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modify logic or data in systems leading to incorrect compatel

Performance and time to market requirements cause many real results or software system corruption, which can resuleingo-

time designers to consider components, off the shelf (CG®1S)
real-time systems. Massive multi-core embedded processiti
network-on-chip (NoC) designs to facilitate core-to-cooenmuni-
cation are becoming common in COTS. These architecturexfiben
real-time scheduling, but they also pose predictabilitgligmges.
In this work, we develop a framework for Fault Observant Real
Time Embedded design (Forte) that utilizes massive moltéc

rary or even permanent incorrect actuator outputs in cbeyre-
tems if not countered. SEUs have three common causes: (1) Cos
mic radiation, particularly during solar flares, (2) el&cinterfer-
ence in harsh industrial environments (including high terafures,
such as in automotive control systems) and (3) ever smakeicha-
tion sizes and threshold voltages leading to increasedapilities
of hit flips (for all) or cross-talk (for the latter) within CBIS cir-

NoC designs to reduce overhead by up to an order of magnitude cuitry [2, 3].

and to lower jitter in systems via utilizing message passistead
of shared memory as the means for intra-processor comntiamica
Message passing, which is shown to improve the overall sititya
of the system, is utilized as the basis for replication as#t teju-
venation to improve fault resilience by orders of magnitutteour
knowledge, this work is the first to systematically map rale
tasks onto massive multi-core processors with supporegddt fol-
erance that considers NoC effects on scalability on an botaa-
sive multi-core hardware platform.

1. INTRODUCTION

ASIC-based real-time systems are costly to design in tefrisie
and money. Multi-core COTS processors are becoming increas
ingly used in the high-end handheld market and are alsogé®in
creased use in the lower-end embedded control market. An-exa
ple is the Freescale 8-core PowerPC P4080 that is being tedrke
in the power utility domain for control devices. In such pec
sors, traditional software design techniques coupled initheas-
ingly smaller transistor sizes can negatively affect thal-tiene
predictability and the fault reliability. Predictabilighallenges in
multi-cores are due to non-uniform memory latencies [1]@s ¢
tention on buses and mesh interconnects increases.

Another trend is an increase in transient faults due to desang
fabrication sizes. These faults surface as single evertsfSEU)
that can render computation incorrect. SEUs are faults dhat

For example, the automotive industry has used temperature-
hardened processors for control tasks around the engirek blo
while space missions use radiation-hardened processargotd
damage from solar radiation. An alternative approach isriaky
commercial aviation. The latest planes [4] (Airbus 380 ame-B
ing 787) deploy off-the-shelf embedded processors witimaue-
ware protection against soft errors. Even though theseeplare
specifically designed to fly over the North Pole where radmati
from space is more intense due to a thinner atmosphere, $roce
sors deployed on these aircraft lack error detecting/cting ca-
pabilities. Hence, system developers have been asked sideon
the effect of single-event upsets (SEUS3,, infrequent single bit-
flips, in their software design. In practice, future systenay have

to sustain transient faults due to any of the above cause$SGD
chitectures are not specifically designed for real-timét falerant
environments and contain few hardware-based fault talenach-
anisms, such as processor radiation hardening. In prewous,
researchers have designed techniques to mitigate SEU&was®
using task scheduling [5, 6, 7]. This often leads to soptasid
scheduling techniques utilizing alternate algorithmsexecution,

or replication. In contrast, we argue that massive multesavith
NoC interconnects greatly simplify scheduling while aliog for
high levels of replication.

In a system with replication of entire task sets under thditicmal
shared-memory model, considerable strain is placed on memo
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traffic resulting in contention. This contention limits &dality
and reduces predictability of advanced multi-core archites. In
spite of the potential drawbacks, multi-core COTS processe-
main quite attractive for real-time systems. For examplBMA
promotes “dark silicon” each real-time task is mapped tqpaske
core as cores are plentiful [8]. Scheduling then amounténtple
core activation thereby eliminating context switchingts@nd pre-
emption delays. Such an abstraction also facilitates lehredpli-
cated execution and voting in n-modular redundant enviemm
to increase reliability.



Contributions: This work introduces a Fault Observant Real-Time
Embedded (Forte) design for large multi-core architestuwith
NoC interconnects. The detailed contributions of Forteaaréol-
lows: (1) Forte provides a task abstraction framework thkes
advantage ofnessage passing capabilities implicit in NoC systems
to eliminate the use of shared memory. Forte thusincreases the
overall predictability of the system as contention on the memory
controllers is reduced. Furthermore, Forte improsesability for
contemporary mesh-based NoC architectures. (2) Foyteoves
reliability by provisioning simultaneous task models of varying
complexity and measuring the strength of association (estoy)

to facilitate voting in a modular redundancy scheme. (3) Forte fur-
ther ensures sustained reliability by enabling fine-gicitask re-
juvenation. This includes the ability to replace faultetedaodels
and to refresh rejuvenated tasks to align redundant mo&elsh
rejuvenation is critical particularly for long-running 24/7 control
systems. Experimental results with Forte show improvemepto

an order of magnitude in overhead reduction over standaacktgh
memory implementations, reduced jitter and scalabiliglidbility

is improved in line with results reported for modular redancly.
Yet, Forte sustains these reliability levels through repation as
shown in experiments.

