
Efficient, Compromise Resilient and Append-only Cryptographic
Schemes for Secure Audit Logging

Attila A. Yavuz, Peng Ning
Department of Computer Science,
North Carolina State University,

Raleigh, NC, USA
{aayavuz,pning}@ncsu.edu

Michael K. Reiter
Department of Computer Science,

University of North Carolina,
Chapel-Hill, NC, USA

reiter@cs.unc.edu

September 2011

Abstract

Due to the forensic value of audit logs, it is vital to provide compromise resiliency and append-only proper-
ties in a logging system to prevent active attackers. Unfortunately, existing symmetric secure logging schemes
are not publicly verifiable and cannot address applications that require public auditing (e.g., public financial au-
diting), besides being vulnerable to certain attacks and dependent on continuous trusted server support. More-
over, Public Key Cryptography (PKC)-based secure logging schemes require Expensive Operations (ExpOps)
that are costly for both loggers and verifiers, and thus are impractical for computation-intensive environments.

In this paper, we propose a new class of secure audit logging scheme called Log Forward-secure and
Append-only Signature (LogFAS). LogFAS achieves the most desirable properties of both symmetric and PKC-
based schemes simultaneously. LogFAS can produce publicly verifiable forward-secure and append-only sig-
natures without requiring any online trusted server support or time factor. Most notably, LogFAS is the only
PKC-based scheme that achieves the optimal verifier computational and storage efficiency. That is, LogFAS can
verify L log entries with always small and constant number of ExpOps regardless of the value of L. Moreover,
each verifier stores only a small and constant-size public key regardless of the number of log entries to be veri-
fied or the number of loggers in the system. In addition, a LogFAS variation allows fine-grained verification of
any subset of log entries and fast detection of corrupted log entries. All these properties make LogFAS an ideal
scheme for secure audit logging in computation-intensive applications.

Keywords: Secure audit logging; applied cryptography; digital forensics; digital signatures; forward security.

1 Introduction

Audit logs have been used to track important events such as user activities and program execution in modern
computer systems, providing invaluable information about the state of the systems (e.g., intrusions, crashes). Due
to their forensic value, audit logs are an attractive target for attackers. Indeed, an experienced attacker may erase the
traces of her malicious activities from the logs, or modify the log entries to implicate other users after compromising
the system. Therefore, ensuring the integrity, authenticity and accountability of audit logs in the presence of
attackers is critical for any modern computer system [12, 28, 36, 44].

There are straightforward techniques to protect audit logs from active adversaries: (i) Using a tamper resistant
hardware on each logging machine to prevent the adversary from modifying audit logs and (ii) transmitting each
log entry as soon as it is generated to a remote trusted server. Unfortunately, these approaches have significant
limitations as identified in [7, 12, 27, 28, 32, 35, 44]: First, it is impractical to assume both the presence and the
“bug-freeness” of a tamper resistant hardware on all types of platforms (e.g., wireless sensors [26], commercial
off-the-shelf systems [7]) [12, 25, 27, 28]. Second, it is difficult to guarantee timely communication between each
logging machine and the remote trusted server in the presence of active adversaries [15, 27, 44].
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The storage industry introduced fast Write-Once-Read-Many (WORM) devices [10, 14], which were soon
adopted to protect audit logs [41]. Unfortunately, WORM devices have been shown to be vulnerable to faulty
behaviors or insider attacks due to their reliance on software and primitive hardware-based on/off switches [17,32].
This further confirms the danger in simply relying on tamper-resistant hardware.

Cryptographic Log Protection and Desirable Properties: One way to address the above limitations is to
develop cryptographic mechanisms that can protect the integrity of audit logs on a physically unprotected machine
without relying on tamper-resistant hardware or omni-available and trusted remote servers. There has been exten-
sive research invested in this direction (e.g., [7, 12, 13, 16, 25, 27, 28, 35, 36, 44]). In general, it is desirable for such
schemes to have the following properties:

Forward Security and Append-only Properties: Since the log verifiers are not necessarily available to verify
the log entries once they are generated, a logger may have to accumulate log entries for a period of time. If the
adversary takes full control of the logging machine in this duration, no cryptographic mechanism can prevent her
from modifying the post-attack log entries. However, the integrity of log entries accumulated before the attack
should be protected (i.e., forward-security property) [1,7,12,16,25,27,28,44]. Furthermore, this protection should
not only guarantee the integrity of individual log entries but also the integrity of the log stream as a whole. That
is, no selective deletion or truncation of log entries should be possible (i.e., append-only (aggregate) property) [25,
26, 28]).

Note that a plain forward-secure signature (e.g., [1,20,22]) does not provide the append-only property [27,28].
Therefore, a log protection mechanism that solely relies on a plain forward-secure signature (without a signature
aggregation strategy) is prone to the tail-truncation attacks [25, 26, 44, 45] (the security model and analysis of the
truncation attacks are given in Section 3 and Section 5, respectively). In addition, even the most efficient generic
forward-secure constructions (i.e., [29]) require several expensive operations (ExpOps)1 in signature generation
and verification. A straightforward integration of forward-secure signatures (e.g., [23]) with aggregate signatures
(e.g., [9]) (to achieve append-only properties as in FssAgg schemes [25]) are also highly computationally costly as
discussed below. Hence, the direct adaptation of forward-secure signatures is not sufficient to achieve our goals.

Efficiency: Computational overhead introduced by the secure audit logging scheme must be low at the logger
and the log verifier sides.

Public Verifiability: Unlike schemes that enable only a few privileged entities who share secrets with loggers
to verify the integrity of log entries, a scheme supporting public verifiability permits any entity to do so. Public
verifiability is a desirable property for some critical applications, such as electronic voting, where logs need to be
audited and verified by the public [8], and financial applications, where financial books of publicly held companies
need to be verified by the current and potential future share holders [16, 28].

Provable Security: It is necessary for a scheme to have formal security assessments for its security properties,
including attacks specific to audit logging systems such as truncation attacks and delayed detection (details are
given in Section 5).

Independence of Online Trusted Server: Ideally such a scheme should not rely on any online trusted server,
though an offline trusted server may be used. This is desirable since any dependence on the timely communication
with a trusted server could be exploited by an active adversary to defeat the scheme (e.g., delayed detection [27,
28, 44]).

Previous Cryptographic Solutions and Their Limitations: Pioneering forward-secure audit logging schemes
[6, 7, 35, 36] rely on symmetric primitives such as Message Authentication Code (MAC) to achieve computation-
ally efficient integrity protection. In these schemes, a trusted server shares a pairwise secret key with each logger
before the deployment. Each logger generates a forward-secure MAC of each log entry after the deployment based
on this initial key. A small number of privileged semi-trusted entities, who share a partial secret with loggers, can
verify the MACs with the aid of the trusted server (only the trusted server has the complete keying information
required for the verification).

