
Generation of Non-Symmetric Synthetic Datasets

Thomas W. Pensyl
Department of Computer Science, North Carolina State University

Raleigh, NC 27695-8206, USA
twpensyl@ncsu.edu

Rong Huang
Department of Operations Research, North Carolina State University

Raleigh, NC 27695-8206, USA
rhuang@ncsu.edu

October 24, 2011

1 Introduction

We may define procedures for generating synthetic databases, for the purpose of testing
database management systems. In this report, we will examine two such procedures and
gauge the usefulness of the resulting datasets. The rest of this report is organized as
follows. In Section 2, we analyze the type II non-symmetric dataset and show how to pick
its parameters correctly. In Section 3 we define and analyze a variation, the type III non-
symmetric dataset. In Section 4 we define a metric for how useful a dataset is for testing
view selection algorithms. Finally, in Section 5 we present some experiment results and
observations about Type II and Type III non-symmetric datasets.

2 Type II non-symmetric synthetic dataset

2.1 Definition

In [2] Chirkova, Fathi, and Huang defined the Type II non-symmetric synthetic dataset.
They gave the following algorithm for generation. D is a Type I symmetric dataset having
K attributes a1, ..., aK . Each attribute ai has mi possible values. SL is the desired size of
the Type II dataset. p1, ..., pk is a set of input probabilities used as shown below. (See the
original paper for more details and examples.)
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Step 1. Input SL and D(K;m1, ...,mK). Choose p1, ..., pK such that SL ≥
∏K

i=1mip
mi
i . Set

k = 1.

Step 2. Mark each row in the current table as ’selected’ with probability 1− pk. (If a row
is marked, it will be eliminated.)

Step 3. For every row that is marked, also mark any rows which differ only in attribute ak.

Step 4. Eliminate all the marked rows in the table. If k = K, output the table as D′,
otherwise k = k + 1 and go to step 2.

After generating some datasets with this algorithm, we find the bound given above on
the final size of the dataset, SL, is extremely loose, to the extent that the probabilities
p1, ..., pk must be chosen by trial and error in order to obtain a dataset of the desired size.
This works for small datasets, but would be impractical when generating a large dataset,
which could take hours for each attempt. Thus it is desirable to have a closer estimate of
the final size of a dataset, as well as a way to generate values of pi which produce a dataset
of the desired size.

2.2 Expected size of dataset

Let gk denote a group of rows which share all attributes in common except for ak. Then
during the kth iteration of row removal, the existing rows in any gk either all survive or
are all removed. Thus, the removal or survival of these rows are completely dependent
events. The removals of rows which are not in the same gk are not directly dependent
events, although they may be indirectly dependent. However, we will generally treat them
as independent events to simplify the analysis below.

Claim 1 Let qk be the probability that a row survives the kth iteration of row removal. Then
let Qk be the cumulative probability that a row survives all iterations up to and including
the kth iteration, so that Q0 = 1 and Qk =

∏k
i=1 qk. Then for k > 0,

qk = pk((1−Qk−1) +Qk−1pk)
mk−1 . (1)

Proof. Consider the first round of elimination. Each row starts in a group of m1 rows
which are identical except for a1. The odds of a row surviving are the odds of all m1 rows
in its group remaining unmarked (each with probability p1). This agrees with the above
definition of q1 = p1((1− 1) + p1)m1−1 = pm1

1 .

Now consider the kth round of elimination. For a row to survive, it must first itself
remain unmarked (probability pk). Additionally, each of the mk−1 rows in the row’s group
must either remain unmarked or have been removed in a previous round. Treat the previous
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survival or removal of each row within the group as independent events with probability
Qk−1 or 1−Qk−1, respectively. This yields the above expression for qk. !

