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Abstract. Reliability is one of the challenges faced by exascale cdimguCom-
ponents are poised to fail during large-scale executiovengturrent mean time
between failure (MTBF) projections. To cope with failuressilience methods
have been proposed as explicit or transparent techniquesthg latter tech-
niques, this paper studies the challenge of fault detection

This work contributes generic fault detection capabgit the MPI level and be-
yond. A first approach utilizes a periodic liveness checklevhisecond method
promotes sporadic checks upon communication activitieg. dontributions of
this paper are two-fold: (a) We provide generic interpooshIP| applications
for fault detection. (b) We experimentally compare pergogind sporadic meth-
ods for liveness checking. We show that the sporadic appraaen though it
imposes lower bandwidth requirements and utilizes loweguency checking,
results inequal or worseapplication performance than a periodic liveness test
for larger number of nodes. We further show that performingness checks in
separation from MPI applications results in lower overhieah interpositioning.
Hence, we promote separate periodic fault detection asutherier approach for
fault detection.

1 Introduction

The current road map to exascale computing faces a numblealiénges, one of which
is reliability. Given the number of computing cores, progetto be as large as a million,
with ten of thousands of multi-socket nodes, componentpaiged to fail during the
execution of large jobs due to a decreasing mean time betiaieres (MTBF) [14,19].
When faults become the norm rather than the exception, tberlying system needs
to provide a resilience layer to tolerate faults. Proposethds for resilience range
from transparent techniques, such as checkpointing anghatational redundancy, to
explicit handling, such as in probabilistic or fault-awatenmputing. The latter approach
requires significant algorithmic changes and is thus bestdsior encapsulation into
numerical libraries [6]. This paper focuses on the formehteques. It builds on re-
cently developed techniques such as checkpointing (witares or rollbacks) or re-
dundant computing in high-performance computing [1, 3252P] or API extensions
for checkpointing [6, 13]. A common challenge of transparesiliency lies in the de-
tection of faults, which is the focus of this paper.

Previous work suggested guidelines on the theoretical mdelbgy for designing
fault detection services. However, a practical implemeéonestill poses a challenge in
terms of completeness and accuracy because of the divefgiyallel system environ-
ments in terms of both hardware and software, which exposesrder of complica-
tions due to potentially unreliable failure detectors [4].



The fault model of this work is that components are subjedailestop behavior.
In other words, components either work correctly or do notknat all. Transient or
byzantine failures are not considered. A component is aimeeabmpute node or a
network connection / link between any two nodes. In such mégork, we base fault
detection on timeout monitoring between endpoints. Thedaxf our work is to study
the impact of timeout monitoring on application behaviastsas to perturb application
performance as little as possible.

Contributions: In this paper, we implement a fault detector (FD) to deteitiifas
of an MPI application. An FD can be included at various laysrthe software stack.
First, we choose the MPI communication layer to implemeatED. We detect MPI
communication failures and, at the same time, also utileeMPI layer as a means
to implement detection. This approach has the advantaget tthaes not require any
failure detection support from the underlying softwaredweare platform. Second, we
implement a separate FD as stand-alone processes acr@&ss nod

In this framework, we observe the effect of a failure, suctaak of response for
communication between any two nodes due to node or netwibukea. We do not per-
form root cause analysis, which is orthogonal to our work.a&ume that the system
model provides temporal guarantees on communication m(swinetimes also com-
bined with computation bounds) called “partially synctowas” [18]. The FD utilizes a
time-out based detection scheme, namely, a ping-pong laseeimentation with the
following properties:

— Transparency: The FD can be embedded in MPI applicatiom®witany additional
modification or side-by-side to MPI applications. For thenfier, the FD runs in-
dependently with a uniqgue communicator different from apligation program.
When MPI applications call MPRInit, the FD module is activated for each MPI
task (on each node) as an independent thread through thervfifing interposing
layer.

— Portability: MPI applications can be compiled without thB.FApplications only
need to be re-linked with the profiling layer of MPI and the Fodule. It is not
necessary for MPI applications to change in their envirommeesign or source
code. The FD works for arbitrary MPI implementations and beasn tested with
MPICH, Open MPI, and the LAM/MPI-family.

— Scalability: The FD operates in two modes. It can be configitioesend a check
message sporadically whenever the application has invakemmunication rou-
tine. An alternative setting performs periodic checks affigurable intervals.

