
Management of SOA based context-aware applications hosted in a distributed cloud
subject to percentile constraints

Keerthana Boloor∗, Rada Chirkova†‡, Yannis Viniotis∗‡
∗Electrical and Computer Engineering,

†Computer Science,
North Carolina State University, Raleigh, NC, USA

Abstract—We consider geographically distributed datacen-
ters forming a collectively managed cloud computing system.
Multiple SaaS providers host their SOA-based, context-aware
applications in the cloud. Typically, the context-aware applica-
tions serve multiple classes of customers (end users) classified
on economic considerations, which determine the Quality of
Service (QoS) received by each class. A QoS metric that has
been explored in large distributed applications is the percentile
of response times; this metric provides a form of guarantees on
the shape of the response time distribution for the customer.
This need for differentiated QoS for each customer class is
incorporated into a Service Level Agreement (SLA) negotiated
between the context-aware application provider and the cloud
provider. Typical SLAs require the response time of a certain
percentile of the input requests from particular classes of
customers to be less than a specified value; if this value is
exceeded, a penalty is charged to the cloud provider. In addi-
tion, the applications we consider are data-intensive with strict
temporal order constraints that have to be enforced on requests
within the same session of a customer. We propose Data-aware
Session-grained Allocation with gi-FIFO Scheduling (DSAgS),
a novel decentralized request management scheme deployed in
each of the geographically distributed datacenters, to globally
reduce the penalty charged to the cloud computing system. Our
simulation evaluation shows that our dynamic scheme far out-
performs commonly deployed management policies (typically
employing static or random allocation with First In First Out,
Weighted Round Robin or dynamic priority-based scheduling).
We further optimize our solution for dynamic, data-intensive
context-aware applications, by proposing a “context level”
cache replacement policy. Our evaluation shows that, when
used in conjunction with DSAgS, the replacement policy
decreases the total penalty charged to the cloud.

Keywords-Context-aware applications, Cloud computing sys-
tem, SLA based management policies

I. INTRODUCTION

Applications that are aware of the changes in their users’
environment and react appropriately to them are said to be
context-aware. The term “context” describes any information
that characterizes the user’s situation or any entity’s situation
the user could be interested in [1]. Context-aware applica-
tions thus provide smarter and more tailored responses to
the user. These applications herald an era of ubiquitous com-
puting where mobile customers can submit service requests
from multiple devices, under different situations, and the
application adapts to changes in the user’s context.

Some examples of context-aware applications include lo-
cation based services (for eg., applications that direct users to
the closest vegetarian restaurant with less than 25 current pa-
trons), high frequency trading applications where algorithms
react to changes in stock values from different exchanges,
remote health monitoring and rapid response applications
which notify the earliest available medical personnel at the
onset of a sudden critical condition in a patient.

As most context-aware applications mirror real-world
behaviors, flexibility and extensibility are the most important
requirements [2]. Over the past years, research efforts have
focussed on the adoption of Service Oriented Architecture
(SOA) principles to meet the requirements of context-
aware applications. SOA based applications are composed of
loosely coupled functional service end-points which can be
instantiated on-demand and can be composed dynamically.
Thus applications built on SOA principles are by design
extensible and flexible making SOA a good fit for context-
aware applications [3].

The most suited infrastructure for deployment of an enter-
prise level context-aware application is a cloud computing
system which enables any hosted application to scale on-
demand [4], offers “pay as you go” pricing and manage-
ment services, reducing the total cost of ownership of the
application.

Typically, customers of any large commercial application
are geographically distributed. Enterprise application (SaaS)
providers would prefer to cater to customers from geo-
graphically co-located datacenters due to improved response
times and privacy issues. So cloud deployments tend to be
global in nature with multiple geographically distributed
datacenters forming the cloud and providing service to
multiple SaaS providers each with application deployments
in some or all of the datacenters.

A Service Level Agreement (SLA) is negotiated between
a cloud provider and a SaaS provider which specifies terms
and conditions of the service provided by the cloud for the
application [4]. With the applications deployed across mul-
tiple datacenters, the SLA of each application is negotiated
globally, across the geographically distributed datacenters.

