a particular value for
replay, potential deadlocks could occur.

For example, an original send/receive pair for sender (node1)
/ receiver (node 2) might result in arbitrary selection of communi-
cation end-points without our distributed coordination scheme. In
other words, the sender (node 10) may issue a message to node 20,
both randomly selected on node 10, while node 20 interprets the
send event as a message originating from node 13 and directedat
node 23 per uncoordinated random selection. In such a case, node
10 would deadlock as the message is never received. Similarly, re-
ceives (or waits for completion of receives) may deadlock ifno
corresponding send is ever issued.

Our distributed, coordinated approach to randomized selection
ensures that all nodes interpret the send event as originating from
node 10 and being directed at node 20. While node 10 issues a send



(and node 20 a receive), all other nodes (13 and 23) will not issue
any MPI call. The fact that the original event was a message from
node 1 to 2 is probabilistically replayed as a message from one
node (here: 10) to another (here: 20),i.e., histograms do result in
randomized end-points but retain the original number of messages
for the example.

5.3 Challenges for Deterministic Replay: Collective
Communication

With the coordinated replay approach, there are situationsin which
deadlocks can occur due to causal ordering of uncompressed traces.
Consider the sample trace below with 8 nodes:

Participants:0-3 Participants:4-7
110-111: MPIIrecv(2 itera-
tions) 1st. iter: from 0-3, 2nd
iter: from 4-7

130: MPI Irecv from 0-3

112-113: MPISend(2 itera-
tions) 1st. iter to 0-3, 2nd iter:
to 4-7

131: MPI Send to 0-3

114: MPI Wait (2 counts) 132: MPI Wait
115: MPI Bcast 133: MPI Bcast

Table 2. Uncompressed Trace

Both columns in Table 2 contain an uncompressed sequence
of MPI events originating from the same call stack. Each MPI
call is preceded by a sequence number as recorded by intra-
node compression. The first set of nodes, 0 to 3, issues 2 sets of
MPI Irecv/Send/Wait calls followed by a MPIBcast. The second
set of nodes, 4 to 7, issues only one MPIIrecv/Send/Wait followed
by MPI Bcast. These events fail to compress due to mismatching
Send/Recv counts across different sets of nodes. This results in the
final trace with events 110-115 followed by events 130-133.

With the coordinated compression of Scala-H-Trace and its
corresponding replay, the MPISend in sequence 112 will be is-
sued and the corresponding MPIIrecv will be issued internally
by respective destination ranks as shown in the sample trace.
(MPI Irecv/Wait are ignored during histogram-based replay.) Next,
MPI Bcast will be issued by ranks 0 to 3. This will block ranks 0 to
3 until the corresponding MPIBcast (seq. 133) is issued by ranks
4-7. But before issuing the broadcast in sequence 133, nodeswith
ranks 4-7 issue the MPISend in sequence 131 with destination 0-
3. Since nodes of ranks 0-3 are already blocked in MPIBcast (seq.
115), they cannot issue an corresponding internal MPIIrecv, even-
tually leading to a situation in which nodes 4-7 cannot proceed to
other events. This situation occurs frequently. In many scientific
applications, two sets of nodes can execute different sections of a
program leading to compression failure interspersed with collec-
tives, such as barriers. This causal ordering of events in the trace
can lead to deadlock when replayed using the above approach.We
employ a novel design for the inter-node compression algorithm
to forcibly merge collectives even if an entire PRSD loop of other
events does not merge properly.

Inter-node compression attempts to match an entire sequence of
events subject to the same PRSD loop across nodes. Even if there is
a single mismatch, the entire sequence would conventionally not be
merged but rather be written consecutively as shown in the sample
trace above. We employ a novel design for inter-node compression
to greedily merge any subset of events,e.g., collectives inside a
loop. We then rearrange other communication calls with collectives
as synchronization points. This ensures that deadlocks cannot be
introduced during the replay of MPI events.

A prove showing that our novel merge algorithm, which re-
arranges non-merging communication calls with a collective as a
synchronization point, will not introduce deadlocks is provided in
technical report due to space constraints [20].

