
On the Development of A Black Box Security Test Pattern Catalog Based on
Empirical Data

Ben Smith and Laurie Williams
Department of Computer Science
North Carolina Sate University

Raleigh, NC, USA
[ben_smith, laurie_williams]@ncsu.edu

Abstract— The United States is suffering from a shortage of
software security experts. We need a vehicle with which we
can capture and disseminate knowledge about how to assess
whether software systems have adequate defenses against
malicious users. We have adapted the notion of a software
design pattern to the domain of black box security testing.
The goal of this research is to codify a process for developing a
software security test pattern catalog that provides a vehicle for
capturing and disseminating knowledge about software
security testing based upon grounded theory analysis of
empirical data. In this paper, we present six initial software
security test patterns developed via our process. The
empirical data we used for our grounded theory analysis was
the CWE/SANS Top 25 security vulnerabilities. We created
test cases based upon these patterns using 284 functional
requirements from a public specification to generate 137
black box tests. We then executed these tests on each of five
electronic health record systems, which are currently used to
manage the clinical records for approximately 59 million
patients, collectively. Out of the 685 total test executions, 253
(37%) revealed vulnerabilities in the five systems. Our
evaluation shows that our patterns target different
vulnerabilities, for example specific design flaws, which
automated techniques like automated penetration testing
and static analysis do not typically reveal. Our study
suggests that by using the patterns presented in this paper,
software engineers are better able to identify commonly
overlooked security vulnerabilities.

Keywords- security; testing; black box; patterns; health
care

I. INTRODUCTION
The United States is suffering from a shortage of

software security experts [12]. One expert claims that
there are approximately 1,000 people in the country with
the skills needed for cyber defense, and goes on to say that
20 to 30 times that many are needed [19]. Another report
indicates that today's graduates in software engineering are
unprepared to enter the workforce because they lack a
solid understanding of how to make their applications
secure [21]. Due to this shortage of security expertise, we
need a vehicle with which we can capture and disseminate
knowledge about how to assess whether software systems
have adequate defenses against malicious users.

We adapt the notion of a software design pattern as
proposed by Gamma et al. [13] to the domain of black box

security testing. A design pattern is a description of a
recurring problem and a well-defined description of the
core solution to the problem that is described such that the
pattern can be used many times but never in exactly the
same way [2]. A software security test pattern is a template
of a test case that exposes vulnerabilities, typically by
emulating what an attacker would do to exploit those
vulnerabilities.

Capturing attacker behavior in a security test case
allows the systematic, repeated assessment of a system’s
defenses against a particular attack. We codify a process
for developing security test patterns by identifying the
similarities between test cases that expose known
vulnerabilities and abstracting common components to
make the test strategy reusable. This development of
security test patterns using empirical data can help
establish the foundations for a science of security [11],
where knowledge about security can be gathered and
organized in the form of testable explanations and
predictions. Additionally, others can use this process of
developing patterns to capture and disseminate security
testing knowledge and to contribute additional patterns.
Just as design patterns disseminate design knowledge,
expressing proven security testing techniques as patterns
makes them more accessible to people who are not experts
in security, and makes it easier to reuse successful testing
strategies [13].

The goal of this research is to codify a process for
developing a software security test pattern catalog that
provides a vehicle for capturing and disseminating
knowledge about software security testing based upon
grounded theory analysis of empirical data. We analyzed
the CWE/SANS Top 25 Most Dangerous Programming
Errors1 using a grounded theory approach [14] to produce
six initial test patterns. Future studies will allow us to
evolve our pattern catalog and validate our process within
the context of other data sources.

We applied our initial six test patterns to the
Certification Commission for Health Information
Technology (CCHIT) Ambulatory Criteria [1] to develop
test cases from our patterns. Specifically, we employed
284 functional requirements from the CCHIT criteria to
create a black box security test plan consisting of 137

1http://cwe.mitre.org/top25

security tests for four open source and one proprietary
electronic health record (EHR) system: OpenEMR 2 ,
ProprietaryMed3, WorldVistA4, Tolven5, and PatientOS6.
We then executed the 137 test cases on each of these five
released EHR systems that are currently used to manage
the records of over 59 million patients. This resulted in a
total of 685 test executions. We further evaluated the test
plan by comparing it to two techniques: automated
penetration testing and automated static analysis, to
identify the common vulnerabilities discovered by each
technique. We have also developed a tool that uses natural
language processing to automate the test case generation
procedure using customizable patterns and keywords. The
tool, pattern catalog, test plan and test results are available
from our security test patterns wiki7.

The rest of this paper is organized as follows. Section
II reviews the background and related work. Section III
introduces our security test pattern catalog, and illustrates
how the patterns are used and how we developed them.
Section IV illustrates how we applied the security test
patterns to develop a black box test plan for five EHR
systems. Section V illuminates a comparison we
performed between test cases developed using our patterns
and other security assessment techniques. Section VI
describes the tool we have implemented to automatically
parse natural language documents into test cases. Section
VII lists the limitations of this work and this paper. Section
VIII summarizes the paper.

II. BACKGROUND AND RELATED WORK
This section reviews the background and work related

to our proposed pattern catalog.

A. Software Patterns
A design pattern is a description of a recurring

problem and a well-defined description of the core
solution to the problem that is described such that the
pattern can be used many times but never in exactly the
same way [2]. Design patterns were originally conceived
by Alexander [3] in the field of building architecture, and
tailored to software engineering by Gamma, et al. [13].
Alexander later introduced the notion of design pattern
languages [2], which were tailored to software engineering
by Coplien [9]. A pattern language is a collection of
patterns that build on each other to generate a software
system [2]. A pattern language is functionally complete,
meaning that using one pattern creates an imbalance that is
resolved by another pattern, and so on until a whole
system can be developed that is balanced and well-
designed [9].

