
Two-Stage Stochastic View Selection
For Data Analysis

Rong Huang1, Rada Chirkova2, and Yahya Fathi1

1 Operations Research Program, NC State University, Raleigh, NC 27695,
{rhuang,fathi}@ncsu.edu

2 Computer Science Department, NC State University, Raleigh, NC 27695,
chirkova@csc.ncsu.edu

Abstract. Materialized views are used in many data-intensive systems
to accelerate the processing of complex data-analysis queries. In cer-
tain settings, such as in presence of seasonal cycles in commerce, future
(next-season) queries may be known only in a probabilistic sense. In such
settings, it is possible to design materialized views that improve the pro-
cessing efficiency not only of those analysis queries that are posed on
the system in the current season, but also of the queries expected in the
future. Designing views in this way would amortize the time-consuming
materialization of beneficial views over the two stages, while improving
the processing costs of data-analysis queries in each stage.

We call the problem of designing views as above the two-stage stochas-
tic view-selection problem. In this paper we present a formal study of
this problem, and propose a stochastic-programming approach to solv-
ing the problem. Our proposed approach allows for obtaining optimal
solutions for many realistic-size problem instances. Further, the study of
the properies of the problem that we present in this paper provides a for-
mal basis for developing effective and efficient view-selection heuristics
for larger problem instances that cannot be solved using exact methods.

1 Introduction

Many data-intensive systems, such as commercial or scientific data warehouses,
store vast collections of data, whose scale tends to grow massively over time.
Answering typical data-analysis queries in such systems may involve heavy use
of summarization of large volumes of stored data [10,11]. As a result, brute-force
evaluation of such queries tends to be complex and time consuming. One way to
reduce the evaluation costs of data-analysis queries in relational data-intensive
systems is to precompute and store extra relations, called materialized views. In-
tuitively, a materialized view would improve the efficiency of evaluating a query
when the view relation represents the result of (perhaps time-consuming) pre-
computation of some “subexpression” of the query of interest; please see [24] and
references therein. As such, materialized views with grouping and aggregation

2

may be especially attractive for evaluating data-analysis queries, because the re-
lations for such views store in compact form the results of (typically expensive)
preprocessing of large amounts of data.

Consider an illustration. Large retailer companies, such as Sears in the USA,
maintain significant-size databases storing information about ongoing point-of-
sale transactions (Pos). For accounting, reporting, and business-intelligence pur-
poses, Sears’ database system undergoes periodic runs of data-analysis queries
on the stored information, including the queries for automatically or manually
generated daily, weekly, or monthly summary reports. For instance, the following
SQL query Q1 would ask for the total sales per item category per customer type
in September 2011.3

Q1: SELECT itemCategory, custType, SUM (amount)

FROM Pos WHERE month = ‘September’ AND year = 2011

GROUP BY itemCategory, custType;

Suppose that the Pos relation stores information about very large numbers
of transactions per month. In this case, the costs of evaluating the query Q1 in
the Sears system could be reduced significantly by using in the evaluation (see
Q1’) a materialized view V1, which stores total sales (V1amt) per item category
per customer type per month per year.

V1: SELECT itemCategory, custType, SUM (amount) AS V1amt

FROM Pos GROUP BY itemCategory, custType, month, year;

Q1’: SELECT itemCategory, custType, SUM (V1amt)

FROM V1 WHERE month = ‘September’ AND year = 2011

GROUP BY itemCategory, custType;

To maximize query-processing efficiency in the data-analysis setting, all views
that are “beneficial” in the above sense, would be materialized. However, the
amount of storage space and computational constraints may place a limit on the
beneficial views that can be materialized. The problem of choosing the defini-
tions of beneficial views under such constraints and for a particular collection of
high-priority queries is known as the View-Selection Problem. In recent years, a
number of researchers have addressed the subject and developed exact and inex-
act methods for solving the problem in the one-stage deterministic environment,
that is, where all queries are assumed to be known and given in advance, and
in the one-stage probabilistic environment, that is, where we have a probability
(frequency) of occurrence associated with each query in a given set of queries.
For some of the projects and for recent overviews, please see [2,12,13,16,26,27].
In both environments, the problem is addressed in the context of one fixed query
workload, and we refer to it as the One-Stage View-Selection Problem. A separate

3 To greatly simplify this example, we assume that the data in the Sears database are
stored in a single relation Pos, with the attributes as named in the query Q1. The
approach that we propose in this paper is applicable to the practical setting where
one or more stored relations form the star schema [10, 11].

3

line of research has studied dynamic view selection, where views are selected con-
tinuously, to respond to the changes in the query workload over time [8, 9, 22].
Significant work has also been done on index selection, both on its own and
alongside view selection, please see [1, 2, 8, 9, 13].

Other settings than the above scenarios could also benefit greatly from the
use of materialized views in the processing of data-analysis queries. Specifically,
in the real-life setting that was introduced in [14], knowledge of the future query
workload(s) may be available, which allows us to choose and materialize appro-
priate views as part of advance preparation for efficient processing of the future
queries. To illustrate this environment, let us revisit the Sears example described
above. While some data-analysis queries would be posed on the Sears’ sales data
throughout the year, some of the queries may be run only at certain times of the
year, resulting in seasonal periods of high use of the system (such as the yearly
Black Friday sales event in the USA). In such a situation, aside from design-
ing and using materialized views to improve the processing performance of the
routine analysis queries occurring throughout the year, it would be beneficial to
materialize additional views in advance, to reduce the execution time of such
seasonal analysis queries as well.

A further complicating factor in this context is the fact that sometimes it
is difficult to predict the specific query workload that would become relevant
and prominent in a future season (stage). For instance, political, economic, or
environmental factors could all have an impact on the nature of the queries that
would become relevant in the fixed future stage. This could lead the experts
to forecast two or more possible query workloads for that future stage, with
a probability associated with each set. This, in turn, would lead to the need
to carry out the analysis in a probabilistic environment, where we account for
various scenarios (i.e., query workloads) that may occur in the future.

In this paper we study this problem for a relational data-intensive system in
a two-stage probabilistic environment, with (current) stage 1 and (fixed-season
future) stage 2, and propose appropriate models and algorithms for solving the
problem. Our Two-Stage Stochastic View-Selection Problem accepts as inputs:
(i) a query workload that is of importance for stage 1; (ii) a collection of two or
more query workloads that have been predicted for stage 2, each workload with
an associated probability of it happening at stage 2;4 (iii) the overall storage
limit b1 for the views to be materialized; and (iv) a stage-2 limit b2, which is a
fraction of b1, such that the views to be materialized for stage 2 must collectively
satisfy the storage limit b2. The output has (1) the set of views to be materialized
for the stage-1 queries, and (2) for each stage-2 query workload, the set of views
to be materialized at stage 2 (including those views that will remain around
from stage 1) for that query workload. The stage-1 views are all materialized
at stage 1, and once (at stage 2) one of the stage-2 query workloads becomes
reality, the corresponding stage-2 views are materialized. At stage 2, while the
time-consuming materialization of the stage-2 views is taking place, those stage-1
materialized views that remain in the system at stage 2 remain around to improve

4 The probabilities of the stage-2 query workloads sum up to 1.

4

the efficiency of evaluation of stage-2 queries. (Recall that the storage limit b2
is a fraction of the overall limit b1.) The reason is, the objective function for
our solution is to minimize the overall (i.e., for stages 1 and 2) query-response
time subject to the storage limits. Not surprisingly, our Two-Stage Stochastic
View-Selection Problem is NP-hard.