6. Experimental Results
We evaluated Scala-H-Trace in three aspects: (1) its effectiveness
of trace file compression, and (2) its statistical trace replay fea-
ture and (3) its trace compression sensitivity to merge precision
level settings. Experiments (1) and (2) utilize both the histogram
compression approach and the WLCS-based recursive inter-node
compression algorithm. Most of our experiments were conducted
on Jaguar, the Cray XT4 system at ORNL. Each of compute node
features a 2.1 GHz quad-core AMD Opteron 1354 processor and
8GB of DDR2 memory. The login nodes run a full-featured Linux
version while the compute nodes run the Compute Node Linux mi-
crokernel. Due to unavailability of Jaguar in the final experimen-
tation phase, the MG experiments were conducted on Jugene, an
IBMBlue Gene/P system with 73,728 compute nodes and 294,912
cores, 2 GB memory per node, and the 3D torus and global tree
interconnection networks.

We analyze the efficacy of Scala-H-Trace using a production-
scale application, the Parallel Ocean Program (POP) [6], asthe
main challenge. The Parallel Ocean Program (POP) is an ocean
circulation model developed at Los Alamos National Laboratory.
Our experiments exercise a one degree grid resolution in which
the problem size is 320x384 blocks and the individual block size
is 5x6 resulting in a total of 4096 (64x64) blocks distributed to
individual nodes. POP exhibits non-SPMD behavior, which leads
to trace file size increases with the number of nodes for conven-
tional trace tools, including ScalaTrace. POP is a large-scale ap-
plication with challenging communication patterns. Therefive dif-
ferent dominant patterns equivalent to five micro-benchmarks, yet
in combined complexity. Hence, this application provides an op-
portunity to show-case the effectiveness of histogram-based trace
collection of Scala-H-Trace. We conducted experiments by vary-
ing the maximum number of blocks assigned to each node.

We further utilize the CG and MG benchmarks from the NAS
parallel benchmark suite for inputs sizes C to study the efficacy
of Scala-H-Trace for different types of application behavior. Both
CG and MG mostly exhibit SPMD behavior but differ significantly
in the communication pattern impacting the compression effective-
ness during trace collection. These benchmarks are also selected
from the NAS benchmarks as these two were the challenging cases
for ScalaTrace’s lossless compression: Both were reportedto result
in sub-linear increases in the trace file size for ScalaTrace[12].

6.1 Trace Compression Effectiveness
We collected traces based on two different compression techniques.
First, the original ScalaTrace is used, in which loop details and pa-
rameter values are captured losslessly and inter-node trace com-
pression is performed with the coarse-grained matching scheme.
Second, our novel histogram-based trace compression featuring
Scala-H-Trace is used, in which trace information is collected in
histograms for events and parameters that otherwise would not have
compressed with the lossless trace compression, and inter-node
compression is performed recursively. Trace file sizes are assessed
under strong scaling, where we vary the number of nodes while
keeping the overall problem size fixed. Lossless traces, obtained
from ScalaTrace, are useful to identify exact details of thecommu-
nication and I/O patterns exhibited by the application. Histogram-
based traces are obtained from Scala-H-Trace, attempting to cap-
ture lossless information for trace events where feasible while non-
matching events are recorded in histogram bins. We hypothesize
that histograms suffice to capture the “big picture” of the applica-
tion behavior and will assess this claim by accuracy of replay times
relative to the original application. For applications exhibiting non-
SPMD behavior, such as POP, histogram-based trace collection
(Scala-H-Trace) collects concise traces, which could not otherwise
be obtained with lossless trace compression (ScalaTrace).
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Figure 2. Parallel Ocean Program
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Figure 3. CG Benchmark
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Figure 4. MG Benchmark
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Figure 5. POP Replay
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Figure 6. CG Replay
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Figure 7. MG Replay
Figure 2 depicts the trace file size for both lossless and

histogram-based traces when varying the number of nodes. Note
that the y axis is in log scale. Since POP exhibits non-SPMD be-
havior, we observe a linear increase in the trace file size in the
case of lossless trace collection up to 256 nodes. The trace file size
then stabilizes for 512 nodes and even declines for 1024 nodes. We
identified that the timestep behavior becomes more regular at these
levels, resulting in more effective inter-node compression. But we
again observed an increasing trend in the case of 2048 nodes.For
2048 nodes and above, we could not even collect traces anymore
as the trace file size was growing unmanageably fast and the time
taken to merge hundreds of megabytes of per-node traces became
prohibitive. With the histogram-based approach, there is asub-
linear increase in the trace file size. Moreover, histogram-based
trace files are two orders of magnitude smaller than the lossless
traces. This considerable reduction is obtained by aggressive com-
pression of events and their associated function parameters in his-
tograms. This clearly shows the efficacy of Scala-H-Trace tocol-
lect concise trace files even with applications exhibiting irregular
behavior.