We have then that qk is the expected fraction of rows which survive iteration k. The
expected number of remaining rows in the final table is

S̄ = S0

K∏

i=1

qi = S0QK =
K∏

i=1

miqi (2)

where S0 is the size of the initial, full table. Our experiments confirm this to be an accurate
prediction, despite the aforementioned simplifications about independence. We can easily
choose q1, ..., qK to satisfy this equation. However, we still need to know the inputl values
of p1, ..., pk which produce them. This form is not, in general, analytically solvable for pk,
motivating the following approximation.

Lemma 1 For 0 < x ≤ 1 and 0 ≤ y ≤ 1

1− y + yx ≥ xy .

Proof. Expand xy into its Taylor series about x = 1. Taking the first two terms, we observe
the remaining terms are all negative.

xy =
∞∑

n=0

(
n−1∏

i=0

(y − i)

)
1y−n

n!
(x− 1)n

xy = 1 + y(x− 1) +
∞∑

n=2

y(x− 1)

(
n−1∏

i=1

(y − i)(x− 1)

)
1

n!
≤ 1 + y(x− 1)

xy ≤ 1− y + xy

!
From the above lemma we can see,

qk = pk(1−Qk−1 +Qk−1pk)
mk−1 ≥ pk(p

Qk−1

k )mk−1 = p
1+Qk−1(mk−1)
k . (3)

In practice this bound appears to be very tight for most cases, and can itself be used as a
good approximation. Solving for pk, we get a close approximation,

pk ≈ q

1
1 +Qk−1(mk − 1)
k . (4)

Thus, we modify the procedure as follows:
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Step 1. Input SL and D(K;m1, ...,mK). Choose q1, ..., qK such that SL =
∏K

i=1miqi. Set
k = 1.

Step 2. Set pk = q

1
1 +Qk−1(mk − 1)
k . Then mark each row in the current table as ’selected’

with probability 1− pk. (If a row is marked, it will be eliminated.)

Step 3. For every row that is marked, also mark any rows which differ only in attribute ak.

Step 4. Eliminate all the marked rows in the table. If k = K, output the table as D′,
otherwise k = k + 1 and go to step 2.

2.3 Memory requirement

To accelerate the procedure, we performed it on a simulated database in memory. A straight-
forward implementation of the elimination procedure required that we initially start with all
possible rows in memory. This made the space complexity O(S0). Our strategy to minimize
memory usage was to use a bitmap, where each bit address mapped to a potential row in
the table, and the bit value stored whether the row was present or not. This scheme only
required one bit per row. However, this could still quickly become an unfeasible amount of
memory. For example, if we attempted to generate a table with similar size and attributes
as the 7-attribute TCP-H dataset considered in Section 5, there would be over 6x1016 po-
tential rows. This would have required over 7 petabytes of memory, even though the final
table would only have around 300,000 rows.

However, if we examine the procedure closely we find that we need not start with all
rows in memory. The key observation is that, during the ith iteration, rows which differ
in any of ai+1, ..., aK are completely independent of each other. If we sort the rows into
groups which have the same values of ai+1, .., aK , we can perform iteration i on one group
at a time, without regard to any rows outside that group. Figure 1 shows the minimal
independent groups of a dataset at each iteration, organized as a tree of dependencies.

From this relationship we can see that the iterations do not need to be run strictly in
order; we just need all previous iterations to have been run on the children of a group. Thus
we can use a postorder traversal of the tree to perform the row removals. For example, we
could run iterations 1 and 2 on the left half of the above rows before iteration 1 was run on
the right half. But in order to run iteration 3, we must first run iterations 1 and 2 on the
right half.

We take advantage of this with the following procedure: Allocate one hash table for
each of the K iterations. Visit each node of the tree, using a postorder traversal. For each
node:

1. Clear the corresponding table for this iteration.
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Figure 1: Each group is independent of other groups in the same level.

2. If it is a leaf (Iteration 1), populate the table with all potential rows.

3. Run the corresponding removal iteration on the table.

4. Add the remaining rows into the next iteration’s table. If this is the root (last itera-
tion), then the table is the final table.

