
A Fault Observant Real-Time Embedded Design for
Network-on-Chip Control Systems ∗

Christopher Zimmer
Dept. of Computer Science

North Carolina State University
Raleigh, NC 27695-8206
cjzimme2@ncsu.edu

Frank Mueller
Dept. of Computer Science

North Carolina State University
Raleigh, NC 27695-8206
mueller@cs.ncsu.edu

ABSTRACT
Performance and time to market requirements cause many real-
time designers to consider components, off the shelf (COTS)for
real-time systems. Massive multi-core embedded processors with
network-on-chip (NoC) designs to facilitate core-to-corecommuni-
cation are becoming common in COTS. These architectures benefit
real-time scheduling, but they also pose predictability challenges.
In this work, we develop a framework for Fault Observant Real-
Time Embedded design (Forte) that utilizes massive multi-core
NoC designs to reduce overhead by up to an order of magnitude
and to lower jitter in systems via utilizing message passinginstead
of shared memory as the means for intra-processor communication.
Message passing, which is shown to improve the overall scalability
of the system, is utilized as the basis for replication and task reju-
venation to improve fault resilience by orders of magnitude. To our
knowledge, this work is the first to systematically map real-time
tasks onto massive multi-core processors with support for fault tol-
erance that considers NoC effects on scalability on an actual mas-
sive multi-core hardware platform.

1. INTRODUCTION
ASIC-based real-time systems are costly to design in terms of time
and money. Multi-core COTS processors are becoming increas-
ingly used in the high-end handheld market and are also seeing in-
creased use in the lower-end embedded control market. An exam-
ple is the Freescale 8-core PowerPC P4080 that is being marketed
in the power utility domain for control devices. In such proces-
sors, traditional software design techniques coupled withincreas-
ingly smaller transistor sizes can negatively affect the real-time
predictability and the fault reliability. Predictabilitychallenges in
multi-cores are due to non-uniform memory latencies [1] as con-
tention on buses and mesh interconnects increases.

Another trend is an increase in transient faults due to decreasing
fabrication sizes. These faults surface as single event upsets (SEU)
that can render computation incorrect. SEUs are faults thatcan

∗This work was supported in part by NSF grants CNS-0720496 and
CNS-0905181

modify logic or data in systems leading to incorrect computational
results or software system corruption, which can result in tempo-
rary or even permanent incorrect actuator outputs in control sys-
tems if not countered. SEUs have three common causes: (1) Cos-
mic radiation, particularly during solar flares, (2) electric interfer-
ence in harsh industrial environments (including high temperatures,
such as in automotive control systems) and (3) ever smaller fabrica-
tion sizes and threshold voltages leading to increased probabilities
of bit flips (for all) or cross-talk (for the latter) within CMOS cir-
cuitry [2, 3].

For example, the automotive industry has used temperature-
hardened processors for control tasks around the engine block
while space missions use radiation-hardened processors toavoid
damage from solar radiation. An alternative approach is taken by
commercial aviation. The latest planes [4] (Airbus 380 and Boe-
ing 787) deploy off-the-shelf embedded processors withouthard-
ware protection against soft errors. Even though these planes are
specifically designed to fly over the North Pole where radiation
from space is more intense due to a thinner atmosphere, proces-
sors deployed on these aircraft lack error detecting/correcting ca-
pabilities. Hence, system developers have been asked to consider
the effect of single-event upsets (SEUs),i.e., infrequent single bit-
flips, in their software design. In practice, future systemsmay have
to sustain transient faults due to any of the above causes. COTS ar-
chitectures are not specifically designed for real-time fault tolerant
environments and contain few hardware-based fault tolerant mech-
anisms, such as processor radiation hardening. In previouswork,
researchers have designed techniques to mitigate SEUs in software
using task scheduling [5, 6, 7]. This often leads to sophisticated
scheduling techniques utilizing alternate algorithms, re-execution,
or replication. In contrast, we argue that massive multi-cores with
NoC interconnects greatly simplify scheduling while allowing for
high levels of replication.

In a system with replication of entire task sets under the traditional
shared-memory model, considerable strain is placed on memory
controllers due to compounded memory pressure and coherence
traffic resulting in contention. This contention limits scalability
and reduces predictability of advanced multi-core architectures. In
spite of the potential drawbacks, multi-core COTS processors re-
main quite attractive for real-time systems. For example, ARM
promotes “dark silicon” each real-time task is mapped to a separate
core as cores are plentiful [8]. Scheduling then amounts to simple
core activation thereby eliminating context switching costs and pre-
emption delays. Such an abstraction also facilitates parallel, repli-
cated execution and voting in n-modular redundant environments
to increase reliability.



Contributions: This work introduces a Fault Observant Real-Time
Embedded (Forte) design for large multi-core architectures with
NoC interconnects. The detailed contributions of Forte areas fol-
lows: (1) Forte provides a task abstraction framework that takes
advantage ofmessage passing capabilities implicit in NoC systems
to eliminate the use of shared memory. Forte thusincreases the
overall predictability of the system as contention on the memory
controllers is reduced. Furthermore, Forte improvesscalability for
contemporary mesh-based NoC architectures. (2) Forteimproves
reliability by provisioning simultaneous task models of varying
complexity and measuring the strength of association (coherency)
to facilitate voting in a modular redundancy scheme. (3) Forte fur-
ther ensures sustained reliability by enabling fine-grained task re-
juvenation. This includes the ability to replace faulted data models
and to refresh rejuvenated tasks to align redundant models.Such
rejuvenation is critical particularly for long-running or24/7 control
systems. Experimental results with Forte show improvements up to
an order of magnitude in overhead reduction over standard shared
memory implementations, reduced jitter and scalability. Reliability
is improved in line with results reported for modular redundancy.
Yet, Forte sustains these reliability levels through rejuvenation as
shown in experiments.

The remainder of this paper is structured as follows. Section 2
presents the design of our proposed framework. A case study de-
veloping an unmanned air vehicle control system is detailedin Sec-
tions 3 and 4. Section 5 provides the experimental framework. Sec-
tion 6 presents experimental results. Related work is discussed in
Section 7. The paper is summarized in Section 8.

