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ABSTRACT

Recent years have witnessed increased popularity and adoption of
smartphones partially due to the functionalities and convenience of-
fered to their users (e.g., the ability to run third-party applications).
To manage the amount of access given to smartphone applications,
Android provides a permission-based security model, which requires
each application to explicitly request permissions before it can be in-
stalled to run. In this paper, we systematically analyze eight flagship
Android smartphones from leading manufacturers, including HTC,
Motorola, and Samsung and found out that the stock phone images
do not properly enforce the permission model. Several privileged
permissions that protect the access to sensitive user data and danger-
ous features on the phones are unsafely exposed to other applications
which do not need to request them for the actual use, a security vi-
olation termed capability leak in this paper. To facilitate identifying
these capability leaks, we take a static analysis approach and have
accordingly developed a system called Woodpecker. Our results with
eight phone images show that among 13 privileged permissions ex-
amined so far, 11 were leaked, with individual phones leaking up
to eight permissions. By exploiting these leaked capabilities, an un-
trusted application can manage to wipe out the user data, send out
SMS messages (e.g., to premium numbers), record user conversation,
or obtain user geo-locations on the affected phones – all without the
need of asking for any permission.

1. INTRODUCTION
Recent years have witnessed increased popularity and adoption of

smartphones. According to data from IDC [22], smartphone manu-
facturers shipped 100.9 million units in the fourth quarter of 2010,
compared to 92.1 million units of PCs shipped worldwide. This is
the first time in history that smartphones are outselling personal com-
puters. The popularity is partially attributed to the incredible func-
tionalities and convenience smartphones offered to end users. In fact,
existing mobile phones are not simply devices for making phone calls
and receiving SMSmessages, but powerful communication and enter-
tainment platforms for web surfing, social networking, location navi-
gating, and online banking etc.
The smartphone popularity and adoption is also spurred by the pro-

liferation of feature-rich devices as well as compelling mobile appli-
cations (or simply apps). In particular, these mobile apps can be read-
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ily accessed and downloaded to run on smartphones from various app
stores [5]. For example, it has been reported [21] that Google’s An-
droid Market already hosts 150,000 apps as of February, 2011 and
the number of available apps has tripled in less than 9 months. More-
over, not only official smartphone platform vendors such as Apple
and Google are providing respective app stores to host hundreds of
thousands of apps, but also third-party vendors including Amazon are
competing in this market by providing separate channels for mobile
users to browse and install apps.
Not surprisingly, mobile users are increasingly relying on smart-

phones to store and handle personal data. Inside the phone, we can
find current (or past) geo-location information about the user [7],
phone call logs of placed and received calls, an address book with var-
ious contact information, as well as cached emails and photos taken
with the built-in camera. The type and the volume of information kept
in the phone naturally lead to various concerns [16, 15, 25, 37] about
the safety of this private information, including the way it is managed
and accessed.
To mediate access to various personal information and manage cer-

tain advanced phone functions, smartphone platform vendors have
explored a number of approaches. For example, Apple uses a vet-
ting process through which each third-party app must be scrutinized
before it will be made available in the app store. Google defines a
permission-based security model in its Android platform, which re-
quires that any app, before installation, must explicitly request per-
missions to access certain information and features. In other words,
the requested permissions essentially define the capability the user
may grant to an Android-based mobile app. By showing the re-
quested permissions to the user before the app can be installed, this
permission-based security model allows a user to gauge the app’s ca-
pability and determine whether or not to install the app in the first
place. Due to the central role of the permission-based security model
in the Android design, it is critical that the security model is properly
enforced in existing Android-based smartphones.
In this paper, we systematically study eight popular Android-based

smartphones from leading manufacturers, including HTC, Motorola,
and Samsung and are surprised to find out that these stock phone im-
ages do not properly enforce the permission-based security model.
Specifically, several privileged (or dangerous) permissions that pro-
tect access to sensitive user data or features on the phones are unsafely
exposed to other applications which do not need to request these per-
missions for the actual use. For simplicity, we use the term capability

leak in this paper to represent the situation where an app can gain
access to a permission without actually requesting it. Each such situ-
ation essentially leads to a violation of the permission-based security
model in Android.
To facilitate exposing capability leaks, we have developed a semi-

automated system called Woodpecker. Woodpecker employs data
flow analysis techniques to systematically analyze pre-loaded apps
on the phones and for each app explore the reachability of a danger-



ous permission from a public, unguarded interface. To better examine
possible capability leaks, our system distinguishes two different cat-
egories. Explicit capability leaks allow an app to successfully access
certain permissions by exploiting some publicly-accessible interfaces
or services without actually requesting these permissions by itself.
Implicit capability leaks similarly allow an app to obtain unautho-
rized permissions without requesting them. However, instead of ex-
ploiting some public interfaces or services, such an app can acquire
or “inherit” permissions from another app with the same signing key
(presumably by the same author). Consequently, explicit leaks repre-
sent serious security errors as they subvert the permission-based se-
curity model Android uses to control access to dangerous features or
sensitive data while implicit leaks could misrepresent the capabilities
available to an app.
We have implemented a Woodpecker prototype to uncover both

types of capability leaks in Android-based smartphones.1 Our cur-
rent prototype focuses on 13 representative privileged permissions
that protect sensitive user data (e.g., geo-location) or phone features
(e.g., sensors like the camera or microphone, or the ability to send
SMS messages). We have used our prototype to examine eight pop-
ular Android phones: HTC Legend/EVO 4G/Wildfire S, Motorola
Droid/Droid X, Samsung Epic 4G, and Google Nexus One/Nexus S.
Our results show that among these 13 privileged permissions, 11were
explicitly leaked, with individual phones leaking up to eight permis-
sions.2 In particular, by exploiting these leaked capabilities, an un-
trusted app on these affected phones can manage to wipe out the
user data on the phones, send out SMS messages (e.g., to premium
numbers), record user conversation, or obtain user geo-locations – all
without asking for any permission.
The rest of this paper is organized as follows: Section 2 describes

background information on the Android platform. Section 3 describes
our system design for capability leak detection in Android phone im-
ages. Section 4 presents its detailed prototype. Section 5 contains
the evaluation results from our study of eight Android-based smart-
phones from leading manufacturers. Section 6 discusses the limita-
tions of our approach and suggests avenues for future improvement.
Finally, Section 7 describes related work, and Section 8 summarizes
our conclusions.

2. BACKGROUND
In this section, we briefly review key concepts and background

about Android, which are essential to our system but may be unfa-
miliar to some readers. Readers with sufficient background can safely
skip this section.
Android [1] is an open source mobile phone platform developed by

Google. It is based on Linux but contains its own runtime. Associated
with the runtime, Android provides an application framework that
contains a wide variety of application programming interfaces (APIs)
to facilitate the software development. The framework and third-party
apps are mainly written in an Android-specific dialect of Java while
some performance-critical parts could be in C.
Each Android app is running inside a Dalvik [6] virtual machine

(VM), which is instantiated as a user-level process in Linux. Different
apps are running in different Dalvik VMs, isolated from each other.