Typically, SLAs for business applications specify (among
other constraints) certain guarantees in terms of the fraction
of requests serviced, as opposed to average-performance cri-

terion. Thus, many Service Level Agreements are designed
to provide specific percentile-based performance goals. It
has been shown in [5] that enforcing percentile performance
criterion as a management objective, results in better con-
formance and improved response times in comparison to
average performance criterion guarantees. Recent business
trends in cloud computing systems have shown increasing
adoption of fixed-step percentile SLAs, where a certain frac-
tion of service requests for a hosted application is required to
have a specific response time, if not a penalty is charged to
the cloud [6]. As geographically distributed datacenters, each
having a large number of servers, form a cloud computing
system, hosting the applications, this percentile SLA has to
be respected globally across all the servers among all the
datacenters for the penalty to be minimized.

In our work, we consider a cloud computing system
consisting of multiple geographically distributed datacen-
ters, each with a large number of end-servers. The centers
collectively host, multiple context-aware applications. The
context-aware applications are each negotiated with per-
centile SLAs. We address the problem where the request
management techniques employed by the cloud should aim
at globally conforming to the percentile SLAs negotiated for
each application, thus minimizing the penalty charged.

In summary, our contributions in this paper are:
• We propose DSAgS, a dynamic, distributed, adaptive,

measurement based, data-aware, session-grained re-
quest management policy for geographically distributed
datacenters hosting multiple SOA based context-aware
applications with percentile SLAs, aiming to decrease
the penalty charged to the cloud computing system.

• We perform extensive evaluations to demonstrate that
our scheme provides improved allocations and sched-
ules of requests at end-servers that aim to decrease
the total penalty charged to the cloud globally, in
comparison to the commonly deployed allocation and
scheduling schemes.

• We propose a cache replacement policy for context-
aware applications and evaluate the improvement of the
percentiles achieved, owing to the replacement policy.

The paper is organized as follows. In Section II, we describe
the problem we address and the system model under consid-
eration. In Section III, we explain our request management
technique. In Section IV, we list related work. In Section V,
we evaluate our policy and compare it with alternatives.

II. PROBLEM FORMULATION

A. Context-aware application

In this paper we consider SOA based context-aware appli-
cations. We identify data dependency patterns and temporal
order requirements common to a large number of context-
aware applications. For example, consider an algorithmic
trading or high frequency trading application that enables

fast investments decisions. A typical request for such an
application could require latest information about stocks
of multiple companies from different stock exchanges and
related information from risk management agencies [7].
Based on the most recent data, the application continually
provides suggestions for investments.

The application described above needs to be context-
aware, with responses tailored to reflect the current state
of multiple aspects of the environment (the latest stock
information from different exchanges, latest risk information
from management agencies). This translates to the require-
ment of loading large amounts of data from multiple sources
for servicing requests [8].

Also, in most real world context-aware applications, there
is a strict timing order constraint and data dependency
between requests from the same user/subject. In the high
frequency FT application, for accurate execution of the trad-
ing algorithms, bids/offers placed/enquired by a particular
user has to be executed in the same order as the requests
were sent. In this work we refer to requests from the same
customer/subject as belonging to the same session.

Contextaware SOA
applications with multiple
portable functional service
end-points (represented by

interconnected circles)

End servers
Context

datastores

Middleware

DATA CENTER

1
Internet

User session
datastores

2

3

4

5

Figure 1: Deployment pattern of a context-aware application in a
datacenter.

We now explain the typical operation that needs to occur
when a request for the context-aware application considered,
arrives (Steps 1 - 5 in Figure 1)

1) A request for the context-aware application is sent over
the internet by the end-user.

2) The request is allocated to an end-server by the
middleware.

3) The required service end-point for the functionality
requested by the user is loaded on the chosen end-
server.

4) The required session information is loaded on the cho-
sen end-server from the session datastore. Subsequent
requests within the same session are dependent on data
from the output of processing previous requests from
the same session (temporal order constraint).

5) The required context information from multiple con-
text datastores is loaded on the chosen end-server.
Multiple context datastores with data from different
objects, are automatically updated with the latest in-
formation as shown in (*) in Figure 1.