The rationale behind sporadic and periodic liveness pplsithat the former can
be designed as low-cost background control messages thahhrtriggered when an
application is causally dependent on other nodes. The,latteontrast, can be designed
independent of any communication pattern but requirestaohsut-of-band checking
but is agnostic of application communication behavior.

The experimental results show that the FD satisfies the aibose properties. The
results further indicate that the sporadic approach imnptmeer bandwidth require-
ments of the network for control messages and results in arléngquency of control
messages per se. Nonetheless, the periodic FD configuimbown to result irqual
or betterapplication performance overall compared to a sporadénss test for larger
number of nodes, which is a non-obvious result and one of onitributions. We also



observe that separation of the FD results in lower overhaadspposed to integra-
tion into the MPI applications. Our resulting implementatican easily be combined
with reactive checkpoint/restart frameworks to triggestagets after components have
failed [3,5,8-11,15,17,20-24].

2 Design

In principle, an FD can be designed using a variety of comgatitn overlays to mon-
itor liveness. A traditional heartbeat algorithm imposegtcommunication overhead
in an all-to-all communication pattern with a message cexipl ©(n?) and a time
complexity of 2(n). This overhead can be high, and a single node does not need to
inquire about liveness of all other nodes in an MPI applarati

A tree-based liveness check result€i(vn) messages with £(log(n)) time com-
plexity where the root node has a collective view of livengsperties. However, mid-
level failures of the tree easily result in graph partitruniso that entire subtrees may
be considered dysfunctional due to the topological mappfrtge overlay tree onto a
physical network structure (e.g., a multi-dimensionalig)r

We have designed two principle types of failure detectiorcma@isms. First, we
support a sporadic (or on-demand) FD. Second, we have dexigeriodic, ring-based
FD. The periodic FD can be integrated into MPI applicationsmay function as a
stand-alone liveness test separate from MPI applicatibhese approaches differ in
their liveness probing periods and their network overlayctre.

2.1 Failure Detector Types

Periodic Ring-Based Failure DetectionIn this approach, starting from initialization

of the MPI environment, we form a ring-based network oveslaycture wherein the

th node probes th@ + 1)-th node in the ring (see Figure 1(b)). Thus, each node probes
its neighbor in the ring irrespective of whether there is aaotjve application commu-
nication between the two nodes or not. The probing is peréormmtil the application
terminates.

This structure results i®(n) messages for liveness checking and impd8ék)
time (assuming synchronous checking) or u@te:) time (for asynchronous checking
that has to propagate around the ring), yet liveness piiegeate only known about
immediate neighbors. For MPI applications, we argue thallknowledge is sufficient
to trigger reactive fault tolerance at a higher level.

5 ~(5 7

— — —» : Failure probing, node i probes node j

— — —» : Failure probing, node i probes node i+1

(a) Sporadic Fault Detection.

(b) Periodic Fault Detection.

Fig. 1. Fault Detection Techniques.




Sporadic/On-demand Failure Detection In this approach, a nodeprobes a node
only if p andq are engaged in an application-level point-to-point messaghange. If

p needs to wait beyond a timeout interval fpto resume its work, a control message
from p to ¢ is issued (see Figure 1(a)). This happens when poaiakes a blocking
MPI call, such as MPRecv() or MP1Wait(). Similarly, if the application is engaged
in collective communication, such as MBtast(), and the MPI call does not return
within a timeout interval, a ring-based liveness checkiggtred. If the liveness test is
successful but the application-level MPI call has not beenpleted, the liveness check
is periodically repeated.

This method of liveness check impog8§1) message and time overhead, and life-
less properties are only known to immediate neighbors. Biméral message overhead
of this approach may be zero when responses to applicatissages are received prior
to timeout expiration. In such a setting, the overhead iallzed to a node and amounts
to request queuing and request cancellation (in the besj.cas