We define a software security test pattern as a template
of a test case that exposes vulnerabilities, typically by

2http://oemr.org/
3ProprietaryMed was developed by an organization that wishes to keep

the identity of their product confidential.
4http://worldvista.org/
5http://tolven.org/
6http://patientos.org
7http://securitytestpatterns.org

emulating what an attacker would do to exploit those
vulnerabilities. Our software test pattern catalog cannot be
thought of as a pattern language, in the way that Alexander
and Coplien conceived of pattern languages. Instead, a
pattern catalog is a collection of related patterns that apply
to the same domain and contain the same elements (e.g.
keywords, procedure template, an example of use, etc.)
[13]. A pattern catalog is different than a pattern language
in that a catalog is not necessarily functionally complete
[13].

B. Developing Secure Software
Secure software methodologies, advocate considering

security throughout the lifecycle. These methodologies
indicate that development organizations should perform
security-enriching processes such as the development of
security requirements [25], penetration testing [4], threat
modeling [16], automated static analysis [10], testing
access control policies [7, 18], risk analysis and misuse
cases [29], black box security testing [24], and many other
techniques. The concept of building security in prescribes
that developers and testers consider system security from
the outset of the project and design the system to be
protected from malicious attack [23]. Each of these
techniques plays a role in the prevention and removal of
vulnerabilities, but none of these techniques will find
every vulnerability [24].

A recent survey of information security and software
development consultants indicates that although 81% of
respondents were aware of formal secure development
methodologies, only 30% indicated that they had adopted
some methodology. Additionally, these methodologies
rarely offer detailed advice on how to conduct black box
security testing. For example, security experts use their
extensive knowledge and experience to attempt attacks on
an application in an exploratory and opportunistic way in a
process known as penetration testing [4]. However, the
success of current security assurance techniques like
penetration testing that occur late in the product's lifecycle
vary based on the skill, knowledge, and experience of
testers [4].

The ISO defines three important concept with respect
to information security, known as the “CIA Properties”:
confidentiality, integrity, and availability [17]. The
concepts are described as follows:

• Confidentiality: The system shall not make the
information more widely known than necessary.

• Integrity: The system shall not allow the
information to be tainted. This does not guarantee
the accuracy of the information, but guarantees
that the same information that a user puts in will
be the information that a user gets out.

• Availability: The system shall make its
information available to the user at all times or as
frequently as the user shall need it.

C. Security, Requirements, and Testing
Before developers can mitigate the risks of security

threats, they must know the requirements for the system's

security. Security requirements are often non-functional,
meaning they specify criteria that are used to judge the
operation of a system, as opposed to functional
requirements that define specific functions or behaviors of
the system [33]. Functional requirements statements often
specify desired system behavior in "shall" statements [33],
for example: "The system shall send an email message to
the administrator containing the new user name and the
time and date of creation when a new account is created.”
Several techniques have been constructed for developing
and analyzing adequate security requirements [20], as well
as improving the traceability of non-functional
requirements to help maintain critical system qualities
throughout a system's lifetime [8]. Several researchers
have already proposed the use of requirements-based
testing for creating a black box test plan [26], but we
propose the first methodology we are aware of to use
requirements-based testing to create a black box security
test plan. Software security testing, however, entails that
we validate not only that the system does what it should
securely, but also that the system does not do what it is not
intended to do [31]. This unintended functionality is not
often found in the requirements document unless the team
has performed an explicit set of misuse cases or an anti-
goal analysis of the system [20]. Black box security
testing's role is to provide a security evaluation of the
product in its environment. Black box testing techniques
like penetration testing can uncover vulnerabilities that are
dependent on environmental specifics that other forms of
testing cannot [30].

D. Grounded Theory
In grounded theory, first proposed by Glaser [14],

theory is developed from data. Key points of the data are
anchored with codes—labels that highlight frequently
recurring properties of the data. Data from codes are then
organized into categories. The core aspects of category
that are coded and then established become a concept.
Grounded theory also makes heavy use of the constant
comparative method, where concepts that are recorded in
codes are repetatively compared to other concepts and
codes to see if the data should be restructured, while
continuously reevaluating preconceived notions or existing
theories [14]. To follow Glaser’s dictum, “all is data”. In
the context of this paper, every bit of information about a
vulnerability could be important for understanding the
relationship between systems and attackers.

III. DEVELOPMENT PROCESS FOR A SECURITY TEST
PATTERN CATALOG

This section provides our pattern catalog for
developing black box software security tests as well as the
procedure we used to develop the catalog based on
empirical data.

A. Pattern Template
This section provides our template for the patterns in

our pattern catalog.

Pattern Name (based on targeted vulnerability)
Keywords: The list of words that can be found within

natural language documents that signal the need for the
application of the pattern.

Targeted Vulnerability Types: The type of
vulnerability that the test template (found below) is
designed to expose or uncover. In this paper, we targeted
vulnerabilities from the CWE/SANS Top 25. Future
patterns contributed by us and others are not restricted to
the CWE/SANS Top 25 or any vulnerability list.

CIA Properties: A list of the CIA properties (see
Section II.B) that this pattern helps to uphold and how.

Test Procedure Template: A generalized form of the
test case steps that should expose the targeted
vulnerability type.

Expected Results Template: The generalized expected
results for a system that is not vulnerable to this
vulnerability type. Test failures in this context signify
vulnerabilities that are present.

Example Natural Language Artifact: A natural
language artifact that this pattern can be successfully
applied to.

Example Test Procedure and Expected Results: The
result of applying the template from the pattern to the
example natural language artifact.

B. A Process for Developing a Security Test Pattern
Catalog
The input to this process is a set of known or existing

vulnerabilities. To develop a security test pattern catalog
from empirical data, follow these steps:

1. Examine the first (or next) vulnerability.
2. Create a set of systematic, repeatable, black box

test cases that target this vulnerability.
3. Compare this test set to the existing test plan and

organize all tests into categories based on the
similarities between the test procedures and
expected results. Also consider reorganizing
existing categories.

4. If there are more vulnerabilities to consider, return
to Step 1.

5. Once the organization of the categories is
established, extract the parts from the test cases in
each category that are different, and keep the parts
that are same.

6. These repeating parts in each category become the
Procedure Template and Expected Results
Template of a new pattern. Add this pattern to the
catalog.