Despite the simplicity and computational efficiency, the above schemes have significant limitations: First, the
symmetric nature of these schemes does not allow public verifiability, and therefore they cannot address applica-

1For brevity, in this paper, we refer to an expensive cryptographic operation such as modular exponentiation [40] and
pairing [21] as an ExpOp.
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Table 1: Comparison of LogFAS schemes and their counterparts for performance, applicability, availability and
security parameters

Criteria PKC-based SYM

LogFAS FssAgg/iFssAgg BAF Logcrypt [7, 36]
Computational AR BM BLS

Sig&Upd (per item) ExpOp ExpOp H ExpOp H
On- Ver, (L items) ExpOp+O(L ·H) O(L · (ExpOp+H)) O(L ·H)
line Subset ver (l′) ExpOp+O(l′ ·H) O(2l′(ExpOp+H)) Not immutable O(l′ ·H)

Efficient Search Available Not Available -
Key Generation (Offline) O(L · ExpOp) O(L ·H)

Storage
Verifier O(1)|K| O(S · |K|) O(L · S)|K| O(S · |K|)
Signer O(L · (|D|+ |K|)) O(L · |D|) +O(1)|K| O(L · |K|) O(L · |K|)

Communication O(L · |D|)
Public Verifiability Y Y N

Offline Server Y Y N
Immediate Verification Y Y N
Immediate Detection Y Y N
Truncation Resilience Y Y N N

LogFAS is the only PKC-based secure audit logging scheme that can verify O(L) items with O(1) ExpOp; all other similar schemes require O(L)ExpOp.
Similarly, LogFAS is the only one achieving O(1) key storage on the verifier side, while all other schemes incur either linear or quadratic storage overhead
(S, |D|, |K| denote number of signers in the system, the approximate bit lengths of a log entry and unit keying material, respectively). At the same time,
LogFAS is the only scheme that enables truncation-free subset verification and sub-linear search simultaneously.

tions requiring public auditing [16, 25, 26, 44]. Second, they require online remote trusted server support, which
entails costly maintenance and attracts potential attacks besides being a potential single-point of failures. Finally,
these schemes are shown to be vulnerable against the truncation and delayed detection attacks [27, 28].

To mitigate the above problems, several PKC-based secure audit logging schemes have been proposed. Logcrypt
[16] extends the forward-secure MAC strategy to the PKC-domain, and thus is publicly verifiable without any on-
line trusted server. However, Logcrypt incurs high storage overhead and is still vulnerable to the truncation attack.
FssAgg schemes [25,26,28] were later proposed to achieve truncation-free logging with forward-secure and aggre-
gate signatures (where truncation prevention is achieved via the append-only property). Most recently, BAF [44]
was developed to achieve computationally efficient log signing and truncation-attack-resistant logging at the same
time. Unfortunately, all these schemes suffer from an efficiency problem.

First, all these schemes are costly for loggers (except for BAF [44]) and extremely costly for the log verifiers.
BAF is able to provide efficient signer operations; however, verifier operations are still highly expensive in terms
of computational and storage overheads. These overheads limit the use of the above schemes. Second, to verify a
particular log entry, all these schemes [25–27, 44] force log verifiers to verify the entire set of log entries, which
entails a linear ExpOps, and failure of this verification does not give any information about which log entry(ies) is
(are) responsible for the failure. The iFssAgg schemes [28] mitigate these problems by allowing more fine-grained
verification, but they double the signing/verification costs of their base FssAgg schemes to prevent the truncation
attack, and the verification of a subset of given log entries still requires linear ExpOps in terms of the size of
the given subset. Furthermore, even if a small fraction of log entries are damaged, detecting damaged entry(ies)
requires a linear number of ExpOps.

Our Contribution: In this paper, we propose a new secure audit logging scheme, which we call Log Forward-
secure and Append-only Signature (LogFAS). We first develop a main LogFAS scheme, and then extend it to
provide additional capabilities. The desirable properties of LogFAS are outlined below. The first three properties
show the efficiency of LogFAS compared with their PKC-based counterparts, while the other three properties
demonstrate the applicability, availability and security advantages over their symmetric counterparts. Table 1
summarizes the above properties and compares LogFAS with its counterparts.

1. Efficient Log Verification with O(1) ExpOp: All existing PKC-based secure audit logging schemes (e.g., [16,
25–28,44,45]) require O(L) ExpOps to verify L log entries, which make them costly. LogFAS is the first PKC-
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based secure audit logging scheme that achieves signature verification with only a small number of ExpOps (and
O(L) hash operations (H). Specifically, LogFAS can verify L log entries with only O(1) ExpOps regardless of
the value of L. Therefore, it is much more efficient than all its PKC-based counterparts, and is also comparably
efficient with symmetric schemes (e.g., [6, 7, 26, 35, 36]) at the verifier side.

2. Efficient Fine-grained Verification and Change Detection: LogFAS allows fine-grained verification with advan-
tages over iFssAgg, the only previous solution for fine-grained verification:

i. Unlike iFssAgg schemes [28], LogFAS prevents the truncation attack2 in the presence of individual signa-
tures without doubling the verification cost.

ii. LogFAS can verify any selected subset with l′ < L log entries with O(1) ExpOps, while iFssAgg schemes
require O(2l′)ExpOps.

iii. LogFAS can identify the corrupted log entries with a sub-linear number of ExpOps when most log entries
are intact. In contrast, iFssAgg schemes always require a linear number of ExpOps.

3. Verifier Storage Efficiency with O(1) Overhead: Each verifier in LogFAS only stores one public key indepen-
dent of the number of loggers or the number of log entries to be verified. Therefore, it is the most verifier-
storage-efficient scheme among all existing PKC-based alternatives. This enables verifiers to handle a large
number of log entries and/or loggers simultaneously without facing any storage problem.

4. Public Verification: Unlike the symmetric schemes (e.g., [7, 26, 35, 36]), LogFAS can produce publicly ver-
ifiable signatures, and therefore it can protect applications requiring public auditing (e.g., e-voting, financial
books) [16, 28].

5. Independence of Online Trusted Server: LogFAS schemes do not require online trusted server support to enable
log verification. Therefore, LogFAS schemes achieve high availability, and are more reliable than the previous
schemes that require such support (e.g., [7, 35, 36, 45]).