The memory required is the sum of the size of each of the K hash tables. At the start
of iteration i, we have

∏i
j=1mj potential rows in a group, with a expected survival rate

of
∏i−1

j=1 qj up to that point. Let the size of the hash tables be some constant C times the
expected number of initial rows in each table. Then the memory M required is

M =
K∑

i=1

C

qi

i∏

j=1

qjmj

The 7-attribute TCP-H-like dataset would require around 2 gigabytes of memory, with
appropriate choice of probabilities. Consider the case that m1 = ... = mK = m and
q1 = ... = qK = q. Then

M =
K∑

i=1

C

q
(qm)i =

C

q
∗ (qm)K+1 − 1

qm− 1

M ∈ O

(
(qm)K

q

)
= O

(
S̄

q

)

where S̄ is the expected size of the final dataset. This is a much more feasible memory
requirement. Additionally, using hash tables would preserve the constant-time access of the
bitmap, so the time complexity should be similar or better, since we can avoid traversing a
huge, sparse bitmap. Also, this method has inherent parallelism which could be exploited
for multithreading.
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2.4 Further Analysis

Claim 2 Let Vî be the view consisting of all attributes except ai. Then the expected size of
Vî is given by

|Vî| =
(
(1−Qi−1 +Qi−1pi)

mi −
(
1−Qi−1 +Qi−1pi(1−

Qn

Qi
)
)mi

)∏

j $=i

mj (5)

Proof. Again, let gk denote a group of rows which share all attributes in common except
for ak. Then each entry in the view Vk̂ corresponds to a nonempty group in the final table.
Thus we can say the expected size of the view Vk̂ is

|Vk̂| = |Vk̂|max · P (|gk| > 0) . (6)

The maximum view size is just the product of the number of possible values of each attribute
in the view (in this case, all except ai), so that |Vk̂| =

∏
j $=k mj . We derive the probability

of a nonempty group as follows.

Consider the variation that during the ith iteration, we skip Step 3, and only remove
the rows directly marked, instead of the entire group. Let χi(gi) be the number of rows that
have been marked and removed from a particular group during the ith iteration, and let
g′i be the group of remaining rows. This makes the survival of the rows in g′i independent
from one another during iteration i. Assume as before that their survivals during the other
iterations are also independent events. Now define the generating function

Θi(x, y) ≡
∑

j,k

P
(
|g′i| = k ∩ χi(gi) = j

)
xkyj . (7)

This means, for example, that the coefficient of x6y2 in Θi(x, y) is the probability that for
any given group gi, two rows have been marked and removed during the ith iteration, and
- if we leave the rest of the group intact - six rows remain in the group.

For the purposes of construction, let Θn
i (x, y) be the value of the generating function

after the nth iteration. Consider the group after the (i− 1)th iteration. At this point each
row has survived with chance Qi−1 or been removed with chance 1−Qi−1. (There is no y
because we have not gone through the ith iteration yet.) Thus,

Θi−1
i (x, y) = (1−Qi−1 +Qi−1x)

mi .

For the next iteration, a row survives with probability pi, or is marked and removed with
probability 1− pi. This only occurs if the row has survived to this point, so we substitute
the corresponding expression for x:

Θi
i(x, y) =

(
1−Qi−1 +Qi−1((1− pi)y + pix)

)mi .
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Each row which has survived this far either survives the remaining iterations with proba-
bility

∏K
k=i+1 qk = QK

Qi
, or does not survive with probability 1 − QK

Qi
. Again, substituting

the corresponding expression for x we obtain the final generating function:

Θk
i (x, y) = Θi(x, y) =

(
1−Qi−1 +Qi−1

(
(1− pi)y + pi(1−

QK

Qi
+

QK

Qi
x)
))mi

. (8)

Now, to relate g′i to gi, we consider any groups with marked rows as being empty, since
they should have been removed. Thus the probability of a nonempty group gi is the sum
of the coefficients of all terms with an x-component (nonempty) but no y-component (none
marked).