To develop the keywords for the template that are
applicable for each pattern, we first consider the Test
Procedure Template for when the test case would be
applicable based on certain implied design characteristics
found in natural language specifications that related to a
security test case. For example, tests from the Input
Validation Tests pattern (see Section III.C.1) are most
relevant when input is involved. Then, we decompose

natural language artifacts into their key phrases, as
described in Section III.C. Next, we examine these
decomposed key phrases and search for keywords that
would imply these design characteristics. For example,
the keywords enter, store, or update, will most often
indicate the presence of some form of input field (though
not necessarily) that a tester can exploit using the Input
Validation Test Pattern.

C. Security Test Pattern Catalog
Sections III.C.1 through III.C.6 describe the six test

case patterns that we have developed. We do not intend
to indicate that this list of test case patterns is complete or
sufficient for detecting all types of vulnerabilities. In the
future, we plan to expand the test pattern catalog to
include those contributed by the community and validated
with our grounded theory approach. With the use of our
automated natural language parsing tool (see Section VI),
a security expert or tester can customize the test templates
used as well as the keywords that signify the appropriate
test pattern.

The parts of the patterns in braces (e.g., <insert object
phrase>) indicate instructions to the user on how to apply
the pattern. To apply a test pattern from our catalog,
testers need a natural language artifact, such as a
requirements statement. The structure of a statement in a
natural language artifact contains certain key phrases that
relate to the system’s functionality. A statement can be
broken into key action phrases, key object phrases, and
supporting information. The object phrase in these
statements is most often a data store, such as a listing of
users or a report regarding multiple data records for
output. The action phrase in these statements is typically
an action that the system will perform on that data store,
such as store, graph, view, print, or edit. The supporting
information in these statements provides additional
information as to how or when the system should achieve
the action. Sometimes the supporting information is a
prepositional phrase in the same sentence or can extend to
an additional sentence.

For example, consider a requirements specification that
states, “The system shall provide the ability to modify
demographic information about the patient”. This
statement can be broken down as follows:

• Key Action Phrase: modify
• Key Object Phrase: demographic information

about the patient
• Supporting Information: none

To apply a pattern to this requirement, a tester fills the
component parts (action, object, and supporting
information) into the italicized portion of the test
template. We provide the results of applying the pattern
in an example after each template.

1) Pattern: Input Validation Vulnerability Tests

Keywords: Record8, Enter, Update, Create, Capture,
Store, Edit, Modify, Specify, Indicate, Maintain,
Customize, Query, Receive, Search, Produce

Targeted Vulnerability Types: Cross-site
Scripting, SQL Injection, Classic Buffer Overflow, Path
Traversal, OS Command Injection, Buffer Access with
Incorrect Length Value, PHP File Inclusion, Improper
Validation of Array Index, Information Exposure Through
an Error Message, Integer Overflow or Wraparound,
Incorrect Calculation of Buffer Size, Race Condition,
Uncontrolled Format String, NULL Pointer Dereference,
Incorrect Conversion between Numeric Types, Untrusted
Search Path, Use After Free, External Initialization of
Trusted Variables or Data Stores, Missing Initialization

CIA Properties: Integrity – input validation attacks
most commonly alter or destroy information that is
contained within the system. Confidentiality – some input
validation attacks, like SQL injection, reveal information
in the database by tricking the system into executing a
query that was unintended by its developers. Availability –
some input validation attacks force the system into an
endless loop, or bring the system to a malfunctioning state.

Test Procedure Template:
1. Authenticate as <insert a registered user name>.
2. Open the user interface for <insert action

phrase>ing an <insert object phrase>.
3. Inject one random attack from the attack list9 into

a field of the <insert object phrase>.
4. Repeat the previous step for five attacks10 from

the attack list.
5. Repeat the previous two steps for five fields from

the <insert object phrase>.
Expected Results Template:
• The system should gracefully inform the user that

the input is invalid.
• The data store for the <insert object phrase>

should remain intact.
• The system shall not reveal data that is not a part

of this <insert object phrase>.
• No error messages should occur that reveal

sensitive information about the system's
configuration or architecture.

Example Natural Language Artifact: Requirement
AM 02.04 - The system shall provide the ability to
modify demographic information about the patient.

Example Test Procedure:
1. Authenticate as Dr. Robert Alexander.
2. Open the user interface for entering patient

demographic information and create a new
patient.

8 Keywords that appear in more than one pattern are italicized.
9 Any attack list can be used, but for this paper we used a list of common

attacks from http://neurofuzz.com.
10 The choice of the number of tries for attacks is admittedly arbitrary.

A security tester could execute as many attacks in as many fields as he
or she desires. Some limit on the number of attacks will help in
situations where testing a product is time-limited.

3. Inject one random attack from the attack list into a
field of the demographic information.

4. Repeat the previous step for five attacks from the
attack list.

5. Repeat the previous two steps for five fields from
the patient demographic information.

Example Expected Results:
• The attack strings should be neutralized or

sanitized before insertion, or the attack strings
should be rejected and the user gracefully
informed that their input is invalid.

• The data store for the demographic information
should remain intact.

• No data should be revealed that is not a part of
this patient's demographic information.

• No error messages should occur that reveal
sensitive information about the system's
configuration or architecture.

2) Pattern: Force Exposure Tests
Keywords: Record, Enter, Update, Create, Capture,

Store, Edit, Modify, Specify, Indicate, Maintain,
Customize, Query, Receive, Search, Produce, Display,
View, Print, Graph, Provide Access To, Make Available,
Filter, Order

Targeted Vulnerability Types: Improper Access
Control, Improper Authorization, Reliance on Untrusted
Inputs in a Security Decision, Use of Hard-coded
Credentials, Missing Authentication for Critical Function,
Incorrect Permission Assignment for Critical Resource,
Improper Cross-boundary Removal of Sensitive Data,
Link Following, Exposed Dangerous Method or Function,
Improper Control of Interaction Frequency

CIA Properties: Confidentiality – force exposure tests
assert that the system does not reveal information to users
that it cannot identify or users that do not have the proper
authorization to view that information.