As an illustration, suppose that in the Sears example, the query Q1 (see
above) constitutes the stage-1 query workload. We are also given two stage-2
queries: (1) Query Q2 asks for the total sales per item category per customer
type per store in December 2011, and (2) Query Q3 asks for the total sales per
item category in December 2011. Suppose that either Q2 or Q3 will occur at
stage 2 with probability 0.5. Then, at stage 1, instead of materializing the view
V1 (see above), we can materialize a view V2 that has the total sales per item
category per customer type per store per month per year, and use it to answer
Q1. At stage 2, if Q2 occurs, we use V2 to answer it. Otherwise, if Q3 occurs, we
answer it by materializing at stage 2 a view V3 that stores the total sales per
item category per month per year. The larger-size relation for V2 can be used
to evaluate the queries in both stages, assuming that Q2 becomes prevalent in
stage 2. In contrast, the smaller-size relation for V3 would replace at stage 2 the
larger-size relation for V2, if query Q3 becomes prevalent in stage 2; here, the use
of V3, rather than of V2, would result in more efficient evaluation of the query
Q3.

The above example illustrates that our two-stage approach turns out to be
more efficient and less resource intensive than one-stage approaches to view
selection. Indeed, as we prove in this paper, if we apply a one-stage solver to
materialize views only at stage 1, then a great portion of the materialized views
tends to be irrelevant at stage 2. On the other hand, applying a one-stage solver
at each of the two stages tends to result in re-creation of large volumes of views
at stage 2, which could be resource intensive and would be avoided using our
two-stage approach.

Note also that our two-stage approach to view selection is applicable to, and
sufficient for, solving multi-stage view-selection problems. The reason is, the view
selection takes place during the first season, and when it comes to the second
season, any modification of the set of views with respect to the new season
will have been applied. During the second season, we can employ this two-stage
approach for view selection for the second and third seasons, and so on.

We now discuss why we have chosen the storage-limit constraint for our two-
stage view-selection problem. Indeed, it would seem that for the views to be
materialized at stage 2, any view-size estimates that we obtain at stage 1 would
be far off by the beginning of stage 2. It turns out that this intuition is misleading
for many real-life settings. For instance, in a typical commercial data warehouse,
both the data-analysis queries and the views that we consider for materialization
are defined using grouping and aggregation. Interestingly, the combinations of
values of the GROUP BY attributes in the views would typically remain stable
between two seasons, under the typical assumptions that (as, e.g., in the Sears
scenario) the number of item categories, as well as the number of customer types,

5

would remain relatively large and relatively unchanged. As a result, the stage-1
estimates for the sizes of the view relations would hold relatively accurate also
in stage 2. Further, for those stage-1 materialized views that end up also being
used in stage 2, we assume that ongoing view maintenance takes place across the
seasons/stages (see [15,23] for overviews). Finally, we observe that once a view-
selection problem is understood well in presence of a storage limit (see, e.g., [2]),
then it can be addressed more easily in presence of other constraints, such as
the limit on the view-maintenance costs. Studying the two-stage view-selection
problem under the latter constraint, as well as under more general constraints
such as introduced in [7], is part of our planned future work. We also plan to
study combined selection of views and indexes.

The specific contributions of this paper are as follows:

1. We define the two-stage stochastic view-selection problem, and model this
problem as a two-stage stochastic-programming (SP) model [6].

2. We study the structure and properties of the extensive form [6] of the SP
model, which is an integer programming (IP) model. We develop an algo-
rithm that effectively reduces the search spaces of potentially beneficial views
in the IP model, and obtain a smaller IP model whose solution is guaranteed
to be optimal for the original SP model.

3. We present our computational experiments on these IP models, and discuss
the scalability of the reduced IP model. The reduced search spaces signif-
icantly reduce the size of the IP model, so that for realistic-size instances
of the problem this IP model can be solved efficiently by a commercial IP
solver, such as the powerful latest versions of CPLEX [20].

4. We compare our two-stage SP model with several related models, and present
techniques to assess the value of the SP model and the value of perfect
information in this context.

The remainder of this paper is organized as follows. In Section 2 we review
related work. In Section 3, we discuss the formulation and settings for the prob-
lem. In Section 4, we define the two-stage stochastic view selection problem,
and propose an SP model for it. In Section 5, we discuss the structure of the
SP model, and use it to reduce the size of the problem considerably. In Section
6, we present and discuss the computational results. In Section 7, we present
appropriate models and techniques to determine the value of the SP model and
discuss the value of perfect information in this context, followed by several re-
lated numeric results. Finally, Section 8 contains a few concluding remarks.

The results of this paper can be used directly for multi-stage view selection for
evaluating seasonal query workloads on large datasets, and can be incorporated
into frameworks such as [1], for view selection for data-analysis queries.

2 Related work

The problem of view selection to improve query-evaluation costs and under a
variety of constraints has been considered for relational databases for a number

6

of years. One line of past research considers the one-stage deterministic envi-
ronment, that is, the environment where all queries are assumed to be known
and given in advance. A variation of this setting is the one-stage probabilistic
environment, where we have a probability (frequency) of occurrence associated
with each query in a given set of queries. For some of the projects and for recent
overviews, please see [2,12,13,16,26,27]. Significant work has also been done on
index selection in such settings, both on its own and alongside view selection,
please see [1,2,8,9,13]. In both settings, the problem is addressed in the context
of one fixed current query workload. In contrast, our work in this paper applies
to a two-stage setting, where the second (future) stage occurs at a fixed time
(season) in the future. To the best of our knowledge, view selection in this setting
has not been considered in the open literature.

A separate line of research has studied dynamic view selection, where rela-
tional views are selected continuously, to respond to the changes in the query
workload over time [8,9,22]. Our work is different in that it considers view design
for a stage (season) that occurs in the future, at a fixed expected time and after
the view design has been completed.

Self-managing data-intensive systems are also increasingly being studied be-
yond the relational setting; see, for instance, the intriguing results of [17]. In
contrast, our proposed approach is applicable to the relational setting.

Returning to the relational one-stage view-selection setting, we note that a
line of past work [3–5] has focused on formal approaches to selection of views
(with or without indexes) in that setting. The results of that work are scalable to
realistically large numbers of queries and views, and compare beneficially with
several one-stage view-selection approaches in the literature, please see [3–5] for
the details. For these reasons, we build our proposed approach, which focuses
on the two-stage setting, on the results of [3–5], which were developed for the
one-stage setting. (Please see Section 3.1 for an overview.)

To the best of our knowledge, Shaman [14] is the only project described in the
open literature that considers using derived data to improve query performance
in presence of a number of distinctly-identifiable query workloads, all of which are
known beforehand. Our work complements well the agenda of Shaman in that in
Shaman, the specific query sets are not tied to specific time points or to particular
occurrence probabilities. The objective of the Shaman approach is to set up one
initial and, at the same time, final index (as opposed to view) configuration,
which would be “robust” in some sense through all the deterministic changes
in the query workloads on the system, regardless of when the workload changes
are to occur. This approach does not appear to be applicable to a probabilistic
environment problem as we consider here, nor does it involve selection of views.

3 Preliminaries

We consider a star-schema data warehouse [10, 11] with a single fact table and
several dimension tables. We assume that all the views to be materialized are
defined, with grouping and aggregation but without selection, on the relation
(which we call the raw-data view) that is the result of the “star-schema join”

7

of all the relations in the schema. We can show formally that for each query
posed on such a database, the query can be rewritten equivalently into a query
posed on the raw-data view. Using this formal result, in the remainder of the
paper we assume that all the queries in the workloads that we consider are posed
on the relevant raw-data view. In this context, we consider the evaluation costs
of answering unnested select-project-join queries with grouping and aggregation
using unindexed materialized views, such that each query can be evaluated using
just one view and no other data. (This setting is the same as in [16, 21, 25, 30].)
A query q can be answered using a view v only if the set of grouping attributes
of v is a superset of the set of attributes in the GROUP BY clause of q and of
those attributes in the WHERE clause of q that are compared with constants. We
use v to represent both a view and the collection of grouping attributes for that
view, and we use q to represent both a query and the collection of attributes
in the GROUP BY clause of that query, plus those attributes in the WHERE clause
of the query that are compared with constants. It follows that query q can be
answered by view v if and only if q ⊆ v. To evaluate a query using a given view
(if this view can indeed be used to answer the query) we have to scan all rows
of the view. Hence the corresponding evaluation cost is equal to the size of the
view itself; similar cost calculation is used in [16,21,25,30]. One way to estimate
the view sizes, as suggested in the literature, is by getting a relatively small-size
sample of the raw-data view and by then evaluating the view definitions on that
table, with a subsequent scaleup of the sizes of the resulting relations. We use
ai to denote the size of each view vi in the problem input. We also use the
parameter dij to denote the evaluation cost of answering query qj using view vi.
It follows that for each query qj we have dij = ai if qj ⊆ vi, and we set dij = +∞
otherwise, implying that qj cannot be answered by view vi.