3 Implementation

Our implementation assumes that there are reliable uppardsoon processing speeds
and message transmission times. If a node fails to respdhawai time-out interval, the
node is assumed to have failed under this model (fail-stogef)oThe implementation
builds on this assumption when a node starts probing anatite. Node pairs are de-
termined by a causal dependency implied from the applicat@onmunication pattern
(for sporadic point-to-point communication) or throughvwaeark overlays (for sporadic
collectives and all periodic liveness checks). Probingniplemented via ping-pong
messages monitoring round trip time (RTT) timeouts. Prglhan failure detection can
be parametrized as follows: (a) INTER-PROBE: This intedetermines the frequency
of probing, i.e., the time between successive probes by e.namger values may cause
late detection of failure while shorter intervals allow &arly detection but increase the
overhead imposed by control messages. (b) TIME-OUT: Thiarual determines the
granularity of failure detection but also impacts the cotmess of the approach. If the
interval is chosen too small, a slow response may lead te fadsitives (detection of
failure even though the node is functional). Converselgrgd interval may delay de-
tection of failures. Determination of a “good” timeout intal is non-trivial, even if we
assume an upper bound on network and processing delay (@ee)ab

We have used the MPI profiling layer to implement one versibthe FD mod-
ule. Wrappers have been written for MPI functions. Theseppeas take appropriate
FD actions before and after calling the PMPI versions of thieesponding commu-
nication function. When the application calls MPiit(), a duplicate communicator,
DUP_MPI_.COMM_WORLD, is created, which is subsequently used to send dontro
messages for failure detection. The software stack of thénF&njunction with an
application is depicted in Figure 2. Application-level M&dlls (depicted as Fortran
calls) trigger a language-neutral wrapper before callmginterposed MPI function.
In the PMPI wrapper, the native MPI function is called (prefbwith PMPL). The
fault detector governs back-channel exchanges of contesbage over the duplicated
communicator. Another version of the FD implements pedattiecks as stand-alone
processes separate from an MPI application.



Application Wrapper Function Fault Detector
mpi_send(){
mpi_send() — MPI_Send() FD_Sender(){ FD_Receiver(){
i while(1){ while(1){
S cond_wait() if ALIVE
//WOI’k i take a node from Q send(ACK)
PMPI send(ALIVE) if ACK {
mpi_recv() V- } detected
MPI_Send(){ } deletein Q
register in Q
cond_signal cond_signal()

PMPI_Send()

}

if success, delete Q }

Fig. 2. Interaction of Application and Fault Detection Softwaradks

The fault detector is implemented as a pair of threads, naseider and receiver
threads. We require MPI to support multi-threading, i.eRINnit_thread() should sup-
port MPLL.THREAD_MULTIPLE to ensure thread support. The sender thread trigyge
an ALIVE message (ping) or waits for an acknowledgment (AGi€ssage (pong) up
to a given timeout. The receiver thread receives ALIVE gqesedver the new communi-
cator from the sender thread and responds with an ACK messhgédailure detection
module maintains a queue of events in sorted order of evaetstiAn event could be
“sending out a new probe to some node i” or “end of timeoutrirgtEfor a probe sent
to some node i". Upon such an event, the sender thread isatediand performs the
respective action.

4 Performance Evaluation

We measured the overhead incurred by the FD module for thef98AS parallel
benchmarks (NPB V3.3) with input classes C and D [2]. Usintligeofday(), wall-
clock times of applications were measured between MR() and MPLFinalize() calls
with and without failure detector interpositioning or bgokunding. Tests were per-
formed by running each configuration five times and computiregaverage overhead
for different inter-probe intervals and number of processe

4.1 Experimental Platform

Experiments were conducted on a 128 node cluster with I#irdlQDR. Each node is
a 2-way shared-memory multiprocessor with two octo-coreDAMIpteron 6128 pro-
cessors (16 cores per nodes). Each node runs CentOS 5.5486184. We used Open
MPI 1.5.1 for evaluating the performance of the FD.

4.2 Benchmark Results

Figures 3 and 4 depict the relative overheads of fault detefbr 128 processes (over
64 nodes) with periodic and sporadic fault detection, retpaly. (Due to space limita-
tions, results for fewer nodes are omitted in Figures bustilediscussed.) Overheads
of the FD approach for fault tolerance with inter-probe freqgcies of 1-10 second (“FD
1sec” to “FD 10 sec”) are plotted relative to application@x&n without fault toler-
ance (“No FD"), i.e., in the absence of the FD module (norpealito 100%).