A context-aware application may serve multiple classes
of users typically classified using economic considerations.
User classes that are designated more important than others
need to be guaranteed a higher quality of service. So, the
context-aware applications hosted by the cloud will need
differentiated quality of service whose terms are negotiated
in the Service Level Agreement.

A typical cloud computing system will provide hosting
services to multiple software providers. In accordance, the
geographically distributed cloud computing system we con-
sider, hosts multiple context-aware applications, each of
them serving multiple classes of end-users.

B. System architecture

The following are the key elements of the system:
• Clients. These are nodes that generate the service

requests forwarded to the datacenters of the cloud.
• Datacenters. A datacenter is a cluster of a large number

of networked computing resources. In the topology con-
sidered, multiple geographically distributed datacenters
form the cloud computing system with each datacenter
hosting the same set of context-aware applications.
The requests for a context-aware application is served
by the datacenter assigned to the end user’s primary
geographically location. This is a common assumption
as sensitive data of a customer would need to be
contained within a certain geographical boundary.

C. Step-wise percentile SLA

In this work, we consider a step-wise SLA where a
penalty is charged to the cloud if a certain percentile of
requests are not executed within a certain response time
as shown in Figure 2. The SLA consists of multiple steps
with each step associated with a percentile (also mentioned
here as the threshold percentile) and a penalty value. As
the fraction of requests meeting the response times increase
beyond the threshold percentile of the first step, the penalty
reduces to that of the second step and so on. The penalty is
zero, if the fraction of requests meeting the response time
increases beyond the threshold percentile of the last step.The
conformance levels, i.e., the percentile of requests which
have met the required response times is measured over a
certain previously negotiated observation interval. The SLA

is global in definition, i.e., all the datacenters in the cloud
have to collectively respect the SLA.

X3 100

Penalty ($)

Conformance(%)
0

X2X1

P1

P2

P3

Figure 2: Multi-step percentile Service Level Agreement

The formal description of the SLA we consider is as
follows: Let n be the number of steps in the SLA (n = 3 in
Figure 2). If the percentile of requests that have response
time less than r seconds is less than or equal to Xs%,
then the cloud is charged a penalty of $Ps, for s = 1
to n. If the percentile of requests that have the response
time less than r seconds is greater than or equal to Xn%,
then no penalty is charged to the cloud. The percentile
of requests are measured over a certain fixed observation
interval (T seconds) and the penalty (if any) is charged for
the observation interval.

D. Objectives

A service request arriving at a datacenter has to be
allocated to a particular end-server. Once allocated, the
request has to be scheduled at the end-server. We need to
propose a request management scheme that:

• performs differentiated allocation and scheduling based
on the current conformance levels of the requests from
different user classes of different applications in order
to minimize penalty charged to the cloud,

• performs session-grained allocation to maintain strict
order constraints and data dependency between succes-
sive requests in the same session,

• performs data-aware allocation. This is needed as, typ-
ically, the interval between consecutive updates to a
context in e-business context-aware application is much
larger than inter-arrival times of requests for the same
context. This gives rise to the possibility of allocation
of requests for the same context to the same end-
server that has the required context data cached, greatly
reducing response times as, for subsequent requests for
the same context data, load times will be zero,

• balances load among the end-servers.

We make no assumptions about any prior knowledge about
the number of requests arriving at the cloud computing
systems for different applications or at different data centers.

E. Problem statement

We want to determine a request allocation and scheduling
algorithm that provides the minimum in Equation 1 below:

min
∑

1≤k≤K

∑
1≤j≤Ck

penaltykj (1)

where penaltykj is the penalty charged for non-conformance
of the requests from users of class j of application k; with
the cloud hosting K context-aware applications each serving
Ck classes of users.

III. MANAGEMENT POLICY DESCRIPTION

The problem we consider belongs to the class of utility-
maximizing, multi-class jobs, multiple resource allocation
and scheduling problems. This class of problems has been
proven to be NP-hard [9]. We propose heuristic based,
greedy algorithms as part of our request management scheme
with an aim to reduce the penalty charged to the cloud.
Since the problem is NP-hard analytical proof that our policy
achieves the least possible penalty cannot be derived. How-
ever, we compute divergence of our policy with the optimum
by comparing the penalties obtained in our scheme with that
obtained in an exhaustive search technique (feasible even
in simulation for only small data sets) in an accompanying
technical report [10].

