
Combinatorial Graph Creation and Navigation

for Blind People

Suzanne Prem Balik

February 4, 2011

Abstract

Blind individuals have been deprived of the use of diagrams as a form of knowledge repre-
sentation and an aid to problem solving as well as a means of communication. Our focus is
on providing them with access to a specific type of diagram – the node-link diagram, also
known as a combinatorial graph. Graphs figure prominently in computer science and soft-
ware engineering as well as chemistry and other fields. Our goal is to provide blind students
and professionals with graph representations that approach the computational equivalence
of those available to sighted people. A number of applications have been developed specifi-
cally and exclusively to give blind users access to graphs, but separate applications are often
not equal. We have worked instead to include them in our graph-based application known
as ProofChecker which is intended for universal use.

In this paper, we provide examples of general diagram accessibility efforts on behalf
of blind people, a discussion of important issues in conveying graphs nonvisually, and a
review of the work to date in this area. We also describe how ProofChecker has been made
accessible to blind users and how these techniques were applied to a commercial graph-based
application. Lastly, we propose the development of an universally accessible graph sketching
tool. This tool would allow blind and sighted people to work alone or together using the
same interface to create and/or examine graphs and use them for design, problem solving,
and teaching/learning.

1 Introduction

Diagrams present a rich source of knowledge and enhance problem solving [1], yet they are
often inaccessible to blind people. A 2003 study commissioned by Microsoft Corporation
found that 27% of working age adults1 in the United States suffer from a visual difficulty or
impairment. This includes 27.4 million individuals with a mild visual difficulty/impairment
and 18.5 million whose visual difficulty/impairment is severe [2]. Addressing the needs of
visually impaired computer users makes sense both economically and ethically and in some
cases is required by law (See Table 1).

118 - 64 year olds.

1



Figure 1: Tactile vs. BATS representation of Roman Britain [13]

Visual impairments that affect computer use include color blindness, low vision, and
blindness. There is no clear dividing line between low vision and blindness. In the U.S., a
person whose corrected vision is 20/200 or less is considered “legally blind”.2 In terms of
computer use, Bergman and Johnson define a blind person as anyone “who does not use a
visual display at all.” [3]

Blind computer users generally rely on the keyboard for input and receive output via
a screen reader in the form of synthesized speech or Braille sent to a refreshable Braille
display. Commercial screen readers for the Windows platform include JAWS [4], Window-
Eyes [5], and the ZoomText Magnifier/Reader [6], with JAWS being the most widely used.
Open source screen readers for the Gnome environment include Orca [7] and the Linux
Screen Reader (LSR) [8]. The VoiceOver screen reading technology is provided as part of
Mac OS X [9]. Other input aids for the blind include the use of Braille or simulated Braille
keyboards, predictive dictionaries, and speech recognition sofware provided by the operating
system or a commercial product such as Dragon NaturallySpeaking [10]. Computer output
may also be directed to a Braille printer.

1.1 Diagram Accessibility

Diagrams in general have typically been made accessible to blind people via static tactile
representations. The Tactile Graphics Assistant (TGA) was developed to partially automate
the long and arduous process of creating these representations [11, 12].

Combining tactile input with dynamic audio output provides the user with a much greater
level of detail over traditional Braille-labeled tactile diagrams as illustated by the Blind
Audio Tactile Mapping System (BATS) [13] shown in Figure 1. The BATS interface also

2A person with 20/200 vision can see at 20 feet what a person with normal vision can see at 200 feet.

2



Figure 2: Population statistics for the counties of Maryland conveyed via the iSonic coordi-
nated data table/map interface. [14]

incorporates haptic feedback in the form of bumps and textures that communicate geographic
or political boundaries to the user when using a joystick or tactile trackball to examine a
map. Auditory icons such as the sound of crashing waves, chirping birds, and traffic noise
are used by BATS to signify oceans, forests, and cities respectively.

The iSonic tool was developed to help blind users explore coordinated choropleth maps3

and has the advantage of not requiring any input devices beyond the standard keyboard and
numeric keypad [14]. The iSonic interface uses a 3x3 grid4 to recursively divide a map into
regions thereby allowing the user to zoom in on a specific portion of the map (See Figure
2). The iSonic tool also uses musical notes in various pitches and timbres together with
stereo panning effects to convey the data values associated with the regions of the map.
Another application known as AudioGraph used musical notes to convey shapes and bar
charts [17, 18, 19]. Music in the form of short musical phrases, know as earcons [20], was
incorporated into the AudioGraph interface to denote various controls.