Figures 3 depicts trace file size for the CG benchmark. We ob-
serve an interesting trend in CG in which the trace file size for
lossless traces is consistently 50% less than that of the histogram
traces up to 1024 nodes, yet sizes match at 2048 node. Even though
lossless traces are initially smaller than histogram traces, there is a
consistent increase in the trace file size for the lossless case. In
contrast, the size of histogram traces is almost constant with the in-
crease in number of nodes. For lossless traces, non-matching func-
tion parameters for events with the same call stack are collected in
vectors associated with a participant rank list. This representation
is more concise than histograms for smaller number of nodes.With
thousands of nodes, the vector-participant list pair for each event
has increased in size to where it is at par with histogram traces.
Unlike vector-participant lists, histogram representation is constant
with the increase in number of nodes as the number of bins is fixed
during the application run and even the outlier participantrank in-
formation is absorbed as constants in bins. It should also benoted

that the trace file size for CG is in the order of hundreds of kilobyte.
For larger applications with a similar communication behavior as
CG yet with trace file sizes in hundreds of megabytes, such a linear
(or even sub-linear) growth for lossless traces may simply not be
scalable due to inter-node merge overheads, as discussed.

Figure 4 depicts the results for MG. MG exhibits a double
nested 7-point stencil communication pattern in the 3D space. Due
to the regular communication pattern and data-independentpro-
gram behavior, compressing the MPI parameter values of MG
works well for both lossless and histogram-based approaches.
However, due to the slightly diverged per-node program behav-
ior within a loop, the original inter-node compression algorithm
of ScalaTrace failed to merge across communication groups.This
caused trace sizes to increases linearly with the number of nodes.
In contrast, with our novel fine-grained recursive approach, similar
PRSDs are merged and the trace size grows sub-linearly, i.e., by a
factor of two as the number of nodes is increased by a factor of64.

6.2 Histogram-based Trace Replay
We studied the replay effectiveness of histogram-based traces by
comparing the original application execution time with thetime
taken to replay the recorded events. We discuss the effectiveness
of the distributed approach of replaying statistical traces. We also
discuss the impact of trace compression on the replay behavior
for histogram-based traces. We show that even with statistical
histogram-based traces, replay can still be employed to check the
correctness of a recorded trace and also to perform “what-if” anal-
ysis for system procurements.

Figure 5 depicts the replay time of histogram-based trace events
compared to that of the application’s original execution time. The
compressed traces are fully forced histogram trace events where
any non-matching function parameters or loop iterations are col-
lected as histograms. Even with these traces, we see that thereplay
time for traces collected for 32-512 number of nodes are within 5%
of the original execution time (with the exception of replaytime
for 128 nodes). Replay time accuracy drops to 12% for 1024 and
2048 nodes. Due to our experiment with strong scaling for POP,



the original execution time for both 1024 and 2048 nodes ( 30 sec-
onds) is much lower than that for fewer nodes (>100 seconds) so
that even small deviations in absolute values during replayincrease
the error percentage. We conjecture that such deviations are unre-
alistic as POP for this particular input does not scale beyond 512
nodes so that such short times are unrealistic. Similarly, this prob-
lem would not occur under weak scaling as runtimes would not
decrease with larger number of nodes. Overall, we observe that the
replay time is close to the original execution time, even forfully
forced histograms, due to two reasons: (1) Since our histograms
are dynamically balanced, a random value selected from histogram
bins during replay falls within a commonly used value range in the
original application run. (2) The inter-node compression algorithm
effectively merged events across nodes so that communication calls
are not split in the trace file.