A. Periodic exchange of updates

Since the penalty charged to the cloud is global in nature,
each datacenter must be aware of the conformance levels
of different classes achieved by all the other datacenters
forming the cloud, in order to take suitable actions during
allocation and scheduling requests. Recall that the penalty
is charged for different classes, based on the conformance
levels measured over an observation interval as given in
Section II-C. We propose to divide the observation inter-
val into multiple subintervals at each datacenter as shown
in Figure 3. At the beginning of each subinterval, each
datacenter exchanges the conformance levels of different
classes with the peer datacenters that form the cloud. This
exchange enables each datacenter to calculate the “current”
global conformance levels of different classes. With “cur-
rent” penalty, we mean the penalty charged to the cloud if the
conformance level of the class is considered at the current
instant. Our previous work [11] describes the periodic metric
exchange in detail.

00:00 06:00

Exchange of conformance
levels with peer

datacenters
Observation interval (T)

subintervalsubinterval

Figure 3: Observation interval divided into multiple subintervals
in each datacenter

B. Request allocation

The allocation algorithm meets the objectives in Sec-
tion II-D in the following fashion:

• Successive requests of the same session are always
allocated to the same end-server. As mentioned in
section II-A, each request from a customer belongs to
a session. Typically, each request of context-aware ap-
plication we consider will hold a unique id identifying
the end-user [3] (Due to space limitations, we present
a sample schema of XML based requests based on the
OWL model for context-aware applications presented
in [3] in an accompanying technical report [10]). This
unique id is termed as session-id in this work. To
allocate requests of the same session to the same end-
server, we propose a hash-based lookup table contain-
ing tuples of the form (sessionid,serverid). Each tuple
in the lookup table represents a particular request(s)
with session-id(sessionid) currently allocated on a par-
ticular end-server(serverid). On each arriving request,
the lookup table is queried to check if the sessionid
of the arriving request is present, if yes, the request
is allocated to the same end-server as in the tuple.
The tuples are removed once requests with the same
session-id are not received at the datacenter within
a predetermined duration called the “session-validity
period” which is a configurable parameter.
There are a large number of efficient implementations
of lookup-tables, especially targeting IP routing tables
in literature [12]. The requirements of our lookup table
are parallel to those of the IP routing tables. We
consider a hash-based implementation of a dynamic
lookup table with constant lookup O(1).
Allocating all requests of the same session to the same
end-server satisfies the requirement of data dependency.

• If the requests’s session-id is not found in the session
lookup table (first request of the session), we perform
differentiated allocation based on the “current” penalty
charged by the class on the cloud as described in the
following:

1) A distributed hash table is queried to find the
set of end-servers loaded with the some or all
of the context data required by the incoming
request (Implementation and complexity analysis
is detailed in [10]).

2) In all end-servers in the set obtained from the
previous step, a “compatibility” test is performed
to check if the incoming request can meet its
response time in the end-server. If yes, the end-
server is said to be compatible with the request.
The compatibility test is based on the current
penalty of the class of request and its deadline. A
request of class with highest penalty is compatible
in all end-servers, a request of class with lower

penalty with very high deadlines, might also be
compatible in some of the end-servers that are
lightly loaded or loaded with requests of classes
with lower penalty. The compatibility test detailed
in [10] derives heavily from the scheduling policy
described in the next section.

3) Among all the end-servers found compatible, the
request is allocated to the one with the most
number of required contexts cached, satisfying
the need for data-aware allocation. For facilitating
data-aware allocation, our solution is influenced
by [13], where authors propose a locality aware
request distribution scheme for general purpose
servers.

4) The estimation of completion time of a request at
an end-server is greedy in nature. If a request of
class with higher penalty is allocated to the same
end-server, the same end-server may no longer be
compatible for a previously allocated request.

5) If no machine is found compatible, which could be
due to the request belonging to the class with low
current penalty and/or has very small deadlines,
the request is allocated to the least loaded end-
server at the datacenter achieving load balancing.