1The reason why we chose to implement Woodpecker in Android is
due to its open-source nature and wide adoption. However, the same
need for possible capability leak detection exists and similar design
principles are applicable for other smartphones (e.g., from Apple).
2Since last month (April, 2011), we have been in the process of re-
porting the discovered capability leaks to the corresponding vendors.
So far, Motorola and Google have confirmed all discovered vulner-
abilities related to their phones. Meanwhile, we experienced some
difficulties with HTC and Samsung. Our experience is similar to
others [8], echoing “the seven deadly sins of security vulnerability
reporting.”[30]

Protection level Description

normal Low-risk permissions granted to any
package requesting them

dangerous Higher-risk permissions that require user
confirmation to grant

signature Only packages with the same author can
request the permission

signatureOrSystem Both packages with the same author and
packages installed in the /system/ di-
rectory tree can request the permission

Table 1: Permission Protection Levels in Android

The Dalvik VM is derived from Java but has been significantly revised
(with its own machine opcode and semantics) to meet the resource
constraints of mobile phones. Also, when an app is being installed
in Android, a unique user identifier (UID) will be assigned to the
app. To facilitate sharing information between apps, Android allows
multiple apps to share the same UID if the apps are signed with the
same developer certificate. As a result, Android relies on the Linux
process boundary and this app-specific UID assignment strategy to
achieve isolation, preventing a misbehaving or malicious app from
disrupting other apps or accessing other apps’ files.
Where a regular Linux program only has a single entry point, an

Android app can contain multiple entry points. Specifically, each app
is composed of one or more different components, each of which can
be independently invoked. There are four types of components: activ-
ities, services, broadcast receivers and content providers. An activity
represents part of the visible user interface of an app. A service, much
like a Unix daemon, runs in the background for an indefinite period
of time. A broadcast receiver, as the name indicates, is a component
that does nothing but receive and react to broadcast announcements.
A content provider makes a specific set of the app’s data available to
other apps.
Each Android app is deployed in the form of a compressed package

(apk). Each apk contains a manifest file (AndroidManifest.xml) that
describes various standard properties about the app, such as its name,
the entry points (or interfaces) it exposes to the rest of the system,
and the permissions it needs to perform privileged actions. It can also
contain an optional sharedUserId attribute, which allows two apps
if signed with the same developer certificate to share the same UID.
Naturally, an Android package will also contain Dalvik bytecode, na-
tive code, or both; most presently contain only Dalvik bytecode.
As mentioned earlier, Android defines a permission-based secu-

rity model [4]. In this model, the principals that have these per-
missions are apps, not users. Android retains the Linux concepts of
user identifier and group identifier, but assigns these identifiers to in-
stalled apps rather than users, as only one user is expected to use an
Android device. There is a stock set of permissions defined by the
Android framework, but developers are free to define additional per-
missions as they see fit. Each permission has a protection level [3],
which determines how “dangerous” the permission is and what other
apps may request. Table 1 summarizes the defined protection lev-
els in Android. Note that manufacturers and carriers often customize
the Android system to add differentiating features to their products.
In that context, the signature and signatureOrSystem permission
protection levels are reserved to define capabilities that only vendor-
written software should have access to. Permissions are checked ei-
ther through annotating entry points defined in the manifest file or
programmatically by the Android framework.
To facilitate controlled interaction among apps, Android also pro-

vides an inter-process communication (IPC) layer called Binder, which
is essentially a message passing interface dealing in parcels of bi-
nary data. Intents are a special type of parcel that represents either
a request to perform an operation or a notification that some event
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Figure 1: An Overview of Woodpecker

has taken place. In publish-subscribe fashion, Binder routes Intents
through the system; during this routing process, it checks any permis-
sion annotations, refusing to route Intents from unprivileged senders –
or, in some cases, to unprivileged receivers. When an app is contacted
via an Intent, one of the defined entry points gets an encapsulated ob-
ject with information about the Intent content and its sender; it is the
permission information carried by this object that can be checked by
code running within the receiver.

3. SYSTEM DESIGN
Our goal is to identify capability leaks, i.e., situations where an

app can gain access to a permission without actually requesting the
permission (in its manifest file). Each such situation essentially leads
to a violation from the permission-based security model in Android.
Since there are some privileged permissions that may not be granted
to a third-party user app, we in this work choose to focus on those per-
missions used by the pre-loaded apps as a part of an Android phone
firmware. For simplicity, the terms “permissions,” “capabilities,” as
well as their representative APIs in the Android framework for per-
mission checking are used interchangeably.
Figure 1 shows the high-level overview of our system. Based on

the nature of two different kinds of capability leaks (i.e., either ex-
plicit or implicit), the system performs two complementary sets of
analysis. Specifically, to expose explicit leaks of a capability, our
system first locates those (pre-loaded) apps in the phone that have the
capability. For each such app, our system further identifies whether
a public interface is exposed that can be used to gain access to the
capability. (The public interface is essentially the entry point defined
in the app’s manifest file, i.e., activity, service, receiver, and content

provider.) In other words, starting from the public interface, there ex-
ists an execution path that can reach some use of the capability. If the
public interface is not guarded or the execution path does not have a
sanity checking mechanism in place to prevent it from being invoked
by another unrelated app, we consider the capability leaked. Our sys-
tem then reports such leaks and further provides evidence that can be
used to fashion input to exercise the leaked capability. This evidence
includes the value of any variables needed to take the discovered path
to the exposed capability, as well as the provenance of any arguments
that are passed to it, which can be used to construct a concrete attack.
On the other hand, implicit capability leaks arise from an optional

attribute in the manifest file, i.e., “sharedUserId.” This attribute, if
set, causes multiple apps signed by the same developer certificate to
share a user identifier. As permissions are granted to user identifiers,
this causes all the apps sharing the same identifier to be granted the
union of all the permissions requested by each app. To detect such
leaks in an app that shares a user identifier, our system reports the
exercise of an unrequested capability, which suspiciously has been
requested by another app by the same author. We stress that an im-
plicit leak requires a certain combination of apps to be installed: an
app seeking to gain unauthorized capabilities can only do so if another
app, with the same shared user identifier and signing key, is installed
to grant the additional permission. In the context of the pre-loaded
apps on the phone, we can identify whether such a colluding app ex-
ists. However, due to the fact that we cannot rule out the possibility of
a colluding app being installed at a later time, its mere absence does

not indicate such implicit leak is “safe” or may not occur later.
Assumptions In this work, we consider the scenario where a

smartphone user will install an third-party app on the phone, and the
author of the third-party app has necessary knowledge of the phone’s
system image. Moreover, the app aims to maliciously perform some
high-privilege activities (e.g., wiping out the user data on the phone
or recording the user conversation), whose APIs are protected by per-
mission checks. To do that, the attacker chooses to not request the
required permissions to elude detection or these permissions cannot
be granted to third-party apps. (Examples include those permissions
defined as signature or signatureOrSystem – Section 2).
Meanwhile, we limit the scope of the attacker’s abilities by assum-

ing that the underlying Linux kernel and Binder IPC framework are
trusted. Also, we assume that the signing keys to the system image are
not available to the attacker. Given these constraints, a malicious app
will not be able to directly access the high-privilege APIs. However,
as many pre-loaded apps in the system image have the corresponding
permissions, if the malicious app can cause one of these apps to in-
voke the desired API on its behalf, it will have gained actual access
to the capability it represents.

3.1 Explicit Capability Leak Detection
As discussed earlier, explicit leaks of a particular capability may

occur in any app that has requested it in its manifest file. To de-
tect these leaks, our system analyzes each such app in two steps.
The first step, possible-path identification (Section 3.1.1), builds a
control-flow graph to identify all the possible paths within the pro-
gram from a well-defined entry point (in the manifest file) to some
use of the capability. After identifying these possible paths, the sec-
ond step, feasible path refinement (Section 3.1.2), employs field- and
path-sensitive inter-procedural data flow analysis to determine which
of these paths are feasible.