6. High Security: We prove LogFAS to be forward-secure existentially unforgeable against adaptive chosen-
message attacks in Random Oracle Model (ROM) [4]. Furthermore, unlike some previous symmetric schemes [7,
35, 36], LogFAS schemes are also secure against both truncation and delayed detection attacks.

The remainder of this paper is organized as follows. Section 2 provides preliminary background information.
Section 3 describes the syntax and models used in this paper. Section 4 presents the proposed LogFAS schemes.
Sections 5 and 6 provide the security and the performance analysis of the LogFAS schemes, respectively. Section 7
discusses the related work, and Section 8 concludes this paper.

2 Preliminaries

Notation. || denotes the concatenation operation. |x| denotes the bit length of variable x. x
$← S denotes

that variable x is randomly and uniformly selected from set S . For any integer l, (x0, . . . , xl)
$← S means

(x0
$← S, . . . , xl

$← S). We denote by {0, 1}∗ the set of binary strings of any finite length. H is an ideal
cryptographic hash function, which is defined as H : {0, 1}∗ → {0, 1}|H|; |H| denotes the output bit length of H .
AO0,...,Oi(·) denotes algorithm A is provided with oracles O0, . . . ,Oi. For example, AScheme.Sigsk (·) denotes that
algorithm A is provided with a signing oracle of signature scheme Scheme under private key sk .

Definition 1 A signature scheme SGN is a tuple of three algorithms (Kg ,Sig ,Ver) defined as follows:

2The truncation attack is a special type of deletion attack, in which the adversary deletes a continuous subset of tail-end log entries.
This attack can be prevented via “all-or-nothing” property [26]: The adversary either should remain previously accumulated data intact, or
should not use them at all (she cannot selectively delete/modify any subset of this data [28]). LogFAS is proven to be secure against the
truncation attack in Section 5.
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- (sk ,PK )← SGN .Kg(1κ): Key generation algorithm takes the security parameter 1κ as the input. It returns a
private/public key pair (sk ,PK ) as the output.

- σ ← SGN .Sig(sk , D): The signature generation algorithm takes sk and a data item D as the input. It returns
a signature σ as the output (also denoted as σ ← SGN .Sigsk (D)).

- c ← SGN .Ver(PK , D, σ): The signature verification algorithm takes PK , D and σ as the input. It outputs a
bit c, with c = 1 meaning valid and c = 0 meaning invalid.

Definition 2 Existential Unforgeability under Chosen Message Attack (EU-CMA) experiment for SGN is as fol-
lows:
Experiment ExptEU -CMA

SGN (A)
(sk ,PK )← SGN .Kg(1κ), (D∗, σ∗)← ASGN .Sigsk (·)(PK ),

If SGN .Ver(PK , D∗, σ∗) = 1 and D∗ was not queried, return 1, else, return 0.

EU-CMA-advantage of A is AdvEU -CMA
SGN (A) = Pr[ExptEU -CMA

SGN (A) = 1].
EU-CMA-advantage of SGN is AdvEU -CMA

SGN (t, L, µ) = maxA{AdvEU -CMA
SGN (A)}, where the maximum is over all

A having time complexity t, making at most L oracle queries, and the sum of lengths of these queries being at most
µ bits.

LogFAS is built on the Schnorr signature scheme [37]. It also uses an Incremental Hash function IH [3]
and a generic signature scheme SGN (e.g., Schnorr) as building blocks. Both Schnorr and IH require that H :
{0, 1}∗ → Z∗

q is a random oracle.

Definition 3 The Schnorr signature scheme is a tuple of three algorithms (Kg ,Sig ,Ver) behaving as follows:
- (y, ⟨p, q, α, Y ⟩)← Schnorr .Kg(1κ): Key generation algorithm takes 1κ as the input. It generates large primes
q and p > q such that q|(p − 1), and then generates a generator α of the subgroup G of order q in Z∗

p. It also

generates (y $← Z∗
q , Y ← αy mod p), and returns private/public keys (y, ⟨p, q, α, Y ⟩) as the output.

- (s,R, e) ← Schnorr .Sig(y,D): Signature generation algorithm takes private key y and a data item D as the
input. It returns a signature triplet (s,R, e) as follows:

R←αr mod p, e←H(D||R), s←(r − e · y) mod q, where r
$← Z∗

q .

- c← Schnorr .Ver(⟨p, q, α, Y ⟩, D, ⟨s,R, e⟩): Signature verification algorithm takes public key ⟨p, q, α, Y ⟩, data
item D and signature ⟨s,R, e⟩ as the input. It returns a bit c, with c = 1 meaning valid if R = Y eαs mod p,
and with c = 0 otherwise.

Definition 4 Given a large random integer q and integer L, incremental hash function family IH is defined as

follows: Given a random key z = (z0, . . . , zL−1), where (z0, . . . , zL−1)
$← Z∗

q and hash function H , the associated
incremental hash function IHq,L

z takes an arbitrary data item set D0, . . . , DL−1 as the input. It returns an integer
T ∈ Zq as the output,

Algorithm IHq,L
z (D0, . . . , DL−1)

T ←
∑L−1

j=0 H(Dj)zj mod q, return T .

Target Collision Resistance (TCR) [5] of IH relies on the intractability of Weighted Sum of Subset (WSS)
problem [3, 18] assuming that H is a random oracle.

Definition 5 Given IHq,L
z , let A0 be an algorithm that returns a set of target messages, and A1 be an algorithm

that returns a bit. Consider the following experiment:
Experiment ExptTCR

IHq,L
z

(A = (A0,A1))

(D0, . . . , DL−1)← A0(L), z = (z0, . . . , zL−1)
$← Z∗

q ,
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T ← IHq,L
z (D0, . . . , DL−1), (D

∗
0, . . . , D

∗
L−1)← A1(D0, . . . , DL−1, T, IHq,L

z )

If T = IHq,L
z (D∗

0, . . . , D
∗
L−1) ∧ ∃j ∈ {0, . . . , L− 1} : D∗

j ̸= Dj , return 1, else, return 0.

TCR-advantage of A is AdvTCR
IHq,L

z
(A) = Pr[ExptTCR

IHq,L
z

(A) = 1].

TCR-advantage of IHq,L
z is AdvTCR

IHq,L
z

(t) = maxA{AdvTCR
IHq,L

z
(A)}, where the maximum is over allA having time

complexity t.