P (|gi| > 0) =
∑

k>0

P (|gi| = k)

=
∑

k>0

P
(
|g′i| = k ∩ χi(gi) = 0

)

=




∑

k≥0

P
(
|g′i| = k ∩ χi(gi) = 0

)


− P
(
|g′i| = 0 ∩ χi(gi) = 0

)

= Θi(1, 0)−Θi(0, 0)

Evaluating the above expression with (8) and substituting into (6) yields the premise. !

3 Type III non-symmetric synthetic dataset

3.1 Definition

The main motivation for the elimination procedure for the Type II dataset is to produce a
change in the dataset’s view sizes. However, after conducting this elimination, we observe
that it only has a significant impact on views with many attributes. The views with less
attributes are left untouched or barely modified in size.

To address this we define a second row elimination method by modifying the previous
method. Again, start with the type I non-symmetric synthetic dataset D(K;m1, ...,mK).
We then conduct a round of row elimination for each of the

(K
2

)
unordered pairs of distinct

attributes (ai, aj). For each round, we first remove each row with some probability p. For
each row removed, we then also remove any other rows which have the same values for both
ai and aj . This will ensure a change in the the size of views with only two attributes, in
addition to a change in the size of the larger views.
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3.2 Expected size of dataset

Both the Type II and III procedures involve a number of removal iterations, in each which
rows are removed according to certain groups. Thus our results about the expected size of
the dataset are analogous to those for the Type II dataset.

Claim 3 Let qk be the probability that a row survives the kth iteration of row removal. Then
let Qk be the cumulative probability that a row survives all iterations up to and including the
kth iteration, so that Q0 = 1 and Qk =

∏k
i=1 qk. Also let the initial size of the K-attribute

dataset be S0. If ai and aj are the pair of attributes selected for iteration k > 0,

qk = pk(1−Qk−1 +Qk−1pk)
(

S0

mimj
− 1)

. (9)

Proof. The size of the groups during the kth iteration is S0
mimj

. The result then follows

from the same reasoning as in Claim 1. !
In the same way as before, we use an approximation to solve for p in the above equation.

pk ≈ q
(1 +Qk−1(

S0

mimj
− 1))

−1

k (10)

We thus define the following procedure for generating a Type III dataset:

Step 1. Input SL and D(K;m1, ...,mK). Choose an ordering of all ordered pairs of unique
attributes (ai, aj) such that 1 ≤ i < j ≤ K. Choose corresponding q1, ..., q(K2 )

such

that SL =
∏K

k=1mi ·
∏(K2 )

k=1 qk. Set h = 1.

Step 2. If (ai, aj) is the hth pair, set

ph = q
(1 +Qh−1(

S0

mimj
− 1))

−1

h .

where Qn =
∏n

k=1 qk and Q0 = 1. Mark each row in the current table as ’selected’
with probability 1− ph. (If a row is marked, it will be eliminated.)

Step 3. For each row that is marked, also mark any other rows which share the same value
of both ai and aj .

Step 4. Eliminate all the marked rows in the table. If h =
(K
2

)
, output the table as D′,

otherwise h = h+ 1 and go to step 2.

Note that, unfortunately, the memory-efficient implementation described for Type II
does not work for the Type III procedure.
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4 A metric for usefulness

Our goal in making these definitions is to obtain datasets which are useful in testing al-
gorithms for the view selection problem. The view selection problem, in brief, consists of
finding the most efficient set of views to materialize for answering a given set of queries,
given a size constraint on the set of views. [1]

For example, with unlimited space, a set of queries could be answered by simply storing
the views which most directly correspond to each query. Given space constraints, however,
one must consider storing larger views which can answer more than one query.

This problem may vary in difficulty depending on the dataset. If a view is very close in
size to its descendents, then it will almost always be selected instead of its descendents. On
the other hand, if a view is very large compared to its descendents, it will never be selected.
Either case is trivial and uninteresting. For a dataset to be useful in testing view selection
algorithms, it must contain a significant number of views whose size is somewhere in the
middle. We use the following metric to quantify the ”usefulness” of a view.