The remainder of this paper is structured as follows. Secio
presents the design of our proposed framework. A case sterdy d
veloping an unmanned air vehicle control system is detail&kc-
tions 3 and 4. Section 5 provides the experimental framewdek-
tion 6 presents experimental results. Related work is disaaiin
Section 7. The paper is summarized in Section 8.

2. FORTE DESIGN

This section provides an overview of the Forte frameworkxo e
ploit massive multi-core processors to facilitate highiglundant
real-time systems. Careful use of this technique can ingsys-
tem integrity in the form of protection from soft errors byopid-

ing a framework for running multiple concurrent versionsaésk,
called shadow tasks, and verifying their output coherence. The
framework assumes that each task is permanently assignad to
unique set of cores and that the number of tasks in the system i
less than the number of cores. The scheduling system isdierio
with dynamic priorities based on relative deadline. Figlirde-
picts our model of a massive multi-core NoC processor. Onr-sa
ple processor model contains 64 processing elements deahiec

a mesh grid. Each processing element contains a switch so tha
network communication and routing can be handled without ad
ditional overhead to the processing pipeline. NoC proasssb

ten support both static and dynamic message routing. Duggp t
our framework operates agnostic of the underlying messags-p
ing API.

Forte capitalizes on the additional processing elemerdgiadle
in advanced COTS processors to run multiple simultaneoss sy

tem models. These models can vary in feature set and complex-

ity, extending the model from the basic requirement, to aehod
with more precision/features to increase the system «ffigieWWe
use the standard notation ¢f p, ¢, andd to denote phase, period,
execution time, and deadline of a real-time task [9]. Usiag t
minology from [10], we group the functional models and order
them via complexity ranging from the most complex featuies t
the "simple" baseline model. For example 1, consider twkstas
¢ =< ¢¢,Pc,ec,de > ands =< o¢s, ps, es,ds >, wherec and

s perform the same system function lauis a complex version of
s, the baseline version. In Forte, we assert that p., since they
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Figure 1. Forte Task Layout Over Cores
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provide the same system function, thoughmay be larger than
es. We further assert thatandc generate output data where a co-
herency range can be determined. For additional redundarecy
consider two more task®shadow a@nd sshadow. These tasks are
added to the system as mirror images:@d s, operating on the
same data to validate the correctness of each model’s odépait
To formalize the framework, we extend the classic task medeh
that:

r=<1,0,T,C,R > 1)

I is the set of inputs for them shadow tasks iff";

O is the set of outputs of r that must be validated for co-
herence prior to allowing the output change on the system to
take effect;

e T'isthe sequence of shadow tasks$1, t2, .... ,tm > Where
each element; in T is ordered by a descending complexity

coefficientk; such that, > ke > .. > kn;

e (' is the set of coordinates z1,y1 >, < x2,y2 > that
enable the system to boundto a specific core within the
architecture;

R is the set of data within a task that must be transferred to
a rejuvenated task to ensure convergence. If natural conver
gence is use® = (.

The Forte framework characterizes each task within theesyst
with a set of inputs and outputs. Figure 2 depicts a Fortewdste
the input phase splits the data so that three redundantdagksan
operate on separate models of the input data in parallel. S&/¢he
term f to describe the defining function(job) of the real-time task
When a task finishes execution it then sends the outputs thex-co
ence check that determines the correct output for the sySthese
sets allow tasks to execute independently or to be chairgedier
to facilitate data flow within the system. Figure 3 depictsvhibe
various tasks communicate data without using shared merbey
model forms an abstract chain: Once a task generates owtfayt d
its output data becomes the input data for a subsequent Task.
model can be implemented on NoC architectures through apli
message passing.
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2.1 Shadow Tasks

Forte is designed to exploit the high-level of concurrerat NoC

architectures provide. Real-time systems deployed inhhansi-

ronments are subject t8ngle Event Upsets (SEUs). These are
compelling reasons to utilize the multi-core paradigm aadey-

ate several models of a single task called shadow taskshwric
proves the level of data integrity of the system. In the mesi
example from this sectior;,cshadow,S, aNd Ssphadow are consid-
ered shadow tasks of a single system level tadk Forte, shadow
tasks are represented in a complexity ordered list. To skage
more formally, for each shadow taskin 7', there is a complexity
coefficientk;, such that

< tiytigly ey tm > = ki > kiy1 > ... > km

@)

The complexity coefficient; is best generalized as a scoring value
generated by deriving less precise real-time task modeis the
most sophisticated design. A degraded complexity modeidfal
time systems was put forth in [10]. In this work, a complex and
a simple feature set for a given control task helped to irszrehe
model safety. Deriving a score fé; considers effects of a reduc-
tion in features as well as reductions in data precisionitzaition

for faster converging algorithms with a larger toleranaege.