3 Syntax and Models

LogFAS is a Forward-secure and Append-only Signature (FSA) scheme, which combines key-evolve (e.g., [2,23])
and signature aggregation (e.g., [9, 30]) techniques. Specifically, LogFAS is built on the Schnorr signature
scheme [34, 37], and it integrates forward-security and signature aggregation strategies in a novel and efficient
way. That is, different from previous approaches (e.g., [25–28, 36, 44, 45]), LogFAS introduces verification with
a constant number of ExpOps, selective subset verification and sub-linear search properties via incremental hash-
ing [3] and masked tokens (inspired from [31]) in addition to the above strategies.

Before giving more details, we briefly discuss the append-only signatures. A forward-secure and aggregate
signature scheme is an append-only signature scheme if no message can be re-ordered or selectively deleted from
a given stream of messages, while new messages can be appended to the stream [26, 28]. In Section 5, we prove
that LogFAS is an append-only signature scheme. Note that, for the envisioned applications, the goal of signature
aggregation is to achieve verification with a constant number of ExpOps and append-only property rather than the
signer storage efficiency (since the storage overhead is already dominated by the accumulated log entries at the
signer side).

Definition 6 A FSA is comprised of a tuple of three algorithms (Kg ,FASig ,FAVer) behaving as follows:

- (sk ,PK ) ← FSA.Kg(1κ, L): The key generation algorithm takes the security parameter 1κ and the maximum
number of key updates L as the input. It returns a private/public key pair (sk ,PK ) as the output.

- (sk j+1, σ0,j)← FSA.FASig(sk j , Dj , σ0,j−1): The forward-secure and append-only signing algorithm takes the
current private key sk j , a new message Dj to be signed and the append-only signature σ0,j−1 on the previously
signed messages (D0, . . . , Dj−1) as the input. It computes an append-only signature σ0,j on (D0, . . . , Dj),
evolves (updates) sk j to sk j+1, and returns (sk j+1, σ0,j) as the output.

- c ← FSA.FAVer(PK , ⟨D0, . . . , Dj⟩, σ0,j): The forward-secure and append-only verification algorithm takes
PK , ⟨D0, . . . , Dj⟩ and their corresponding σ0,j as the input. It returns a bit c, with c = 1 meaning valid, and
c = 0 otherwise.

In LogFAS, private key sk is a vector, whose elements are comprised of specially constructed Schnorr private
keys and a set of tokens. These tokens later become the part of append-only signature σ accordingly. The public
key PK is a system-wide public key that is shared by all verifiers, and is comprised of two long-term public keys.
Details are given in Section 4.

3.1 System Model

LogFAS system model is comprised of a Key Generation Center (KGC) and multiple signers (i.e., logging machines
that could be compromised) and verifiers. As in forward-secure stream integrity model (e.g., [7, 25, 26]), signers
honestly execute the scheme until they are compromised by the adversary. Verifiers may be untrusted.

The KGC executes LogFAS .Kg once offline before the deployment, and distributes a distinct private key/token
set (auxiliary signature) to each signer, and two long-term public keys to all verifiers. After the deployment, a
signer computes the forward-secure and append-only signature of log entries with LogFAS .FASig , and verifiers
can verify the signature of any signer with LogFAS .FAVer via two public keys without communicating with KGC
(constant storage overhead at the verifier side).
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In LogFAS, the same logger computes the append-only signature of her own log entries. Note that this form
of signature computation is ideal for the envisioned secure audit logging applications, since each logger is only
responsible for her own log entries [27,28,44,45]. Signature schemes where the signatures of different signers are
aggregated (e.g., [9, 30]) is out of the scope of this paper.

3.2 Security Model

A FSA scheme is proven to be ForWard-secure Existentially Unforgeable against Chosen Message Attack (FWEU-
CMA) based on the experiment defined in Definition 7. In this experiment,A is provided with two types of oracles
that she can query up to L messages in total as follows:
A is first provided with a batch signing oracle FASigsk (·). For each batch query j, A queries FASigsk (·) on

a set of message
−→
D j of her choice once. FASigsk (·) returns a forward-secure and append-only signature σ0,j

under sk by aggregating σj (i.e., the current append-only signature) on
−→
D j with the previous signature σ0,j−1 on

−→
D0, . . . ,

−→
D j−1 that A queried. Assume that A makes i batch queries (with 0 ≤ l ≤ L individual messages) as

described the above until she decides to “break-in”.
A then queries the Break -in oracle, which returns the remaining L− l private keys toA (if l = L Break -in re-

jects the query).

Definition 7 FWEU-CMA experiment is defined as follows:
Experiment ExptFWEU -CMA

FSA (A)
(sk, PK)← FSA.Kg(1κ, L), (

−→
D∗, σ∗)← AFASigsk (·),Break -in(PK),

If FSA.FAVer(PK,
−→
D∗, σ∗) = 1 ∧ ∀I ⊆ {0, . . . , l},

−→
D∗ ̸= ||k∈I

−→
Dk, return 1, else, return 0.

FWEU-CMA-advantage of A is AdvFWEU -CMA
FSA (A) = Pr[ExptFWEU -CMA

FSA (A) = 1].
FWEU-CMA-advantage of FSA is AdvFWEU -CMA

FSA (t, L, µ) = maxA{AdvFWEU -CMA
FSA (A)}, where the maximum

is over all A having time complexity t, making at most L oracle queries, and the sum of lengths of these queries
being at most µ bits.

The above experiment does not implement a random oracle forA explicitly. However, we still assume the Random
Oracle Model (ROM) [4], since Schnorr signature scheme [37] on which LogFAS is built requires the ROM.

Note that the above FWEU-CMA experiment and Theorem 1 also capture the truncation attacks:

1. The winning condition of A in the above experiment subsumes the truncation attack in addition to data
modification. That is, A wins the experiment when she either modifies a data item or keeps data items intact
but outputs a valid signature on a subset of a given batch query (i.e., she splits an append-only signature
without knowing its individual signatures).

2. LogFAS uses a standard signature scheme SGN to prevent truncation attacks by computing signatures
of counter values. Resilience against the traditional data forgery (without truncation) relies on EU-CMA
property of Schnorr and target collision-freeness of IH. In Theorem 1, we prove that a successful truncation
attack against LogFAS is equivalent to breaking SGN , and a successful data modification (including re-
ordering) against LogFAS is equivalent to breaking Schnorr or IH.

4 LogFAS Schemes
In this section, we first present the intuition and detailed description of LogFAS, and then describe a LogFAS
variation that has additional capabilities.

4.1 LogFAS Scheme

All existing FSA constructions [25–28, 44] rely on a direct combination of an aggregate signature (e.g., [9]) and a
forward-secure signature (e.g., [1,23]). Therefore, the resulting constructions simultaneously inherit all overheads
of their base primitives: (i) Forward-secure signatures on individual data items, which are done separately from
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the append-only design, force verifiers to perform O(l) ExpOps. (ii) These schemes either eliminate ExpOps from
the logging phase with pre-computation but incur quadratic storage overhead to the verifiers (e.g., [44]), or require
ExpOps in the logging phase for each log entry and incur linear storage overhead to the verifiers (e.g., [16,25,28]).