• Requests belonging to classes with zero current penalty
charged to the cloud are always allocated to the least
loaded machine in the datacenter. This enables bal-
ancing of load at the various servers but not at the
expense of reducing response times of requests of
classes charging higher penalty to the cloud.

C. Request scheduling

We propose to model each end-server in a datacenter as
having multiple queues, one for each user class. A request
when allocated is inserted into the queue for its class at
the chosen end-server. The aim of the scheduling policy at
the end-server is to maximize the percentiles of the class
of requests whose current conformance levels if unchanged
would result in the highest penalty charged to the cloud.
Since we adopt a greedy approach, we choose to schedule
a request belonging to the class with the highest “current”
penalty. Since strict temporal order constraints need to be
maintained among requests of the same session, among the
sessions queued of the chosen class, we choose the first
request of a session which has waited the longest but whose
deadline can still be met. If no such session exits, we choose
a the first request of a session which has waited the longest.
This method of choosing a class and then one session of that
class, is based on the gi-FIFO scheduling policy which has
been analytically proved in [14] to maximize percentiles for
a single server serving multiple classes of jobs.

D. Session reallocation

A requirement of the allocation policy is to ensure the
temporal constraints and data dependency between requests
with the same session-id are maintained. To satisfy this
requirement, we allocate requests with the same session-id
to the same end-server at which the first request with the
session-id was allocated without checking for compatibility
with the end-server (see section III-B). This dependency is
comparable to “allocation dependency” described in the con-
text of HTTP sessions in [9]; the authors show a marked de-
crease in response times due to this dependency and propose
a session-grained allocation approach. Similar to [9], in our
simulations, we found that session “allocation dependency”
resulted in reduced percentiles, details in section III-D.
However, unlike in [9] (where authors propose a session-
grained allocation scheme), in our problem there is no prior
knowledge about number of requests in a session and request
allocation decisions are taken immediately on their arrival.

If it were found that the end-server requests of a session
were currently allocated to, will not be able to meet the
deadlines of some or all requests in the session, we propose
reallocation of all requests belonging to a session to another
end-server. This reallocation occurs periodically, the interval
between successive reallocations is configurable (Refer to
section V). The periodic reallocation algorithm described
and analyzed in [10] will migrate the session to the end-
server in the datacenter capable of meeting the deadlines of
the maximum number of requests of the session.

E. Context cache replacement policy

We consider data-intensive context-aware applications; the
replacement policy for context caches affects the response
times achieved. We propose a cache replacement policy
for contexts loaded in each of the end-servers. For all the
contexts cached on an end-server, we consider 3 parameters
of interest, a) the normalized number of requests queued
in the machine m referencing the context c (refmc

), b)
the normalized highest penalty value among requests in
the machine m referencing the context c (penrefmc) and
c) the normalized latest access time of the context c in
machine m (accmc

). We also evaluate other parameters
of interest and have detailed the results in [10]. Each of
these parameters is associated with a “context cache co-
efficient” (ref ,pen,lacc (≤ 1), respectively). We call the
sum product of the three parameters with their respective
context cache coefficients as the cache replacement index
(ref ∗refmc

+pen∗penrefmc
+lacc∗accmc

). A coefficient
of 1 of each of the three parameters assumes equal weight of
each towards cache replacement index. A coefficient of 1 for
the latest access time (lacc) and 0 for the others results in
the LRU replacement policy. The context in the end-server
with the lowest cache replacement index is replaced.

Note: Detailed assumptions in formulating the manage-
ment policy, in [10].

IV. RELATED WORK

To the best of our knowledge, we are the first to propose
a solution for management of SOA based context-aware ap-
plications subject to percentile constraints. Our work brings
together hitherto separate areas of interest, management of
context-aware applications and enforcement of percentile
constraints SLA for web-based applications. In this section,
we consider objectives we aim to achieve in each area
separately and compare them with previous research.