2. FORTE DESIGN
This section provides an overview of the Forte framework to ex-
ploit massive multi-core processors to facilitate highly redundant
real-time systems. Careful use of this technique can improve sys-
tem integrity in the form of protection from soft errors by provid-
ing a framework for running multiple concurrent versions ofa task,
called shadow tasks, and verifying their output coherence. The
framework assumes that each task is permanently assigned toa
unique set of cores and that the number of tasks in the system is
less than the number of cores. The scheduling system is periodic
with dynamic priorities based on relative deadline. Figure1 de-
picts our model of a massive multi-core NoC processor. Our sam-
ple processor model contains 64 processing elements connected in
a mesh grid. Each processing element contains a switch so that
network communication and routing can be handled without ad-
ditional overhead to the processing pipeline. NoC processors of-
ten support both static and dynamic message routing. Due to this,
our framework operates agnostic of the underlying message pass-
ing API.

Forte capitalizes on the additional processing elements available
in advanced COTS processors to run multiple simultaneous sys-
tem models. These models can vary in feature set and complex-
ity, extending the model from the basic requirement, to a model
with more precision/features to increase the system efficiency. We
use the standard notation ofφ, p, e, andd to denote phase, period,
execution time, and deadline of a real-time task [9]. Using ter-
minology from [10], we group the functional models and order
them via complexity ranging from the most complex features to
the "simple" baseline model. For example 1, consider two tasks
c =< φc, pc, ec, dc > ands =< φs, ps, es, ds >, wherec and
s perform the same system function butc is a complex version of
s, the baseline version. In Forte, we assert thatps = pc, since they

Figure 1: Forte Task Layout Over Cores

provide the same system function, thoughec may be larger than
es. We further assert thats andc generate output data where a co-
herency range can be determined. For additional redundancy, we
consider two more tasks,cshadow and sshadow. These tasks are
added to the system as mirror images ofc ands, operating on the
same data to validate the correctness of each model’s outputdata.
To formalize the framework, we extend the classic task modelsuch
that:

τ =< I, O, T, C, R > (1)

• I is the set of inputsi for them shadow tasks inT ;

• O is the set of outputso of τ that must be validated for co-
herence prior to allowing the output change on the system to
take effect;

• T is the sequence of shadow tasks< t1, t2, .... ,tm > where
each elementti in T is ordered by a descending complexity
coefficientki such thatk1 ≥ k2 ≥ .. ≥ km;

• C is the set of coordinates< x1, y1 >, < x2, y2 > that
enable the system to boundτ to a specific core within the
architecture;

• R is the set of data within a task that must be transferred to
a rejuvenated task to ensure convergence. If natural conver-
gence is usedR = ∅.

The Forte framework characterizes each task within the system
with a set of inputs and outputs. Figure 2 depicts a Forte taskwhere
the input phase splits the data so that three redundant tasksof f can
operate on separate models of the input data in parallel. We use the
termf to describe the defining function(job) of the real-time task.
When a task finishes execution it then sends the outputs to a coher-
ence check that determines the correct output for the system. These
sets allow tasks to execute independently or to be chained together
to facilitate data flow within the system. Figure 3 depicts how the
various tasks communicate data without using shared memory. The
model forms an abstract chain: Once a task generates output data,
its output data becomes the input data for a subsequent task.This
model can be implemented on NoC architectures through explicit
message passing.



I�L� I
�L� I��L�

,QSXWV

7>�@ 7>�@ 7>�@

2XWSXWV

&RKHUHQFH�&KHFN

Figure 2: Abstract Task Layout After Splitting

,

I


I

FKHFN

2>�@

2>�@

I

I


7DVN�$

FKHFN

2>�@

2>�@

7DVN�%

Figure 3: Task Chaining

2.1 Shadow Tasks
Forte is designed to exploit the high-level of concurrency that NoC
architectures provide. Real-time systems deployed in harsh envi-
ronments are subject toSingle Event Upsets (SEUs). These are
compelling reasons to utilize the multi-core paradigm and gener-
ate several models of a single task called shadow tasks, which im-
proves the level of data integrity of the system. In the previous
example from this section,c,cshadow,s, andsshadow are consid-
ered shadow tasks of a single system level taskτ . In Forte, shadow
tasks are represented in a complexity ordered list. To statethis
more formally, for each shadow taskti in T , there is a complexity
coefficientki, such that

< ti, ti+1, ..., tm > =⇒ ki ≥ ki+1 ≥ ... ≥ km (2)

The complexity coefficientki is best generalized as a scoring value
generated by deriving less precise real-time task models from the
most sophisticated design. A degraded complexity model forreal-
time systems was put forth in [10]. In this work, a complex and
a simple feature set for a given control task helped to increase the
model safety. Deriving a score forki considers effects of a reduc-
tion in features as well as reductions in data precision or utilization
for faster converging algorithms with a larger tolerance rangeǫ.

2.2 Input
Real-time tasks have a variety of data models that can be supported
in the Forte framework. Referring back to Figure 1, task 1 acquires
input from sensors or other I/O devices that are not part of the task
set. Task 2 derives input from task 1 and task 6 operates indepen-
dently or receives input from a device that is pinned to the lower
portion of the core layout. Supporting an abstract input setallows
the framework to be flexibly used to deploy a variety of real-time

&RPSOH[�'DWD�
6WUHDP

6LPSOH�'DWD�
6WUHDP

LQSXW�L>�@LQSXW�L>�@

W>�@ W>�@ W>�@ W>�@

&RKHUHQFH�&KHFN

R>�@ R>�@

&RPSOH[�'DWD�
6WUHDP

6LPSOH�'DWD�
6WUHDP

Figure 4: Data Stream Abstraction

tasks. Forte considers multiple data streams separated by complex-
ity, shown in Figure 4. Streams enable shadow tasks of variedcom-
plexity to ensure that data is not unnecessarily losing precision by
forcing a single stream of data.