3.1.1 Possible Path Identification

Give an app under inspection, our system first extracts the Dalvik
bytecode from the app, and then builds a control-flow graph (CFG) to
locate all possible paths of execution. Though the CFG construction
is a well-studied topic, there are several aspects that are unique in
Android and unfortunately make the CFG construction complicated.
The first one comes from indirect control-flow transfer instructions

in Dalvik. The Dalvik bytecode targets a hypothetical machine archi-
tecture, which does not support most forms of indirect control-flow
transfer. In fact, the only indirect transfers in Dalvik’s machine lan-
guage are due to the Java equivalent of pointers: object references.
However, object references are rather commonly passed as arguments
within an app method, and due to inheritance it is often not possible to
unambiguously determine what concrete class a reference represents.
Further, as we are analyzing the bytecode, object references will nat-
urally involve type resolution of related objects. In our current proto-
type, we take a conservative approach. Specifically, when analyzing
the Dalvik bytecode for an app, our system maintains a comprehen-
sive class hierarchy. When an ambiguous reference is encountered,
we consider all possible assignable classes. This is a straightforward
approach, but one that will not introduce any false negatives.3

3On the other hand, our system can be further improved by integrat-
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Figure 2: A discontinuity in the control flow introduced by the

Android framework.

The second one arises from the event-driven nature in executing
an Android-based app, which is also reflected in the app structure.
In particular, due to the large number of callbacks used by the An-
droid framework, app execution often passes through the framework
to emerge elsewhere in the app. For a concrete example, consider
the java.lang.Thread class. This class is used to implement native
threads, which Android uses in abundance to achieve better UI re-
sponsiveness. A developer can simply extend this class, implement
the run() method, and then call the start() method to schedule
the thread. However, if we analyze only the code contained within
the app, the run() method does not appear to be reachable (from
start()), despite the fact that after the start() method is called,
control flow goes through the Dalvik VM to the underlying thread
scheduler and eventually to the run() method. In other words, An-
droid’s event-driven nature will unavoidably cause some discontinu-
ity in the CFG construction if we only focus on analyzing the app
code (Figure 2). Fortunately, beyond CFG construction, this interven-
ing framework code is of no particular value to our analysis, and its
behavior is well-defined in the Android framework APIs. Therefore,
we leverage these well-defined semantics to link these two methods
directly in the control flow graph, resolving the discontinuity in the
process. We have applied this strategy to a number of other callbacks,
such as those for Android Message queues, timers, and GPS position
updates. Some unrelated callbacks may also be safe to ignore. For
example, our current prototype does not consider Android UI-related
callbacks as they require the user’s intervention, which could expose
and block the attack.
The third one is that an Android-based app does not necessarily

have only one entry point. Instead, rather than a traditional “main
method” of some kind, an Android app contains one or more compo-
nents defined in its manifest file. Each component can potentially de-
fine multiple entry points accessible through the Binder IPC mecha-
nism. To take these factors into account, our prototype iterates through
each entry point defined in the manifest file to build the CFG (by es-
sentially treating it as a separate program). For each resulting CFG,
we can then locate possible paths, each indicating the reachability
from a known entry point to a point that exercises a specific permis-
sion of interest.

3.1.2 Feasible Path Refinement

The previous step produces control-flow graphs which may repre-
sent a tremendous number of potential paths. Among these possible
paths, not all of them lead to a dangerous call that exercises the per-
mission of interest, and of those that do, not all are feasible. There-
fore, we employ inter-procedural data flow analysis to find paths that
are both feasible and result in a dangerous call.
Specifically, we use symbolic path simulation, a path-sensitive data

flow analysis technique. The underlying intuition behind this strategy
is that a path of program execution can be modeled as a set of program

ing the latest developments in scalable, comprehensive points-to anal-
ysis (Section 6).

Algorithm 1: Capability leak detection

Input: entry points, known method summaries
Output: a set of capability leaks
foreach entry point ∈ entry points do

worklist = initial state: start of the entry point
states = initial state
summaries = known method summaries
foreach state ∈ worklist do

remove state from worklist

if state’s instruction is a method call then

if a summary does not exist for the target then
summarize(target, summaries);

end

end

worklist+ = δ(state) − states

states+ = δ(state)
end

if a dangerous-call state is flagged then
report the state as a capability leak

end

end

states, each dependent on the last. In order for this set of states to be
feasible, each program point (instruction) must follow from the pre-
ceding ones. Similar to other data flow analysis techniques, symbolic
path simulation implements an iterative algorithm that converges on
a fix-point. At each program point, the set of input states are fed
through a transfer function (representing the operation performed by
that instruction) to produce a set of output states. However, before
these output states are used as input states for that program point’s
successors, we verify that their constraints are consistent. In this way,
infeasible paths are not fed forward through the analysis.
Algorithm 1 summarizes our infeasible path reduction. In essence,

it is a field- and path-sensitive symbolic simulation algorithm that
considers multiple similar concrete paths through a program at once,
while condensing methods into parameterized summaries relating their
inputs to their outputs. Each state in the analysis encodes the value of
data fields with constraints, allowing some similar states to be joined
with one another. Particularly, the algorithm operates in the standard
fashion for data flow analysis: a worklist is maintained of actively-
considered states, and a transfer function (δ) is used to generate new
states from a given state. Only new states are added to the worklist,
so eventually the algorithm converges on a solution that represents all
the feasible states reachable from a given entry point.
Our algorithm has also been enhanced with several optimizations.

For example, we accelerate the process by using method summaries
to avoid recursively considering the same method-call chains multiple
times. To save space, joining (rather than simply adding) new states to
the worklist and visited-state list make the algorithm scale better both
in terms of time and memory. Its actual implementation is cognizant
of the value constraints placed on each memory item, and tries to
merge very similar states where possible. As an example, if two states
are joined that only differ by whether a boolean value is true or false,
the resulting state will simply remove any constraint on the boolean
value. In this way, fewer states need to be remembered, and fewer
successors must be calculated using the transfer function δ.
While the algorithm itself and some of the above optimizations are

rather standard, applying the algorithm to Android, however, leads
to some unique challenges and benefits. For example, recall that an
Android app can define multiple entry points, so we need to produce
a separate set of potential paths for each. These paths do not include
any executed instructions in the app prior to the entry point, which
excludes such code as any constructors that set the initial state of the
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app. Due to the fact that the entry points in an app can be invoked in
any sequence, we opt to take a conservative approach. Specifically,
we do not attempt to model this initially-executed code, since any
field initializations made in it could have been overridden by another
exposed interface. As a result, our algorithm begins by assuming that
a field might contain any assignable value. As that field is used along
a path of execution, the list of possible values shrinks each time it is
used in a way that renders some candidate values impossible.
When reducing infeasible paths, we also face the same type infer-

ence problem experienced in the first step. Fortunately, the set of
inferences built up by symbolic path simulation naturally mitigates
the path explosion caused by our first step. Specifically, object in-
stances can be tracked during the path simulation, and some paths
will become infeasible after the system first “guesses” at the object’s
type somewhere along a path. In addition, certain Dalvik bytecode,
especially type-carrying instructions, also help. For instance, the

he
k-
ast opcode establishes that its operand can be assigned to
the supplied type, or an exception is thrown.
In addition, the execution of the algorithm in our case also involves