Test Procedure Template:
1. Authenticate as <insert registered user name>.
2. Open the user interface for <insert action

phrase>ing a <insert object phrase>.
3. Observe the method of accessing this interface,

either by recording the URL or the series of user
interface actions to reach this interface.

4. Logout as <insert a registered user name>.
5. Repeat the actions recorded in the earlier step,

either by entering the stored URL, or by repeating
the interface actions.

Expected Results Template:
• The interface should not be visible or accessible

to an unauthorized user.
• Upon forcing the page, the user is denied access

without authorization.
Example Natural Language Artifact: Requirement

AM 08.11 - The system shall provide the ability to filter,
search or order notes by the provider who finalized the
note.

Example Test Procedure:
1. Authenticate as Dr. Robert Alexander.
2. Open the user interface for searching the notes of

patient Ellen Thompson for a provider.
3. Observe the method of accessing this interface,

either by recording the URL or the series of user
interface actions to reach this interface.

4. Logout.
5. Repeat the actions recorded in the earlier step,

either by entering the stored URL, or by repeating
the interface actions.

Example Expected Results:
• The interface should not be visible or accessible

to an unauthorized user.
• Upon forcing the page, the user is denied access

without authorization.
3) Pattern: Malicious File Tests
Keywords: File, Save, Upload, Receive, Image,

Document, Scanned
Targeted Vulnerability Types: Unrestricted Upload of

File with Dangerous Type, Download of Code Without
Integrity Check

CIA Properties: Availability – malicious files often
render the system or the user’s machine dysfunctional.

Test Procedure Template:
1. Authenticate as <insert registered user name>.
2. Open the user interface for <insert action phrase>

a <insert object phrase>.
3. Select and upload a malicious file.
4. View or download the malicious file.

Expected Results Template:
• The file should be rejected upon selection or

should not be allowed to be stored.
Example Natural Language Artifact: Requirement

AM 09.01 - The system shall provide the ability to
capture and store external documents.

Example Test Procedure:
1. Authenticate as Dr. Robert Alexander.
2. Open the user interface for storing an external

document for patient Ellen Thompson.
3. Select and upload a malicious file.
4. View or download the malicious file.

Example Expected Results:
• The file should be rejected upon selection or

should not be allowed to be stored.
4) Pattern: Malicious Use of Security Functions Tests
Keywords: Protect, Enforce, Prevent, Authorized,

Detect, Authenticate, Allowed, Support, Prohibit,
Password, Require, Allow, Encryption

Targeted Vulnerability Types: Missing Release of
Resource After Effective Lifetime, Improper Restriction of
Excessive Authentication Attempts, Operation on a
Resource after Expiration or Release, Guessable
CAPTCHA, Missing Encryption of Sensitive Data,
Improper Check for Unusual or Exceptional Conditions,
Allocation of Resources without Limits or Throttling, Use

of a Broken or Risky Cryptographic Algorithm, Use of
Insufficiently Random Data, could apply to many others,
depending on what the security feature is meant to prevent.

CIA Properties: Confidentiality – most attacks on
security functions will allow a user unauthorized access to
the system and the records it contains.

Test Procedure Template: There is no template for
this test type. The pattern for these tests is to break the
security mechanism that the security requirement
describes or to test to see that the security mechanism
actually fulfills the functions it was designed to fulfill.

Expected Results Template: Same as above.
Example Natural Language Artifact: Requirement

SC 03.02 - When passwords are used, the system shall
support password strength rules that allow for minimum
number of characters, and inclusion of alpha-numeric
complexity.
Example Test Procedure:

1. Open the change password screen.
2. Enter the appropriate identifying information for

Dr. Green.
3. Attempt to change Dr. Green's password to an

empty string.
4. Attempt to change Dr. Green's password to the

letter 'a'.
Example Expected Results:

• The system should disallow all password changes
attempted in this test.

5) Pattern: Dangerous URL Tests
Keywords: Links, External resource, URLs,

Addresses, External documents.
Targeted Vulnerability Types: Open Redirect, Cross-

Site Request Forgery
CIA Properties: Availability – dangerous URL attacks

are often used to prevent a user from being able to access
his or her data. Confidentiality – some dangerous URL
attacks are meant to intercept or steal a user’s identity or
their personal information.

Test Procedure Template:
1. Authenticate as <insert a registered user name>.
2. Open the user interface for <insert action phrase>

an <insert object phrase>.
3. Create a new record for <insert object phrase>.
4. Insert an attack string from the malicious URLs

list for the <insert object phrase>.
Expected Results Template:
• The link should be rejected as malicious.
• An error message should indicate to the provider

that the link points to a dangerous website.
• The data store for the links should remain intact.
• No data should be revealed that is not a part of

this <insert object phrase>.
• No error messages should occur that reveal

sensitive information about the system's
configuration or architecture.

Example Natural Language Artifact: Requirement
AM 08.13 - The system shall provide the ability to provide
access to patient-specific test and procedure instructions
that can be modified by the physician or health
organization; these instructions are to be given to the
patient. These instructions may reside within the system or
may be provided through links to external sources.

Example Test Procedure:
1. Authenticate as Dr. Robert Alexander.
2. Open the user interface for adding patient-specific

instructions for patient Ellen Thompson.
3. Create a new record for patient-specific

instructions.
4. Insert an attack string from the malicious URLs

list for the patient-specific instructions.
Example Expected Results:
• An error message should indicate to the provider

that the link points to a dangerous website.
• The link should be rejected as malicious.
• The data store for the links should remain intact.
• No data should be revealed that is not a part of

these patient-specific instructions.
• No error messages should occur that reveal

sensitive information about the system’s
configuration or architecture.

6) Pattern: Audit Tests
Keywords: patient record, demographics, credit card

information, grade point average (GPA), personal
identification information

Targeted Vulnerability Types: None. Insufficient
Logging is the CWE classification for vulnerabilities that
these test cases can expose.

CIA Properties: Confidentiality – without the
deterrent effect of a record of viewing personal
information, insider attackers will view anyone’s
information without consequence.