2.2 Input

Real-time tasks have a variety of data models that can beosigp
in the Forte framework. Referring back to Figure 1, task lu&eg
input from sensors or other I/O devices that are not partefakk
set. Task 2 derives input from task 1 and task 6 operates émdep
dently or receives input from a device that is pinned to theelo
portion of the core layout. Supporting an abstract inputatietvs
the framework to be flexibly used to deploy a variety of reaet
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Figure 4: Data Stream Abstraction

tasks. Forte considers multiple data streams separatezhiyylex-
ity, shown in Figure 4. Streams enable shadow tasks of vadoed
plexity to ensure that data is not unnecessarily losingigi@t by
forcing a single stream of data.

In practice, input acquisition is a precondition for eachktén
Forte. If the input is derived from a sensor or other extehaat-
ware, it requires one of the shadow tasks to acquire the data a
then distribute the data over the message passing netwbtke |
input is derived from the output of another task, each of Haalew
tasks must receive their input from a proceeding output afveg
lent data complexity.

2.3 Output

Forte improves integrity by validating the coherency of lkeac
shadow task’s data. A potential but undesirable result isf ¢h-
herency validation is that the designer may have to reotgecade
in control tasks to defer a decision until the shadow tasksiets
can be verified. Coherence formulations are determinedegyts-
tem designer. Automatically identifying how to determihede is
algorithm specific.

For a given task set, each shadow task operates on localatata s
Upon completing the necessary computation, the data iskeblec
by the coherence-checking phase of the task. This may be per-
formed by every shadow task or in a subset of them to reduce the
data transfer cost. In the coherence check in Figure 4, sheis

t[1] andt[2] are of equal complexity and the data must match ex-
actly. The same holds faf3] andt[4]. When this verification is
complete, a range check is performed to validate that the idat
the complex and simple streams are within a preset rangeai€er
features of the complex stream may not exist in a lower pi@tis
model. This makes it important to maintain multiple checks f
each level of complexity. Successful coherency checkdtriesihe
mapping of output data to locations designated by compieXtis
allows subsequent tasks dependent on this output to be chappe
the data of matching complexity. If the coherency checKs tiae
failing task can be isolated to remove any impact it may have o
the control system. If the failure is within the highest cdexp

ity model, subsequent shadow tasks that operate on that iwae

be canceled, allowing the system to rely on the less compiéx d
models. If it is a lower complexity model that sustains thi&ufe,



data of the higher complexity models can often be filteredltma

a lower complexity model to continue operation. This oufjiaia
flow is shown in Figure 4. The result of the complex data stream
is filtered into the simple data stream in this case. Whenguane
grained coherence checks in a n-modular redundancy coafigar
rejuvenation can be used to repair the faulting task.

The formalization of input and output sets also supportsheme
dling of feedback control loops. Forte allows data withia tutput
set to be specified in the input set of subsequent tasks. dimsaf-
ization supports task chaining. Feedback loops are sugpag a
chained loop of multiple tasks or the redirection of a sirtgkk’s
output back into its own input.

24 TDMA

Contention can hinder performance on message-passin@mstw
e.g., when multiple fault models transmit their data to coherence
checks in the Forte system. Tasks could potentially ovelrwhe
routers or their buffers with adverse affects on perfornearkorte
addresses this problem by arbitrating the underlying Not/a
through Time Division Multiple Access(TDMA). TDMA makes
Forte more predictable by reducing contention on the messag
passing network and facilitating the bounding of worst daeteav-

ior for all message-passing phases.

2.5 Task Rguvenation

Real-time control systems are developed to run for extepdeid
ods of time if not even 24/7. They may thus be exposed to nieltip
event failures over the course of their lifetime. Singlerevep-
sets are handled through coherence voting and eliminafidimeo
faulty data. A subsequent second or third event upset to bt o
remaining redundant task may leave the system without idecis
capability as to which the correct results is. The objectifiee-
juvenation is to correct the faulting model to ensure thatlience

of the model is sustained. According to a study from the high p
formance domain [11], as devices advance and die sizesadegre
the projected failures per hour for a single node in an HP@&sgys
is 4.1x10~7. Another study [12] from the satellite domain using
a hardened COTS multi-core device evaluates the failues ast
2.2210~* failures per hour. Both studies indicate that the probabil-
ity of multiple-event upsets in a short time period is low.t Buhe
runtime of the system is long, a second SEU is likely.