We observe nearly 50% deviation in the case of 128 nodes for
POP. To investigate the cause, we calculated the time spent by
nodes in other communication calls and found that some nodesare
engaged in more communication calls than the majority of nodes.
This created load imbalances where the remaining nodes waitat
collectives for nodes participating in larger number of events.

Figure 6 depicts the replay time for the CG benchmark. In the
majority of cases, the replay time is with 10% to 15% of the orig-
inal application runtime. Since the original execution time for CG
is within 10 seconds for 1024 and 2048 nodes, even small changes
in the absolute replay execution time increase the error percent-
age considerably. The replay time deviation can be attributed to the
loop iterations recorded in histograms. Again, CG stops scaling at
512 nodes for this input size so that larger application runsare un-
realistic. Furthermore, if the random loop iteration selected from
histograms is close to the maximum value, then all nodes partici-
pate in more communication calls than in the original application.
This is a fundamental trade-off between accuracy and manageabil-
ity of trace file sizes.

The replay time for MG benchmark is depicted in Figure 7. The
averaged inaccuracy is 8.2% under strong scaling. We observe up
to 34.2% inaccuracy for 2,048 nodes. This outlier is due to anex-
cessively short runtime of 3.8s with an absolute error of just 1.3s.
For 1,024 nodes, this decreases to 12.5% and for 512 to 5.3% and
so on indicating that the problem is only due to excessively short
runtimes. After discarding this outlier due to strong scaling limita-
tions, the replay timing accuracy for MG is high. As discussed be-
fore, with the recursive inter-node trace compression, we are able
to achieve a nearly constant trace sizes for MG even without the
histogram-based probabilistic approach. Due to the elimination of
the imprecision, the timing behavior of the trace replay highly re-
sembles that of the original MG benchmark.

With the exception for MG, which fares equally well with
histogram-based compression, replay for Scala-H-Trace generated
traces with forced histograms results in runtimes that are within
12-15% of the original application for most cases. This result is in-
teresting as forced histograms are equivalent to a 0% merge preci-
sion level, which is the most aggressive compression possible with
Scala-H-Trace. More accurate replay may result from higherpreci-
sion levels at the cost of slightly larger traces, as discussed next.

6.3 Trace Sensitivity Study
Finally, we study the effect of varying merge precision levels on
trace file sizes. This experiment serves as an illustration for the
benefits of user-specified merge precision levels as a means to steer
compression, which should improve as precision decreases.Merge
precision levels provide a tunable parameter to select target trace
file size as required by operating environments or performance
analysis experiments. Lossless traces may be desirable forexact
analysis of application behavior and users with access to excessive
storage may happily utilize this feature even if the trace file size

becomes large. When desiring a more compact trace file and when
inter-node merges become prohibitive for lossless traces,users can
decrease merge precision level to target a desired trace filesize and
tracing overhead.
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Figure 8. POP Trace Sensitivity for 512 nodes
Figure 8 depicts the impact of verifying merge precision lev-

els on the final trace file size. We fixed the number of nodes to
512 for POP and measured trace file sizes for varying merge pre-
cision levels. We observe that even with a small decrease in the
merge precision from 100% to 95%, the trace size reduced by more
than a factor of three. This significant reduction is due to merging
events with varying numbers of loop iterations for the timestep in
POP. With lossless traces, two different sets of loops with the ex-
act same events fail to compress due to varying numbers of loop
iterations across the timestep. This variation is data dependent and
induced by computation as explained in the section 4.1. The trace
file size is constant up to a 70% merge precision level. At 60%
precision, sizes drop again by almost 50%. This second reduction
has been attributed to function parameters collected as histograms.
Many events with varying function parameters are not combined
under lossless tracing or result in vectors collected to represent
varying parameters. Both contribute to the significant increase in
the trace file size and prevent trace scalability with increasing num-
bers of nodes. Finally, another three-fold reduction in trace sizes is
observed for forced histograms (0% merge precision level).At the
0% merge precision level, all non-matching values are represented
as histograms, which results in the most concise trace possible with
Scala-H-Trace. Overall, sensitivity experiments to mergeprecision
levels show that small reductions in precision can significantly re-
duce the overall trace sizes. This particularly aids production-scale
codes like POP, which otherwise cannot be feasibly traces without
loss of information for thousands of nodes.