3.1 An integer programming method for the one-stage
view-selection problem

In this subsection we briefly introduce the models and methods proposed in [3,4]
for the one-stage view-selection problem. The models and algorithms that we
propose for the two-stage problem are closely related to those for the one-stage
problem that we describe here.

In [4], Asgharzadeh et al. consider the following problem: Given a collection
Q of queries with an associated frequency for each query on a given star-schema
data warehouse, and a storage limit b on the total size of the views that we may
materialize, select a collection of views to materialize so as to minimize the total
response time for the given queries.

Asgharzadeh et al. [3,4] propose an IP model for solving the one-stage view-
selection problem. For completeness, we introduce this IP model here. Let V
denote the entire set of views on the raw-data view, which (set) is also the
original search space of views for the one-stage view-selection problem. Let I
and J denote the set of subscripts associated with V and Q, respectively. They
define the decision variables xi and zij for all j ∈ J and for all i ∈ I, as follows:

8

xi =

{
1 if view vi is materialized
0 otherwise

zij =

{
1 if we use view vi to answer query qj
0 otherwise

The one-stage view-selection problem can now be formulated as an integer
programming (IP) model, denoted by OV IP , as follows.

(OV IP) minimize
∑
j∈J

∑
i∈I

dijzij (1)

subject to
∑
i∈I

zij = 1 ∀j ∈ J (2)

zij ≤ xi ∀j ∈ J,∀i ∈ I (3)∑
i∈I

aixi ≤ b (4)

All variables are binary (5)

Constraint (2) states that each query is answered by exactly one view; (3)
guarantees that a query can be answered by a view only if the view is material-
ized. Constraint (4) limits the storage space for the views to be materialized.

4 The two-stage stochastic view-selection problem

In this section, we define the scope of the two-stage stochastic view-selection
problem that we consider, that is, the type of the database, queries and views.
Subsequently, we propose a stochastic programming (SP) model [6] for this prob-
lem. By studying the properties of the SP model, we then rewrite it as a model
with fewer variables and constraints.

4.1 Formulation of the problem SV S

For the view-selection problem in a two-stage probabilistic environment, we have
a query workload Q1 that we must answer at the present time (stage 1), and
a second query workload Q2 that occurs at a future point in time (stage 2).
We assume that the query workload Q1 is known and given, but that the second
query workloadQ2 is a random set with a given probability distribution function.
(We use boldface to emphasize that Q2 is a random set and to differentiate it
from a deterministic set such as Q1.)

At stage 1, we materialize a collection of views S1 and use these views to
answer the queries in Q1. We assume that we have a storage limit b1 for these
views – that is, the total size of the views selected must not exceed b1. At stage
2, once the actual collection of queries Q2 for this stage is known, we allow for
a partial replacement of some of the view relations that we constructed at stage
1, in order to obtain the collection of views S2 for answering the query set Q2.
(Note that Q2 represents a realization of the random set Q2.) In other words,

9

at the end of stage 1 we keep some of the view relations that we materialized at
stage 1 to use again at stage 2, while we discard other view relations from stage
1 and replace them with new view relations. We assume that the total size of
the views that we replace must not exceed a given storage limit b2. Naturally,
b2 ≤ b1.

In this context the technical problem that we need to address prior to stage
1 is to select all views in the set S1 and a replacement plan associated with each
possible realization Q2 of Q2. The objective is to minimize the total evaluation
cost for the queries at stage 1 plus the expected total evaluation cost for the
queries at stage 2. Note that in order to obtain a global optimal solution for
this problem, which we call the Stochastic V iew Selection (SVS) problem, all
decisions regarding both stages (that is, the view set S1 and the replacement
plan for every possible realization Q2 of Q2) must be made prior to stage 1.

To illustrate, we present the following numeric example for a data cube [16]
with four attributes.

Example 1. Given a database with four attributes a, b, c and d, the correspond-
ing view lattice, as defined in [16], is shown in Figure 1. In this lattice, each node
represents a view, and a directed edge from node v1 to node v2 implies that v1
is a parent of v2, that is, v2 can be obtained from v1 by aggregating over one
attribute of v1. The space requirement for each view in the lattice is given next
to its corresponding node. In this instance, we assume that at stage 1, we are
given two queries q1 = {a, b} and q2 = {b, c}. At stage 2, queries q3 = {b} and
q4 = {a, c} would occur with probability 0.5, and the other workload {q5, q6},
with q5 = {c} and q6 = {b, d}, would also occur with probability 0.5. Equiv-
alently, Q1 =

{
{a, b}, {b, c}

}
, Q1

2 =
{
{b}, {a, c}

}
, and Q2

2 =
{
{c}, {b, d}

}
. We

assume the total space limit b1 = 30, and the space limit b2 = 15. Our objective
is to minimize the cost of answering the first-stage queries Q1 plus the expected
cost of answering the second-stage queries. Thus, we are to determine a collec-
tion of views S1 to materialize at stage 1, with the total size less than or equal to
30, and for each scenario at stage 2, we need to determine another collection of
views, with the total size less than or equal to 15, to materialize as replacement
for a subset of S1.

Fig. 1. View lattice for Example 1, with view sizes shown as number of bytes.

10

4.2 A mathematical programming model

In this subsection, we propose a stochastic programming model for the above
view-selection problem SV S. Although the general form of the model that we
propose is valid for any probability distribution function for Q2, for the ease
of exposition in the following model and throughout the rest of this paper we
assume that the random query set Q2 has a discrete distribution with L possible
values. More specifically, we assume Q2 equals to query set Qℓ

2 with probability

pℓ, for ℓ = 1 to L, where
∑L

ℓ=1 pℓ = 1. We refer to each collection of queries Qℓ
2

as a scenario. For the first stage we define the following decision variables for all
views vi ∈ V (where V is the set of all views) and for all queries qj ∈ Q1.

xi =

{
1 if view vi is materialized at stage 1
0 otherwise

zij =

{
1 if we use view vi to answer query qj at stage 1
0 otherwise

For the second stage, we define the following decision variables for all vi ∈ V ,
and for all qj ∈ Qℓ

2, for ℓ = 1 to L.

uℓ
i =

1 if view vi is materialized at stage 1 and
used in stage 2 for query set Qℓ

2

0 otherwise

yℓi =

{
1 if view vi is materialized at stage 2 for Qℓ

2

0 otherwise

tℓij =

1 if we use view vi to answer query qj at
stage 2 for Qℓ

2

0 otherwise

The cardinality of the view set V is 2K , where K is the number of dimension
attributes in the database. Let I = {1, 2, . . . , 2K} be the set of subscripts for all
vi ∈ V . Let J1 be the set of subscripts for all queries qj ∈ Q1, and Jℓ

2 be the set
of subscripts for all queries qj ∈ Qℓ

2, for ℓ = 1, 2, . . . , L. The problem can now
be written as the following stochastic programming model [6] that we denote by
SP .

(SP) minimize
∑
j∈J1

∑
i∈I

dijzij +EQ2Ψ(x,Q2) (6)

subject to
∑
i∈I

zij = 1 ∀j ∈ J1 (7)

zij ≤ xi ∀i ∈ I ∀j ∈ J1 (8)∑
i∈I

aixi ≤ b1 (9)

All variables are binary

where EQ2 denotes mathematical expectation of response time at the second
stage with respect to Q2. If the probability distribution of Q2 is as discussed
above, we have

11

EQ2Ψ(x,Q2) =
L∑

ℓ=1

pℓΨ(x, Q
ℓ
2) (10)

where Ψ(x, Q2) is the minimum response time for a given set of values of the
first-stage variables x =

(
x1, · · · , x|V |

)
and for a realization of the second-stage

queries Q2. For each value of ℓ, the corresponding value of Ψ(x, Qℓ
2) is obtained

by solving the following view-selection problem.