Forte addresses this challenge by supporting fine-graieeda-
nation as a part of the framework. Fine-grained cohereneeksh
allow failing tasks to be identified. In Forte, an SEU is coefin
to a single task that is considered to have failed since @skas-
sociated with disjoint cores and do not share memory, iy o
the failing task needs to be terminated. Subsequently, biieeo
remaining correct tasks supplies its output as input datubse-
quent tasks of the terminated one during its rejuvenatidnis &
implemented as follows. The scheduler terminates theifaiask
and creates a rejuvenated version of the task on the samstadre
ing with newly initialized data values. The rejuvenatedtasnot
caught up in its data output after such a restart and wouldh@i
coherence check as thresholds would be exceeded. The nokere
check is therefore temporarily relaxed to only validate abgputs
of the remaining tasks (ignoring the rejuvenated one).

Coherence validation via voting is deferred until the rejuated
task converges with the correct models in terms of its output
Many control algorithms exploit convergence algorithmdaad-
back loops to guarantee stability, i.e., they will natyralbnverge

Fly-By-Wire AutoPilot

Figure5: Paparazzi Design

over a period of time if the output is dependent on the input. |
other cases, running state is maintained between each yob in
cation of a task so that models do not converge by itself. Here
the state of one of the remaining (correct) tasks is utilittedl-
low the rejuvenated task to catch up. Forte supports datestef
ing of rejuvenated tasks as follows. A correct task is destiggh

by the coherence module to refresh a rejuvenated task witi lo
memory values specified during system design. These meraory r
gions are transferred to the rejuvenated task in betweeimyolsa-
tions to assure consistency. Data refresh is a requirernenoh-
converging algorithms. But it can (and often should) alsaitie
lized to more quickly catch up with the correct tasks for @nging
algorithms. This reduces the vulnerability window to reeean-
other SEU while operating under degraded redundancy @ugl,
redundancy) during rejuvenation. After data refreshingdan-
vergence without refresh), the coherence validation caatikate
voting again upon reception of outputs from the reborn tagkin
thresholds.

3. UAV APPLICATION

The next two sections describe our experimental implentienta
of the Forte design using a real control system. This sea&®n
scribes the control system and its tasks. The next sectiseritbes
the changes necessary to move the control system into the For
framework. To evaluate the design, we selected Papara2gi [1
a traditional shared memory real-time control system immgleta-
tion. Paparazzi is an unmanned air vehicle(UAV) controtwafe.

We ported it using the Forte design framework and evaluai@da
hardware NoC architecture. Our port of the Paparazzi cbeys
tem is based on a java implementation [14] that we rewrotetn.C
Paparazzi is structured as two separate sets of real-tiske that
enable a switch between manual control of the aircraft anopau

lot mode. These modes are detailed as Fly-By-Wire (FBW) and
Autopilot (AP). The basic structure of Paparazzi allowsyaitie
FBW mode to control the servos. However, when there is naepuls
position modulation (PPM) control, the autopilot mode s$leésac-
tuation by controlling the values that the FBW mode uses tdrob

the servos. This relationship is detailed in Figure 5.

3.1 Paparazzi Autopilot-Base Design

The basic design of the shared memory version of Paparaggi us
several shared objects accessed various tasks to caleelets

to control the UAV. This information consists of a navigates-
timator, and a flight plan. The following paragraphs willdfty
cover each task and how it operates on these shared datastaic
in order to illustrate later how to redesign for a messagssipg
framework. The basic task layout for the auto pilot moduléhwi
task dependencies and data flow are shown in Figurda&¥iga-
tion Task: The navigation task is responsible for taking informa-
tion from the GPS device, determining the current locatibthe
UAV and then storing the values into the estimator data irec



for later tasks that cannot read the GPS data. It then complaice
information against the flight plan and determines targétiosfor
the UAV to meet the flight planAltitude Control Task: The alti-
tude control task is responsible for determining the cantatues
to reach/maintain the desired UAV altitude. It first ensutes the
system mode is set to allow autopilot control. It then oltalata
from the estimator’s z coordinates and determines the émar
the desired altitude. It then uses this error factor to detes any
corrections and commits them to one of the shared memory ob-
jects. Climb Control Task: The climb control task is responsible
for determining the system'’s output in terms of thrust andhpin
order to maintain the necessary altitude. It takes as inpat-
titude determined in the altitude control task and the zatiioeal
speed vector determined in the navigation task. It useg tinesits
to calculate the necessary pitch and thrust to control titei@é of
the UAV'’s vertical changesStabilization Control Task: The sta-
bilization control task uses data from the infrared (IR)ideyvthe
climb control task, and the navigation task. This task ipoesible
for determining the roll and any changes to the pitch. Thbista
lization control task in this implementation is also resgibte for
transferring the data to the FBW task that updates the aotuan
the servos. The data sent is the pitch, roll, throttle, arid tgecon-
trol the servosRadio Control Task: This task takes the last radio
control command from the FBW module and stores the data in the
autopilot in case it needs to take over control.