In practice, input acquisition is a precondition for each task in
Forte. If the input is derived from a sensor or other externalhard-
ware, it requires one of the shadow tasks to acquire the data and
then distribute the data over the message passing network. If the
input is derived from the output of another task, each of the shadow
tasks must receive their input from a proceeding output of equiva-
lent data complexity.

2.3 Output
Forte improves integrity by validating the coherency of each
shadow task’s data. A potential but undesirable result of this co-
herency validation is that the designer may have to reorder the code
in control tasks to defer a decision until the shadow task decisions
can be verified. Coherence formulations are determined by the sys-
tem designer. Automatically identifying how to determine these is
algorithm specific.

For a given task set, each shadow task operates on local data sets.
Upon completing the necessary computation, the data is checked
by the coherence-checking phase of the task. This may be per-
formed by every shadow task or in a subset of them to reduce the
data transfer cost. In the coherence check in Figure 4, shadow tasks
t[1] andt[2] are of equal complexity and the data must match ex-
actly. The same holds fort[3] andt[4]. When this verification is
complete, a range check is performed to validate that the data in
the complex and simple streams are within a preset range. Certain
features of the complex stream may not exist in a lower precision
model. This makes it important to maintain multiple checks for
each level of complexity. Successful coherency checks result in the
mapping of output data to locations designated by complexity. This
allows subsequent tasks dependent on this output to be mapped to
the data of matching complexity. If the coherency checks fail, the
failing task can be isolated to remove any impact it may have on
the control system. If the failure is within the highest complex-
ity model, subsequent shadow tasks that operate on that model can
be canceled, allowing the system to rely on the less complex data
models. If it is a lower complexity model that sustains the failure,



data of the higher complexity models can often be filtered to allow
a lower complexity model to continue operation. This outputdata
flow is shown in Figure 4. The result of the complex data stream
is filtered into the simple data stream in this case. When using fine
grained coherence checks in a n-modular redundancy configuration
rejuvenation can be used to repair the faulting task.

The formalization of input and output sets also supports thehan-
dling of feedback control loops. Forte allows data within the output
set to be specified in the input set of subsequent tasks. This formal-
ization supports task chaining. Feedback loops are supported as a
chained loop of multiple tasks or the redirection of a singletask’s
output back into its own input.

2.4 TDMA
Contention can hinder performance on message-passing networks,
e.g., when multiple fault models transmit their data to coherence
checks in the Forte system. Tasks could potentially overwhelm
routers or their buffers with adverse affects on performance. Forte
addresses this problem by arbitrating the underlying NoC network
through Time Division Multiple Access(TDMA). TDMA makes
Forte more predictable by reducing contention on the message-
passing network and facilitating the bounding of worst casebehav-
ior for all message-passing phases.

2.5 Task Rejuvenation
Real-time control systems are developed to run for extendedperi-
ods of time if not even 24/7. They may thus be exposed to multiple
event failures over the course of their lifetime. Single event up-
sets are handled through coherence voting and elimination of the
faulty data. A subsequent second or third event upset to one of the
remaining redundant task may leave the system without decision
capability as to which the correct results is. The objectiveof re-
juvenation is to correct the faulting model to ensure that resilience
of the model is sustained. According to a study from the high per-
formance domain [11], as devices advance and die sizes decrease,
the projected failures per hour for a single node in an HPC system
is 4.1x10−7. Another study [12] from the satellite domain using
a hardened COTS multi-core device evaluates the failure rate as
2.2x10−4 failures per hour. Both studies indicate that the probabil-
ity of multiple-event upsets in a short time period is low. But if the
runtime of the system is long, a second SEU is likely.

Forte addresses this challenge by supporting fine-grained rejuve-
nation as a part of the framework. Fine-grained coherence checks
allow failing tasks to be identified. In Forte, an SEU is confined
to a single task that is considered to have failed since tasksare as-
sociated with disjoint cores and do not share memory, i.e., only
the failing task needs to be terminated. Subsequently, one of the
remaining correct tasks supplies its output as input data tosubse-
quent tasks of the terminated one during its rejuvenation. This is
implemented as follows. The scheduler terminates the faulting task
and creates a rejuvenated version of the task on the same corestart-
ing with newly initialized data values. The rejuvenated task is not
caught up in its data output after such a restart and would fail the
coherence check as thresholds would be exceeded. The coherence
check is therefore temporarily relaxed to only validate theoutputs
of the remaining tasks (ignoring the rejuvenated one).

Coherence validation via voting is deferred until the rejuvenated
task converges with the correct models in terms of its output.
Many control algorithms exploit convergence algorithms infeed-
back loops to guarantee stability, i.e., they will naturally converge

)O\�%\�:LUH6HUYRV $XWR3LORW

*36

,5

Figure 5: Paparazzi Design

over a period of time if the output is dependent on the input. In
other cases, running state is maintained between each job invo-
cation of a task so that models do not converge by itself. Here,
the state of one of the remaining (correct) tasks is utilizedto al-
low the rejuvenated task to catch up. Forte supports data refresh-
ing of rejuvenated tasks as follows. A correct task is designated
by the coherence module to refresh a rejuvenated task with local
memory values specified during system design. These memory re-
gions are transferred to the rejuvenated task in between jobinvoca-
tions to assure consistency. Data refresh is a requirement for non-
converging algorithms. But it can (and often should) also beuti-
lized to more quickly catch up with the correct tasks for converging
algorithms. This reduces the vulnerability window to receive an-
other SEU while operating under degraded redundancy (e.g.,dual
redundancy) during rejuvenation. After data refreshing (or con-
vergence without refresh), the coherence validation can reactivate
voting again upon reception of outputs from the reborn task within
thresholds.