Test Procedure Template:
1. Authenticate as <insert a registered user name>.
2. Open the user interface for <insert action

phrase>ing an <insert object phrase>.
3. Logout as <insert a registered user name>.
4. Authenticate as <insert an administrator’s user

name>.
5. Open the audit records for today’s date.
Expected Results Template:
• The audit records should show that registered

user <insert action phrase>ed an <insert object
phrase>.

• The audit records should be clearly readable and
easily accessible.

Example Natural Language Artifact: Requirement
AM 03.08.01 – The system shall provide the ability to
associate orders and medications with one or more
codified problems/diagnoses.

Example Test Procedure:
1. Authenticate as Dr. Robert Alexander.

2. Open the user interface for adding an association
between Theodore S. Smith’s Hypertension
diagnosis and Zantac.

3. Logout as Dr. Robert Alexander.
4. Authenticate as Denny Hudzinger.
5. Open the audit records for today’s date. If

necessary, focus on patient Theodore S. Smith.
Example Expected Results:
• The audit records should show adding and

removing the association of Theodore S. Smith’s
Hypertension diagnosis and Zantac, both linked to
Dr. Robert Alexander, and with today’s date.

• The audit records should be clearly readable and
easily accessible.

IV. APPLYING THE SECURITY TEST PATTERNS
We applied our six test patterns (see Section III.C) to

create a black box security test plan, which we executed on
for four open source and one proprietary electronic health
record (EHR) systems.

A. Choosing the Appropriate Test Pattern
For this paper, we chose patterns from our catalog

using a functional requirements specification. However,
our pattern catalog does not rely on functional
requirements statements to function: as long as the key
phrases can be identified in a natural language text, our
pattern catalog is applicable.

The structure of a requirements statement, as well as
certain keywords, can guide the tester to choose an
appropriate test pattern. We used key phrases and
supporting information in a requirements statement to
determine the relevant security test pattern that will most
likely reveal vulnerabilities in the system. The first phrase
that the tester comes to after reading “The system shall
provide the ability to…” contains the key action phrase
and is followed by the key object phrase. We call these
phrases key because they define the functionality the
system has with respect to its environment.

Requirements specifications typically conform to the
following format: “The system shall provide the ability to
<action> a <object> <and/with/in supporting
information>.” For example, in AM 02.04, the phrase
modify is the key action phrase. This key action phrase
indicates that an attacker has the opportunity to input
malicious strings that can take the form of a cross-site
scripting [32], SQL injection [15] or many other input
validation vulnerabilities. These attacks, if properly
executed, have the potential to tamper with or reveal
information from the demographic information object.
The pattern Input Validation Tests, which our pattern
catalog includes, contains the keyword modify and will
attempt to tamper with or reveal information from the
demographic information object.

B. Developing the First Six Security Test Patterns
Following a grounded theory process as described in

Section III.B, we developed patterns based on these

CWE/SANS Top 25+ and the keywords contained within
a requirements specification. We describe both of these
artifacts briefly in this section. The CWE/SANS Top 25,
lists the most dangerous security programming errors
based on prevalence and potential consequences. We did
not tailor our test case patterns based on the vulnerabilities
we have seen reported in the systems we evaluated. We
captured a set of general test cases that would target all the
vulnerability types on the Top 25 as well as the 23
vulnerability types that CWE lists as being “on the cusp”.
We call this combined set of vulnerability types the “Top
25+”. For a given system, the CWE/SANS Top 25+ may
not uncover every security vulnerability, but we targeted
the Top 25+ because they were chosen based on their
prevalence among actual reported vulnerabilities.

The Certification Commission of Healthcare IT
(CCHIT)11 defined certification criteria focused on the
functional capabilities that should be included in
ambulatory (outpatient) and inpatient EHR systems [28] in
2006, through a consensus-based process that engaged
stakeholders. In this paper, we chose to apply our test
cases to the CCHIT certification criteria since these
criteria express behavior that an EHR must exhibit in order
to be certified [6].

C. Targeted Systems
We chose five EHR systems for our testing that are

responsible for managing the records for over 59 million
patients. Deploying and configuring the open source
systems in this paper (all except ProprietaryMed) was a
time-intensive task that required much expertise and effort
to complete. EHR systems provide a good test bed for
applying our pattern catalog because all five systems
implement the same functional requirements, meaning we
could evaluate our resultant test plan multiple times. Table
1 presents a summary of the facts for each system.

D. Test Case Results
We used our test patterns on the 284 CCHIT functional

requirements statements and created 137 tests, which can
be found on our test patterns wiki. Table 2 lists the overall
test case results for the system under test described in
Section IV.C. We use the following legend to help
describe the results:

• Pass: The system met the test case's specified
preconditions, and the actual results matched the
expected results. The test case did not reveal any
security issue.

• Fail: The system met the test case's specified
preconditions, but one or more results did not
match the expected results. The test case revealed
a security issue.

• PNM: Precondition not met. We could not
execute the test case due to constraints in the
system's configuration or setup, or perhaps

11 http://www.cchit.org

because the test case makes an assumption about
the system that simply is not true.

• N/A: The test case could not be executed because
we could not find the functionality specified in the
requirements. These systems are not CCHIT-
certified, with the exception of Astronaut
WorldVistA, and so a missing requirement is
understandable.

We consider PNM results as providing flexibility for

the test plan to cover potential vulnerabilities that may
have an opportunity to exist in some systems but not for
others. For example, test SF10, available on the test
patterns wiki, asserts that the tester should attempt
unencrypted HTTP (i.e. not HTTPS/SSL connections)
access to the EHR system if the system is a web
application. When the system is not configured to allow
web access, as in the case of our installation of Astronaut
WorldVistA16, test SF10 received the result PNM. This
logic allows us to enable our test plan to include the testing
for unencrypted HTTP access for the other three web
applications, OpenEMR, ProprietaryMed, and Tolven.