The above observations inspired us to design cryptographic mechanisms that can verify the integrity of en-
tire log entry set once directly (preserving forward-security), instead of checking the integrity of each data item
individually, though the signing operations have to be performed on individual data items. That is, instead of veri-
fying each item one-by-one with the corresponding public key(s), verify all of them via a single set of aggregated
cryptographic components (e.g., tokens as auxiliary signatures). These mechanisms also achieve constant storage
overhead at the verifier side3.

We achieve these goals with a provable security by using Schnorr signature and incremental hash IH as
follows:

a) To compute a forward-secure and append-only Schnorr signature, we aggregate each individual signature sl
on Dl with the previous aggregate signature as s0,l ← s0,l−1 + sl mod q, (0 < l ≤ L− 1, s0,0 = s0). This is done
by using a distinct private key pair (rj , yj) for j = 0, . . . , L− 1 on each data item.

b) Despite being forward-secure, the above construction still requires an ExpOp for each data item. To verify
the signature on D0, . . . , Dl with only O(1) ExpOp, we introduce the notion of token.

In LogFAS, each Schnorr private yj is comprised of a random key pair (aj , dj) for j = 0, . . . , L− 1. Random
key aj is mutually blinded with another random factor xj and also a long-term private key b for j = 0, . . . , L− 1.
The result of these blinding operations is called auxiliary signature (token) zj , which can be kept publicly without
revealing information about (aj , xj) and also can be authenticated with the long-term public key B by all verifiers.
Furthermore, these masked tokens z = z0, . . . , zl also serve as a one-time initialization key for the incremental
hash as IHq,l

z (Definition 4), which enable verifiers to reduce the integrity of each Dj into the integrity of a final
tag z0,l. This operation preserves the integrity of each Dj and verifiability of each zj (via public key B) without
ExpOps.

c) To verify (s0,l, z0,l) via B in an aggregate form, verifiers also aggregate tokens Rj as R0,l ←
∏l

j=0Rj mod
p, where p a large prime on which the group was constructed. However, initially, (s0,l, R0,l, z0,l) cannot be verified
directly via B, since the reduction operations introduce some extra verification information. LogFAS handles this
via auxiliary signature (token) M ′

0,l that bridges (s0,l, R0,l, z0,l) to B. That is, the signer computes an aggregate
token M ′

0,l ← M ′
0,l−1M

ej
l mod p, where 0 < l ≤ L− 1 and M0,0 = M0), along with s0,l in the signing process.

During verification, this aggregate token eliminates the extra terms and bridges (s0,l, R0,l, z0,l) with B.
This approach allows LogFAS to compute publicly verifiable signatures with only one ExpOp per-item, and

this signature can be verified with only O(1) ExpOps by storing only two public keys at the verifier side (regardless
of the number of signers). This is much more efficient than all of its PKC-based counterparts, and also is as efficient
as the symmetric schemes at the verifier side.

The detailed description of LogFAS algorithms is given below:
1) LogFAS .Kg(1κ, L): Given 1κ, generate primes q and p > q such that q|(p− 1), and then generate a generator
α of the subgroup G of order q in Z∗

p.

a) Generate (b
$← Z∗

q , B ← αb−1
mod p) and (ŝk , P̂K ) ← SGN .Kg(1κ). System-wide private key of KGC is

sk ← (b, ŝk). System-wide public key of all verifiers is PK ← {p, q, α,B, P̂K , L}.
b) Generate (rj , aj , dj , xj)

$← Z∗
q for j = 0, . . . , L−1. The private key of signer IDi is sk ← {rj , yj , zj ,Mj , Rj ,

βj}L−1
j=0 , where

- yj ← aj − dj mod q, zj ← (aj − xj)b mod q,

- Rj ← αrj mod p, Mj ← αxj−dj mod p,

- βj ← SGN .Sig(ŝk ,H(IDi||j)). Note that each βj is kept secret initially, and then released as a part of a
signature publicly.

3In all existing forward-secure and/or aggregate (append-only) logging schemes (e.g., [7,16,25,27,28,44]), the signer side
storage overhead is dominated by the accumulated logs, which already incur a linear storage overhead.
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2) LogFAS .FASig(⟨rl, yl, zl,Ml, Rl, βl⟩, Dl, σ0,l−1): Given σ0,l−1 on D0, . . . , Dl−1, compute σ0,l on D0, . . . , Dl

as follows,

a) el ← H(Dl||l||zl||Rl), M ′
l ←M el

l mod p, sl ← rl − elyl mod q,

b) s0,l ← s0,l−1 + sl mod q, (0 < l ≤ L− 1, s0,0 = s0),

c) M ′
0,l ←M ′

0,l−1M
′
l mod p, (0 < l ≤ L− 1, M ′

0,0 = M0),

d) σ0,l ← {s0,l,M ′
0,l, βl, Rj , ej , zj}lj=0 and erase (rl, yl, s0,l−1, sl, βl−1).

3) LogFAS .FAVer(PK , ⟨D0, . . . , Dl⟩, σ0,l):

a) If SGN .Ver(P̂K,H(IDi||l), βl) = 0 then return 0, else continue,
b) If

∏l
j=0Rj mod p = M ′

0,l ·Bz0,l ·αs0,l mod p holds return 1, else return 0, where z0,l = IHq,l
z0,...,zl

(D0||w||z0||
R0, . . . , Dl||w||zl||Rl).

4.2 Selective Verification with LogFAS

All the previous FSA constructions (e.g., [25–27, 44, 45]) verify the set of log entries via only the final aggre-
gate signature to prevent the truncation attack and save the storage. However, this approach causes performance
drawbacks: (i) The verification of any subset of log entries requires the verification of the entire set of log entries
(i.e., always O(L) ExpOps for the subset verification). (ii) The failure of signature verification does not give any
information about which log entries were corrupted.

Ma et al. proposed immutable-FssAgg (iFssAgg) schemes in [28] to allow fine-grained verification without
being vulnerable to truncation attacks. However, iFssAgg schemes double the signing/verifying costs of their base
schemes. In addition, even if the signature verification fails due to only a few corrupted log entries (i.e., accidentally
damaged entry(ies)), detecting which log entry(ies) is (are) responsible for the failure requires verifying each
individual signature.