handling Android framework APIs or methods that do not belong to
the app. Specifically, the app under inspection may invoke certain
APIs that are exported by the Android framework. In our algorithm,
the transfer function for a method invocation opcode is amethod sum-
mary, which essentially phrases the method’s outputs in terms of its
inputs. Without statically analyzing the code for an external method
– and all of its dependencies – we cannot build such a summary. Yet
analyzing the entire Android framework would easily lead to state
explosion and place an enormous burden on our algorithm. To solve
this dilemma, we again leverage the well-defined API semantics of
the Android framework. Specifically, it contains a remarkably robust
set of predefined libraries, which reduces the need for developers to
pull in third-party libraries to support their code. By summarizing
these built-in classes ahead of time, we can avoid paying the time,
space, and complexity costs associated with doing so each time dur-
ing application analysis. In our prototype, we found that this approach
allows us to phrase some functions more succinctly than the algorithm
would, as we can trim out unimportant details from the summaries.
During this infeasible path pruning step, we also need to account

for explicit permission checks within the identified path. An app
might allow any caller to invoke its entry points, yet deny unprivi-
leged callers access to dangerous functionality by explicitly checking
the caller’s credentials before any dangerous invocations. Such an ar-
rangement would not constitute a capability leak, and so should not
be reported. A naïve solution would be to mark any path encoun-
tering an interesting permission check as infeasible. However, our
approach does not know what kind of dangerous call lies at the end of
the path beforehand. Allowing unrelated permission checks to mark
whole paths as infeasible would therefore introduce false negatives.
Instead, we model the permission system within our artificial method
summaries. Explicit permission checks set a flag along their “true”
branch; if that path of execution later encounters a corresponding dan-
gerous call, it is not reported as a capability leak.
A side benefit of performing this kind of analysis is that it mod-

els all data flow assignments, not just those relating to branch con-
ditions. As a result, we can trace the provenance of any arguments
to the dangerous method. With such information, we can character-
ize the severity of the capability leak. A capability leak that directly
passes through arguments from the external caller is obviously worse
than one that only allows invocation with constant values, and this
design can distinguish between the two. Given that path feasibility is
undecidable, our design errs on the side of caution: it will not claim
a feasible path is infeasible, but might claim the reverse is true. As
a result, this argument information is valuable, as it can be used to
generate a concrete test case that verifies the presence of the detected
capability leak.

3.2 Implicit Capability Leak Detection
In explicit capability leak detection, we focus on those apps that

request permissions of interest in their manifest file. If an app has
a sharedUserId in its manifest but does not request a certain (dan-
gerous) permission, we also need to investigate the possibility of an
implicit leak.
To detect implicit capability leaks, we employ much the same al-

gorithm as for explicit leaks. However, some of the inputs to that
algorithm must be changed to reflect a basic difference in focus: ex-
plicit capability leak detection assumes the caller of an app’s exposed
API is malicious, while implicit capability leak detection assumes the
app itself might be malicious. Accordingly, instead of only starting
from the well-defined entry points in the explicit leak detection, we
also need to broaden our search to include the app’s initialization.
However, modelling the initialization process in an Android app

is somewhat complicated. Specifically, there are two kinds of con-
structors to handle: Instance constructors are explicitly invoked in the
Dalvik bytecode (with the new-instan
e bytecode operation); Class
constructors – stati
 initialization blocks – are implicitly invoked
the first time a class is used. Accordingly, instance constructors are
relatively straightforward to handle as they need to be explicitly in-
voked. However, class constructors are more complicated. In partic-
ular, a class constructor may be invoked in a number of scenarios: it
is instantiated with the new keyword, a stati
 member of the class is
referenced, or one of its subclasses is likewise initialized. This means
that this type of initialization can occur in a variety of orders. In our
prototype, we treat all of the relevant instructions as branches, and
take into account the class loading order to determine the path fea-
sibility. Also, in our system, we consider a capability to have been
implicitly leaked if there is any way to exercise it, which is differ-
ent from explicit capability leak detection. (This has implications in
changing method summaries used for pruning infeasible paths – Sec-
tion 3.1.2.)
Finally, once we have identified that an implicit capability leak ex-

ists, we can perform an additional step to determine whether that leak
may actually be exercised. In the context of a phone’s system image,
we can determine the runtime permissions granted to each shared user
identifier by crawling the manifest files of all the packages in the im-
age. We union the permissions granted to each application with a
given shared user identifier, which yields the set of permissions given
to each of them. We report any implicitly leaked permissions con-
tained within that set.

4. IMPLEMENTATION
We have implemented a Woodpecker prototype that consists of

a mixture of Java code, shell scripts and Python scripts. Specifi-
cally, our static analysis code was developed from the open-source
baksmali disassembler tool (1.2.6). As discussed in Section 3, our
static analysis approach is rather standard. In the following, wemainly
focus on the peculiarities of the Android platform as well as the devi-
ations they cause from standard practice.

4.1 Dalvik Bytecode & Manifest Extraction
To detect possible capability leaks in an Android phone, our system

first leverages the Android Debug Bridge (adb) tool [2] to obtain ac-
cess the phone’s system image, mainly those files in the /system/app
and /system/framework directories. These directories contain all of
the pre-installed apps on the device, as well as any dependencies they
need to run.
After obtaining the phone image, we then enumerate all pre-installed

apps. For each app, our system decompresses the related Android
package (apk) file to extract its manifest file (AndroidManifest.xml),
which is then paired with the app’s bytecode (either 
lasses.dex or
its odex variant). A standalone script has been developed to extract

5



all the pre-installed apps and disassemble them to extract their byte-
code for subsequent analysis. Based on the number of apps installed
on the device as well as the complexity or functionality implemented
in these apps, this process typically takes on the order of ten minutes
per smartphone image.
Based on the extracted app manifest, we further comb through it

for two things: requests for any permissions of interest and the op-
tional sharedUserId attribute. Apps that are granted related permis-
sions are checked for explicit capability leaks, while those with the
sharedUserId attribute set are checked for implicit capability leaks.
Naturally, we also compute the actual set of permissions granted to
each pre-loaded app by combining all the permission requests made
with the same sharedUserId.

4.2 Generic Control-Flow Graph Construction
Among all the pre-loaded apps on the phone device, we iterate

through each app to detect possible capability leaks. As there are tens
of dangerous permissions defined in the Android framework, instead
of building a specific control-flow graph (CFG) for each permission,
we choose to first build a generic CFG to assist our static analysis.
Specifically, we start from each entry point and build the CFG. The

generic CFG will be the union of those CFGs from the defined en-
try points. There is a subtlety between components defined in the
manifest file and the actual entry points for CFG construction. In
particular, some entry points are standard and can be readily deter-
mined by the type of components contained within the app. There
are in total four types, and each has a predefined interface to the
rest of the system. For instance, any “receiver” defined in the man-
ifest file must subclass android.
ontent.Broad
astRe
eiver. In
such cases, inspecting the class hierarchy allows to determine that
the “onRe
eive(Context, Intent)” method is an entry point (as per
the specification).
Moreover, among these four types, three of them solely take data

objects as inputs through their entry points, but services can be differ-
ent. In particular, Android defines a CORBA-like binding language,
the Android Interface Definition Language (AIDL), which allows ser-
vices to expose arbitrary methods to other apps. aidl files are used at
compile-time to manufacture Binder stubs and skeletons that encap-
sulate the necessary IPC functionality. At run-time, the component’s
onBind(Intent) method is called by the system, which returns an
android.os.Binder object. The methods contained within this ob-
ject are then exported to callers that have a compatible skeleton class.
Since we only analyze the bytecode and do not have access to the
original aidl files used to define the interface, there is a need to fur-
ther parse and infer the internal structure of the Binder object. Each
such object contains an onTransa
t() method that is passed a par-
cel of data that encodes which method to call. We can then treat this
method as an entry point in order to build our CFG. However, once
the graph has been built, it is more semantically accurate to treat the
embedded method calls in onTransa
t() as entry points for the pur-
poses of our feasible path refinement stage.
From another perspective, Android-based apps essentially expose

a set of callbacks to the system instead of a single “main method.”
Our system leverages the knowledge of how these callbacks are de-
fined in Android to identify them. In addition, the Android framework
defines many other callbacks at run-time, which will similarly cause
discontinuities in the CFG generation. One example is the previous
Thread.start()->run() scenario. In our prototype, instead of stati-
cally analyzing the entire Android framework, we opt to use knowl-
edge of the framework’s semantics to connect the registration of a
callback to the callback itself. To automate this process, we pro-
vide a boilerplate file that represents knowledge about the framework.
This file contains simplified definitions for any explicitly-modelled
method in the framework, written in the dex format; it is fed into our
system alongside the app’s code to facilitate CFG construction.