3.2 Fly-By-Wire Base Design

The Fly-By-Wire(FBW) task set is used to control the servus @
take control from the ground control unit, the latter of whis not
exercised in this implementation. The task layout of the HRdd-

ule is shown in Figure 7Pulse Position M odulation (PPM): The
PPM task receives the radio commands from the PPM device and
uses them to control the servos of the UAV if the autopilot s
not enabled.Transfer to Autopilot: This task takes the message
retrieved from the PPM device and transfers it over the gyste
designated bus to the Radio Control Ta€keck Fail Safe M ode:
This task controls whether the auto pilot or the PPM deviamis
trolling the UAV. It validates several device-based mettix deter-
mine if the device is still receiving signals from the PPM idevor

if a fail-safe mode has been activat€heck Auto Pilot: This task
controls the servos based on data received from the AP. Bke ta
receives data from the stabilization control task over stesns
specified bus and then transfers these control values teethiess
for actuation.Flight Model and Simulated Devices: In order to
function appropriately Paparazzi requires a GPS devicdgiikce,
and a functional flight model. The Flight model specifies flidy+
namics based on the rudimentary version found in the Pagiaraz
open source code. The GPS device infers several metricd base
its current position, its last position and the change iretiifhe IR
simulates a dual axis differential IR device, that uses MRpera-
ture readings between space and the earth to stabilize ltrentb
pitch of the aircraft. The output data from the IR device isiaal

in the stabilization task.

4. FORTE IMPLEMENTATION
4.1 Input and Output Tasks

Implementing Paparazzi using the Forte design requiretyana
ing the shared memory accesses that occurred within thestsk
and expressing them as data-flow relationships betwees. table
original implementation of Paparazzi uses logical objéatstore
data in containers. This eased programming requiremerttgain

it made the data logically organized. However, it also maltle a
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data in these objects globally accessible. While this itabig for
single-core implementations, using shared data in motg-sce-
narios adds overhead. We remedied this by transformingfidata
relationships to remove shared object containers altegeffhey
were replaced by data designated in two ways.

First, we utilize local data when data is only operated orhiwit
task. The majority of data in our implementation could begat
rized as local data. This contains all temporary variabtesraost
of the state variables that update the primary flight mettiosng
operation.

Second, we utilize remote data. This data is stored locaitythe
actual data values originated else-where and are comntadiba-
tween cores via sends and receives. Remote data valuesitiemwr
to local memory of the task before the task is released. larEi§,
the dotted lines represent the flow of remote data in the aldb p
module.

We then converted each task into Forte tasks. Each Fortetesk
sists of an input phase, a computation phase, and an outpséph
The input phase of each task is generic. The task simplywezei
data and stores it in local memory for subsequent execufiask
computation differs from the shared memory version onlyhiat t
instead of operating on global containers all data is looathe
tasks core. The output phase sends any data to subsequent tas
according to the data flow specifications.

4.2 Scheduler

In the introduction of this paper, we made the claim that rass
multi-core architectures could ease the problem of taskdudh
ing. Trends in the market indicate that in the near futuréigec-
tures with tens if not hundreds of cores will be arriving. het



past, processing resources were in heavy contention arfdssop
ticated scheduling techniques were needed to arbitratesado
limited resources. The term limited can no longer be useckto d
scribe processing resources for massive multi-core aatuites.
For the Forte implementation of Paparazzi, the scheduleisim-
ple periodic scheduler. The scheduler statically depl@achdask
to its own core where it remains stationary. Taking advamtdghe
massive multi-core architecture, no tasks shared a cotedbting
thus reduces to core activation/deactivation to releaserorinate
atask. Each task would then be set to sleep until it receioiGr
based message from the scheduler core waking it up to peiferm
task. The impact of the sleep state is significant in termsafgp
consumption. As the number of cores on these architectuedsss
up, that ability to power them simultaneously will becomeaaus
challenge. In order to limit the scope of the power consuompti
of such chips, many chip designers are implementing low powe
sleep modes with instant-on functionality. This enabldssoe to
constantly turn off and on the resources needed while coinger
power.

4.3 Fault Models

To simplify our experimental implementation we integratedn-
modular redundancy configuration using the Forte modekatst
of a Simplex implementation. In our evaluation, we use ddrip
modular redundancy model. This shows the flexibility of theh&
tecture in that we are able to use the Fortes design to hage thr
completely simultaneous instances of Paparazzi. Thislenab-
herence checks to identify the faulty model in times of falso
that voting can occur to determine which model controls thrus
lated servos.