LogFAS can address the above problems via a simple variation without incurring any additional costs: The
signer keeps all signatures and tokens in their individual forms (including sj for j = 0, . . . , l) without aggregation.
The verifiers can aggregate them according to their needs by preserving the security and verifiability. This offers
performance advantages over iFssAgg schemes [28]:

(i) LogFAS protects the number of log entries via pre-computed tokens β0, . . . , βl, and therefore individual
signatures can be kept without a truncation risk. This eliminates the necessity of costly immutability strategies
used in iFssAgg schemes [28]. Furthermore, a verifier can selectively aggregate any subset of l′ < l log entries
and verify them by performing only O(1) ExpOps as in the original LogFAS. This is much more efficient than the
iFssAgg schemes, which require O(2l′) ExpOps.

(ii) LogFAS can use a recursive subset search strategy to identify corrupted log entries causing the verification
failure faster than linear search4. That is, the set of log entries is divided into subsets along with their corresponding
individual signatures. Each subset is then independently verified by LogFAS .AVer via its corresponding aggregate
signature, which is efficiently computed from individual signatures. Subsets returning 1 are eliminated from the
search, while each subset returning 0 is again divided into subsets and verified by LogFAS .AVer as described.
This subset search continues recursively until all the corrupted log entries are identified.

The above strategy can quickly identify the corrupted entries when most log entries are intact. For instance,
if only one entry is corrupted, it can identify the corrupted entry by performing (2 log2 l) ExpOps + O(l) hash
operations. This is much faster than linear search used in the previous PKC-based schemes, which always requires
O(l) ExpOps + O(l) hash operations.

Recursive subset strategy remains more efficient than linear search as long as the number of corrupted entries
c satisfies c ≤ l

2 log2 l
. When c > l

2 log2 l
, depending on c and the distribution of corrupted entries, recursive

subset search might be more costly than linear search. To minimize the performance loss in such an inefficient
4Note that the previous PKC-based audit logging schemes cannot use such a recursive subset search strategy to identify

corrupted log entries with a sub-linear number ExpOps, since they always require linear number of ExpOps to verify a given
subset from the entire log entry set (in contrast to LogFAS that requires O(1)ExpOp to verify a given subset).
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case, the verifier can switch from recursive subset search to the linear search if the recursive division and search
step continuously returns 0 for each verified subset. The verifier can ensure that the performance loss due to an
inefficient case does not exceed the average gain of an efficient case by setting the maximum number of recursive
steps to be executed to l′/2− log2 l

′ for each subset with l′ entries.

5 Security Analysis
We prove that LogFAS is a FWEU-CMA signature scheme in Theorem 1 below.

Theorem 1 AdvFWEU -CMA
LogFAS (t, L, µ) is bounded as follows,

AdvFWEU -CMA
LogFAS (t, L, µ) ≤ L · AdvEU -CMA

Schnorr (t′, 1, µ′) + AdvEU -CMA
SGN (t′′, L, µ′′) + AdvTCR

IHq,L
z

(t′′′),

where t′ = O(t) + L ·O(κ3) and µ′ = µ/L.

Proof: Let A be a LogFAS attacker. We construct a Schnorr attacker F that uses A as a sub-routine as follows:

Algorithm F Schnorr .Sigy(·)(Y )

Set the target forgery index w
$← [0, L− 1],

(sk ,PK )← LogFAS .Kg(1κ, L), where sk = {⟨b, sk⟩, ⟨IDi : rj , yj , zj ,Mj , Rj , βj⟩}L−1
j=0 and PK = (p, q, α,B,

P̂K , L),

To embed Schnorr public key Y into token Mw, simulate tokens (Mw, zw) as follows:

-(γ, γ′) $← Z∗
q , Mw ← Y · α(−γ+γ′b−1) mod p, zw ← γ · b− γ′ mod q,

Execute AFASigsk (·),Break -in(PK ) as follows:

- l← 0, j′ ← 0, i← 0,

- Queries: A first queries FASigsk (·) and then Break -in oracles up to L messages of her choice in total:

• How to respond i-th FASigsk (·) query:

- For each query i, A queries FASigsk (·) on
−→
D i = {Dj′ , . . . , Dj}, j > j′ of her choice. If j + 1 >

L then reject the query and proceed to the Forgery phase (A exceeds her query limit). Otherwise,
continue to the next step,

- If j′ ≤ w ≤ j then FASigsk (·) goes to the Schnorr oracle on Dw as (sw, Rw, ew)← Schnorr .Sigy(Dw||
w||zw). FASigsk (·) then computes sj′,j ←

∑
j′≤k≤j,k ̸=w (rk − ekyk) + sw mod q, where ek ←

H(Dk||k||zk||Rk) for k = j′, . . . , j. Also set variable D′ ← Dw. Otherwise, compute sj′,j ←
∑j

k=j′

(rk − ekyk) mod q, where ek ← H(Dk||k||zk||Rk) for k = j′, . . . , j,
- M ′

j′,j ←
∏j

k=j′ M
ek
k mod p,

- s0,j ← s0,j′−1 + sj′,j mod q and M ′
0,j ← M ′

0,j′−1M
′
j′,j mod p, where (s0,j′−1,M

′
0,j′−1) were com-

puted on A’s previous queries D0, . . . , Dj′−1, (for initial j′ = 0, s0,j′−1 = 0,M0,j′−1 = 1),

- Response i-th query of A as σ0,j ← {s0,j ,M ′
0,j , βj , Rk, ek, zk}jk=j′ ,

- F maintains four lists and a variable z′ in addition to D′ for bookkeeping purposes. Insert i-th query−→
D i into data list LD[i]. Insert signature results (s0,j ,M0,j , βj) into the lists (LS1,LS2,LS3), respec-
tively. Also update variable z′ as z′ ← IHq,j

z (e0, . . . , ej) for z = z0, . . . , zj ,
- IfA decides to the “break-in”, proceed to the next step. Otherwise, update j′ ← j+1, l← j′, i← i+1

and continue to respond her queries,

• How to respond queries to the Break -in oracle: A queried l individual messages to FASigsk (·) oracle up
to now. If l = L then reject the query (all private keys were used and erased) and proceed to the next step.
Otherwise, if l < w then abort and return 0 (F does not know the corresponding Schnorr private key index
w). Otherwise, supply A with {rj , yj , zj ,Mj , Rj , βj}L−1

j=l+1.
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- Forgery: Finally, A outputs a forgery as (⟨D∗
0, . . . , D

∗
k⟩, σ∗), where σ∗ = {s∗0,k, M∗

0,k, β
∗, R∗

j , e
∗
j , z

∗
j }kj=0.