Permission Capability

ACCESS_COARSE_LOCATION Access coarse location (e.g., WiFi)
ACCESS_FINE_LOCATION Access fine location (e.g., GPS)

CALL_PHONE Initiate a phone call (without popping up an
UI for confirmation.)

CALL_PRIVILEGED Similar to CALL_PHONE, but can dial emer-
gency phone numbers (e.g., 911)

CAMERA Access the camera device
DELETE_PACKAGES Delete existing apps
INSTALL_PACKAGES Install new apps

MASTER_CLEAR Remove user data with a factory reset
READ_PHONE_STATE Read phone-identifying info. (e.g., IMEI)

REBOOT Reboot the device
RECORD_AUDIO Access microphones

SEND_SMS Send SMS messages
SHUTDOWN Power off the device

Table 2: 13 Representative Permissions (For brevity, we omit the

android.permission. prefix in each permission)

4.3 Capability Leak Detection
With the generic CFG and the set of entry points, we then aim to

identify possible execution paths from one of the entry points to some
use of an Android API that exercises a permission of interest. If the
path is not protected by the appropriate permission checks and its en-
try point is publicly accessible, an explicit capability leak is detected.
Due to the large number of sensitive permissions defined in the An-
droid framework, our study chooses thirteen representative permis-
sions marked dangerous, signature or signatureOrSystem. These
permissions are summarized in Table 2 and were chosen based on
their potential for abuse or damage.
For each chosen permission, our first step is to identify the list

of related Android APIs that might exercise the permission. How-
ever, such a list is not easy to come by. In fact, we found out that
though Android’s permission-based security model might be com-
prehensive enough in specifying the permissions required to access
sensitive data or features, the available API documentation is incom-
plete about which APIs a permission grants access to. Specifically,
when dealing with various apps in the system image, we encountered
numerous permissions not meant for general consumption – and that
therefore do not even have formally specified APIs. One example is
“android.permission.MASTER_CLEAR,” which allows an app to per-
form a factory reset of the smartphone. This permission is marked as
signatureOrSystem, so only apps included in the system image can
request it; it is intended to be implemented by the vendor and only
used by the vendor, so none of the APIs listed in the API documenta-
tion check this permission.
For each related permission and the associated Android APIs, our

next step then reduces the generic CFG to a permission-specific CFG.
Within the reduced CFG, we can then apply the Algorithm 1 to locate
possible execution paths from an entry point to the associated An-
droid APIs. For each identified path, we further look for the presence
of certain permission checks. Our experience indicates that some per-
mission checks are already defined in the manifest file (and thus au-
tomatically enforced by the Android framework). However, many
others will explicitly check their caller’s permissions. In our pro-
totype, we resort to the Android Open Source Project (AOSP) to
find explicit permission checks in the framework. There are also
some cases that do not fall under the AOSP. For them we have to
apply baksmali to representative phone images and then manually
examine each explicit permission check. Using the previous example
of “android.permission.MASTER_CLEAR,” Android provides an inter-
face, android.os.IChe
kinServi
e, which declares the masterClear()
method. The Samsung Epic 4G’s factory reset implementation con-
tains a class named 
om.android.server.Fallba
kChe
kinServi
e.
This class implements this Android interface, whose masterClear()
method explicitly checks the “android.permission.MASTER_CLEAR”
permission.
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To facilitate our static analysis, our prototype also includes a fic-
titious dangerous class that has many static permission-associated
member fields. Each identified Android API call, if present in an
execution path being analyzed, will update the member field related
to the associated permission. As a result, we can detect dangerous
calls by simply listing the related member fields in this class.
To model the impact a caller’s permissions have on whether a dan-

gerous call can succeed, we use another fictitious permission class.
This class contains a number of member fields and an artificial method
definition for Context.
he
kCallingPermission(). This method sets
these member fields dependent upon the permission it is called with.
In other words, each member field flags whether a path of execution
has checked a particular permission. During an explicit capability
leak analysis run, we only consider a capability to have been leaked
if a state exists that contains a dangerous-call field modification (in
dangerous) and does not have the corresponding permission-check
flag set (in permission). Implicit capability leak analysis does not
need to be concerned about the value of the permission-check flags.
Instead, it is sufficient to have a dangerous call field modification (in
dangerous).

5. EVALUATION
In this section, we present the evaluation results of applying Wood-

pecker to eight smartphones from four vendors, including several
flagship phones billed as having significant additional bundled func-
tionality on top of the standard Android platform. We first describe
our methodology and tabulate our results in Section 5.1. In Sec-
tion 5.2, we present three case studies: two explicit leaks and one
implicit leak. Lastly, Section 5.3 consists of a performance measure-
ment of our system, both in terms of the accuracy of its path-pruning
algorithm and its speed.

5.1 Results Overview
In order to assess capability leaks posed in the wild, we selected

phones representing a variety of manufacturers and feature sets. Ta-
ble 3 shows the phone images and their versions we analyzed using
Woodpecker. These phones span most of the 2.x version space, and as
shown by the app count for each phone image, some are considerably
more complex than others.

Vendor Model Android Version # Apps

HTC
Legend 2.1-update1 125
EVO 4G 2.2.2 160
Wildfire S 2.3.2 144

Motorola
Droid 2.2.2 76
Droid X 2.2.1 161

Samsung Epic 4G 2.1-update1 138

Google
Nexus One 2.3.3 76
Nexus S 2.3.3 72

Table 3: Experimented Android-based Smartphones

Running Woodpecker on each phone image produces a set of re-
ported capability leak paths. For each reported path, we then man-
ually verify the leak by tracing the path through the disassembled
Dalvik bytecode. For explicit capability leaks whose paths seem plau-
sible, we then craft a test application and run it on the actual device,
where possible. The results are summarized in Table 4.
After identifying these capability leaks, we have taken considerable

time in reporting them to corresponding vendors. As of this writing,
Motorola and Google have confirmed all the reported vulnerabilities
in the affected phones. HTC and Samsung have been really slow
in responding to, if not ignoring, our reports/inquires. Though the
uncovered capabilities leaks on the HTC and Samsung phones have
not been confirmed from respective vendors, we have developed a test

app to exercise and confirm all the discovered (explicit) capability
leaks on the affected phones.
We believe these results demonstrate that capability leaks consti-

tute a tangible security weakness for many Android smartphones in
the market today. Particularly, smartphones with more pre-loaded
apps tend to be more likely in having explicit capability leaks. The
reference implementations from Google (i.e., Nexus One and Nexus
S) are rather clean and free from capability leaks except only one ex-
plicit leak (marked as 3

2in Table 4) by an app 
om.svox.pi
o. This
app defines a receiver, which can be tricked to remove another app,

om.svox.langpa
k.installer by any other third-party app.4 Our
data also show that these capability leaks are not very evenly dis-
tributed among smartphones – at least for the thirteen permissions
we modelled. For example, those smartphones with system images
(i.e., Motorola Droid) very close to the reference Android design (i.e.,
Google Nexus One and Nexus S) seem to be largely free of capability
leaks, while some of the other flagship devices have several. De-
spite this general trend, we caution against drawing any overly broad
conclusions, as some devices (e.g., Motorola Droid X) with higher
app counts nevertheless contained fewer capability leaks than sub-
stantially simpler smartphones (e.g., HTC Legend).