Ψ(x, Qℓ
2) = min

∑
j∈Jℓ

2

∑
i∈I

dijt
ℓ
ij (11)

subject to
∑
i∈I

tℓij = 1 ∀j ∈ Jℓ
2 (12)

tℓij ≤ uℓ
i + yℓi ∀i ∈ I ∀j ∈ Jℓ

2 (13)

uℓ
i ≤ xi ∀i ∈ I (14)∑

i∈I

aiy
ℓ
i ≤ b2 (15)∑

i∈I

ai(u
ℓ
i + yℓi) ≤ b1 (16)

All variables are binary (17)

Constraints (7) and (12) state that each query is answered by exactly one view
in the set of materialized views. Constraints (8) and (13) guarantee that a query
can be answered by a view only if the view is already materialized. Constraints
(9), (15), and (16) pertain to the storage limits on the views. Constraint (14)
guarantees that the view kept from stage 1 to stage 2 is already materialized at
stage 1.

In practice, for each decision variable with a subscript i (associated with
view vi) we only need to consider those views vi that are relevant in the context
of that decision variable. For instance, at stage 1 we do not need to define the
decision variable xi if view vi is not a superset of at least one query in our entire
query set. In the remainder of this section we define various subsets of the overall
view set V (and its corresponding subscript set I) so as to rewrite the above
model with fewer variables and constraints.

Let Q̂ = Q1 ∪
{
∪L
ℓ=1Q

ℓ
2

}
be the collection of all queries (either in stage 1 or

in stage 2). We define

V1 =
{
vi ∈ V : vi ⊇ q for some q ∈ Q̂

}
(18)

V ℓ
2 =

{
vi ∈ V : vi ⊇ q for some q ∈ Qℓ

2

}
, ℓ = 1 to L (19)

It follows that V1 is the set of views that are relevant for stage 1, or equiva-
lently, V1 is the search space for the views to be materialized at stage 1. V ℓ

2 is
the set of views that are relevant for the ℓth sub-problem (scenario) in stage 2,
for ℓ = 1 to L. Equivalently, V ℓ

2 is the search space for views that are kept from
stage 1 to stage 2, as well as those to be materialized at stage 2. In addition, for

12

each query qj ∈ Q1 we define the relevant view set V1j = {vi ∈ V1 : vi ⊇ qj}, and
for each query qj ∈ Qℓ

2 we define the relevant view set V ℓ
2j =

{
vi ∈ V ℓ

2 : vi ⊇ qj
}
,

for ℓ = 1 to L.

Example 1 (Continued). In order to define V1, V 1
2 and V 2

2 , we only

consider the views that could answer at least one query in the query set Q̂ =
{q1, q2, q3, q4, q5, q6}, Q1

2 and Q2
2, respectively. Thus, we obtain that

V1 =
{
{b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c},

{a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}
}

V 1
2 =

{
{b}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}, {a, b, c, d}

}
V 2
2 =

{
{c}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}, {a, b, c, d}

}
.

Each corresponding relevant view set can be obtained as defined above. E.g., for
q1 = {a, b} ∈ Q1 we have V11 =

{
{a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}

}
, and for

q6 = {b, d} ∈ Q2
2 we have V 2

26 =
{
{b, d}, {a, b, d}, {b, c, d}, {a, b, c, d}

}
.

We now redefine the first-stage decision variables xi and zij , only for views
in V1 and for views in V1j , respectively. Similarly, we redefine the second-stage
decision variables uℓ

i and yℓi , only for views in V ℓ
2 , and the second-stage decision

variables tℓij , only for views in V ℓ
2j , for ℓ = 1 to L. Thus, we can rewrite the model

SP as a stochastic programming model with fewer variables and constraints
without affecting its optimal value. We refer to this smaller model as SP ′.

5 Solving the model SP

In this section we introduce an integer programming (IP) model [29] obtained
from the extensive form [6] of the stochastic programming model SP ′. We then
study properties of this IP model, and use these properties to remove some
variables and constraints, to obtain a significantly smaller model. The optimal
solution of the resulting model is guaranteed to be optimal for the original model
SP . This, in turn, allows us to solve larger instances of the problem SV S.

5.1 An integer programming model

To solve our problem SV S, we write the extensive form [6] of the model SP ′

by explicitly substituting Equations (11) through (17) for each value of ℓ in
Equation (10) and ultimately in Equation (6) of model SP ′.

For an instance with K attributes, n1 queries in Q1 at stage 1 and nℓ
2 queries

in Qℓ
2 at stage 2, for ℓ = 1 to L, there are up to (n1 +

∑L
ℓ=1 n

ℓ
2 + 2L + 1)|V1|

variables and up to (n1 +
∑L

ℓ=1 n
ℓ
2 + 2L)(|V1|+ 1) + 1 constraints in the model

IP1, where V1 is as defined in Section 4.2. Thus, even for relatively small values
of K, L, n1 and n1

2, · · · , nL
2 , the size of the model could be very large and the

13

execution time for solving the IP model could be excessively long even with a
relatively fast IP solver such as CPLEX 11 [20]. The applicability of this model
is thus limited to only small-size instances. We now introduce several techniques
to reduce the size of the model, by reducing the view sets V1, V1j , V

ℓ
2 and V ℓ

2j ,
for ℓ = 1, . . . , L. In Section 6, we will provide numerical results for solving the
model IP1.

5.2 Reducing the search space of views

We now make several observations regarding properties of the views that appear
in an optimal solution for a given problem SV S. For brevity we do not include
the proofs for these observations here, and refer the readers to [19] where all the
proofs are given in detail. These observations allow us to reduce the search space
of views by identifying relatively smaller subsets of the view sets V1, V1j , V

ℓ
2 and

V ℓ
2j , which contain at least one set of the optimal views. This, in turn, allows us

to reduce the size of the model IP1, hence enabling us to solve significantly larger
instances of the problem SV S optimally within reasonable execution times.

The first reduction of the search space of views is based on the relationship
between the attributes of a view and the queries that the view can answer. Given
a view v and a set of queries Q, let Q(v) denote the set of queries in Q that
the view v can answer, that is, Q(v) = {q ∈ Q : q ⊆ v}. We make the following
observation.

Observation 1 In an instance of problem SV S, given a view v in the view
set V1, if the number of attributes of v is strictly greater than the number of
attributes in the union set of the queries in Q̂ that v could answer, that is,
if |v| > | ∪q∈Q̂(v) q|, then there exists an optimal solution such that v is not

materialized at stage one.

We make a similar observation concerning the attributes of each view v in
the set V ℓ

2 and the attributes of the associated queries in the query set Qℓ
2(v)

(see [19] for all the proofs and other details). These observations allow us to
remove from the view sets V1 and V ℓ

2 , for ℓ = 1 to L, all the views that satisfy
the stated conditions, hence reducing the search spaces of views.

The second reduction is based on the relationship between the size of a view
and the total size of the queries that it can answer. Let S(·) be the estimated
size of the answer to a query or view. For each view v for query set Q we define
the corresponding benefit d(v,Q) as follows:

d(v,Q) =
∑

q∈Q(v)

S(q)− S(v) (20)

Note that d(v,Q) is the maximum benefit that we may obtain by materializing
the view v, that is, the amount of space that we can save by materializing
v instead of materializing all the queries that v can answer. We observe the
following.

14

Observation 2 In an instance of problem SV S, given a view v in the view set
V1, if v is not a query in Q̂ and v satisfies the condition that the size of v is
greater than or equal to the total size of the queries in Q̂ that v can answer,
that is, d(v, Q̂) < 0, then there exists an optimal solution in which v is not
materialized at stage one.