3. UAV APPLICATION
The next two sections describe our experimental implementation
of the Forte design using a real control system. This sectionde-
scribes the control system and its tasks. The next section describes
the changes necessary to move the control system into the Forte
framework. To evaluate the design, we selected Paparazzi [13],
a traditional shared memory real-time control system implementa-
tion. Paparazzi is an unmanned air vehicle(UAV) control software.
We ported it using the Forte design framework and evaluated it on a
hardware NoC architecture. Our port of the Paparazzi control sys-
tem is based on a java implementation [14] that we rewrote in C++.
Paparazzi is structured as two separate sets of real-time tasks that
enable a switch between manual control of the aircraft and autopi-
lot mode. These modes are detailed as Fly-By-Wire (FBW) and
Autopilot (AP). The basic structure of Paparazzi allows only the
FBW mode to control the servos. However, when there is no pulse
position modulation (PPM) control, the autopilot mode setsthe ac-
tuation by controlling the values that the FBW mode uses to control
the servos. This relationship is detailed in Figure 5.

3.1 Paparazzi Autopilot-Base Design
The basic design of the shared memory version of Paparazzi uses
several shared objects accessed various tasks to calculatevectors
to control the UAV. This information consists of a navigator, es-
timator, and a flight plan. The following paragraphs will briefly
cover each task and how it operates on these shared data structures
in order to illustrate later how to redesign for a message-passing
framework. The basic task layout for the auto pilot module with
task dependencies and data flow are shown in Figure 6.Naviga-
tion Task: The navigation task is responsible for taking informa-
tion from the GPS device, determining the current location of the
UAV and then storing the values into the estimator data structure



for later tasks that cannot read the GPS data. It then compares this
information against the flight plan and determines target metrics for
the UAV to meet the flight plan.Altitude Control Task: The alti-
tude control task is responsible for determining the control values
to reach/maintain the desired UAV altitude. It first ensuresthat the
system mode is set to allow autopilot control. It then obtains data
from the estimator’s z coordinates and determines the errorfrom
the desired altitude. It then uses this error factor to determine any
corrections and commits them to one of the shared memory ob-
jects. Climb Control Task: The climb control task is responsible
for determining the system’s output in terms of thrust and pitch in
order to maintain the necessary altitude. It takes as input the al-
titude determined in the altitude control task and the z directional
speed vector determined in the navigation task. It uses these inputs
to calculate the necessary pitch and thrust to control the altitude of
the UAV’s vertical changes.Stabilization Control Task: The sta-
bilization control task uses data from the infrared (IR) device, the
climb control task, and the navigation task. This task is responsible
for determining the roll and any changes to the pitch. The stabi-
lization control task in this implementation is also responsible for
transferring the data to the FBW task that updates the actuation on
the servos. The data sent is the pitch, roll, throttle, and gain to con-
trol the servos.Radio Control Task: This task takes the last radio
control command from the FBW module and stores the data in the
autopilot in case it needs to take over control.

3.2 Fly-By-Wire Base Design
The Fly-By-Wire(FBW) task set is used to control the servos and to
take control from the ground control unit, the latter of which is not
exercised in this implementation. The task layout of the FBWmod-
ule is shown in Figure 7.Pulse Position Modulation (PPM): The
PPM task receives the radio commands from the PPM device and
uses them to control the servos of the UAV if the autopilot mode is
not enabled.Transfer to Autopilot: This task takes the message
retrieved from the PPM device and transfers it over the systems
designated bus to the Radio Control Task.Check Fail Safe Mode:
This task controls whether the auto pilot or the PPM device iscon-
trolling the UAV. It validates several device-based metrics to deter-
mine if the device is still receiving signals from the PPM device or
if a fail-safe mode has been activated.Check Auto Pilot: This task
controls the servos based on data received from the AP. The task
receives data from the stabilization control task over the systems
specified bus and then transfers these control values to the servos
for actuation.Flight Model and Simulated Devices: In order to
function appropriately Paparazzi requires a GPS device, IRdevice,
and a functional flight model. The Flight model specifies flight dy-
namics based on the rudimentary version found in the Paparazzi
open source code. The GPS device infers several metrics based on
its current position, its last position and the change in time. The IR
simulates a dual axis differential IR device, that uses IR tempera-
ture readings between space and the earth to stabilize the roll and
pitch of the aircraft. The output data from the IR device is critical
in the stabilization task.

4. FORTE IMPLEMENTATION
4.1 Input and Output Tasks
Implementing Paparazzi using the Forte design required analyz-
ing the shared memory accesses that occurred within the taskset
and expressing them as data-flow relationships between tasks. The
original implementation of Paparazzi uses logical objectsto store
data in containers. This eased programming requirements inthat
it made the data logically organized. However, it also made all

'DWD�)ORZ

1DYLJDWLRQ

$OWLWXGH

&OLPE

6WDELOL]DWLRQ

5DGLR�
&RQWURO 5HSRUWLQJ

7DVN�)ORZ

*36
,5

Figure 6: Auto Pilot Task and Data Flow

'DWD�)ORZ

&KHFN�
)DLOVDIH

&KHFN�$3

330�7DVN

7UDQVIHU�7R�
$3

7DVN�)ORZ
6LP�)OLJKW�0RGHO

Figure 7: Fly-By-Wire Task and Data Flow

data in these objects globally accessible. While this is suitable for
single-core implementations, using shared data in multi-core sce-
narios adds overhead. We remedied this by transforming dataflow
relationships to remove shared object containers altogether. They
were replaced by data designated in two ways.

First, we utilize local data when data is only operated on within a
task. The majority of data in our implementation could be catego-
rized as local data. This contains all temporary variables and most
of the state variables that update the primary flight metricsduring
operation.

Second, we utilize remote data. This data is stored locally but the
actual data values originated else-where and are communicated be-
tween cores via sends and receives. Remote data values are written
to local memory of the task before the task is released. In Figure 6,
the dotted lines represent the flow of remote data in the auto pilot
module.

We then converted each task into Forte tasks. Each Forte taskcon-
sists of an input phase, a computation phase, and an output phase.
The input phase of each task is generic. The task simply receives
data and stores it in local memory for subsequent execution.Task
computation differs from the shared memory version only in that
instead of operating on global containers all data is local to the
tasks core. The output phase sends any data to subsequent tasks
according to the data flow specifications.