5.2 Case Studies
To understand the nature of capability leaks and demonstrate the ef-

fectiveness of our system, we examine three scenarios in depth. These
scenarios were selected to illustrate some of the patterns we encoun-
tered in practice, as well as how our system was able to handle them.

5.2.1 Explicit Capability Leaks Without Arguments

The simplest scenario, from Woodpecker’s perspective, involves
an entry point calling a dangerous capability that is not influenced
by any arguments. These capabilities tend to have simpler control
flows, as there are no arguments to validate or parse. The Samsung
Epic 4G’s MASTER_CLEAR explicit capability leak is of this type, as it
ends with the dangerous call Che
kinServi
e.masterClear(), which
functionally performs a factory reset.
To understand how Woodpecker detects this explicit ca-

pability leak, we first explain the normal sequences when
the MASTER_CLEAR capability is invoked. Specifically, the
Samsung Epic 4G’s phone image has a pre-loaded app,

om.se
.android.app.Sele
tiveReset, whose purpose is to
display a confirmation screen that asks the user whether to reset
the phone. The normal chain of events has another system app
broadcast the custom android.intent.a
tion.SELECTIVE_RESET
Intent, which the Sele
tiveResetRe
eiver class (defined in the
pre-loaded app) listens for. When this class receives such an intent,
it opens the user interface screen (Sele
tiveResetApp) and waits
for the user to confirm their intentions. Once this is done, the
Sele
tiveResetServi
e is started, which eventually broadcasts
an intent android.intent.a
tion.SELECTIVE_RESET_DONE. The
original Sele
tiveResetRe
eiver class listens for this Intent and
then calls Che
kinServi
e.masterClear().
Our system detects the last part of the above chain starting after the

broadcasted intent android.intent.a
tion.SELECTIVE_RESET_DONE
is received in the same pre-loaded app. In particular, the
intent arrives at one entry point defined in the app’s mani-
fest file (i.e., the onRe
eive(Context, Intent) method within
Sele
tiveResetRe
eiver), which then executes a rather straightfor-

4This 
om.svox.pi
o app implements a text-to-speech engine
that the accessibility APIs use to talk. However, it exports
a public receiver interface, 
om.svox.pi
o.LangPa
kUninstaller
for android.spee
h.tts.engine.TTS_DATA_INSTALLED intents. If
this intent is received, this app will blindly remove another app

om.svox.langpa
k.installer, which is hard-coded in the imple-
mentation.
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HTC Motorola Samsung Google
Permission Legend EVO 4G Wildfire S Droid Droid X Epic 4G Nexus One Nexus S

E I E I E I E I E I E I E I E I

ACCESS_COARSE_LOCATION 3 3 3 3 · 3 · · 3 · · · · · · ·

ACCESS_FINE_LOCATION 3 · 3 · · 3 · · 3 · · · · · · ·

CALL_PHONE · · · · · · · · · · 3 3 · · · ·

CALL_PRIVILEGED · · · · · 3
1

· · · · · · · · · ·

CAMERA 3 · 3 · 3 · · · · · · · · · · ·

DELETE_PACKAGES 3
2

· 3
2

· 3
2

· 3
2

· 3
2

· 3
2

· 3
2

· 3
2

·

INSTALL_PACKAGES · · · · · · · · · · · · · · · ·

MASTER_CLEAR · · · · · · · · · · 3 · · · · ·

READ_PHONE_STATE · 3 · 3 · 3 · · 3 · · 3 · · · ·

REBOOT · · 3 · · · · · · · · · · · · ·

RECORD_AUDIO 3 · 3 · 3 · · · · · · · · · · ·

SEND_SMS 3 · 3 · 3 · · · · · · · · · · ·

SHUTDOWN · · 3 · · · · · · · · · · · · ·

Total 6 2 8 2 4 4 1 0 4 0 3 2 1 0 1 0

Table 4: Capability Leak Results of Eight Android-based Smartphones (E: explicit leaks; I: implicit leaks)

ward Intent-handling code sequence:

1. Determines that the Intent it just received is a
android.intent.a
tion.SELECTIVE_RESET_DONE operation;

2. Gets the Che
kinServi
e that contains the master clear func-
tionality;

3. Checks whether it was retrieved successfully;

4. Calls Che
kinServi
e.masterClear() in a worker thread.

Since Che
kinServi
e.masterClear() takes no arguments, no addi-
tional dataflow analysis needs be performed to characterize the capa-
bility leak.
In our experiments, we found other capability leaks of the same na-

ture, including the REBOOT and SHUTDOWN leaks on the HTC EVO 4G,
which involve a receiver listening for a new custom Intent and then
immediately exercising the related functionalities. Also, on the same
phone, we found a new vendor-defined capability FREEZE exposed by
a system app, which disables the phone’s touchscreen and buttons un-
til the battery is removed. In those cases, there is literally no control
flow involved, making these capability leaks trivial to exploit.

5.2.2 Explicit Capability Leaks With Arguments

Looking beyond simple imperative capability leaks, we consider
more complicated cases that involve arguments-taking capabilities.
For example, Android’s SMS API consists of three methods, each of
which takes five or six arguments. The HTC phones have an explicit
leak of this capability that entails significant preprocessing of these
arguments, so we examine it next.
On these phones, the general 
om.android.mms messaging

app has been extended to include a non-standard service,

om.ht
.messaging.servi
e.SmsSenderServi
e, which is used by
other vendor apps to simplify sending SMS messages. This service
can be started with an Intent that contains a number of additional
data key-value pairs, known as Extras. Each Extra contains some
data about the SMS to be sent, such as the message’s text, its call-
back phone number, and the destination phone number etc.
The SmsSenderServi
e service processes these fields in its

onStart(Intent, int) entry point, ensuring that the mandatory key-
value pairs exist, including the message body and destination phone
number. If they do, the Intent is bundled into a Message and
sent to the SmsSenderServi
e$Servi
eHandler class via the Android
message-handling interface. This interface is designed to allow differ-
ent threads of execution to communicate using a queue of Messages.
The typical paradigm uses a subclass of android.os.Handler to poll
for new Message objects, using a handleMessage(Message) method.
Such android.os.Handler objects also expose methods to insert
Messages into their queue, such as sendMessage(Message).