4.4 Coherence Checks

We designed several coherence checks to enable robusttieak-
ing for our Paparazzi implementation. Since our fault mddel
Forte was designed with redundancy tasks, our coherenakshe
simply verify data consistency. Each coherence check iiged
as a sporadic task that immediately follows the executioa ®fs-
tem task in the Paparazzi suite using precedence constr&ath
coherence task is assigned to a specific system core. When-the
herence task receives data from the first model, it sets eotime
in order to not wait indefinitely for the remaining models tarts-
mit their data. When all of the models have transmitted thta,da
the coherence check validates the data. When there is atiafid
error, the coherence check use8/8 majority. It determines the
failing model and notifies the voting routines to preventfthdting
model from controlling the system servos. When a timeouticc
coherence is checked between the models that did submjtaata
models that did not submit data are considered to have failed

4.5 Reguvenation

Rejuvenation is implemented in Forte in two ways. The feekba
control algorithms support natural convergence and, als, ust
require a restart mechanism and a warm up phase to re-ermble ¢
herence validation. Paparazzi utilizes such natural cgeviee,
i.e., our implementation exploits this restart capabilityaddition,
rejuvenation with refreshed data was realized as an optéten-
sion. This allow us to compare the time (overhead) for cayeece
with and without refresh. To facilitate rejuvenation undeta re-
fresh, the coherence module uses the message passing kn&twor
indicate the source data refresh, i.e., one of the remaicimngect
tasks (cores). Refresh data is transmitted during the dexphase
to ensure non-interference with real-time deadlines ofcthreect
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Figure8: Paparazzi Task Layout

tasks. The refresh data is also received during the idlegpbithe
restarted task as redundant tasks are harmonic (not onlgriadp
but also in idle phase). Received data subsequently refsastini-
tialized state in the tasks, either to ensure that outpets/ahin co-
herence thresholds or, as given in the Paparazzi examppetx
up convergence amongst the redundant tasks.

5. EXPERIMENTAL FRAMEWORK

Our experiments were conducted on a Tilera TilePro64 develo
ment board. This platform features a 64 tile (core) chip iprot
cessor (CMP) suitable for the embedded space with lower powe
requirements [15]. The Tilera platform has been selecteddtel-

lite deployment. Tilera processors support both messagsipg
and coherent shared memory models, and the choice is up to the
user. Tiles are connected by multiple meshed NoCs that suppo
memory, user, 1/0, and coherence traffic on separate inaexts.
Each tile processor is equipped with level 1 caches and BBt
making each core a fully independent processor. For evafuat
our framework we, implemented the PapaBench real-timegask
from the Paparazzi UAV project. Two implementations wer- cr
ated for evaluating not only the framework’s fault resitienbut

to also compare computational jitter in systems relying loared
memory vs. message-passing. The shared memory task $ets fol
the proposed model in the paper (but with input and outpuseha
integrated with computation phases of tasks). Figure 8otiefie
system layout. The figure illustrates the linear task laymross
the tiles. This layout is agnostic to the execution modetsi@d
memory vs. message-passing). All experiments using maue th
two tasks arbitrate access to the NoC using TDMA as descitbed
previous sections. This reduces the impact of NoC effectthen
system.

We conducted experiments with both the message-passing and
shared-memory approaches using triple concurrent rediggda
evaluate the effectiveness of the Forte framework. We eyeplo
targeted fault injection in each of the models by generatiata
errors to evaluate the effectiveness of the coherency shetk
model full redundancy, we duplicated the simulated UAV faack

so that each model operated off of unique device inputs.

6. EXPERIMENTAL RESULTS

Table 1 depicts the number of injected faults that are daitdet
(resulting in output faults) and the number of actually grdred
faults. The results indicate that all detectable faultsemesc-
ognized and subsequently averted using voting in the cobere
checks. We implemented a single coherence check to valgate



SEU Type Detectable SEU Count Recognized
Heap Flip 15 15

Device Failure | 3 3

Stack Flip 10 10

Read Only Flip| 4 4

Table 1: Fault Injection Evaluation
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Figure 9: Overhead of Coherence: Shared Memory vs. Mes-
sage Passing

tem data prior to servo actuation. The coherence checksestes
the output data that was passed over the peripheral bus sethe
controller. We only included outcomes from SEUs that create
actual effect on the output state of the running systemdts-aere
categorized as follows: (1) Downstream data errors: pa@ervo
actuation, outputs of the models were compared for comgigte
By using three duplicated models, the faulting model is alife
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Figure 10: Climb Control Task Jitter: Shared Memory vs.
M essage Passing
SEU Scheme Time To Repair
No Rejuvenation 0
Natural Convergenceg 8 (2s)
Data Driven 1 (250ms)

Mean Time to Failureg
157 Days

2.27210% Days
2.05210° Days

Table2: Rgjuvenation: Timeto Full Restart

We implemented a naturally converging model and a datastefre
model to assess the benefits of rejuvenation. To comparedde m
els, it is necessary to measure the time from failure unfiler
redundancy is restored, i.e., voting within the system eetart.
Table 2 depicts this as the time to repair for each scheme- Col
umn two indicates that natural convergence took eight jatlesy
(periods) before voting could restart while rejuvenatiothvdata
refresh was able to accurately measure coherence one jobdpe

(voted out). (2) Read-only (RO) memory upsets caused one of after the original failure. Column three assesses the nigantd

the models to fault. When this occurred, one model failedctire
herence check through a timeout mechanism set by the cateeren
check’s data deadline.