4.2 Scheduler
In the introduction of this paper, we made the claim that massive
multi-core architectures could ease the problem of task schedul-
ing. Trends in the market indicate that in the near future architec-
tures with tens if not hundreds of cores will be arriving. In the



past, processing resources were in heavy contention and sophis-
ticated scheduling techniques were needed to arbitrate access to
limited resources. The term limited can no longer be used to de-
scribe processing resources for massive multi-core architectures.
For the Forte implementation of Paparazzi, the scheduler isa sim-
ple periodic scheduler. The scheduler statically deploys each task
to its own core where it remains stationary. Taking advantage of the
massive multi-core architecture, no tasks shared a core. Scheduling
thus reduces to core activation/deactivation to release orterminate
a task. Each task would then be set to sleep until it received aNoC-
based message from the scheduler core waking it up to performits
task. The impact of the sleep state is significant in terms of power
consumption. As the number of cores on these architectures scales
up, that ability to power them simultaneously will become a serious
challenge. In order to limit the scope of the power consumption
of such chips, many chip designers are implementing low power
sleep modes with instant-on functionality. This enables software to
constantly turn off and on the resources needed while conserving
power.

4.3 Fault Models
To simplify our experimental implementation we integratedan n-
modular redundancy configuration using the Forte model instead
of a Simplex implementation. In our evaluation, we use a triple
modular redundancy model. This shows the flexibility of the archi-
tecture in that we are able to use the Fortes design to have three
completely simultaneous instances of Paparazzi. This enables co-
herence checks to identify the faulty model in times of failure so
that voting can occur to determine which model controls the simu-
lated servos.

4.4 Coherence Checks
We designed several coherence checks to enable robust faultcheck-
ing for our Paparazzi implementation. Since our fault modelin
Forte was designed with redundancy tasks, our coherence checks
simply verify data consistency. Each coherence check is designed
as a sporadic task that immediately follows the execution ofa sys-
tem task in the Paparazzi suite using precedence constraints. Each
coherence task is assigned to a specific system core. When theco-
herence task receives data from the first model, it sets a timeout
in order to not wait indefinitely for the remaining models to trans-
mit their data. When all of the models have transmitted the data,
the coherence check validates the data. When there is a validation
error, the coherence check uses a2/3 majority. It determines the
failing model and notifies the voting routines to prevent thefaulting
model from controlling the system servos. When a timeout occurs
coherence is checked between the models that did submit data, any
models that did not submit data are considered to have failed.

4.5 Rejuvenation
Rejuvenation is implemented in Forte in two ways. The feedback
control algorithms support natural convergence and, as such, just
require a restart mechanism and a warm up phase to re-enable co-
herence validation. Paparazzi utilizes such natural convergence,
i.e., our implementation exploits this restart capability. In addition,
rejuvenation with refreshed data was realized as an optional exten-
sion. This allow us to compare the time (overhead) for convergence
with and without refresh. To facilitate rejuvenation underdata re-
fresh, the coherence module uses the message passing network to
indicate the source data refresh, i.e., one of the remainingcorrect
tasks (cores). Refresh data is transmitted during the next idle phase
to ensure non-interference with real-time deadlines of thecorrect

26 6FKHGXOHU )0�6LP�� )0�*36�� )0�,5�� 1DY�� $OW�� &&��

6WDE�� 5DG�� 5HSRUW�� )DLO�6DIH��
6HQG�7R�
$3��

&KHFN�$3�
�

330��
&R���
&KHFN

)0�6LP�� )0�*36�� )0�,5�� 1DY�� $OW�� &&�� 6WDE�� 5DG��

5HSRUW�� )DLO�6DIH��
6HQG�WR�
$3��

&KHFN�$3�
�

330�� )0�6LP�� )0�*36�� )0�,5��

1DY�� $OW�� &&�� 6WDE�� 5DG�� 5HSRUW�� )DLO�6DIH��
6HQG�WR�
$3��

&KHFN�$3�
�

330��

� � � � � � � �

�

�

�

�

�

�

�

�

Figure 8: Paparazzi Task Layout

tasks. The refresh data is also received during the idle phase of the
restarted task as redundant tasks are harmonic (not only in period
but also in idle phase). Received data subsequently refreshes unini-
tialized state in the tasks, either to ensure that outputs are within co-
herence thresholds or, as given in the Paparazzi example, tospeed
up convergence amongst the redundant tasks.

5. EXPERIMENTAL FRAMEWORK
Our experiments were conducted on a Tilera TilePro64 develop-
ment board. This platform features a 64 tile (core) chip multipro-
cessor (CMP) suitable for the embedded space with lower power
requirements [15]. The Tilera platform has been selected for satel-
lite deployment. Tilera processors support both message-passing
and coherent shared memory models, and the choice is up to the
user. Tiles are connected by multiple meshed NoCs that support
memory, user, I/O, and coherence traffic on separate interconnects.
Each tile processor is equipped with level 1 caches and splitTLB
making each core a fully independent processor. For evaluating
our framework we, implemented the PapaBench real-time taskset
from the Paparazzi UAV project. Two implementations were cre-
ated for evaluating not only the framework’s fault resilience but
to also compare computational jitter in systems relying on shared
memory vs. message-passing. The shared memory task sets follow
the proposed model in the paper (but with input and output phases
integrated with computation phases of tasks). Figure 8 depicts the
system layout. The figure illustrates the linear task layoutacross
the tiles. This layout is agnostic to the execution models (shared
memory vs. message-passing). All experiments using more than
two tasks arbitrate access to the NoC using TDMA as describedin
previous sections. This reduces the impact of NoC effects onthe
system.

We conducted experiments with both the message-passing and
shared-memory approaches using triple concurrent redundancy to
evaluate the effectiveness of the Forte framework. We employed
targeted fault injection in each of the models by generatingdata
errors to evaluate the effectiveness of the coherency checks. To
model full redundancy, we duplicated the simulated UAV hardware
so that each model operated off of unique device inputs.