7. Related Work
There are several tools, such as TAU [16], Vampir [10], Paraver
[13] and SCALASCA [4], that capture communication and/or I/O
trace events using library instrumentation similar to Scala-H-Trace.
But only few employ trace compression techniques to controlthe
trace file size. Many of these tools depend on zlib for compression,
which compresses blocks of data without preserving the structure
of the trace,i.e., post-processing/analysis only becomes feasible af-
ter decompression. This also increases the memory requirements,
effectively rendering trace analysis infeasible on commodity desk-
tops or laptops and sometimes even high-end workstations, depend-
ing on the uncompressed trace size. Unlike these techniques, Scala-
Trace [12] compresses traces while preserving the trace structure in
terms of order of events. As a result, post-processing/analysis can
be performed without decompression. We utilize this concept of
structure preserving compression in Scala-H-Trace. Yet while Sca-
laTrace and any of the aforementioned tracing tools record lossless
traces with a subset or all event parameters, Scala-H-Traceestab-
lishes a different methodology. Parameters, event frequencies and
participant lists of nodes are recorded as histograms when lossless
compressing cannot be established within a user-specified merge



precision level. Employing statistical methods results inmore con-
cise traces even for non-SPMD programs at the expense of loss
of information. Our replay tool uses an algorithm to issue events
on-the-fly using the compressed traces, much like ScalaTrace. Yet
recorded parameters are replayed in a probabilistic manner, which
creates novel challenges that are met by our distributed approach to
coordinate event replay across nodes.

The mpiP tool, a lightweight profiling library for MPI applica-
tions, collects statistical information about MPI functions [17]. It
collects aggregate metrics like number of MPI events issuedby the
application and average execution times. This is useful to provide
very high-level information on communication and I/O calls. Scala-
H-Trace, in contrast, captures all events in traces and employs more
sophisticated histogram bins only when the need arises for applica-
tions exhibiting non-SPMD behavior. Beside the histogram infor-
mation, we also record outlier information associated witheach bin
to detect communication bottlenecks and to provide a “big picture”
of communication and I/O events in applications.

Kluge et al. [7] employ pattern matching techniques similar to
ours to capture POSIX I/O calls in parallel programs. Unlikeour
approach, they perform post-mortem pattern matching only after
collecting the application traces. They read the collectedtrace and
create an I/O dependency graph thereby preserving the eventorder
to do pattern matching. Even though post mortem pattern match-
ing reduces the trace volume, this approach limits its usefulness in
memory constrained systems like the IBM BlueGene family. With-
out online compression, either the memory footprint increases by
holding the recorded trace or trace events are frequently written to
disk, which affects the application execution behavior. They also
do not employ pattern matching across nodes so that they require a
trace file per node. This limits their approach in that they struggle
with applications utilizing thousands of nodes due to parallel file
system constraints. Our approach is immune to such limitations as
a single trace file captures the behavior of all nodes with statistical
information on a per-event and per-parameter basis.

Gaoet al. [3] developed an event trace compression technique
that performs static analysis on the application binary andcollects
loops and functions as structures. Along with these structure, a path
grammar is constructed on-the-fly. Path grammars are then utilized
to encode paths taken during execution. These structures are com-
pressed individually and stored. Even the iteration count is stored
along with the compressed structure traces. This loosely resembles
the RSD and PRSD technique used in related work [5, 8, 11, 15].
But unlike Gaoet al.’s work, our tool does not require the construc-
tion of grammars for individual applications separately. Our work
employs a generalized trace compression approach based on call
path stacks and records parameters exploiting statisticalmeans. It
is sufficient to link the tool library along with the application to
collect traces. This generalization also enables comparative trace
studies between two different applications.