A. Qos in context-aware applications

In recent years, resource and/or request management
in context-aware applications has garnered considerable
interest. Huebscher and McCann [15] proposed a fault-
tolerant adaptive middleware framework for context-aware
applications which selects context-providers with an aim to
maximize utility based on the accuracy of context-data from
the providers. Lakshmanan et al. [16] address the problem of
resource management in semantic event processing applica-
tions and propose a horizontal partition that is automatically
created by analyzing the semantic dependencies among
agents (service-endpoints) using a stratification principle.
They implement a profiling-based technique for assigning
agents to nodes in each stratum with the goal of maximizing
throughput and distributing the load for increased scalability.
Lorincz et al. [17] propose a new operating system for
sensor nodes that enables resource aware programming
while permitting high-level reusable resource management
policies for context-aware applications. In comparison, we
consider context-aware application built on SOA principles.
We identify a need for dynamic data-dependency [8] and
temporal order constraints requirement based allocation in
a set of context-aware applications and propose an adap-
tive, data-aware, session-grained scheme for allocation of
requests and aim to conform a performance metric(response
times) to specified values. Our scheme can be implemented
in a framework described by [17].

B. Percentile Service Level Agreements

Research on management policies for meeting SLAs
citing performance percentile criterion has not not been as
prolific as on policies for meeting average (mean) perfor-
mance criterion. Gmach et al. [6] consider step-wise per-
centile SLAs and propose scheduling algorithms for a single
database server unlike a distributed solution as proposed in
this work. Xiong et al. [18] provide an analytical solution
of resource optimization subject to percentile response time
and price by modeling the system as an overtake free open
tandem queuing network with feedback and provide closed
form expressions of the probability distribution function of
the response time. Cardellini et al. [5] present a broker-
ing service for management of composite services under
percentile-based SLAs; they propose a Qos model for com-
posite services in which they provide an expression for the

percentile of response time, assuming to know the α-quantile
of the normalized response time in advance. To the best of
our knowledge, these are the only 3 efforts for enforcing
percentile SLAs in web-based applications. However, in
contrast to the method described in the latter two schemes,
we do not make any assumption about the distribution of
input arrivals (or quantiles of the normalized response time)
and service times, our allocation and scheduling schemes
are measurement-based and adaptive in nature.

Adoption of learning techniques for utility maximizing
adaptive resource management has been an active area of
research in the recent years. Tesauro et al. [19] propose a re-
inforcement learning based management system for dynamic
allocation of servers to web applications aiming to maximize
the profit charged to the host datacenter. Reinforcement
learning techniques seems most promising and investigation
of applicability to this work is part of our future research.

V. EVALUATION

We have developed a discrete event based simulator for
evaluation of DSAgS. This section details simulation results
to answer the following top-level questions:

1) How does DSAgS perform when compared to com-
monly deployed solutions?

2) Does session reallocation alleviate the “allocation de-
pendency” problem?

3) Does the context replacement policy contribute to
reduced penalties?

Due to space limitations, other questions of interest related
to workload characteristics influencing DSAgS, effects of
variations in periodic conformance exchange intervals to the
penalties obtained etc., are examined in [10].

A. Comparison of DSAgS against commonly deployed
schemes

A representative scenario involves a cloud computing
system with (a) 3 context-aware applications hosted, serving
5 classes of users with uniformly distributed requests across
datacenters, each negotiated with a step-wise percentile SLA
as in Figure 2, (b) 5 geographically distributed datacenters,
(c) 10 end-servers in each datacenter, (d) 100 distinct
sessions and (e) 500 distinct contexts accessed during each
observation interval, (f) each service request accesses data
from 1-10 context-data sources with equal probability, (g)
observation intervals of 1000 minutes, (h) context load
times are uniformly distributed with a mean more than 3
times the average service rate (to model the data-intensive
nature of the context-aware applications), (i) the input arrival
process is Poisson, (j) the service processes are exponential.
We compare DSAgS (without session reallocation) with
commonly deployed schemes. The allocation schemes for
comparison include:

• Static allocation - requests for certain context-data are
always allocated to the same end-server. A static hash

function based on the context-data requested is used to
map the requests to the end-server. Evaluations with
variations in the static hash function is detailed in [10].

• Random allocation - requests are allocated to any end-
server in the datacenter with equal probability.

The scheduling schemes at end-servers considered:
• FIFO (First In First Out)
• Dynamic priority with FIFO (Classes with highest “cur-

rent” penalty always have the highest priority; priority
is thus assigned dynamically. Once a high priority class
is chosen, the request of the class that has waited the
longest is scheduled (FIFO).)