6. EXPERIMENTAL RESULTS
Table 1 depicts the number of injected faults that are detectable
(resulting in output faults) and the number of actually recognized
faults. The results indicate that all detectable faults were rec-
ognized and subsequently averted using voting in the coherence
checks. We implemented a single coherence check to validatesys-



SEU Type Detectable SEU Count Recognized
Heap Flip 15 15
Device Failure 3 3
Stack Flip 10 10
Read Only Flip 4 4

Table 1: Fault Injection Evaluation

Figure 9: Overhead of Coherence: Shared Memory vs. Mes-
sage Passing

tem data prior to servo actuation. The coherence check assessed
the output data that was passed over the peripheral bus to theservo
controller. We only included outcomes from SEUs that created an
actual effect on the output state of the running systems. Faults were
categorized as follows: (1) Downstream data errors: prior to servo
actuation, outputs of the models were compared for consistency.
By using three duplicated models, the faulting model is defeated
(voted out). (2) Read-only (RO) memory upsets caused one of
the models to fault. When this occurred, one model failed theco-
herence check through a timeout mechanism set by the coherence
check’s data deadline.

The next experiment exemplifies one of the major benefits of the
message passing design over shared memory. Figure 9 depictsthe
computational cost (in cycles) for accesses to data subjectto co-
herency checks for both models. These results measure the coher-
ence within the climb control model that maintains computational
control over five of the system control variables. This coherency
check validates the consistency of the three simultaneous climb
control data sets. As Figure 9 indicates, shared memory results in
an order of magnitude performance penalty compared to message-
passing. The overhead of the latter is due to maintaining coherency
for remote writes for the validation checks. The message-passing
model eliminates the need for coherence and reduces conflicts on
the interconnects resulting in more predictable and lower execution
time.

Figure 10 depicts the overheads for computing integer data in the
climb control task. These results show stable timings for task com-
putation with message passing, much in contrast to shared memory.
We evaluated integer computations because of a lack of hardware
floating point units (FPU) on the Tilepro64. This data demonstrates
how easily contention on the NoC results in jitter. In this result,
three simultaneous models are executing while the previousresults
utilized only one active tile during the actual check. Note that when
multiple tiles are active simultaneous jitter is easily introduced into
shared memory accesses. In contrast, TDMA arbitrates NoC access
for messages.

Figure 10: Climb Control Task Jitter: Shared Memory vs.
Message Passing

SEU Scheme Time To Repair Mean Time to Failure
No Rejuvenation ∞ 157 Days
Natural Convergence 8 (2s) 2.27x108 Days
Data Driven 1 (250ms) 2.05x109 Days

Table 2: Rejuvenation: Time to Full Restart

We implemented a naturally converging model and a data refresh
model to assess the benefits of rejuvenation. To compare the mod-
els, it is necessary to measure the time from failure until triple
redundancy is restored, i.e., voting within the system can restart.
Table 2 depicts this as the time to repair for each scheme. Col-
umn two indicates that natural convergence took eight job cycles
(periods) before voting could restart while rejuvenation with data
refresh was able to accurately measure coherence one job (period)
after the original failure. Column three assesses the mean time to
failure (MTTF) for each scheme. Without rejuvenation, the model
to derive data for the second row follows the standard MTTF cal-
culationMTTFTMR = 5/(6λ). The model with repair via re-
juvenation used to derive results for the third and fourth rows is
based on a modified Markov formulation that calculates MTTF as
MTTFTMR−Repair = 5/(6λ) + µ/(6λ2) [16]. µ is the max-
imum number of repairs that can be performed within an hour.
We evaluated our model based on theλ derived from a radiation-
hardened Tilera processor for these results [12]. This provides a
worst-caseλ as the processor is hardened and the error rates are
evaluated in space makingλ higher than values derived for single-
node failures for terrestrial applications, e.g.,λ values reported for
HPC environments. As can be seen from the results, rejuvenation
increases reliable operation by six to seven orders of magnitude.

The experiments thus far assess the cost of communication ina
real-time system that only exercises some aspects of Forte’s de-
sign. To evaluate the limits of Forte, we implemented a micro-
benchmark that transfers a data payload of varied size between two
cores. The benchmark utilizes both shared memory and message
passing to evaluate the cost of aggregate data transfers. Memory
addresses are uniformly distributed across the L3 cache by the hard-
ware. Notice that this is a virtual L3 cache implemented through
a hypervisor by distributing memory references over the L2 caches
of all cores. The distribution uses a home-based protocol where
the hash of a shared memory address redirects a look-up to a home
core over a specific coherence interconnect on the NoC. Hashing
can thus significantly increase the performance of shared memory
by reducing the average distance to cached data and by increas-
ing cache capacity of L3 to the aggregate of all L2 caches. This



Figure 11: Bulk Transfer Overhead: Shared Memory vs. Mes-
sage Passing

effect is demonstrated in Figure 11. Hashed shared memory sig-
nificantly outperforms the non-hashed counterpart. However, even
with a significant reduction in the cost of shared memory access,
the message passing transfer outperforms shared memory in both
configurations. Figure 12 depicts the cost (in cycles) of a zero-
contention data transfer scenario over multiple runs illustrating the
jitter for the respective models. These results prompted usto not
use hashing in the previous experiments. The results indicate that
hashing improves performance of shared memory but at the cost
of 1.5% additional jitter since accesses to distributed L3 have vari-
able hop counts over the NoC. A jitter of 1.8% is even observed
in the message passing results when L3/hashing is active as are-
sult of the forced address resolution and non-local data placement
associate with hashing. Message passing under deactivatedvirtual
L3/hashing results in lower jitter(only .5%).

Next, we evaluated the scalability of the Forte design. We ran a
single Paparazzi model of the full system in this experiment. The
number of replicas of the altitude control task was scaled upgrad-
ually from 10 over 20 to 30 redundant instances. All replicaswere
executed in parallel on separate cores. This raised the overall uti-
lization to 45 cores for the Paparazzi task set including thesched-
uler and coherence check. Figure 13 depicts the cost of data trans-
fer/computation (in cycles) over multiple benchmark run for 10,
20 and 30 replica. A relatively inconsistent access cost is incurred
with 30 replica cores for shared memory. Interestingly, a consis-
tent additional overhead of approximately 50 cycles is observed
for shared memory using 20 and 30 replica cores relative to just
10 cores, which can be accounted to scalability limits of theco-
herence protocol due to contention on the coherence interconnect.
In contrast, additional replicas have virtually no measurable ef-
fect on the overheads for message passing (without L3/hashing) as
TDMA arbitrates NoC access when messages are transferred. The
occasional spikes in these results are caused by the virtualization
layer in our experimental platform, which periodically activates a
required monitoring daemon resulting in system noise. Suchdae-
mons would need to be eliminated or modeled as a separate taskto
meet real-time requirements.