When building possible paths and pruning infeasible paths, our
system will diligently resolve the super- and sub-class relation-
ships that bracket the message-passing code. In this case, the
initial SmsSenderServi
e$Servi
eHandler.sendMessage(Message)
call fully specifies the class that sendMessage(Message) will be
called upon, but SmsSenderServi
e$Servi
eHandler does not con-
tain a definition for that method. Looking to its superclass,
android.os.Handler, Woodpecker finds an artificial method def-
inition of the appropriate signature. This definition in turn
calls the android.os.Handler.handleMessage(Message) method,
which is extended by the SmsSenderServi
e$Servi
eHandler
class. In this case, our design has no difficulty resolv-
ing these relationships, because the first call fully specifies the
SmsSenderServi
e$Servi
eHandler class. This type information is
then carried forward through the call chain as a constraint on the ar-
guments to each call, as a class’ methods are associated with an object
instantiating that class via an implicit argument (the this keyword).
Ultimately, the app execution flow will reach

SmsManager.sendMultipartTextMessage(), a method that exer-
cises the dangerous SEND_SMS permission. The arguments by this
point have been transformed: the destination address remains the
same, but the call-back number may not have been provided by the
Intent’s data, and the message body might have been chunked into
SMS-sized pieces if it is too long. When processing this execution
path, Woodpecker reports this path as feasible and thus exposing the
exercised permission SEND_SMS. Since the exercised capability took a
number of arguments, our system also reports the provenance of each
related argument to the Android API, which allows for straightfor-
wardly linking the API arguments back to the original Intent passed
to the entry point at the very beginning. In other words, by simply
including a premium number in the intent, the built-in app will start
sending SMS messages to this premium number!
Our experience indicates most capability leaks we detected are of

this form. For example, the explicit leak of CALL_PHONE capability
in Samsung Epic 4G involves passing a component a “technical as-
sistance” phone number, which it calls after considerable processing.
Similarly, all the tested HTC phones export the RECORD_AUDIO per-
mission, which allows any untrusted app to specify which file to write
recorded audio to without asking for the RECORD_AUDIO permission.

5.2.3 Implicit Capability Leaks

Explicit leaks seriously undermine the permission-based security
model of Android. Implicit leaks from another perspective misrepre-
sent the capability requested by an app. In the following, we choose
one representative implicit leak and explain in more detail.
Specifically, the HTC Wildfire S has a built-in MessageTab app,


om.android.MessageTab, which uses the CALL_PRIVILEGED capa-
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bility (marked as 3
1in Table 4) without declaring it in its mani-

fest. This MessageTab app is intended to manage the phone’s SMS
messages, allowing the user to review sent messages and send new
ones. For the sake of convenience, this app links messages sent to
contacts with the appropriate contact information, allowing the user
to dial contacts directly through a “contact details” screen. How-
ever, this app does not declare the correct permissions to call phone
numbers, as it only requests SMS-related permissions: neither the
CALL_PHONE nor CALL_PRIVILEGED permission occur in its manifest.
On the other hand, MessageTab does declare a sharedUserId at-
tribute: “android.uid.shared.” This user identifier is used by a num-
ber of core Android apps, including 
om.android.ht
dialer – which
has both phone-dialing permissions.
When analyzing this app, Woodpecker reports an implicit leak

in the 
om.android.MessageTab.Conta
tDetailMessageA
tivity2
activity component. Specifically, this component has a onResume()
method – an entry point called when the activity is displayed on
the screen. In this case, it is used to instruct on how to build
a list of contacts to display on the screen, by calling 
om.ht
-
.widget.Ht
ListView.setOnCreateContextMenuListener() with
a callback object (Conta
tDetailMessageA
tivity2$3). When
the user long-presses one of these contacts, that callback object’s
onCreateContextMenu() method is called. This method then calls
Conta
tDetailMessageA
tivity2.addCallAndConta
tMenuItems()
to make the contacts’ context menus. A call to a helper method,
android.mms.ui.MessageUtils.getMakeCallDire
tlyIntent(),
builds the Intent to send to dial a contact. This
helper method builds the actual android.intent.a
tion.-
CALL_PRIVILEGED Intent, which will be broadcasted when
the user clicks on the contact. From the disassembled code,
the addCallAndConta
tMenuItems() method also registers an
Conta
tDetailMessageA
tivity2$MsgListMenuCli
kListener
object as a callback for the click-able contact. This object’s
onMenuItemCli
k(MenuItem) method is then called, which takes the
Intent associated with the contact and calls 
om.android.internal-
.telephonyITelephony.dialWithoutDelay(Intent) with it, which
immediately dials a phone number.
Note that this implicit capability leak traversed a number of call-

backs that either require user intervention or are very visible to the
user. These callbacks would normally not be considered useful for an
explicit capability leak, which assumes a malicious caller. However,
as implicit capability leaks assume that the app itself may be mali-
cious, our algorithm simply reports them by not making such value
judgments when considering possible execution paths.

5.3 Performance Measurement
Next, we evaluate the performance of our prototype, in terms of

both the effectiveness of its path pruning algorithm and the amount of
time it takes to process a smartphone’s system image.
To measure how well Woodpecker’s path pruning algorithm elim-

inates infeasible paths, we consider its output from the experiments
with a single permission, android.permission.SEND_SMS. In partic-
ular, we run only the possible-paths portion of the algorithm (i.e.,
with no pruning) and identify how many entry points might contain a
path to a dangerous capability. Our results show that for each phone,
Woodpecker will report more than 8K possible paths. This surpris-
ingly large number is due to the conservative approach we have taken
in resolving an ambiguous reference to assignable classes. Fortu-
nately, our re-run of the full system by pruning the infeasible paths
immediately brings the number to the single digits. Specifically, our
system only reports capability leaks in the HTC phones, especially
2, 3, 2 for the HTC Legend, EVO 4G, and Wildfire S respectively.
Among the reported leaks, we then manually verify the correctness
of the pruned paths. The results show they are all valid with no false
positives. Note that the presence of one single path is sufficient to leak

Vendor Model Processing Time # Apps

HTC
Legend 3366.63s 125
EVO 4G 4175.03s 160
Wildfire S 3894.37s 144

Motorola
Droid 2138.38s 76
Droid X 3311.94s 161

Samsung Epic 4G 3732.56s 138

Google
Nexus One 2059.47s 76
Nexus S 1815.71s 72

Table 5: Processing Time of Examined Smartphone Images

the related capability. We do not measure false negatives due to the
lack of ground truth in the tested phone images. However, because of
the conservative approach we have been taking in our prototype, we
are confident in its low false negatives.
For the processing time, we measure them directly by running our

systemmultiple times over the tested smartphone images. We analyze
each image ten times on an AMD Athlon 64 X2 5200+ machine with
2GB of memory and a Hitachi HDP72502 7200 rpm hard drive. The
mean of these results are summarized in Table 5. Each phone image
took at most a little over an hour to process. We believe the average
time (∼ 51.0 minutes) per image to be reasonable given the offline
nature of our tool, which has not yet been optimized for speed.

6. DISCUSSION
Our system has so far uncovered a number of serious capability

leaks in current smartphones from leading manufacturers. Given this,
it is important to examine possible root causes and explore future
defenses.
First of all, capability leaks essentially reflect the classic confused

deputy attack [20] where one app is tricked by another into improp-
erly exercising its privileges. Though one may easily blame the man-
ufacturers for developing and/or including these vulnerable apps on
the phone firmware, there is no need to exaggerate their negligence.
Specifically, the permission-based security model in Android is a ca-
pability model that can be enhanced to mitigate these capability leaks.
One challenge however is to maintain the integrity of those capabili-
ties when they are being shared or opened to other unrelated apps. In
other words, either the capability-leaking app needs to ensure that it
will not accidently expose its capability without checking the calling
app’s permission or the underlying Android framework will diligently
mediate app interactions so that the integrity will be maintained to not
leak the capability. However, the interaction among apps are usually
application-specific, and their semantic information could be hard for
the Android framework to obtain.
Second, to avoid unsafely exposing capabilities, we can also de-