• WRR (Weighted Round Robin with weights in propor-
tion to the highest penalties of classes)

0 2 4 6 8 10 12 14
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Arrival rate (req/seconds)

P
en

al
ty

 in
cu

rr
ed

 (
$)

Random + (FIFO or WRR)

Random + dynamic priority

Static + FIFO

Static + WRR

Static + dynamic priority

DSAgS

Figure 4: Comparison of DSAgS with commonly deployed solu-
tions.

Typical results in Figure 4 show that DSAgS substantially
outperforms the commonly deployed solutions (confidence
intervals (ci) 95%). As expected, random allocation when
employed with any of the scheduling policies, results in the
lowest conformance and thus highest penalty (Random prior-
ity with FIFO or WRR resulted in highest penalties possible,
indicated by the red solid line in Figure 4). As can be seen, a
dynamic scheduling policy (priority) when used with a static
allocation policy results in lower penalties (black dashed line
in Figure 4) and so our dynamic allocation scheme with a
dynamic scheduling policy designed to maximize percentiles
improves the penalties further.

B. Evaluation of session reallocation

As mentioned in section III-D, we propose periodic reallo-
cation of all requests in a session to a peer end-server in the
datacenter, capable of meeting the deadline of the maximum
number of requests in the session. Figure 5 compares the
penalties obtained for DSAgS with and without session
reallocation (ci 95%). In this experiment, a) the number
of sessions is 10, b) the session reallocation interval at
each end-server is 2 minutes, c) context load times are

0 1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Arrival rate (req/seconds)

P
en

al
ty

 in
cu

rr
ed

 (
$)

No session reallocation
With session reallocation

Figure 5: Comparison of DSAgS with and without session real-
location.

uniformly distributed with a mean more than 10 times
the average service rate (The effect of performing periodic
session reallocation is profound, when the context load times
are much higher than the service rate (Refer to section III-D
for details)).; the remaining attributes are as described in
section V-A. As shown in Figure 5, the penalties obtained
in DSAgS with session reallocation is lower when compared
to DSAgS without session reallocation thus alleviating the
effects of “allocation dependency”.

Three parameters of interest in the evaluation of session
reallocation are 1) the length of session reallocation period
interval which influences the overhead caused, 2) the number
of simultaneous sessions, and, 3) the number of requests
in each session. Due to space limitations, the effect of
variations of these parameters on the penalties obtained
when employing session reallocation is detailed in [10].

C. Evaluation of context replacement policy

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Arrival rate (req/seconds)

P
en

al
ty

 in
cu

rr
ed

 (
$)

Lowest penalty replaced (ref:pen:lacc(0:1:0))

LRU (ref:pen:lacc(0:0:1))

Lowest no. of references replaced (ref:pen:lacc(1:0:0))

Equal weights (ref:pen:lacc(1:1:1))

Figure 6: Penalties charged for different context cache coeffecient
combinations.

We propose a context-cache replacement policy described
in section III-E. We varied the context cache coefficients

(ref ,pen,lacc) and observed the effect on the penalties
charged. In this experiment, we maintained context load
times to be uniformly distributed with a mean more than
10 times the average service rate in order to determine the
effect of caching on the penalties. The remaining system
parameters are same as in section V-A. Figure 6 shows that
an equal value for all context cache coefficients results in
lower penalties (ci 95%). In [10], we show that the context
cache coefficients are sensitive to variations in the work-
load and input arrival characteristics and coeffecient values
need to be chosen appropriately for significant reduction in
penalties charged to the cloud.

VI. CONCLUSION AND FUTURE WORK

In this paper we studied the problem of management of
SOA based, data-intensive context-aware applications hosted
in a distributed cloud where the system operates under a
global, percentile response time SLA. The SLA calls for
economic penalties if percentile targets are not met. We
proposed Data-aware Session-grained Allocation with gi-
FIFO Scheduling (DSAgS), a novel decentralized request
management scheme. Our simulation evaluation shows that
our dynamic scheme far outperforms commonly deployed
management policies in achieving lower penalties. We also
proposed and evaluated a “context level” cache replacement
policy that contributes to reduced penalties charged to the
cloud provider hosting the context-aware applications.