The next experiment exemplifies one of the major benefits @f th
message passing design over shared memory. Figure 9 déggicts
computational cost (in cycles) for accesses to data sutjeco-
herency checks for both models. These results measure liee-co
ence within the climb control model that maintains compate!
control over five of the system control variables. This cehey
check validates the consistency of the three simultanebomb ¢
control data sets. As Figure 9 indicates, shared memorytseau
an order of magnitude performance penalty compared to messa
passing. The overhead of the latter is due to maintainingrmeity
for remote writes for the validation checks. The messagsipg
model eliminates the need for coherence and reduces cerdlict
the interconnects resulting in more predictable and lowecation
time.

Figure 10 depicts the overheads for computing integer aethd
climb control task. These results show stable timings fek tom-
putation with message passing, much in contrast to sharetbnye
We evaluated integer computations because of a lack of leaedw
floating point units (FPU) on the Tilepro64. This data dentiaies
how easily contention on the NoC results in jitter. In thisui,
three simultaneous models are executing while the previsidts
utilized only one active tile during the actual check. Ndtattwhen
multiple tiles are active simultaneous jitter is easilyaatuced into
shared memory accesses. In contrast, TDMA arbitrates No€sac
for messages.

failure (MTTF) for each scheme. Without rejuvenation, thedel

to derive data for the second row follows the standard MTTIF ca
culation MTT Fryr = 5/(6X). The model with repair via re-
juvenation used to derive results for the third and fourtivsras
based on a modified Markov formulation that calculates MT$F a
MTT Frap—pRepair = 5/(6X) + p/(6A?) [16]. w is the max-
imum number of repairs that can be performed within an hour.
We evaluated our model based on theerived from a radiation-
hardened Tilera processor for these results [12]. Thisigesva
worst-case\ as the processor is hardened and the error rates are
evaluated in space makinghigher than values derived for single-
node failures for terrestrial applications, e jyvalues reported for
HPC environments. As can be seen from the results, rejueenat
increases reliable operation by six to seven orders of nzdgmi

The experiments thus far assess the cost of communicatian in
real-time system that only exercises some aspects of Batee’
sign. To evaluate the limits of Forte, we implemented a micro
benchmark that transfers a data payload of varied size leettveo
cores. The benchmark utilizes both shared memory and messag
passing to evaluate the cost of aggregate data transfersmohjie
addresses are uniformly distributed across the L3 cachaeiyetrd-
ware. Notice that this is a virtual L3 cache implemented ulio

a hypervisor by distributing memory references over the a¢hes

of all cores. The distribution uses a home-based protoc@revh
the hash of a shared memory address redirects a look-up tm@ ho
core over a specific coherence interconnect on the NoC. Higshi
can thus significantly increase the performance of sharedane

by reducing the average distance to cached data and by $acrea
ing cache capacity of L3 to the aggregate of all L2 cachess Thi
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Figure 11: Bulk Transfer Overhead: Shared Memory vs. Mes-
sage Passing

effect is demonstrated in Figure 11. Hashed shared memgry si
nificantly outperforms the non-hashed counterpart. Howexen
with a significant reduction in the cost of shared memory ssce
the message passing transfer outperforms shared memooghn b
configurations. Figure 12 depicts the cost (in cycles) of m-ze
contention data transfer scenario over multiple runstilaiing the
jitter for the respective models. These results prompteth ut

use hashing in the previous experiments. The results iredtbat
hashing improves performance of shared memory but at the cos
of 1.5% additional jitter since accesses to distributed &@hvari-
able hop counts over the NoC. A jitter of 1.8% is even observed
in the message passing results when L3/hashing is activees a
sult of the forced address resolution and non-local dateepient
associate with hashing. Message passing under deactiviatieal
L3/hashing results in lower jitter(only .5%).

Next, we evaluated the scalability of the Forte design. Weaa
single Paparazzi model of the full system in this experimdrite
number of replicas of the altitude control task was scaledrap-
ually from 10 over 20 to 30 redundant instances. All replicase
executed in parallel on separate cores. This raised thalbwtir
lization to 45 cores for the Paparazzi task set includingsttfeed-
uler and coherence check. Figure 13 depicts the cost of dats-t
fer/computation (in cycles) over multiple benchmark run 10,
20 and 30 replica. A relatively inconsistent access costdsrired
with 30 replica cores for shared memory. Interestingly, ast®
tent additional overhead of approximately 50 cycles is plesk
for shared memory using 20 and 30 replica cores relativeb ju
10 cores, which can be accounted to scalability limits of ¢dbe
herence protocol due to contention on the coherence inteeo.