1.2 Accessible Graph-based Applications

A combinatorial graph, also known as a node-link diagram, is formally defined as G = (V,E),
where V represents a set of vertices or nodes and E is the set of edges or links connecting
pairs of vertices. This type of graph differs from graphs in the coordinate plane and is the
type of graph to which this paper refers.

Graphs are important in many areas. Chemical molecules consist of atoms linked to
other atoms with bonds. Software engineers use UML diagrams when designing computer
applications. The study of computer science is replete with a variety of graphs such as
entity-relationship diagrams, data structures, and automata, as well as graph-related al-
gorithms such as breadth/depth first search and tree traversals. Real world applications
sometimes include graphs as part of the interface. For example, business intelligence and
predictive analytics software company SAS Institute uses process flow diagrams in three

3A choropleth map is one in which regions are colored or shaded based on the value of a statistical
variable, for example, population or per-capita income.

4This 3x3 grid was inspired by the Integrated Communication 2 Draw (IC2D) system developed to allow
blind users to create and examine drawings [15, 16].

3



Figure 3: SAS R© Enterprise Miner interface with process flow diagram. [21]

of its applications – Enterprise Guide, Data Integration Studio, and Enterprise Miner (See
Figure 3). In order for blind people to function in these areas, they must be able to access
and create graph structures.

1.2.1 Graph Accessibility Issues

In any graphical user interface, whether or not it contains a graph, the notion of program-
matic focus is very important for blind computer users.5 While sighted users can easily
rest their gaze on any item on the screen, blind users must use the keyboard or another
device to move from item to item. In a graph-based application, the node or edge with
focus is generally designated as the current or selected node/edge. The user may need to

5Programmatic focus is crucial for any computer user unable to use a pointing device and limited to the
keyboard, a switch, or voice for input. U.S. Sec. 508 Guideline §1194.21 (c) states “A well-defined on-screen
indication of the current focus shall be provided that moves among interactive interface elements as the
input focus changes. The focus shall be programmatically exposed so that assistive technology can track
focus and focus changes.” [22]

4



move focus from this node/edge to associated information or another part of the interface
and then back again.

Connection- and order-based as well hierarchical navigation of the graph itself have been
incorporated in the applications to be discussed. Some applications provide the ability to go
“back” and “forward” to previously visited nodes similarly to the way the world wide web
is navigated. The ability to “bookmark” nodes also aids in navigation. Some applications
mark nodes as “visited” as well. Other important issues include:

• Overview - With just a glance, a sighted user can get an idea of a graph’s topology,
relative size/complexity and features such as cycles and parallel paths. Efforts have
been made to provide blind users with graph overviews as well.

• Verbosity Level - Because most information is conveyed to the blind user via speech
which can sometimes be quite lengthy and time-consuming, applications often provide
the ability to select one of several verbosity levels depending on the level of detail
desired by the user.

• Details On Demand - Another method for dealing with an overwhelming amount of
spoken information is by providing details only when requested by the user. This
idea is part of the visual information-seeking mantra “overview first, zoom, filter,
then details-on-demand” proposed by Schneiderman [23] that formed the basis of the
Auditory Information-Seeking Actions (ASIA) developed by the iSonic creators [14].

• Sound - Non-speech sounds are used to offload the heavy demand on conveying infor-
mation via speech and to make concurrent use of the auditory channel.

• Orientation - When blindly navigating a graph or interface, it is easy to get lost. Users
sometimes need to ask “Where am I?” or reset the focus to a specific node in the graph
such as the root or start node.

• Grouping - Miller’s classic paper on The Magical Number Seven reports that only
about seven (plus or minus two) pieces of information can be stored in short term
memory at one time [24]. The process of recoding – grouping and naming chunks of
information – increases the amount of information that can be retained. Deprived
of the external memory provided by visual representations, blind users are especially
reliant on their own internal mental models. Applying names to groups of nodes and
subgraphs makes their internal graph representations more manageable.

• Annotation - Allowing the user to annotate nodes, edges, and subgraphs also serves
as a memory aid.

• Search - We are all blind when it comes to navigating the gigantic graph known as
the world wide web and regularly rely on search engines to find the information we
need. At times, searching for and going directly to the desired node of a graph is more
efficient for blind users than navigating to it via the edges.

• Create/edit - While some applications simply provide access to existing graphs, others
provide blind people with the means to create and edit graphs. In order to share these
graphs with sighted users, the use of graph layout algorithms or some other means
must be employed.

5



• Positional Mental Model - Some applications provide the blind user with a means to
build up a positional mental model of a specific physical layout for a graph.