By Definition 7, A wins if the following condition holds:

1. LogFAS .FAVer(PK, ⟨D∗
0, . . . , D

∗
k⟩, σ∗) = 1

2. ∀I ⊆ {0, . . . , i}, {D∗
0, . . . , D

∗
k} ̸= ||m∈ILD[m],

If one of the above conditions fails, A loses in FWEU-CMA experiment, and therefore F aborts and returns 0.
Otherwise, F proceeds according to one of the following cases, which are implied by condition 2 as follows:

a) ∃j ∈ {0, . . . , k} : (D∗
j /∈ {LD[0], . . . ,LD[i]} ∧ k = L− 1)

b) ∃j ∈ {0, . . . , i} : ({D∗
0, . . . , D

∗
k} ⊂ LD[j] ∧ β∗ /∈ LS3)

c) ∃j ∈ {0, . . . , k} : (D∗
j /∈ {LD[0], . . . ,LD[i]} ∧ z′ = IHq,k

z (D∗
0, . . . , D

∗
k))

Case a): This case implies A modifies at least one data item (without truncation). F checks if D∗
w ̸= D′ (i.e.,

whether one ofA’s forgery is on D′, whose corresponding token includes Schnorr public key Y that F embedded).
If it fails, F aborts and return 0. Otherwise, by Definition 2, F wins the EU-CMA experiment and returns 1, since
the conditions below hold:

Schnorr .Ver(⟨p, q, α, Y ⟩, D∗
w, ⟨s∗w, R∗

w, e
∗
w⟩) = 1 and F did not ask D∗

w to the Schnorr oracle, where s∗w ←
s∗0,L−1 −

∑L−1
0≤m≤L−1,m ̸=w (rm − e∗mym) mod q and e∗m ← H(D∗

m||m||z∗m||R∗
m) for m = 0, . . . , L− 1.

Since the target forgery index is randomly chosen as w $← [0, L − 1], if A wins the experiment based on this
case with the probability AdvFWEU -CMA

LogFAS (t, L, µ), then F wins with the probability AdvFWEU -CMA
LogFAS (t, L, µ)/L.

The running time of F is that of A plus the overhead due to handling A’s queries as t′ = O(t) + L · O(κ3),
where O(κ3) denotes the execution time of modular exponentiation operation in Z∗

p for given κ.
Case b): This case implies a successful tail-truncation attack. If it holds, then by Definition 2, A breaks

SGN since β∗ is valid and it was not queried. This happens with probability AdvEU -CMA
SGN (t′′, L, µ′′).

Case c): If this case holds, then by Definition 5, A breaks IH by finding a target collision. This happens with
probability AdvTCR

IHq,L
z

(t′′′).
In the above experiment, the simulated view of A is perfectly indistinguishable from the real view of A: The

real view of A after L queries (0 ≤ l ≤ L queries to the FASigsk (·) oracle and L− l queries to the Break -in ora-
cle) is

−→
AReal = {PK ,LS1,LS2,LS3, ei, Rj , zj ,Ml+1, . . . ,ML−1}l,L−1

i=0,j=0, where all keys/tokens/signatures are
computed/generated via original LogFAS algorithms. The simulated view of A after L queries is equivalent to−→
AReal except that (Mw, zw) are simulated as described. One may verify that the joint probability distribution of
these views are identical as Pr[

−→
AReal =

−→a ] = Pr[
−→
ASim = −→a ]. �

Remark 1 Another security concern in audit logging is delayed detection identified in [27]. In delayed detection,
log verifiers cannot detect whether the log entries are modified until an online TTP provides auxiliary keying
information to them. LogFAS does not rely on an online TTP support or time factor to achieve the signature
verification, and therefore it is not prone to delayed detection.

6 Performance Analysis and Comparison

In this section, we present the performance analysis of LogFAS and compare it with previous schemes. We follow
the notation in Table 2 in our analysis and comparison.

Computational Overhead: In LogFAS, the costs of signing a single item is Exp +Mul +H including the
key update cost. The cost of verifying l items is 2Exp + O(l(3Mul +H)). The key generation cost for L items
is O(L(2Exp+Mul)).

Table 3 and Table 4 compare the computational cost of LogFAS with its counterparts analytically and numeri-
cally, respectively.

From a verifier’s perspective, LogFAS requires only a small and constant number of Exp operations regardless
of the number of log entries to be verified. Therefore, it is much more efficient than all PKC-based schemes,
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Table 2: Notation used in performance analysis and comparison of LogFAS and its counterparts
GKg/GSig/GV er: Generic key gen/sig/verifying ops. Sqr: Squaring mod n′ H: Hashing
Mul/Mulq′/Mulp′/Muln′: Mul. mod p, q′, p′, n′ Exp/Expp′: Exp. mod p and p′ L: Max. # of key upd.
w and l:# of data items processed and will be processed l′: # data items to be processed in a subset S: # of signers
Add/Addq′: Add. mod q and q′, resp. PR: pairing op. z: FssAgg sec. param.

Suggested bit lengths to achieve 80-bit security for the above parameters are as follows for each compared scheme (based on
the parameters suggested by Lenstra et al. in [24]): Large primes (|p| = 2048, |q| = 1600) for LogFAS and Logcrypt, primes
(|p′| = 512, |q′| = 160) for BAF and FssAgg-BLS, (|n′| = 1024, z = 160) for FssAgg-AR and FssAgg-BM, where n′ is
Blum-Williams integer [25].

Table 3: Computation involved in LogFAS and its counterparts
Online Offline

ASig & Upd (per item) AVer (l or l′ entries) KG (max. L)
LogFAS Exp+Mul +H 2Exp+O(l(3Mul +H)) O(L(2Exp+Mul))

PKC- FssAgg-BLS MtP + Expp′ +Mulp′ l(Mulp′ +H + PR) O(L(H + Expp′))
based FssAgg-BM z

2Muln′ + z · Sqr O(L · Sqr) + l·z
2 Muln′ O(L(z · Sqr + z

2Muln′))
FssAgg-AR 3z · Sqr + z

2Muln′ z(L+ l)Sqr + (2l + l · z)Muln′ O(2L(z · Sqr + z
2Muln′))

iFssAgg 2 ·ASig + Upd 2 ·AV er(L, l′) Kg
Logcrypt GSig O(l ·GV er) O(L ·GKg)

BAF 3H +Mulq′ + 2Addq′ O(2l(EMul +H)) O(2L(H + EMul))
Symmetric H O(l ·H) O(L ·H)