In contrast, additional replicas have virtually no meableaef-
fect on the overheads for message passing (without L3/hg)shs
TDMA arbitrates NoC access when messages are transferned. T
occasional spikes in these results are caused by the vadtiah
layer in our experimental platform, which periodically imates a
required monitoring daemon resulting in system noise. Siaeh
mons would need to be eliminated or modeled as a separatmotask
meet real-time requirements.

Overall, the results indicate superior performance, insee pre-
dictability and reduced jitter of pure message passinghwit any
background coherence protocol) in this massive multi-queg-
form with a mesh-based NoC. Performance and predictabiitye-

fits of message passing over shared memory improve as thesnumb
of utilized cores increasesg, message passing scales in contrast
to shared memory programming. The cause of these benefits lie
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Figure 12: Bulk Transfer Jitter: Shared Memory vs. Message
Passing
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Figure 13: Scaling Contention: Shared Memory vs. Message
Passing

the potential of one-sided communication and TDMA arbhibrat

of message passing in a push-based (explicit) access niduede
advantages cannot be matched shared memory protocolstsvith i
pull-based (implicit) on-demand access requests and disinex
hand-shake semantics of the coherence protocol.

7. RELATED WORK

There is significant related work in the area of fault toleerPast
approaches utilize scheduling, replication, or radiatiandening
to achieve fault tolerance. Scheduling techniques, sudh &
6, 7], often introduce sophisticated scheduling policiegrack
faults. In particular, [5] introduces a last chance schiadulech-
nigue with the notion of task alternates to correct datariresi of
faults. A complicated scheduling algorithm then delaysekecu-
tion of these alternates until the last possible moment doige a
fault tolerant schedule. We use advanced multi-core archites
to remove the need for such sophisticated scheduling &hgasiby
enabling the software to run alternates simultaneouslyratally
no additional resource cost.

There exists a significant amount of work on detection of aied p
tection against transient faults. Hardware can protecesed cor-
rect transient faults at the cost of redundant circuits [, 19,

20] Software approaches can also protect/correct thetts,fag.,

by instruction duplication or algorithmic design [21, 223, 24,

25] Recent work focuses on a hybrid solution of both hardware
and software support to counter transient faults [26, 2, 88ch
hybrid solutions aim at a reduced cost of protectioe, cost in



terms of extra die size, performance penalty and increasdd c
size. Hybrid approaches have been proposed for selectively
tecting hardware regions, for control-flow checking andéatuced
instruction and data duplication in software [26]. Dataresgnta-
tions, however, have been widely ignored. Radiation handeis
another common technique in fault protection for real-tsystems
[29, 30] with overheads in costs and speed. In contrast tavotk,
these solutions either promote hardware approaches ortdmno
sider massive multi-cores (or even real-time systems).

Modular redundancy is a replication technique[31]. Thiskymro-
vides an easy to implement and validate approach to ensfairiy
tolerance. The technique has been used widely in rese&2jd¢-
scribes a heterogeneous NoC architecture to implemets tripd-
ular redundancy. This work focuses on a specialized awthite
that supports multiple levels of hardware integrated fdetection.
This work uses TDMA on a NoC to interconnect the various IP el-
ements in the architecture. Our work also utilizes a reidaask
mapping but differs in that it is a pure software approact éma
ables comparisons of varying task complexity models withTSO
applicability.

Rejuvenation [33, 34] is a technique originally introdueedh soft-

ware restart technique to protect long-running softwargurna-

tion is often associated with rebooting. A major hurdle ifit-so
ware rejuvenation is data loss due to the rejuvenation.eRees

software rejuvenation to maintain reliability in the caitsystem.

Data loss is circumvented through selective rejuvenatiahdata

refreshing from validated data models.

8. CONCLUSION

We have presented the design of Forte, a framework tharesili
massive multi-core NoC architectures in order to createlaaed
jitter and fault tolerant real-time environment. The prisngenets

of this approach encompassed systematic restructuringadf-t
tional real-time tasks to eliminate the use of shared menbgry
instead relying on message passing to move data between task
By reducing contention on memory controllers, it becomesemo
feasible to scale up the number of cores while sustaininfpper
mance and predictability. This enables support for fautremce
through replicated real-time tasks combined with consistever-
ification and task rejuvenation using modular redundanay. r&-
sults feature experiments with triple modular on-chip rethncy
for a UAV control system and illustrate capabilities of Feotd de-
tect errors and correct tainted results due to data errach) as
SEUs. We also show that by putting greater emphasis on messag
passing and eliminating shared memory accesses, we areoable
increase predictability and decrease overheads by up todar o
of magnitude. System reliability can be further increasgdik to
seven orders of magnitude when triple modular redundanoyns
bined with naturally converging and refresh-assistedvejation,
respectively.
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