We first observe that both the sporadic and periodic FD haegheads ranging
from less than 1% to 21% averaging around 10%. We furtherrgbgbat periodic ei-
ther matches or outperforms by 2-6% the sporadic approduhb.tiend is also visible
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Fig. 3. Overhead of Periodic Fault Detection for 128 Processes
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Fig. 4. Overhead of Sporadic Fault Detection for 128 Processes

for smaller number of tasks (although less pronounced) andoe explained as fol-

lows: As overall communication is increasing, timeoutsha sporadic mode happen
more frequently, in particular for collectives where commimation results in contention

(e.g., for all-to-all collectives). Sporadic control mages only add to this application-
induced contention. In contrast, the periodic approachth@sdvantage that control
messages are evenly likely to occur across the entire apiplicduration. This proba-

bilistic spread frequently results in control messagead&isued during computation,
i.e., when the network interconnectis not utilized at afilisitrend increases with strong
scaling (larger number of nodes).

We further conducted experiments with periodic livenesscking as a background
activity in separate processes across nodes that an MRtafpmh is running on. The
results (omitted due to space) show absolutely no overhmaPB codes over 128
processes except for IS with an overhead of 4.5%. We alsed/éine number of MPI
tasks per node and found these results to remain consigtetiot 15 tasks per node.
Only at 16 tasks per node did overheads spike to up to 28-6@#ndkéng on the NPB
code. This shows that as long as a spare core is availablaftgbound activity, the
impact of out-of-band communication on application parfance is minimal. In HPC,
applications tend to utilize only a subset of cores for hégig- multi-core nodes as in
our case, which ensures that communication does not bectoitieneck [16].

Besides these Infiniband experiments, we investigatedntipadt of our FD ap-
proaches under Gigabit Ethernet (result omitted). We failwadl the performance of
NPB codes is significantly higher for Ethernet as executiecoes constrained by
network contention given the lower bandwidth availablenéts the overhead of FD
was overshadowed by contention of application messagedidmbt result in a notice-
able overall impact. However, we consider such a high caimiescenario not realistic
for well-balanced, tuned HPC codes.



Overall, the results show that periodic failure detectienf@rms better than spo-
radic for communication intensive codes and that separatithe FD from MPI appli-
cations reduces their perturbation.

5 Related Work

Chandra and Toueg classify eight classes of failure datebip specifying complete-
ness and accuracy properties [4]. They further show how daae the eight failure
detectors to four and discuss how to solve the consensugepndbr each class. This
paper has influenced other contemporary work as it raisepriftdem of false posi-
tives for asynchronous systems. In our work, we focus orleipgint failure detection.
Consensus is an orthogonal problem, and we simply assume thiabilization af-
ter multi-component failures eventually allows reactiaalf tolerance, such as restarts
from a checkpoint, to occur in a synchronous manner. Sas#ly @iscuss the impact of
celerating environments due to heterogeneous system®wbeplute speeds (execu-
tion progress) could increase or decrease [18]. Bichromedrs with the composition
of action clocks and real-time clocks are able to cope witbra¢ing environments. Our
work, in contrast, only relies on the clock of a local noden@ed and Rottanapoka im-
plemented a fault detector in a P2P-MPI environment utiiza heartbeat approach [7].
They address failure information sharing, reason abouhaartsus phase and acknowl-
edge overheads of fault detection due to their periodictheat approach. Our work, in
contrast, results in much lower message and time complé&xitysensus is orthogonal
to our work, as discussed before.

6 Conclusion

In summary, our work contributes generic capabilities &uif detection / liveness mon-
itoring of nodes and network links both at the MPI level arahstalone. We designed
and implemented two approaches to this end. The first apprddizes a periodic live-
ness test and utilizes a ring-based network overlay forrobnmessages. The second
method promotes sporadic checks upon communicationtesiand relies on point-to-
point control messages along the same communication palirediby the application,
yet falls back to the ring-based overlay for collectives.Mievide a generic interposing
of MPI applications to realize fault detection for both caphus a stand-alone version
for the periodic case. Experimental results indicate thateanthe sporadic fault detec-
tor saves on network bandwidth by generating probes onlynveimeMP1I call is made,
its messages are increasingly contending with applicatiessages as the number of
nodes increases. In contrast, periodic fault detectiatistally avoids network con-
tention as the number of processors increases. Overaliethdts show that periodic
failure detection performs better than sporadic for comigation intensive codes and
that separation of the FD from MPI applications reduceg {heiturbation.
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Fig. 5. Overhead of Periodic Fault Detection for 16 Processes
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Fig. 8. Overhead of Sporadic Fault Detection for 32 Processes
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Fig. 9. Overhead of Periodic Fault Detection for 64 Processes
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