Test cases of type N/A should be considered as
allowing us to evaluate the completeness of an EHR
system. The test case should exist in the test plan for each
and every requirement that is possible, regardless of
whether the system implements the requirement. For
example, IV24 states that the tester should assign a task to
a user in the EHR system and insert an attack string for the
description of the task. When we executed this test case
on OpenEMR, we found no user interface for assigning a
task to another user. We searched OpenEMR's user

12 https://sourceforge.net/projects/openemr/files/stats/timeline
13 Calculated using CLOC v1.08, http://cloc.sourceforge.net
14 http://sourceforge.net/project/memberlist.php?group_id=60081
15 http://www.openmedsoftware.org/wiki/
16 Some installations of WorldVistA allow the configuration of web-

based access to the VistA server for the manipulation of EHRs. We
chose not to enable this configuration to help contrast VistA with the
other systems in paper and demonstrate that our test plan could
function well on a thin client-based system.

manuals and found no reference to task assignment. As
such, we assume that OpenEMR does not implement
CCHIT requirement AM 24.01, which requires the system
to be capable of assigning messages, and test IV24
received a result of N/A for OpenEMR.

Overall, our test plan launched 253 (see the cell with
the * in Table 2) successful attacks in the five EHR
systems that consisted of both implementation-level
defects, such as cross-site scripting, and design-level
issues, such as the lack of encryption on the backup copy
of system data. We developed the security test plan in
approximately 60 person hours. Executing the test plan
manually on each of the system under test consumed
approximately six to eight person hours per project. An
undergraduate student with minimal security experience
also executed the test plan on the systems in this paper and
achieved similar results, indicating that non-expert
software testers can use the test plan. We also alerted
developers to the vulnerabilities we found by posting
respective healthcare IT communities' bug report pages.

V. COMPARISON TO OTHER TECHNIQUES
In light of the numerous techniques that one can apply

to develop secure software (see Section II.B), we asked
how our technique would compare to using existing
security assessment techniques. To answer this question,
we performed a comparative evaluation between our black
box test plan and two automated security assessment
techniques [5]: automated static analysis using Fortify 360
v2.6.5, and automated penetration testing using IBM
Rational AppScan v8.0.0.0. Our goal in performing this
evaluation was to see the commonalities, if any, in the
vulnerabilities discovered by the respective techniques.
For comparison, we used two of our systems under test,
Tolven and OpenEMR, described in Section IV.C.
Section V.A discusses our methodology for using the two
security analysis tools. Section V.B summarizes these
results.

A. Security Assessment Techniques
This section describes the details of how we gathered

the data from two security assessment techniques.

Table 1. Summary of the Systems under Test
System Version / Release

Date
Language /
Platform

Install Base /
Usage

LoC / Files License #
Contrib
utors

Estimated
Records
(Patients)

OpenEMR 3.2 / February
16th, 2010

PHP / web-
based

1,563
downloads
/mo.12

305,944 /
1,64313

GPL 34 14 31
million15

ProprietaryMed 1.0 / March 31st,
2010

ASP.NET /
web-based

17 physician
practices

120,000 /
900

Proprietary 12 30,000

Astronaut
WorldVistA

0.9.9.6 / April
30th, 2010

MUMPS /
thin-client

529
downloads /
mo.

1,646,655 /
25,474

GPL ~37 28 million

Tolven RC1 / May 28th,
2010

Java / web-
based

151
downloads /
mo.

466,538 /
4,169

LGPL 12 10 million

PatientOS 0.981 / November
15th, 2009

Java / thin-
client

1492
downloads /
mo.

478,547 /
2,828

GPL 6 n/a

Automated Static Analysis. Fortify 36017 supports
analysis of a variety of languages including both PHP and
Java. To evaluate these two languages we chose the
options “Show me all issues that have security
implications” and “No I don't want to see code quality
issues”.

Automated Penetration Testing. Rational AppScan18
conducts a black box security evaluation of the website by
crawling the web application and attempting a variety of
attacks. We left the default scanning options selected for
our automated penetration testing.

Classifying False Positives. Both static analysis and
automated penetration testing generate a list of potential
vulnerabilities that must be classified as either true or false
positives. To perform this classification, we manually
examined each vulnerability. For static analysis, we
examined the line of code classified as vulnerable and also
examined related methods. For automated penetration
testing, we performed false positive classification by
looking at the raw HTTP requests generated and
confirming if the attempted exploit was actually visible in
the raw output or accepted as trusted input. For both tools,
sometimes we had to attempt to manually recreate the
attack through the application to confirm whether the
potential vulnerability was a true positive.

B. Results
Fortify reported 5,036 issues in OpenEMR, of which

we determined 3,715 to be false positives. In Tolven,
Fortify reported 2,315 issues, of which we determined
2,265 to be false positives. However, we did not exclude
false positives from our analysis of Fortify, because many
times our test plan found an exploit that corresponded to
an alert that we had classified as false positive.

AppScan reported 735 issues in OpenEMR, of which
we determined 25 to be false positives. In Tolven,
AppScan reported 37 issues, of which the we determined
15 to be false positives. In this analysis, our test plan never
found a vulnerability that we had marked as a false
positive, and so false positives were excluded from our
analysis.

As Table 3 shows, Fortify and AppScan both
uncovered many issues that our test plan failed to identify.
However as Table 3 shows, these automated security
assessment techniques missed 80-90% of our discovered

17 https://www.fortify.com/
18 http://www-01.ibm.com/software/awdtools/appscan/

vulnerabilities as well. Using static analysis and
automated penetration testing tools to guide testers
towards efficient, sweeping changes to a system's input
validation mechanisms is preferable unless cost-
prohibitive. Development organizations that are unable to
afford expensive proprietary automated security
assessment tools can still use our approach. The majority
(84% in Tolven and 68% in OpenEMR) of the issues that
our test plan discovered and the tools did not were in the
audit category. With the prevalence of insider attacks [27]
and the attacks a malicious user could perpetrate on
patients’ records with the lack of a sufficient audit
mechanism, we find that a security assessment of EHR
systems should address these issues.