Overall, the results indicate superior performance, increased pre-
dictability and reduced jitter of pure message passing (without any
background coherence protocol) in this massive multi-coreplat-
form with a mesh-based NoC. Performance and predictabilitybene-
fits of message passing over shared memory improve as the number
of utilized cores increases,i.e, message passing scales in contrast
to shared memory programming. The cause of these benefits liein

Figure 12: Bulk Transfer Jitter: Shared Memory vs. Message
Passing

Figure 13: Scaling Contention: Shared Memory vs. Message
Passing

the potential of one-sided communication and TDMA arbitration
of message passing in a push-based (explicit) access model.These
advantages cannot be matched shared memory protocols with its
pull-based (implicit) on-demand access requests and its required
hand-shake semantics of the coherence protocol.

7. RELATED WORK
There is significant related work in the area of fault tolerance. Past
approaches utilize scheduling, replication, or radiationhardening
to achieve fault tolerance. Scheduling techniques, such asin [5,
6, 7], often introduce sophisticated scheduling policies to track
faults. In particular, [5] introduces a last chance scheduling tech-
nique with the notion of task alternates to correct data in times of
faults. A complicated scheduling algorithm then delays theexecu-
tion of these alternates until the last possible moment to provide a
fault tolerant schedule. We use advanced multi-core architectures
to remove the need for such sophisticated scheduling algorithms by
enabling the software to run alternates simultaneously at virtually
no additional resource cost.

There exists a significant amount of work on detection of and pro-
tection against transient faults. Hardware can protect andeven cor-
rect transient faults at the cost of redundant circuits [17,18, 19,
20] Software approaches can also protect/correct these faults, e.g.,
by instruction duplication or algorithmic design [21, 22, 23, 24,
25] Recent work focuses on a hybrid solution of both hardware
and software support to counter transient faults [26, 27, 28]. Such
hybrid solutions aim at a reduced cost of protection,i.e., cost in



terms of extra die size, performance penalty and increased code
size. Hybrid approaches have been proposed for selectivelypro-
tecting hardware regions, for control-flow checking and forreduced
instruction and data duplication in software [26]. Data representa-
tions, however, have been widely ignored. Radiation hardening is
another common technique in fault protection for real-timesystems
[29, 30] with overheads in costs and speed. In contrast to ourwork,
these solutions either promote hardware approaches or do not con-
sider massive multi-cores (or even real-time systems).

Modular redundancy is a replication technique[31]. This work pro-
vides an easy to implement and validate approach to ensuringfault
tolerance. The technique has been used widely in research. [32] de-
scribes a heterogeneous NoC architecture to implement triple mod-
ular redundancy. This work focuses on a specialized architecture
that supports multiple levels of hardware integrated faultdetection.
This work uses TDMA on a NoC to interconnect the various IP el-
ements in the architecture. Our work also utilizes a replicated task
mapping but differs in that it is a pure software approach that en-
ables comparisons of varying task complexity models with COTS
applicability.

Rejuvenation [33, 34] is a technique originally introducedas a soft-
ware restart technique to protect long-running software. Rejuvena-
tion is often associated with rebooting. A major hurdle in soft-
ware rejuvenation is data loss due to the rejuvenation. Forte uses
software rejuvenation to maintain reliability in the control system.
Data loss is circumvented through selective rejuvenation and data
refreshing from validated data models.

8. CONCLUSION
We have presented the design of Forte, a framework that utilizes
massive multi-core NoC architectures in order to create a reduced
jitter and fault tolerant real-time environment. The primary tenets
of this approach encompassed systematic restructuring of tradi-
tional real-time tasks to eliminate the use of shared memoryby
instead relying on message passing to move data between tasks.
By reducing contention on memory controllers, it becomes more
feasible to scale up the number of cores while sustaining perfor-
mance and predictability. This enables support for fault tolerance
through replicated real-time tasks combined with consistency ver-
ification and task rejuvenation using modular redundancy. Our re-
sults feature experiments with triple modular on-chip redundancy
for a UAV control system and illustrate capabilities of Forte to de-
tect errors and correct tainted results due to data errors, such as
SEUs. We also show that by putting greater emphasis on message
passing and eliminating shared memory accesses, we are ableto
increase predictability and decrease overheads by up to an order
of magnitude. System reliability can be further increased by six to
seven orders of magnitude when triple modular redundancy iscom-
bined with naturally converging and refresh-assisted rejuvenation,
respectively.

9. REFERENCES
[1] M. Monchiero, G. Palermo, C. Silvano, and O. Villa,

“Exploration of distributed shared memory architectures for
noc-based multiprocessors,”Journal of Systems Architecture,
vol. 53, no. 10, pp. 719 – 732, 2007, embedded Computer
Systems: Architectures, Modeling, and Simulation.

[2] C. Constantinescu, “Trends and challenges in vlsi circuits
reliability,” IEEE Micro, pp. 14–19, July-August, 1996.

[3] V.Narayanan and Y. Xie, “Reliability concerns in embedded
system designs,”IEEE Computer magazine, pp. 106–108,

January, 2006.
[4] M. Pignol, “Cots-based applications in space avionics,” in

Design, Automation Test in Europe Conference Exhibition
(DATE), 2010, march 2010, pp. 1213 –1219.

[5] C.-C. Han, K. Shin, and J. Wu, “A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software
faults,” Computers, IEEE Transactions on, vol. 52, no. 3, pp.
362 – 372, Mar. 2003.

[6] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerance
through scheduling of aperiodic tasks in hard real-time
multiprocessor systems,”Parallel and Distributed Systems,
IEEE Transactions on, vol. 8, no. 3, pp. 272 –284, Mar. 1997.