• Universal Design

Universal design is the design of products and environments to
be usable by all people, to the greatest extent possible, without the
need for adaptation or specialized design. –Ron Mace

Disabled architect, Ron Mace,6 coined the term “universal design” and developed a
set of universal design principles (see Table 3) that were originally applied to mak-
ing physical environments accessible [25, 26]. Designing software that accommodates
a wide range of users, including those with visual or other impairments, is equally
important and beneficial. Universal design principles espouse the development of
products that are equitable in use without segregating users. All of the graph-based
applications reviewed in Section 2 were developed separately and specifically to ac-
commodate blind users. While these efforts are very worthwhile, we feel that the
development of applications that are inherently universally accessible is preferable. In
Section 3, we describe our ProofChecker application which includes blind individuals
in a graph-based application intended for universal use [27].

2 Related Work

The aforementioned issues have been addressed in a variety of ways in the following research
efforts to make graphs accessible to blind computer users.

2.1 AudioGraf

AudioGraf was an early attempt to make graph-like diagrams accessible by means of a
touch panel and an auditory display [28]. The diagrams consisted of three types of graphic
elements – frames, texts, and connections. Graphic elements could be linked to each other;
for example, a text might be associated with a frame. The user explored the diagram by
touching the panel with varying degrees of pressure using one of four sizes of focus, square
areas of the diagram surrounding the working point (user’s finger). The focus sizes were
zero (0 mm), small (4 mm), medium (16 mm), and large (36 mm). Touching the panel with
a small amount of pressure activated counter mode which caused the number and types of
elements in focus to be read aloud. A greater amount of pressure activated element view,
causing important attributes of the elements in focus to be read and/or expressed with a
non-speech sound such as a plucked string for a connection. An even greater amount of
pressure switched the interface to attribute mode which auditorially displayed all attributes
of the elements in focus. In this way, the AudioGraf prototype provided the user with three

6After receiving a degree in architecture from North Carolina State University, Ron Mace returned to
found the Center for Accessible Housing which was later renamed The Center for Universal Design [25]. He
was instrumental in creating the nation’s first building code for accessibility as well as the passage of the
Fair Housing Amendments Act of 1988 and The Americans with Disabilities Act of 1990.

6



Figure 4: Hierarchical view of Phenylalanine. [30]

verbosity levels. It also allowed the user to build up a positional mental model of a simple
graph. Usability tests found that users could correctly describe diagrams containing two
frames and one connection, identifying the name, position, and size of the elements. They
also determined that only the small and medium focus sizes were effective.

2.2 Kekulé

Kekulé was developed to enable blind students to examine the structure of chemical molecules
— essentially graphs in which nodes represent atoms and edges represent the bonds between
them [29, 30]. Molecules encoded as publicly available Chemical Markup Language (CML)
files are used as input to Kekulé. Input from the user comes solely from the keyboard and
output is provided in the form of speech via the Java-based FreeTTS [31].

Grouping was quite naturally incorporated into Kekulé by identifying the functional
groups of a molecule using Ullmann’s algorithm for subgraph isomorphism [32]. The func-
tional groups were used to present a molecule to the user in a hierarchical fashion as shown
in Figure 4. Both hierarchical and connection-based navigation are provided by Kekulé.
Hierarchical navigation provides the user with the means to zoom in and out in order to
examine the molecule at higher and lower levels of detail. Connection-based navigation al-
lows the user to examine the functional groups and/or atoms that are connected via bonds
to a given group or atom. Focus changes to a bonded atom/group in a “move as you

7



Figure 5: Undirected graphs conveyed via an auditory glance using Kekulé. [33]

hear” fashion. Pressing RETURN provides details on demand about the currently selected
connection, atom, or functional group.

Evaluations found that users were reluctant to switch between the two modes of navi-
gation. They also expressed a need for help with orientation because they sometimes had
difficulty keeping track of their current position in a molecule and were confused as to which
atom within a functional group had focus. They also wanted to find out what atoms and/or
groups were connected to a given atom/group without necessarily changing their focus as
dictated by Kekulé’s “move as you hear” implementation of navigation.

The Kekulé platform was also used to investigate providing an “auditory glance” (overview)
of an undirected graph to enable blind users to quickly get a general sense of the size, com-
plexity, topology, and features of the graph in the same way that sighted users do [33].
Graphs such as the those in Figure 5 were sonified by playing a tone for the left most node
followed by tones for all of the nodes connected to it, subsequently followed by tones for all
nodes connected to them, and so on in a breadth-first manner. Left/right stereo effects were
used to indicate a node’s relative distance above or below the horizontal axis, respectively.
A cycle was indicated by an ambient sound played during the tones for its nodes. This ap-
proach was tested using sighted users who were generally able to match the auditory glance
to the correct graph in a group.