8. Conclusion
We presented the design and implementation of Scala-H-Trace,
which provides novel capabilities for more aggressive trace com-
pression than any previous approach. Scala-H-Trace utilizes his-
tograms based on a user-specified merge precision level. It features
a distributed approach to deterministically replay statistical his-
togram traces where events are reissued without decompressing the
original trace file. Experimental results demonstrate the ability to
obtain a single, near constant sized trace file, even for production-
scale scientific applications such as POP with non-SPMD behav-
ior. Results also show that replay time for traced events arewithin
12%-15% of the original application execution time in majority of
the cases, even for the most aggressive “forced” histograms.
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Appendix
We next prove that our novel merge algorithm, which rearranges
non-merging communication calls with a collective as a synchro-
nization point, will not introduce deadlocks. We assume that the
original application is deadlock free (which is reasonablesince the
event trace was collected from a terminating application) and pro-
vide the proof below:

THEOREM 1. A replayed trace of a program with events reordered
to synchronized collectives does not result in deadlock if the origi-
nal trace was deadlock free.

Proof: Follows from Lemmas 1-3. �

LEMMA 1. Lemma 1: A replayed trace of a program with only
collectives will not deadlock.

Proof: By construction of traces, all recorded participants engage
in a collective during replay in the same order as recorded. Col-
lectives are blocking. Hence, all participants complete a collective
at (nearly) the same time (as collectives provide global/group syn-
chronization). �

LEMMA 2. A replayed trace of a program with only point-to-point
communication will not deadlock.

Proof: Blocking/non-blocking sends are replayed in the same order
as recorded. The corresponding receives are issues as non-blocking
receives in the same order that the sends where issued. Once all
non-blocking receives of a PRSD have been issued, waits are is-
sued on all pending non-blocking receives. Hence, if the original
trace did not deadlock, replayed point-to-point messages with iden-
tical receive ordering followed by wait ordering relative to sender
ordering will not deadlock either. �

LEMMA 3. A replayed traces with mixed events of collectives and
point-to-point messages will not deadlock.

Proof: (a) Assume a trace with alternating phases of only point-
to-point messages and only collectives. Since collectivesprovide
a fence where all point-to-point messages are consumed prior to a
collective, replaying such a trace is deadlock free for eachregion
by Lemmas 1 and 2 and thereby also for the entire trace since each
phase is causally independent.

(b) If a point-to-point message is crossing collectives (sent be-
fore but received after a collective across a pair of nodes that also
participates in the collective), then the same send will be issued dur-
ing replay before the corresponding collective, but the correspond-
ing non-blocking receive will also be issued before the collective
followed by a wait. Hence, if the application with its tracedevents
was deadlock free, the replay will also be deadlock free.

Let S = s1, ...,sn be the set of event streams overn nodes
wheresi = e1, ...,emi are ordered sequences of of point-to-point or
collective communication events.

(c) By structural induction over (b): Letsi ∈ S and sk ∈ S be
event streams with alternating phases of collectives and point-to-
point messages or point-to-point messages crossing collectives as
in proof step (a) or (b) of Lemma 3, respectively. Then letS+

be the induced set of event streams of the traced applicationrun
with an additional point-to-point message sent from nodei to node
k denoted ase+

x → f +
y wheree+

x ∈ s+
i , f +

y ∈ s+
k and s+

i ∈ S+,
s+
k ∈ S+. Furthermore, let{ex,ex+1} ⊆ si and{ fy, fy+1} ⊆ sk be

subsequences such that{ex,e+
x ,ex+1} ⊆ s+

i and{ fy, f +
y , fy+1} ⊆

s+
k for arbitrary 1≤ x ≤ mi and 1≤ y ≤ mk. Furthermore, letS′

be the set of event streams with reordered non-blocking receives
in place of sends corresponding toS followed by waits that is
deadlock free under replay.

The corresponding induced set of replayed event streams,S′+,
is then{ex,e+

x ,ex+1} ⊆ s′+i and{ fx, f +
y , fx+1} ⊆ s′+k for s′+i ∈ S′+

and s′+k ∈ S′+. Since the application was deadlock free forS and
S+ and replay was deadlock free forS′, replay is also deadlock
free forS′+ since replay preserves ordering of event sequencess′+i
ands′+k with respect to the send order of the application, i.e., a non-
blocking receive (followed by a wait) is issued at the receiving node
after fx ∈ s′+k . �

Notice that we fold the non-blocking receive and the corre-
sponding wait intof +

y in the above notation to facilitate readability
without loss of generality.
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