velop a validator tool and release it together with the Android SDK.
Note that such a validator tool needs to accommodate various ways
on how the permission model is implemented in Android. Specif-
ically, Android uses string identifiers to represent permissions, and
permission information can be encoded in either the app’s manifest
or code, which indicates that the permission model cannot be consid-
ered type-safe. Accordingly, conventional Java source code analysis
tools are not aware of the impact permissions have on program exe-
cution. To the best of knowledge, we are not aware of any other tool
that is designed to identify potential capability leaks within an app.
Woodpecker represents our first step towards such a validator tool

for capability leak detection. Though it has identified serious capa-
bility leaks in current Android phones, it still has a number of limi-
tations that need to be addressed. For example, other than tightening
the underlying implementation and incorporating latest development
of accurate, scalable points-to analysis [10, 31, 32], our system needs
to expand the coverage to accommodate native code. (Our prototype
only works for Dalvik bytecode, not the actual machine code.) Also,
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there is a lack of support in our current system when dealing with one
advanced class of capability leaks: chained capability leaks. To illus-
trate, consider three apps A, B, and C. App C has a CALL_PHONE capa-
bility, which it safely exposes to B by defining a new permission, say
MY_CALL_PHONE. The new permission is acquired by B. For a chained
leak to occur, B opens up the new permission unsafely to A. As a re-
sult, there is a call chain A->B->C, which could leak the CALL_PHONE
capability. Moreover, as the new permission MY_CALL_PHONE can be
arbitrary and specific to an particular app implementation, there is a
need to explore innovative ways to extend our current prototype to
accommodate such chained capability leaks.
Finally, our study only examines capability leaks among pre-loaded

apps in the phone firmware. We also expect the leaks could occur
among third-party user apps. Note that phone images are relatively
homogeneous and static with usually a somewhat infrequent update
schedule. Capability leaks, especially explicit ones, on phone images
are of great interest to malicious third parties. Implicit leaks, on the
other hand, appear to be relatively rare, which we assume are more
software engineering defects than a real security threat. However,
for third-party apps, implicit leaks could constitute collusion attacks
that directly undermine the app market model. Specifically, app mar-
kets do not report the actual permissions granted to an app. Instead
they report only the permissions an app requests or embodied in the
manifest file. As a result, a cohort of seemingly innocuous apps could
conspire together to perform malicious activities and the user may not
be informed of the true scope of their permissions within the system.
Meanwhile, we hypothesize that explicit leaks in user-installed apps
may be less common and useful, as an app must have both a sizable
installed base and unwittingly expose some interesting functionality
in order for an attacker to derive much benefit from exploiting the
leaked capabilities. In future work, we plan to apply Woodpecker to
assess the threat posed by capability leaks in user apps.

7. RELATEDWORK
Smartphones have recently attracted considerable attention, espe-

cially in the context of privacy. Accordingly, much work has been
devoted to analyzing smartphone apps, either statically or dynami-
cally. For example, TaintDroid [16] applies dynamic taint analysis
to monitor information-stealing Android apps. Specifically, by ex-
plicitly modeling the flow of sensitive information through Android,
TaintDroid raises alerts when any private data is going to be trans-
mitted from the device. A follow-up work [17] developed a Dalvik
decompiler ded to statically uncover Java code from the Dalvik byte-
code in popular free Android apps. The uncovered Java code is then
fed into existing static analysis tools to understand or profile the app
behavior. Woodpecker is different from these efforts with its unique
focus on statically analyzing pre-loaded apps in smartphone firmware
to uncover possible capability leaks.
From another perspective, researchers have also developed static

analysis tools for privacy leaking detection. For example, PiOS [15]
is a representative example, which constructs a control-flow graph for
an iOS app and then looks for the presence of information-leaking
execution through that graph. Specifically, PiOS tries to link sources
of private information to network interfaces. In comparison, Wood-
pecker was developed for the Android platform and thus needs to
overcome platform-level peculiarities for the control-flow construc-
tion and data flow analysis (Section 3). Most importantly, Wood-
pecker has a different goal in uncovering unsafe exposure of danger-
ous capability uses, including both explicit and implicit ones. In the
same vein, work by Chaudhuri et al. [11, 19] formalizes data flow
on Android so that a data flow policy can be formally specified for
an Android app, which can then be checked against the app code to
ensure compliance. A SCanDroid system [19] has been accordingly
developed to extract such specifications from the app’s manifests that
accompany such applications, and check whether data flows through

the app are consistent with the specification. Note that SCanDroid
requires accessing the app’s Java source code for the analysis, which
is not available in our case for capability leak detection.
On the defensive side, TISSA [37] argues for a privacy mode in

Android to tame information-stealing apps. Kirin [18] attempts to
block the installation of apps that request certain combinations of per-
missions with deleterious emergent effects. A development of that
system, Saint [28], empowers the app developer to specify additional
constraints on the assignment of permissions at install-time and their
use at runtime. Apex [26] modifies the permission framework to al-
low for selectively granting permissions and revoking permissions at
runtime. MockDroid [9] allows privacy-sensitive calls to be rewritten
to return “failure” results. In the .NET framework, Security by Con-
tract [13] allows an application’s behavior to be constrained at run-
time by a contract. Such contract-based systems might represent a de-
fense against implicit capability leaks, though none of these share the
same goal of exposing the capability leaks in smartphone firmware.
As discussed earlier, capability leaks essentially reflect the con-

fused deputy attack [20]. Other researchers also warn of similar at-
tacks in Android [14, 12, 27]. For example, Davi et al. [12] show
a concrete confused deputy attack against the Android Scripting En-
vironment. QUIRE [14] allows apps to reason about the call-chain
and data provenance of requests, which could be potentially help-
ful in mitigating this attack. Nils [27] manually analyzed the HTC
Legend’s system image looking for possible permission abuses. In
comparison to these efforts, our work develops a semi-automated
system to systematically detect such capability leaks. In fact, only
manual effort required by Woodpecker comes from verifying the de-
tected leaks. Moreover, note that some Android malware such as
Soundcomber [29] were developed by requesting certain Android per-
missions. Our research shows that these requests could be poten-
tially avoided as the permissions might have already been leaked (e.g.,
RECORD_AUDIO).
More generally, a number of systems that target desktop apps have

been developed to detect system-wide information flow or confine
untrusted app behavior. For example, TightLip [35] treats a target
process as a black box. When the target process accesses sensitive
data, TightLip instantiates a sandboxed copy, gives fuzzed data to the
sandboxed copy and runs the copy in parallel with the target for output
comparison and leak detection. Privacy Oracle [24] applies a differen-
tial testing technique to detect the correlation or likely leaks between
input perturbations and output perturbations of the application. Also,
system-level approaches such as Asbestos [33], HiStar [36], Process
Coloring [23], and PRECIP [34] instantiate information flow at the
process level by labeling running processes and propagating those
labels based on process behavior. While we expect some of these
approaches will be applicable on resource-constrained mobile phone
environments, they are more focused on detecting information leaks
instead of capability leaks (and their applicability to the smartphone
setting still remains to be demonstrated).

8. CONCLUSIONS
In this paper, we present a system called Woodpecker to exam-

ine how the Android-essential permission-based security model is en-
forced on current leading Android-based smartphones. In particular,
Woodpecker employs inter-procedural data flow analysis techniques
to systematically expose possible capability leaks where an untrusted
app can obtain unauthorized access to sensitive data or privileged ac-
tions. The results are worrisome: among the 13 privileged permis-
sions examined so far, 11were leaked, with individual phones leaking
up to eight permissions. These leaked capabilities can be exploited to
wipe out the user data, send out SMS messages (e.g., to premium
numbers), record user conversation, or obtain the user’s geo-location
data on the affected phones – all without asking for any permission.
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