LogFAS is the only scheme achieving verification with O(1)ExpOp regardless of the value of (l, l′), while their counterparts require either O(l)ExpOp
(FssAgg, Logcrpyt and BAF) or O(l′)ExpOp (iFssAgg schemes). At the same time, LogFAS is as efficient as their counterparts at the signer side except
the BAF.

which require one ExpOp per log entry. Besides, it does not double the verification cost to prevent the truncation
attacks, providing further efficiency over iFssAgg schemes [28]. For instance, the verification of 10,000 log entries
with LogFAS is 2650, 479, 1937, 1427 and 208 times faster than that of FssAgg-BLS, FssAgg-BM, FssAgg-AR,
Logcrypt, and BAF, respectively. The verification of subsets from these entries with LogFAS is also much more
efficient than all of its counterparts as shown in Table 4. The execution time differences with LogFAS and its PKC-
based counterparts grow linearly with respect to the number of log entries to be verified. Initially, the symmetric
schemes are more efficient than all PKC-based schemes, including ours. However, since the verification operations
of LogFAS are dominated by H , their efficiency become comparable with symmetric schemes as the number of log
entries increases (e.g., l = 104). From a logger’s perspective, LogFAS is also more efficient than its PKC-based
counterparts with the exception of BAF.

All PKC-based schemes require O(L) ExpOps in the key generation phase.
Signature/Key/Data Storage and Transmission Overheads: LogFAS is a verifier storage friendly scheme;

it requires each verifier to store only two public keys and an index along with system-wide parameters (e.g.,
|q|+ |4p|), regardless of the number of signers or the number of log entries to be verified.

In LogFAS, the append-only signature size is |q|. The key/token and data storage overheads on the logger side
are linear as (i.e., O(L(5|q|+ 2|p|)) +O(l|D|)) (assuming SGN is chosen as Schnorr [37]). LogFAS transmits a
token set along with each data item requiring O(l(|q|+ |p|+ |D|)) transmission in total. The fine-grain verification
introduces O(l′) extra storage/communication overhead due to the individual signatures.

From a verifier’s perspective, LogFAS is much more storage efficient than all existing schemes, which require
either O(L · S) (e.g., FssAgg-BLS [26] and BAF [44]), or O(S) (e.g., [6, 7, 16, 25, 28, 35, 36]) storage. From a
logger’s perspective, all the compared schemes both accumulate (stores) and transmit linear number of data items
(i.e., O(l)D) until their verifiers become available to them. This dominates the main storage and communication
overhead for these schemes. In addition to this, LogFAS requires linear key storage overhead at the logger side,
which is slightly less efficient than [25,26,44]. LogFAS with fine-grained verification and its counterpart iFssAgg
schemes [28] both require linear key/signature/data storage/transmission overhead.

Availability, Applicability and Security: The symmetric schemes [6,7,35,36] are not publicly verifiable and
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Table 4: Execution time (in ms) comparison of LogFAS and its counterparts

Criteria
PKC-based

Sym.LogFAS FssAgg (l) / iFssAgg (l′) Logcrypt BAF
(l = 104, l′ < l) BLS / i BM / i AR / i

Off. Kg, L = 104 5.06× 104 3.3× 103 8.8× 104 1.7× 105 2.6× 104 4× 104 2̃0

Onl.

Sig&Upd (1) 1.2 1.8 / 3.6 13.1 / 26.2 28 / 56 2.05 0.007 0.004

Ver.
l′ = 102 72.87 4.8× 103 1.8× 103 1.6× 105 1.4× 103 0.2× 103 0.2
l′ = 103 75.2 4.8× 104 1× 104 1.8× 105 1.5× 104 2.05× 103 2
l = 104 98.12 2.6× 105 4.7× 104 1.9× 105 1.4× 105 2.04× 104 19.9

(i) The execution times were measured on a computer with an Intel(R) Xeon(R)-E5450 3GHz CPU and 4GB RAM running
Ubuntu 9.04. We tested LogFAS, BAF [44], FssAgg-BLS [26], Logcrypt (with DSA), and the symmetric
schemes (e.g., [7, 26, 36]) using the MIRACL library [38], and FssAgg-AR/BM using the NTL library [39]. Parameter sizes
determining the execution times of each scheme were selected s.t. κ = 80 (parameter sizes were discussed in Table 2).

also require online server support to verify log entries. Furthermore, they are vulnerable to both truncation and
delayed detection attacks [27, 28] with the exception of FssAgg-MAC [26]. In contrast, PKC-based schemes [16,
25–28] are publicly verifiable without requiring online server support, and they are secure against the truncation
and delayed detection attacks, with the exception of Logcrypt [16].

LogFAS achieves all the desirable availability/applicability and security properties as well as being significantly
more efficient than PKC-based schemes.

7 Related Work
Most closely related are those forward-secure audit logging schemes [6, 7, 16, 25–28, 35, 36, 44]. The detailed
comparison of these schemes with LogFAS has been presented in Section 6.

Apart from the above schemes, there is a set of works complementary to ours. Itkis [19] proposed cryptographic
tamper resistance techniques that can detect tampering even if all the keying material is compromised. LogFAS
can be combined with Itkis model as any forward-secure signature [19]. Yavuz et al. [45] proposed a Hash-
based Forward-Secure and Aggregate Signature Scheme (HaSAFSS) for unattended wireless sensor networks,
which uses timed-release encryption to achieve computational efficiency. Waters et al. proposed an audit logging
scheme [42] relying on Identity-Based Encryption (IBE), which enables encrypted search on the log entries. Davis
et al. proposed time-scoped search techniques on encrypted audit logs [13]. These schemes can be coupled with
LogFAS to provide confidentiality. There are also authenticated data structures that can be used for audit logging
in distributed systems [12, 33]. LogFAS can serve as a digital signature primitive needed by these constructions.

Chong et al. proposed an extension to the scheme in [35] by using tamper-resistant hardware [11]. Xu et al.
proposed SAWS [43] to build a Trusted Computing Base (TCB) to protect private keys used in PKC operations.

8 Conclusion
In this paper, we proposed a new forward-secure and append-only audit logging scheme called LogFAS. LogFAS
achieves public verifiability without requiring any online trusted server support, and is secure against truncation
and delayed detection attacks. LogFAS is much more computationally efficient than all existing PKC-based alter-
natives, with a performance comparable to symmetric schemes at the verifier side. LogFAS is also the most verifier
storage efficient scheme among all existing alternatives. Last, a variation of LogFAS enables selective subset veri-
fication and efficient search of corrupted log entries. Overall, our comparison with the existing schemes shows that
LogFAS is an ideal choice for secure audit logging by offering high efficiency, security, and public verifiability
simultaneously for real-life applications.
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