We make a similar observation regarding the size of each view v in the set V ℓ
2

and the total size of all the associated queries in the query set Qℓ
2(v) (see [19] for

all the proofs and other details). These observations allow us to further reduce
the search spaces of views V1 and V ℓ

2 , for ℓ = 1 to L, and this constitutes our
second reduction.

We derive the third reduction using the relationship among the maximum
benefits of views in the view lattice, see Eq. (20). The reduction is based on the
following observation.

Observation 3 In an instance of problem SV S, given a view v in V1, if there
exists a view v′ in V1 such that v′ ⊂ v and d(v′, Q̂) ≥ d(v, Q̂), then there exists
an optimal solution such that v is not materialized at stage one.

Again, we make a similar observation concerning each view v in V ℓ
2 , by com-

paring the maximum benefit of v for Qℓ
2 with the maximum benefit of each subset

of v (see [19]). These observations allow us to further reduce the search spaces
of views for V1 and V ℓ

2 , for ℓ = 1 to L, and this constitutes our third reduction.

Example 1 (Continued). Consider view v1 = {b, c} in the set V1: The view

answers only query q5 = {c} in Q̂, yet v1 has more attributes than q5. Hence,
by Observation 1, there exists an optimal solution that does not contain view v1.
Consider now view v2 = {a, b, d} in the set V1; the queries that v2 can answer are
q1 = {a, b}, q3 = {b}, and q6 = {b, d}. Since the total size of these three queries
(4 + 7 + 8 = 19) is smaller than the size (20) of v2, Observation 2 implies that
there exists an optimal solution that does not contain v2. Finally, consider view
v3 = {b, c, d} in the set V1; view v3 is a superset of view v4 = {b, d}. We have

that d(v4, Q̂) (4+5+10−10 = 9) is greater than d(v3, Q̂) (4+5+8+10−22 = 5).
Thus, by Observation 3, there exists an optimal solution that does not contain
view v3.

Note that the conditions for the first, second, and third reductions are in-
dependent from each other. We can show formally that the results of the three
reductions do not depend on the order of their application. Thus, the three re-
ductions on the same set of views could be conducted simultaneously. Due to the
page limit, we refer the reader to [19] for the details of our proposed reduction
algorithm. The complexity of the algorithm is O(|V |2) = O(4K), where K is the
number of attributes in the database.

We denote the reduced view sets of V1 and V ℓ
2 as V1 and V ℓ

2 , for ℓ = 1 to

L, respectively. Similarly, we use the notation V ℓ
12 to denote the reduced search

space for views that are materialized at stage 1 and utilized for scenario ℓ at

stage 2. We can show that V ℓ
12 = V1 ∩ V ℓ

2 . We also use the following notation:
For each query qj ∈ Q1, let V1j = {vi ∈ V1 : vi ⊇ qj}, and for each query

15

qj ∈ Qℓ
2, let V

ℓ
12j = {vi ∈ V ℓ

12 : vi ⊇ qj}, and V ℓ
2j = {vi ∈ V ℓ

2 : vi ⊇ qj}, for ℓ = 1
to L.

5.3 Modified integer programming model IP2

We now define the model IP2 as an integer programming model that is same
as model IP1, except that we use the reduced search spaces of views in place
of the corresponding original search spaces of views in IP1. The model IP2 can
be smaller than model IP1. In Section 6, we empirically compare the sizes of
the two models, and show that the reduction in the size of the model can be
significant. Based on the above observations, an optimal solution for model IP2
is guaranteed to be optimal for IP1. Hence, it provides an optimal solution for
the original problem SV S.

6 Experimental results of solving the problem SVS

Table 1. Comparing the search spaces in the models IP1 and IP2, for instances over
the 13-attribute dataset

inst-
ance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

number of xi number of u1
i number of y1

i number of u2
i number of y2

i

IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2

|V1| |V1| |V 1
2 | |V 1

12| |V 1
2 | |V 1

2 | |V 2
2 | |V 2

12| |V 2
2 | |V 2

2 |
1 (20,21,26) 7974 656 5292 641 5292 217 7924 653 7924 381

2 (20,21,23) 7381 587 6144 573 6144 83 6139 570 6139 252

3 (30,26,22) 8168 857 7952 849 7952 350 7254 836 7254 115

4 (30,36,33) 8150 1076 7840 1069 7840 422 7568 1067 7568 279

5 (40,47,41) 8144 2475 7905 2469 7905 1311 7685 2456 7685 965

6 (40,48,46) 8176 2369 7912 2345 7912 1281 7726 2332 7726 807

7 (50,53,56) 8132 2514 7484 2477 7484 733 7880 2506 7880 1048

8 (50,52,56) 8162 2932 7750 2885 7750 1000 7925 2922 7925 1947

In this section, we present the results of a computational experiment with
models IP1 and IP2 in order to examine (i) the effectiveness of the model
reductions proposed in Section 5.2, and (ii) the scalability of the model IP2.
We construct a collection of instances of the problem SV S with varying sizes
using a number of datasets generated via the TPC-H benchmark [28]. We then
solve each instance using the models IP1 and IP2. All of our algorithms are
implemented in C++; all the experiments were carried out on a 2.66GHz Intel
2 Quad processor with 3.25 GB RAM running Windows XP Professional. We
used CPLEX 11 [20] to solve the integer programming models IP1 and IP2.
We observe that the search spaces of views are significantly reduced in IP2
compared with IP1, which allows us to use IP2 to solve several realistic-size
instances of the problem SV S. More specifically, our experimental results show
that:

16

Table 2. Comparing the sizes and computing times in IP1 and IP2, for instances over
the 13-attribute dataset

inst-
ance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

number of number of time to build time to solve
variables constraints model (sec.) model (sec.)
IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2

1 (20,21,26) 84,862 11,026 63,744 10,540 0.422 0.328 20.360 1.750

2 (20,21,23) 62,705 7,225 43,110 7,180 0.344 0.313 22.485 6.875

3 (30,26,22) 124,496 18,405 101,205 18,386 0.547 0.391 284.410 8.930

4 (30,36,33) 103,044 18,858 79,590 18,620 0.563 0.438 354.004 34.094

5 (40,47,41) 134,562 53,979 110,961 52,010 0.734 0.719 134.830 19.891

6 (40,48,46) 134,156 51,231 110,481 49,502 0.735 0.735 656.508 31.875

7 (50,53,56) 117,512 47,709 94,180 46,780 0.766 0.797 181.315 36.329

8 (50,52,56) 152,722 71,438 129,048 68,582 0.875 0.891 1084.764 189.890

– The size of the search spaces for the view sets, and the corresponding number
of decision variables and constraints are significantly reduced in model IP2
compared with IP1. This reduction is more significant for instances with
a smaller ratio of the number of queries over the total number of possible
views.

– The size of the model IP2 (i.e., the number of its variables and constraints)
is small enough to allow its use to optimally solve a number of realistic-size
instances of the problem SV S within reasonable execution time.

In the remainder of this section we present a detailed description and analysis
of our experiments.

6.1 Constructing the instances

The input parameters for an instance of the problem SV S are a database D,
query sets Q1 and Q2 = {Q1

2, . . . , Q
L
2 }, the associated probability vector p =

(p1, . . . , pL), and the space limits b1 and b2. We used three different datasets
based on the TPC-H benchmark [28] – a 7-attribute dataset, a 13-attribute
dataset, and a 17-attribute dataset. Each dataset was obtained by using the
original stored TPC-H tables (with scale factor one), to generate a single relation,
with 7, 13, or 17 grouping attributes, that results from the star join of a star-
schema subset of the set of these TPC-H tables. We measure the size of each
view relation in bytes.

For all instances in this section, we assume L = 2, that is,Q2 = {Q1
2, Q

2
2}, and

p1 = p2 = 0.5. For each query set, we generated the queries randomly, keeping
the total sizes of all the query sets “approximately” the same. (See [19].)

The difficulty of solving a specific instance of the problem SV S depends on
the relative magnitude of the storage-space limits, as compared with the size of
the queries. In this section, for all instances based on the TPC-H datasets we
assume that the storage-space limit b1 is equal to one-fifth of the sum of the
sizes of the queries in Q̂, and b2 is one-half of b1. This assumption guarantees
that the instances of the problem SV S are nontrivial. (See [19] for the details.)