VI. AUTOMATION
We have implemented the Security Test Pattern

Instantiator (STPI), a requirements parsing tool using the
Stanford Parser libraries [22]. A running copy of the STPI
web application is available from our security test patterns
website. STPI uses the natural language processing engine
within the Stanford Parser to extract the key phrases
described in Section III.C. Using the mapping of
keywords to test types described in Section IV.A, the tool
automatically generates an HTML file containing the
systematic black box security test plan. We used the
CCHIT functional requirements statements as well as the
manual test plan described in Section IV to evaluate the
level of agreement between the STPI and the manual
parsing of the 284 requirements described in Section IV.B.

The tool automatically parsed action phrases from the
natural language requirements statement that agreed with
the manual analysis for 73% of the requirements. For
15% of the requirements, the action phrase the tool parsed

Table 2. Test Results for the Five Systems under Test
 Pattern Input

Validation
Vuln.

Malicious
File

Dangerous
URL

Force
Exposure

Security
Features

Audit

 Prefix IV MF DU FE SF AU

Total

Pass 45 0 0 88 16 13 162
Fail 26 8 5 0 25 189 253*
N/A 62 7 15 48 6 79 217

Overall
(in five
EHRs)

PNM 17 10 0 4 13 9 53
Total 150 25 20 140 60 290 685

Table 3. Discovered and Missed Issues for OpenEMR and
Tolven

 OpenEMR Tolven
Test Plan Total 63 35
 AppScan Discovered 6 (9.5%) 2 (5.7%)
 AppScan Missed 57 (90.5%) 33 (94.3%)
 Fortify Discovered 12 (19.9%) 4 (11.4%)
 Fortify Missed 51 (80.1%) 31 (88.5%)
AppScan Total 710 22
 Tests Discovered 6 (0.8%) 2 (9%)
 Tests Missed 704 (99%) 20 (91%)
Fortify Total 1321 50
 Tests Discovered 12 (0.9%) 4 (8%)
 Tests Missed 1309 (99%) 46 (92%)

agreed with the manual analysis, and the object phrase the
STPI parsed did not. For 11% of the requirements, the
tool parsed neither action phrase nor object phrase in
agreement with the manual analysis. The tool agreed with
the test case patterns selected by the manual analysis for
73.3% of the requirements. STPI allows manual
intervention at each phase of the test generation process.

We also asked three graduate students to compare the
key phrases selected by the tool and those selected by the
manual evaluation and determine whether the selections
were equivalent. Additionally, when the students thought
the phrases were not equivalent, we asked them which
selection was incorrect. On average, the students indicated
that the key action phrases selected by the tool and manual
analysis were the same for 73% of the requirements, and
the key object phrases were the same for 72% of the
requirements. When the students indicated that the phrases
were not equivalent, they stated that the tool was wrong
for 24% of the requirements.

VII. THREATS TO VALIDITY
Internal validity: There are other types of security

tests that could be elicited from requirements
specifications. We chose to develop these test types and
their templates based on the CWE/SANS Top 25+ to
maximize the amount of potential vulnerabilities that test
plans written using our pattern catalog could discover, but
different architectures and platforms offer different
security challenges. Some of the test results may have
been different given a different test environment for each
of the systems we evaluated. We often configured these

systems in the simplest way possible, to maximize the
efficiency of our evaluation. Some of the systems'
documentation suggests that with an unknown amount of
setup time, these systems may be capable of achieving
more of the requirements, thus producing not as many N/A
or PNM results. The assessment tools we chose for this
study do not specifically target the domain and type of
security vulnerabilities that we aim to discover with our
approach, and this may have biased the results.

External validity: Grounded theory is valid for the
data involved in its development, but we will conduct
further work before establishing any generalizations [14].
Our results may only apply to open source or non-
industrial systems in health care. Attackers often use
functions, procedures, or interfaces in their target systems
that are not specified by the requirements. Even if a system
passes all of the test cases elicited using our pattern
catalog, the system can still exhibit software
vulnerabilities. No fault or vulnerability detection
technique can identify every problem with a complex,
industrial-scale software system, and our pattern catalog is
no exception to this rule. Similarly, other security
assessment tools besides IBM’s Rational AppScan and
Fortify 360 may produce different results that may share
more commonalities with our approach.

Construct validity: Our use of automated static
analysis and penetration testing is subject to human error.
The inspection of alerts may have missed more

vulnerabilities that could have been shared between our
test plan and the automated security assessment tools.
Additionally, the application and evaluation of the test
plan itself is subject to human error. A tester may have
executed a test incorrectly, or incorrectly characterized a
test result.

VIII. SUMMARY
In this paper, we codified a process for developing

security a security test pattern catalog that uses a grounded
theory approach to identify the similarities between test
cases that expose known vulnerabilities and abstracting
common components to make the test strategy reusable.
We used this process to develop six black box security test
patterns that target the CWE/SANS Top 25+. We then
used our pattern catalog to create 137 test cases based on
the 284 CCHIT ambulatory certification criteria and
running the test plan on each of five EHR systems. We
discovered 253 individual security vulnerabilities in five
released applications. These vulnerabilities ranged from
cross-site scripting attacks, to phishing attempts, to the
ability to upload a dangerous file, to the ability to
impersonate another user. These vulnerabilities could be
catastrophic with respect to the objective of protecting
patients' medical records. Additionally, our comparison to
other techniques shows that two automated security
assessment tools missed 80-90% of our discovered
vulnerabilities. Finally, our automation of this technique
shows promising results for using a tool to help non-
experts in security to create and use black box security
testing in a systematic fashion.

ACKNOWLEDGMENT
We would like to thank the Realsearch research group

for their helpful comments and suggestions on this paper.
The National Science Foundation under CAREER Grant
No. 0346903 supports this work. Any opinions expressed
in this material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation. Additionally, this work is supported by the
United States Agency for Healthcare Research Quality.

REFERENCES
[1] CCHIT Certified 2011 Ambulatory EHR Certification

Criteria, The Certification Commission for Health
Information Technology,
http://www.cchit.org/sites/all/files/CCHIT%20Certified%20
2011%20Ambulatory%20EHR%20Criteria%2020100326.p
df, 2010.