[7] M. Cirinei, E. Bini, G. Lipari, and A. Ferrari, “A flexible
scheme for scheduling fault-tolerant real-time tasks on
multiprocessors,” inParallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, Mar.
2007, pp. 1 –8.

[8] J. Donovan, “Arm cto warns of dark silicon.” [Online].
Available: http://www.eetimes.com/electronics-
news/4136890/ARM-CTO-warns-of-dark-silicon

[9] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[10] J. G. Rivera, A. A. Danylyszyn, C. B. Weinstock, L. Sha, and

M. J. Gagliardi, “An Architectural Description of the
Simplex Architecture,” Software Engineering Institute,
Carnegie Mellon University, Pittsburg, Pennsylvania,
Technical Report, 1996.

[11] J. T. Daly, “Running applications successfully at extreme
scale: What is needed?” ASCR Computer Science Research,
Principal Investigators Meeting, ANL-TR LA-UR-09-1800,
2008.

[12] M. Cabanas-Holmen, E. H. Cannon, C. Neathery, R. Brees,
B. Buchanan, A. Amort, and A. Kleinosowski, “Maestro
processor single event error analysis.” [Online]. Available:
http://www.aero.org/conferences/mrqw/documents/09/21_
Manuel_ Cabanas-Holmen_ MRQW09.pdf

[13] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. D.
Michiel, “Papabench: a free real-time benchmark,” in6th
Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis, F. Mueller, Ed. Dagstuhl, Germany:
Internationales Begegnungs- und Forschungszentrum f"ur
Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.
[Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2006/678

[14] T. Kalibera, P. Parizek, M. Malohlava, and M. Schoeberl,
“Exhaustive testing of safety critical java,” inProceedings of
the 8th International Workshop on Java Technologies for
Real-Time and Embedded Systems, ser. JTRES ’10. New
York, NY, USA: ACM, 2010, pp. 164–174. [Online].
Available: http://doi.acm.org/10.1145/1850771.1850794

[15] “Tilera processor family,”
http://www.tilera.com/products/processors.php.

[16] C. Singh, “Reliability modeling of tmr computer systems
with repair and common mode failures,”Microelectronics
and Reliability, vol. 21, no. 2, pp. 259 – 262, 1981.

[17] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa,
K. Morita, T. Muta, T. Motokurumada, S. Okada,
H. Yamashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and
H. Sugiyama, “A 1.3ghz fifth generation sparc64
microprocessor,” inDesign Automation Conference. New
York, NY, USA: ACM Press, 2003, pp. 702–705.

[18] Y. Yeh, “Triple-triple redundant 777 primary flight
computer,” in1996 IEEE Aerospace Applications



Conference. Proceedings, vol. 1, 1996, pp. 293–307.
[19] Y. C. B. Yeh, “Design considerations in boeing 777

fly-by-wire computers,” inIEEE International
High-Assurance Systems Engineering Symposium, 1998,
p. 64. [Online]. Available:
http://www.computer.org/proceedings/hase/9221/92210064abs.htm

[20] J. R. Sklaroff, “Redundancy management technique for
space shuttle computers,”IBM Journal of Research and
Development, vol. 20, no. 1, pp. 20–28, 1976.

[21] P. Shirvani, N. Saxena, and E. McCluskey,
“Software-implemented edac protection against seus,”IEEE
Transactions on Reliability, vol. 49, no. 1, pp. 273–284,
2000.

[22] M. Rebaudengo, M. S. Reorda, M. Violante, and
M. Torchiano, “A source-to-source compiler for generating
dependable software,” inFirst IEEE International Workshop
on Source Code Analysis and Manipulation, 2001, pp.
35–44. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SCAM.2001.972664

[23] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,”IEEE
Transactions on Reliability, vol. 51, no. 1, pp. 63–75, 2002.

[24] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray,
“Low-cost on-line fault detection using control flow
assertions,” inInternational On-Line Testing Symposium,
2003, pp. 137–143.

[25] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow
checking by software signatures,”IEEE Transactions on
Reliability, vol. 51, no. 1, pp. 111–122, 2002.

[26] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August, “SWIFT: Software implemented fault tolerance,” in
International Symposium on Code Generation and
Optimization, 2005, pp. 243–254. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/CGO.2005.34

[27] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I.
August, and S. S. Mukherjee, “Design and evaluation of
hybrid fault-detection systems,” inInternational Symposium
on Computer Architecture, 2005, pp. 148–159.

[28] J. Yan and W. Zhang, “Compiler-guided register reliability
improvement against soft errors,” inInternational
Conference on Embedded Software, 2005, pp. 203–209.
[Online]. Available: http://doi.acm.org/10.1145/1086266

[29] V. Izosimov, I. Polian, P. Pop, P. Eles, and Z. Peng, “Analysis
and optimization of fault-tolerant embedded systems with
hardened processors,” inDesign, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., Apr. 2009, pp. 682
–687.

[30] I. Troxel, E. Grobelny, G. Cieslewski, J. Curreri, M. Fischer,
and A. D. George, “Reliable management services for
cotsbased space systems and applications,” inProc.
International Conference on Embedded Systems and
Applications (ESA), Las Vegas, NV, 2006.

[31] R. E. Lyons and W. Vanderkulk, “The use of triple-modular
redundancy to improve computer reliability,”IBM Journal of
Research and Development, vol. 6, no. 2, pp. 200 –209, Apr.
1962.

[32] R. Obermaisser, H. Kraut, and C. Salloum, “A
transient-resilient system-on-a-chip architecture withsupport
for on-chip and off-chip tmr,” inDependable Computing
Conference, 2008. EDCC 2008. Seventh European, May
2008, pp. 123 –134.

[33] W. Yurcik and D. Doss, “Achieving fault-tolerant software

with rejuvenation and reconfiguration,”Software, IEEE,
vol. 18, no. 4, pp. 48 –52, 2001.

[34] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
rejuvenation: analysis, module and applications,” in
Fault-Tolerant Computing, 1995. FTCS-25. Digest of
Papers., Twenty-Fifth International Symposium on, Jun.
1995, pp. 381 –390.