17

6.2 Reducing the search space of views

We compare the sizes of the models IP1 and IP2 for several randomly generated
instances of the problem SV S. More specifically, we constructed 8 instances for
the 7-attribute TPC-H dataset, and 8 instances for the 13-attribute TPC-H
dataset. The number of queries in Q1 for each instance ranges from 20 to 50.
For each instance, we compare the number of views in the view sets V1 and V ℓ

2

with their corresponding reduced subsets V1, V ℓ
12 and V ℓ

2 . For the 8 instances on
the 13-attribute dataset, we report these values in Table 1. For each instance,
we also report the total number of variables and constraints in the IP models
IP1 and IP2, as well as the time that it takes to build each model and the time
that it takes to solve each model by the CPLEX IP solver. The results of the 8
instances over the 13-attribute dataset are shown in Table 2. Similar tables for
the 8 instances over the 7-attribute dataset are reported in [19] (we omit them
here due to the page limit); those results are similar to those for the 13-attribute
dataset.

For these collections of instances, we make the following observations. The
number of views in the search space for model IP1 is significantly reduced in IP2
over all the instances. Also, the size of IP2, as expressed by the total number of
variables and constraints, is much smaller than that of IP1. While there is no
significant difference between the build times for the models IP1 and IP2, the
time to solve IP2 is significantly smaller than that for IP1. This reduction in
size tends to be relatively more significant when we have more attributes in the
dataset.

We also observe that the reduction in the number of each group of decision
variables and the reduction in the size of the model are relatively more significant
for instances with a small ratio of the number of queries to the total number of
views in the dataset. In Tables 1 and 2, we compare the results for instances over
the 13-attribute dataset. When we have a larger number of queries in each query
set, the ratio of the number of queries to the total number of views increases
(since the total number of views for a 13-attribute dataset is constant and equal
to 8192), and the magnitude of associated reductions in the number of variables
decreases. We made similar observations (see [19]) for the instances over the
7-attribute dataset and over the 17-attribute dataset.

Finally, for the instances with a relatively large reduction in the number of
variables/constraints, the corresponding reduction of the time to solve the model
is more significant.

6.3 Scalability of the model IP2

To evaluate the scalability of our proposed approach, we attempted to solve
larger instances of the problem SV S. First, we note that for the 8 instances over
the 13-attribute dataset that we report in Table 2, the execution time to solve
the model IP2 ranges from 1.75 seconds to slightly over 3 minutes. The time
to build the model IP2 is relatively insignificant. We also note that the time
to solve the model increases as we increase the number of queries in the query

18

sets Q1, Q
1
2, and Q2

2. To further explore the execution time for larger instances
of the problem, we constructed instances with even larger numbers of queries
over the 13-attribute dataset, please see Table 3. For these instances we did not
construct the model IP1, since we have already observed that the model IP2 is
much more effective than IP1.

Table 3. IP2: scalability over 13-attribute dataset

ins-
tance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

time to build
model (sec.)

time to solve
model (sec.)

1 (60,60,63) 0.875 41.860

2 (80,83,75) 1.328 153.907

3 (100,103,98) 2.078 217.140

4 (120,122,124) 1.797 584.688

5 (140,140,139) 2.125 451.078

6 (160,161,153) 2.485 > 20min

7 (180,191,192) 2.953 > 20min

8 (200,202,215) 3.203 > 20min

Table 4. Solving IP2 over the 17-attribute dataset

ins-
tance

query sets
(|Q1|, |Q1

2|, |Q2
2|)

time to build
model (sec.)

time to solve
model (sec.)

1 (20,19,21) 20.141 63.297

2 (20,10,15) 18.719 22.844

3 (30,32,28) 21.578 out of memory

4 (30,38,35) 22.219 out of memory

5 (40,48,45) out of memory —

6 (40,31,35) out of memory —

From Table 3 we observe that we could solve within 10 minutes all the in-
stances whose number of queries in Q1 is no more than 140. However, when we
further increase the size of the query set, the solver fails to provide an optimal
solution within our time limit of 20 minutes.

In Table 4, we present a similar result for a few instances of the problem that
are constructed based on the 17-attribute TPC-H dataset. We observe that for
these instances CPLEX fails to obtain an optimal solution for the instances that
have 30 or more queries. Furthermore, for the instance with 40 or more queries,
we are not able to even build the model due to insufficient memory. We are
presently designing special algorithms to solve larger instances of this problem.

19

7 Value of the two-stage stochastic model

In this section we assess the value of our proposed two-stage stochastic program-
ming model SP by:

– measuring the gain in solution quality obtained by using the two-stage model
versus the one-stage model;

– measuring the benefits resulting from taking into account the stochastic
properties in model SP ; and by

– discussing the value of obtaining further information about future events
(i.e., about second-stage queries).

In Section 7.1, in the context of the problem SV S we compare our two-
stage model SP with a corresponding one-stage model, which does not allow for
replacement of views in stage 2. We define the value of two-stage versus one-stage
(V TV O), as the difference between the optimal values of the two-stage model
and the corresponding one-stage model. V TV O measures the gain obtained from
the view-replacement mechanism of the two-stage model SP .

In Section 7.2 we compare our model SP with a two-stage model that is based
on the expected value of random events. We introduce the value of stochastic
solution (V SS) [6], which evaluates the difference between the expected response
times achieved by (i) solving the model SP , and by (ii) solving the expected-
value model. V SS assesses the benefits obtained by explicitly considering the
stochastic characteristics of the problem in constructing the model.

In Section 7.3 we show that our model SP is also beneficial in making deci-
sions on whether or not to obtain further information about the occurrence of
the second-stage queries. To do so, we define the expected value of perfect infor-
mation (EV PI) [6] in the context of the problem SV S, and propose appropriate
models to obtain its value.

Finally, Section 7.4 provides the related numerical results.

7.1 Two-stage versus one-stage

In this subsection, we introduce the value of two-stage versus one-stage (V TV O)
for solving the problem SV S. Recall that in our two-stage stochastic view-
selection model, we allow for view replacement at stage 2. The V TV O measures
the gain obtained via this replacement mechanism. In other words, for a given
instance of the problem SV S, the value of V TV O provides the magnitude of
improvement in the optimal query-evaluation costs, as achieved by allowing for
partial replacement of views at stage 2.

We begin by discussing the one-stage model, in which we do not allow to drop
or replace any materialized views at stage 2. In this model, we must determine
a set of views S to materialize at stage 1 within a given space limit b1. We use
the views S to answer the queries in Q1, as well as all the queries in the query
set Qℓ

2 that may occur at stage 2.
We can formulate the one-stage problem as an integer programming model

that we denote by OS. It turns out that the model OS is equivalent to the

20

integer programming model for solving the one-stage problem introduced in [4].
Further, the optimal value of OS is an upper bound on the optimal value of our
model SP . (See [19] for the details.)

We can now define the value of two-stage versus one-stage (V TV O) as the
difference between the optimal values of the one-stage and two-stage models,
namely,

V TV O = Optv(OS)−Optv(SP), (21)

where Optv(·) represent the optimal value of a model (·).

7.2 The value of stochastic solution (V SS)

The literature on stochastic programming (e.g., [6]) defines the value of stochastic
solution (V SS) as the gain obtained from solving the stochastic programming
model as opposed to a model based on the expected values. In our context,
V SS is the difference between the optimal value of the stochastic programming
model (our model SP) and the corresponding Expected Value (EV) model. The
EV model is typically defined for the same two-stage environment, under the
assumption that there is only one second-stage scenario that represents the ex-
pected value of the random events.

In the context of the problem SV S, we define the EV problem by considering
the query workload at stage 2 as a deterministic query set Q2 = ∪L

ℓ=1Q
ℓ
2. We

define the weight associated with each query q ∈ Qℓ
2 as the sum of the probability

values of the query sets that contain q. Thus the EV problem could be considered
as a special case of the problem SV S where there is only one scenario at stage 2.
It follows that the EV problem could be formulated as an integer programming
model, which we denote by IPEV .