[2] C. Alexander, A Pattern Language: Town, Buildings,
Construction, Oxford, UK: Oxford University Press, 1977.

[3] C. Alexander, The Timeless Way of Building, Oxford, UK:
Oxford University Press, 1979.

[4] B. Arkin, S. Stender, and G. McGraw, “Software penetration
testing,” IEEE Security & Privacy, vol. 3, no. 1, pp. 84-87,
2005.

[5] A. Austin, and L. Williams, “One Technique is Not Enough:
A Comparison of Vulnerability Discovery Techniques,” in

Emperical Software Engineering and Measurement (ESEM),
Banff, Alberta, Canada, 2011, to appear.

[6] K. M. Bell, "A Statement from Karen M. Bell, M.D., Chair,
Certification Commission for Health Information
Technology. Press Release.
http://www.cchit.org/media/news/2010/06/statement-karen-
m-bell-md-chair-certification-commission-health-
information-technology," 2010.

[7] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff, “An
approach to modular and testable security models of real-
world health-care applications,” in ACM Symposium on
Access Control Models and Technologies (SACMAT),
Innsbruck, Austria, 2011.

[8] J. Cleland-Huang, “Toward improved traceability of non-
functional requirements,” in International workshop on
Traceability in emerging forms of software engineering,
Long Beach, California, 2005, pp. 14-19.

[9] J. Coplien, Software Patterns, New York, NY, USA: SIGS
Books & Multimedia, 2000.

[10] D. Evans, and D. Larochelle, “Improving Security Using
Extensible Lightweight Static Analysis,” IEEE Software,
vol. 19, no. 1, pp. 42-51, 2002.

[11] D. Evans, and S. Stolfo, “Guest Editor's Introduction: The
Science of Security,” IEEE Security & Privacy, vol. 9, no. 3,
pp. 16-17, 2011.

[12] K. Evans, and F. Reeder, A Human Capital Crisis in
Cybersecurity: Technical Proficiency Matters, Center for
Strategic and International Studies,
http://csis.org/files/publication/101111_Evans_HumanCapit
al_Web.pdf, 2010.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Boston, MA: Addison Wesley Longman Publishing
Company, 1995.

[14] B. G. Glaser, and A. L. Strauss, The Discovery of Grounded
Theory; Strategies for Grounded Research, New York, NY:
Aldine de Gruyter, 1967.

[15] W. Halfond, and A. Orso, “AMNESIA: Analysis and
monitoring for NEutralizing SQL injection attacks,” in
International Conference on Automated Software
Engineering, Long Beach, CA, 2005, pp. 174-183.

[16] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack,
"Uncover Security Design Flaws Using the STRIDE
Approach," MSDN Magazine, http://msdn.microsoft.com/en-
us/magazine/cc163519.aspx, 2006].

[17] ISO, ISO/IEC IS 17799: Information technology - Code of
practice for information security management., 2005.

[18] J. Julliand, P.-A. Masson, and R. Tissot, “Generating
security tests in addition to functional tests,” in Automation
of Software Testing (AST), Leipzig, Germany, 2008, pp. 41-
44.

[19] M. L. Kelly, Cyberwarrior Shortage Threatens US
Security, NPR Morning Edition,
http://www.npr.mobi/templates/transcript/transcript.php?stor
yId=128574055, 2010.

[20] A. v. Lamsweerde, “Elaborating Security Requirements by
Construction of Intentional Anti-Models,” in International
Conference on Software Engineering (ICSE 2004),
Edinburgh, Scotland, 2004, pp. 148-157.

[21] R. Lemos, "Security lessons still lacking for computer
science grads," InfoWorld,

http://www.infoworld.com/t/application-security/security-
lessons-still-lacking-computer-science-grads-769, 2011.

[22] M. P. Marcus, M. A. Marcinkeiwicz, and B. Santorini,
“Building a large annotated corpus of Enligh: The Penn
Treebank,” Journal of Computational Linguistics, vol. 19,
no. 2, pp. 313-330, 1993.

[23] G. McGraw, Software Security: Building Security In:
Addison-Wesley Professional, 2006.

[24] G. McGraw, and B. Potter, “Software Security Testing,”
IEEE Security and Privacy, vol. 2, no. 5, pp. 81-85, 2004.

[25] N. R. Mead, and T. Stehney, “Security quality requirements
engineering (SQUARE) methodology,” in Software
Engineering for Secure Systems (SESS), St. Louise,
Missouri, USA, 2005, pp. 1-7.

[26] G. Mogyorodi, “Requirements-based testing: an overview,”
in Technology of Object-oriented languages and systems,
Santa Barbara, CA, 2001, pp. 286-295.

[27] A. P. Moore, D. M. Cappelli, and R. F. Trzeciak, The "Big
Picture" of Insider IT Sabotage Across U.S. Critical
Infrastructures, Carnegie Mellon Software Engineering
Institute. CERT Program. , 2008.

[28] H. P. Office, "ONC Issues Final Rule to Establish the
Temporary Certification Program for Electronic Health
Record Technology. Press Release.
http://www.hhs.gov/news/press/2010pres/06/20100618d.htm
l," 2010.

[29] G. Sindre, and A. Opdahl, “Eliciting security requirements
with misuse cases,” Requirements Engineering, vol. 10, no.
1, pp. 34-44, 2005.

[30] B. Smith, L. Williams, and A. Austin, “Idea: Using System
Level Testing for Revealing SQL Injection-Related Error
Message Information Leaks,” Lecture Notes in Computer
Science, vol. 5965, Engineering Secure Software and
Systems (ESSoS 2010), pp. 192-200, 2010.

[31] H. H. Thompson, and J. A. Whittaker, “Testing for software
security,” Dr. Dobb's Journal, vol. 27, no. 11, pp. 24-34,
2002.

[32] G. Wassermann, and Z. Su, “Static detection of cross-site
scripting vulnerabilities,” in International Conference on
Software Engineering, Leipzig, Germany, 2008, pp. 171-
180.

[33] K. E. Wiegers, Software Requirements, 2nd Edition,
Redmond, WA: Microsoft Press, 2003.