Let C(V ) be the set of direct descendents, or children, of view V (views obtained from
V by considering one less attribute). Then we define τ(V ) as the ratio of the view’s size to
the total size of all its direct children:

τ(V ) ≡ |V |∑
c∈C(V ) |c|

.

Observe that if a view V can be used to answer a set of queries, C(V ) can also be used to
answer the same queries. Thus, in order for a view to be useful, it must be smaller than
the total size of its direct children. This yields an upper requirement for τ(V ):

|V | <
∑

c∈C(V )

|c|

|V |∑
c∈C(V ) |c|

= τ(V ) < 1 .

On the other hand, we want the direct children of V to be significantly smaller than |V |.
Let n(V ) be the number of attributes in view |V |. Then for some constant b ≥ 1, we require
that the view’s average child-to-parent size ratio be less than 1/b:

1

n(V )

∑

c∈C(V )

|c|
|V | <

1

b

|V |∑
c∈C(V ) |c|

= τ(V ) >
b

n(V )
.

Let W(D) be the set of all possible views with two or more attributes over dataset D. We
measure the usefulness of the entire dataset by the fraction of views in W(D) which satisfy
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the above bounds:

ω(D, b) ≡ 1

|W(D)|

∣∣∣∣

{
V ∈ W(D)

∣∣∣
b

n(V )
< τ(V ) < 1

}∣∣∣∣ .

5 Experimental results

We used the metric defined in the previous section to gauge the usefulness of Type II and III
datasets generated using various parameters. The value used for b is somewhat arbitrary,
but we used b = 2 in all the following results to obtain a consistent comparison. S/S0 is
the ratio of the dataset size to the original dataset’s size. It is the fraction of rows which
remain after elimination.

After running tests we notice several trends. For a given final size, the metric can be
increased by starting with a larger original dataset, and removing more rows (Table 2).
Another large factor in the number of useful views is the presence (or absence) of small-
valued attributes, such as attributes containing only 2 or 3 possible values (Table 3). Such
attributes tend to greatly increase the number of useful views.

Type III produces a dataset with more ’useful’ views for testing. However, it also takes
more time to generate, and a memory-efficient method is not yet clear. Thus, for larger
datasets, Type II may be preferred. Also, although we have a good estimate of the expected
size, it has a very high variance, which can make it difficult to obtain a dataset of a particular

Type # Values per Attribute Rows S/S0 ω(D, 2)
II 50 20 10 8 5 5 4 3 2 109977 .0023 .378
II 50 20 10 8 5 5 4 3 2 536934 .0112 .386

III 50 20 10 8 5 5 4 3 2 59624 .0012 .620
III 50 20 10 8 5 5 4 3 2 244550 .0051 .728

Table 1: 9-attribute datasets of various sizes

Type # Values per Attribute Rows S/S0 ω(D, 2)
II 7 7 7 7 7 7 7 301850 .3665 .039
II 10 10 10 10 10 10 10 300730 .0301 .055
II 15 15 15 15 15 15 15 304233 .0018 .165

III 7 7 7 7 7 7 7 296957 .3606 .063
III 10 10 10 10 10 10 10 306216 .0306 .110
III 15 15 15 15 15 15 15 279474 .0016 .228

Table 2: Starting with different sized datasets.
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Type # Values per Attribute Rows S/S0 ω(D, 2)
TCPH 75000 10000 2524 500 11 3 2 299814 .158

II 80 40 30 25 2 2 2 290820 .0151 .465
II 80 40 20 10 5 3 2 301065 .0157 .213
II 80 20 10 9 5 5 5 305696 .0170 .087

III 80 40 30 25 2 2 2 291331 .0152 .402
III 80 40 20 10 5 3 2 290119 .0151 .496
III 80 20 10 9 5 5 5 309093 .0172 .299

Table 3: TCPH vs. Type II and III datasets, and the effect of small-valued attributes.

size. Overall, both types can produce a better dataset than the TCPH dataset we used for
comparison, and both appear useful for testing database management systems.
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