We further denote by (x̄, z̄) the optimal values of the first-stage variables in
the model IPEV . We refer to (x̄, z̄) as the expected value solution (see [6]). We
thus define the expected result of using the EV solution as

EEV =
∑
j∈J1

∑
i∈I1j

dij z̄ij +EQ2Ψ(x̄,Q2) (22)

where Ψ (·) is defined in (11)-(17). We can show that EEV is an upper bound
on the optimal value of model SP .

For EEV and Optv(SP), we define the value of stochastic solution (V SS) [6]
as the difference between these values:

V SS = EEV −Optv(SP). (23)

V SS measures the degree to which the decision (x̄, z̄) is inferior to the op-
timal solution of model SP . Again, we refer the reader to [19] for a detailed
discussion of this subject.

21

7.3 The expected value of perfect information

It turns out that our model SP can also help in deciding whether making an
effort to obtain further information about the second-stage queries would pay off.
To show this, we define the expected value of perfect information (EV PI) for the
problem SV S. In the literature (see, e.g., [6]), EV PI measures the maximum
amount of money a decision maker would be ready to pay in return for complete
information about the future. In the problem SV S that would be the benefit,
in units of the expected query-evaluation costs, from knowing the actual query
workload occurring at stage 2. This benefit, EV PI, is the maximum amount of
query-evaluation time that we could save if we knew the exact query set that
will occur at stage 2. In other words, the decision maker can compare the EV PI
with the cost of determining the exact query workload to occur at stage 2, and
can then make the decision to minimize the expected costs.

Suppose we know at stage 1 which exact query set will occur at stage 2. In
this case, we only need to study the model SP that results from that particular
realization of the second-stage scenarios. That is, for each scenario ℓ we make
the associated first-stage and second-stage decisions exclusively for it, and obtain
the minimum costs of answering the queries at stage 1 and stage 2 under that
scenario. We refer to this problem as the ℓth scenario problem.

We formulate an integer programming model for the ℓth scenario, for ℓ = 1 to
L, refer to it as IP ℓ, and denote its optimal value as Optv(IP ℓ). We then define
the expected optimal value under perfect information as the expected value of
this optimal value. Following a common practice in the literature [6], we refer to
this value as the wait-and-see solution value, denoted by WS. We have that

WS =
L∑

ℓ=1

pℓ ·Optv(IP ℓ). (24)

WS is a lower bound on the optimal value of our model SP .
In the literature [6], the difference between the optimal value of the stochastic

programming model and its wait-and-see solution is referred to as “the expected
value of perfect information,” denoted by EV PI. We have that

EV PI = Optv(SP)−WS. (25)

See [19] for further details.

7.4 Numerical results

We now discuss the computational experiments that we performed to assess the
values of V TV O, V SS, and EV PI, as associated with our model SP . These
results show that the magnitude of the values of V TV O, V SS, and EV PI varies
among instances, and that it depends on the structure and properties of both
the database and the query workloads, as well as on the space limits. Specifically,
these values are influenced significantly by (i) the ratio β = b2/b1, and by (ii)

22

the structure of the database and the relative size of each view as compared with
its descendant views in the view lattice.

To examine the impact of the ratio β = b2/b1 on these entities, we conduct
experiments over several instances, as follows. Given an instance of the problem
SV S – that is, given a database D, query sets Q1 and Q2, probabilities p and the
total space limit b1 – we examine the impact of the value of β on the solutions
by changing this value over [0, 1].

We use three different types of datasets to test the impact of datasets: the
TPC-H datasets [28] (see Section 6.1), our symmetric synthetic datasets [18], and
our type I non-symmetric synthetic datasets [18]. Readers are referred to [18]
for detailed descriptions of the synthetic datasets.

Numerical results on V TV O We evaluated V TV O over a number of in-
stances of the problem SV S with varying sizes over different datasets. We ob-
served that the relative magnitude of V TV O varies among these instances, de-
pending on the relative value of the storage limits and on the structure of the
dataset.

We examine first the impact of the space limit b2 on the V TV O. We con-
structed an instance, referred to as Example 2, with |Q1| = 20, |Q1

2| = 30, and
|Q2

2| = 22, over the 13-attribute TPC-H dataset denoted by DT−13. The specific
query sets for this instance (as well as for the other examples here) are presented
in [19]. We set b1 = 28, 777, 009 bytes and p = (0.5, 0.5). Figure 2 shows the value
of V TV O for this instance as we change the value of the ratio β = b2/b1. As the
plot shows, V TV O is a non-decreasing function of β (or of b2), and at b2 = 0,
we have V TV O = 0 as expected.

0 0.2 0.4 0.6 0.8 1
0

5

10

15
x 10

6

Beta

V
T

V
O

Fig. 2. The impact of β on V TV O for Example 2

Next, we examine the impact of different datasets on the V TV O by compar-
ing the ratio of V TV O over the optimal value of SP for the instances based on

23

different datasets. We compare the results of Example 2 (based on the dataset
DT−13), with the results of Example 3, which is based on a 13-attribute type I
non-symmetric synthetic dataset [18] denoted by DI . In Example 3, the number
of queries in query sets Q1 and Q2 = {Q1

2, Q
2
2} are 20, 15 and 21, respectively.

We set b1 = 1, 632, 334 bytes and p = (0.5, 0.5). The results are shown in Figure
3 for different values of the ratio β. We observe that for the same value of β, the
instance based on DI has a significantly higher ratio of V TV O over Optv(SP)
than the instance based on DT−13. For example, the benefit for the instance
based on DI can be 501.76% of the optimal value of the associated model SP ,
while the benefit for the instance based on DT−13 is no more than 13.48% of
the optimal value of the associated model SP . This indicates that while we can
obtain some benefit by applying the two-stage model instead of the one-stage
model, the magnitude of the benefit depends on the structure and size of the
queries and views involved.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

Beta

V
T

V
O

/O
pt

v(
S

P
)

(%
)

Example 3
Example 2

Fig. 3. The impact of β on V TV O/Optv(SP)

Numerical results for V SS In another computational experiment, we evalu-
ated V SS over a collection of instances of varying sizes based on different types
of datasets. The results show that the relative value of V SS varies among these
instances, and that its magnitude depends on both the space limits and on the
structure of the underlying database.

First we observe the impact of b2 on V SS. Figure 4 shows the value of V SS
for different values of β over Example 4. This example is based on the 7-attribute
TPC-H dataset [28] denoted as DT−7. The number of queries in query sets Q1

and Q2 = {Q1
2, Q

2
2} are 20, 22, and 22, respectively. We set b1 = 21605174 bytes

and p = (0.5, 0.5). As the plot shows, when b2 = 0 or b2 = b1 (β = 0 or β = 1),
we have V SS = 0. When 0 < b2 < b1, the impact of b2 on V SS varies.

24

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

5

Beta

V
S

S

Fig. 4. The impact of β on V SS for Example 4

In general, given an instance of problem SV S, when b2 = 0, the models SP
and EV are equivalent to the one-stage model OS, see Section 7.1. Thus, EEV =
Optv(SP) = Optv(EV) and V SS = 0. When b2 = b1, the problems for the first
and for the second stage can be solved separately. Thus, EEV = Optv(SP) and
V SS = 0. In both cases, no benefit can be obtained by taking into account the
stochastic properties in solving the problem SV S. However, when 0 < b2 < b1,
the impact varies for different values of b2.

To examine the impact of the underlying dataset, we compare the results for
Example 4 (based on the dataset DT−7) with the results for Example 5, which
is based on the symmetric synthetic dataset DS [18]. In Example 5, the number
of queries in query sets Q1, Q2 = {Q1

2, Q
2
2} are 20, 18, and 15, respectively.