Our future work includes (a) expanding the scope of the
problem to include estimation errors of processing and data
access, (b) evaluation of our solution when implemented
in real world distributed data-intensive context-aware ap-
plications, (c) investigations into applicability of learning
techniques to obtain a generic solution to the percentile
conformance problem.

REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a better understanding of context
and context-awareness,” in Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing,
ser. HUC ’99. Springer-Verlag, 1999, pp. 304–307.

[2] M. Ebling, G. Hunt, and H. Lei, “Issues for context services
for pervasive computing,” in Proceedings of Middleware01,
Advanced Workshop on Middleware for Mobile Computing,
November 2001.

[3] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented
middleware for building context-aware services,” J. Netw.
Comput. Appl., vol. 28, pp. 1–18, 2005.

[4] L. Zhang and D. Ardagna, “Sla based profit optimization in
autonomic computing systems,” in ICSOC ’04. ACM, 2004.

[5] V. Cardellini, E. Casalicchio, V. Grassi, and F. L.
Presti, “Adaptive management of composite services under
percentile-based service level agreements,” in ICSOC, 2010.

[6] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and
A. Kemper, “Adaptive quality of service management for
enterprise services,” ACM Trans. Web, vol. 2, no. 1, pp. 8:1–
8:46, 2008.

[7] M. V. Sewell and W. Yan, “Ultra high frequency finan-
cial data,” in Proceedings of the 2008 GECCO conference
companion on Genetic and evolutionary computation, ser.
GECCO ’08. ACM, 2008, pp. 1847–1850.

[8] G. Soundararajan, M. Mihailescu, and C. Amza, “Context-
aware prefetching at the storage server,” in USENIX 2008
Annual Technical Conference on Annual Technical Confer-
ence. USENIX Association, 2008, pp. 377–390.

[9] X. Tang, S. T. Chanson, H. Chi, and C. Lin, “Session-affinity
aware request allocation for web clusters,” in Proceedings of
the 24th International Conference on Distributed Computing
Systems (ICDCS’04), ser. ICDCS ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 142 – 149.

[10] K. Boloor, R. Chirkova, and Y. Viniotis, “Management of
soa based context aware applications hosted in a distributed
cloud subject to percentile constraints,” North Carolina State
University-Department of Computer Science, Tech. Rep.
Dummy number, February 2011.

[11] K. Boloor, R. Chirkova, Y. Viniotis, and T. Salo, “Dynamic
request allocation and scheduling for context aware applica-
tions subject to a percentile response time sla in a distributed
cloud,” IEEE Cloudcom, 2010.

[12] C. J. Martinez, D. K. Pandya, and W.-M. Lin, “On designing
fast nonuniformly distributed ip address lookup hashing al-
gorithms,” IEEE/ACM Trans. Netw., vol. 17, no. 6, pp. 1916–
1925, 2009.

[13] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum, “Locality-aware request
distribution in cluster-based network servers,” SIGOPS Oper.
Syst. Rev., vol. 32, pp. 205–216, October 1998.

[14] N. Agarwal and I. Viniotis, “Performance space of a gi/g/1
queueing system under a percentile goal criterion,” in MAS-
COTS ’95. IEEE Computer Society, 1995, pp. 474–484.

[15] C. Huebscher and A. McCann, “An adaptive middleware
framework for context-aware applications,” Personal Ubiq-
uitous Comput., vol. 10, no. 1, pp. 12–20, 2005.

[16] G. T. Lakshmanan, Y. G. Rabinovich, and O. Etzion, “A strati-
fied approach for supporting high throughput event processing
applications,” in DEBS ’09. ACM, 2009, pp. 5:1–5:12.

[17] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and
M. Welsh, “Resource aware programming in the pixie os,” in
SenSys ’08. ACM, 2008, pp. 211–224.

[18] K. Xiong and H. Perros, “Sla-based service composition in
enterprise computing,” in 16th International Workshop on
Quality of Service, IWQoS. Washington,DC,USA: IEEE
Computer Society, 2008, pp. 30 –39.

[19] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hy-
brid reinforcement learning approach to autonomic resource
allocation,” in In Proc. of ICAC-06, 2006, pp. 65–73.