We set b1 = 15764 bytes and p = (0.5, 0.5). The results are shown in Figure 5.
We observe that the maximum value of the ratio V SS/Optv(SP) among all the
instances in Example 4 is 1.23%. In Example 5, the ratio has a maximum value
of 50.14%, and has an average value of 19.95% for the instances with non-zero
V SS. As we observe by comparing the results for Examples 4 and 5, the benefits
obtained by taking into account the stochastic properties in solving the problem
SV S depends on the specific instance and on the structure of its underlying
database.

Numerical results for EV PI As in the previous experiments, we observe
that the value of EV PI could vary significantly, depending on both the space
limits and the specifics of the database and query sets.

We first consider the impact of b2 on the EV PI. Table 5 shows the EV PI and
the ratio of EV PI/Optv(SP) for different values of β (= b2/b1) over Examples
6 and 7. Example 6 is based on the TPC-H dataset DT−7, and the values of
its input parameters are the same as in Example 4. Example 7 is based on the
symmetric synthetic dataset DS , with |Q1| = 20, |Q1

2| = 18, and |Q2
2| = 15.

25

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Beta

V
S

S
/O

pt
v(

S
P

)
(%

)

Example 5
Example 4

Fig. 5. The impact of β on the V SS/Optv(SP)

We set b1 = 7882 bytes and p = (0.5, 0.5). As Table 5 shows, when β ≥ 0.7
in Example 6 and β ≥ 0.8 in Example 7, the EV PI is 0. It indicates that the
knowledge of the exact stage-2 query workload provides little benefit when b2 is
relatively large. For each example and for each value of β, the value of EV PI is
non-negative, and it varies as we change the value of β.

Table 5. Results for EV PI over Examples 6 and 7

β
EV PI EV PI/Optv(SP)

Example 6 Example 7 Example 6 Example 7

0 1,522,229 5734 3.25% 10.18%

0.1 1,072,046 2354 2.34% 4.53%

0.2 625,183 542 1.40% 1.16%

0.3 263,424 8416 0.60% 18.29%

0.4 123,707 9760 0.28% 22.24%

0.5 101,214 6477 0.24% 16.54%

0.6 964 2807 0.00% 9.23%

0.7 0 576 0.00% 2.16%

0.8 0 0 0.00% 0.00%

0.9 0 0 0.00% 0.00%

1.0 0 0 0.00% 0.00%

In general, if b2 = b1, the first-stage problem and the second-stage problem
can be solved separately. As a result, there is no benefit obtained from perfect
information, i.e., EV PI = 0. When 0 ≤ b2 < b1, the impact on EV PI varies.

Finally, we observe the impact of the datasets on EV PI. We compare the re-
sults for Example 6 over the datasetDT−7, and the results for Example 7 over the
dataset DS . From Table 5, observe that, in general, Example 6 has significantly

26

higher values of EV PI than Example 7, and the ratios of EV PI/Optv(SP) for
Example 7 are generally higher than those for Example 6. This implies that both
the relative magnitude and the absolute magnitude of EV PI depends on the
structure of the underlying dataset and on the specific instance of the problem.

8 Concluding remarks

In this paper we presented the two-stage stochastic view-selection problem SV S,
and undertook a systematic study of the problem. We introduced a stochastic
programming model for the problem, and showed that it is equivalent to an
integer programming (IP) model. We studied the structure of this model, and
proposed procedures to efficiently prune the search space of views, hence reducing
the size of the IP model. We showed experimentally that the reduction in the
size of the IP model is significant, and the resulting IP model can be solved by
commercial IP solvers for small to medium realistic-size instances of the problem,
within reasonable execution time. We also developed measures (V TV O, V SS,
and EV PI) to evaluate the effectiveness of our proposed model and approach.
Presently, to improve the efficiency and scalability of our approach, we are further
investigating the structure of the IP models so as to design more effective exact
and inexact methods for solving larger instances of the problem. This will allow
for a wider potential applicability of our problem and models in the future.

References

1. S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya. AutoAdmin: Self-tuning
database systems technology. IEEE Data Eng. Bull., 29(3):7–15, 2006.

2. S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of materi-
alized views and indexes in SQL databases. In VLDB, pages 496–505, 2000.

3. Z. T. Asgharzadeh. Exact and inexact methods for solving the view and index
selection problem for OLAP performance improvement. Phd dissertation, NCSU,
2010.

4. Z. T. Asgharzadeh, R. Chirkova, and Y. Fathi. Exact and inexact methods for
solving the problem of view selection for aggregate queries. IJBIDM, 4(3/4):391–
415, 2009.

5. Z. T. Asgharzadeh, R. Chirkova, Y. Fathi, and M. Stallmann. Exact and inexact
methods for selecting views and indexes for OLAP performance improvement. In
EDBT, pages 311–322, 2008.

6. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
1997.

7. N. Bruno and S. Chaudhuri. Constrained physical design tuning. VLDB J.,
19(1):21–44, 2010.

8. N. Bruno and S. Chaudhuri. Interactive physical design tuning. In ICDE, pages
1161–1164, 2010.

9. N. Bruno, S. Chaudhuri, and G. Weikum. Database tuning using online algorithms.
In Encyclopedia of Database Systems, pages 741–744. Springer US, 2009.

10. S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technol-
ogy. SIGMOD Record, 26(1):65–74, 1997.

27

11. S. Chaudhuri, U. Dayal, and V. R. Narasayya. An overview of business intelligence
technology. Commun. ACM, 54(8):88–98, 2011.

12. S. Chaudhuri, V. R. Narasayya, and G. Weikum. Database tuning using combina-
torial search. In Encyclopedia of Database Systems, pages 738–741. Springer US,
2009.

13. S. Chaudhuri and G. Weikum. Self-management technology in databases. In
Encyclopedia of Database Systems, pages 2550–2555. Springer US, 2009.

14. S. Duan, P. Franklin, V. Thummala, D. Zhao, and S. Babu. Shaman: A self-healing
database system. In ICDE, 2009.

15. H. Gupta. Self-maintenance of views. In Encyclopedia of Database Systems, pages
2548–2550. Springer US, 2009.

16. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes effi-
ciently. In SIGMOD, 1996.

17. H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu.
Starfish: A self-tuning system for big data analytics. In CIDR, pages 261–272,
2011.

18. R. Huang, R. Chirkova, and Y. Fathi. Synthetic datasets. Technical Report TR-
2011-10, NC State University, 2011. ftp://ftp.ncsu.edu/pub/unity/lockers/

ftp/csc_anon/tech/2011/TR-2011-10.pdf.
19. R. Huang, R. Chirkova, and Y. Fathi. A two-stage stochastic view selection prob-

lem in database management systems. Technical Report TR-2011-8, NC State
University, 2011. ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/
2011/TR-2011-8.pdf.

20. ILOG. CPLEX 11.0 software package, 2007. http://www.ilog.com/products/

cplex/.
21. P. Kalnis, N. Mamoulis, and D. Papadias. View selection using randomized search.

DKE, 42:89–111, 2002.
22. Y. Kotidis and N. Roussopoulos. A case for dynamic view management. ACM

TODS, 26(4):388–423, 2001.
23. A. Labrinidis and Y. Sismanis. View maintenance. In Encyclopedia of Database

Systems, pages 3326–3328. Springer US, 2009.
24. S. Lightstone. Physical database design for relational databases. In Encyclopedia

of Database Systems, pages 2108–2114. Springer US, 2009.
25. A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for

multidimensional datasets. In VLDB-98.
26. D. Theodoratos, S. Ligoudistianos, and T. K. Sellis. View selection for designing

the global data warehouse. Data Knowl. Eng., 39(3):219–240, 2001.
27. D. Theodoratos and T. K. Sellis. Incremental design of a data warehouse. J. Intell.

Inf. Syst., 15(1):7–27, 2000.
28. TPC-H Revision 2.1.0. TPC Benchmark H (Decision Support). http://www.tpc.

org/tpch/spec/tpch2.1.0.pdf.
29. L. A. Wolsey. Integer Programming. Wiley, 1998.
30. J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in

data warehousing environment. In VLDB, pages 136–145, 1997.