2.3 PLUMB

PLUMB (exPLoring graphs at University of Massachusetts Boston) was developed to help
blind students comprehend graphs and data structures [35, 36, 37, 38]. Like AudioGraf,
PLUMB allowed the user to build up a positional mental model of a graph. Initial work
focused on auditorially presenting simple undirected graphs such as airline flight paths and
organizational charts using a tablet PC. The stylus (pen) was used to navigate from vertex
to vertex along an edge. The edge was conveyed by a continuous musical tone with a
vibrato effect that increased in intensity at the ends. The tone’s loudness decreased as the
user moved farther from the central axis of the edge. When a vertex was entered, a sound

8



Figure 6: PLUMB representation of a map of Europe. [34]

was played and its name and sometimes a brief description were spoken. Details on demand
about the element in focus could be requested via a right mouse click generated with the
pen or by a mouse that had been partially disabled by removing the track ball. When no
element was in focus, general information about the graph was provided instead.

A later version of PLUMB incorporated keyboard navigation in addition to pen-based
navigation. The adjacency list of the current vertex was examined using the arrow keys.
Pressing ENTER selected an edge and placed the focus on its opposite vertex. Pressing v
or e provided details on demand about the current vertex or edge. Auto-complete search
was added to allow users to choose a vertex as their starting point in graph exploration.
Graphical editing tools and a command line interface allowed both sighted and non-sighted
users to create or modify graphs, but how this was accomplished was not mentioned in the
literature.

PLUMB was extended to PLUMB EXTRA3 (EXploring data sTRures using Audible
Algorithm Animation) in an effort to help blind students understand graph algorithms [34].
Students could choose a data structure and an operation to perform on it and use keyboard
shortcuts to select the next or previous step in the algorithm. Descriptive text associated
with the current step was spoken and the data structure could be examined at any point.
Operations on linked lists and heaps were implemented.

Both applications were written in C# using the .NET platform. Graphs were rendered
as Graph eXchange Language (GXL) files [39]. The files contained layout information as
well as the information necessary to provide the appropriate speech and sound. These were
generated using the Microsoft Speech API [40], DirectX [41], and the MIDI for .NET v2.0.4

9



Figure 7: Kevin system mapping of a Data Flow Diagram (DFD) to an N2 Chart. [42]

library.

2.4 Kevin

The Kevin system aimed to make data flow diagrams (DFDs) accessible to blind software
engineers and computer science students [42]. A DFD consists of nodes known as “transfor-
mations” and labeled directed edges known as “data flows.” The DFDs were based on the
Ward-Mellor real-time structured analysis (RTSA) model [43] and as such were hierarchical
in nature. That is, a given transformation could be decomposed into a lower level DFD.

The graphical representation of a DFD was mapped to an N2 chart as illustrated in
Figure 7. The transformations occupy the cells along the main diagonal from the top
left to the bottom right. Data flow(s) leaving the transformation in row a and entering
the transformation in column b occupy the cell in row a, column b.7 The N2 chart was
conveyed to a blind user as part of a “talking tactile diagram” created by covering a touch
sensitive tablet with a tactile overlay. When the user touched and applied pressure to a
cell of the diagram, its contents were spoken aloud. In addition to the N2 chart, the tactile
overlay contained control buttons whose functions were designated by “hapticons” (tactile
icons) as shown in Figure 8. Using this prototype together with the occasional use of the
keyboard to name transformations and data flows, a blind user was able to read, edit, and
create DFDs. Because Kevin can exchange DFDs with other Computer-Aided Software
Engineering (CASE) tools through the CASE data interchange format (CDIF), blind users
were able to read and modify DFDs created by sighted users. However, due to the lack of
associated layout information, sighted users needed to rearrange the transformations and
data flows in order to view DFDs created by blind users.

Kevin was informally evaluated by two blind users. One of the users, who was proficient
in Braille, used the tactile interface very effectively while the other user, who was not, strug-

7Note that this representation does not allow for “self-loops” on transformations.

10



Figure 8: Kevin system “talking tactile diagram”. [42]

gled with the evaluation tasks and expressed a preference for keyboard input. Comparisons
of Kevin with static tactile DFD representations found that the latter lent themselves more
readily to the task of determining “the complete set of data flows from one transformation
to another.” Based on that observation, a query mode that provided the path(s) between
two transformations was added to Kevin.

Besides providing a tactile interface for blind users, Kevin is a fully functioning CASE
tool. Its creators suggested that with the increasing use of the Windows Object Linking
and Embedding (OLE) interface by commercially available CASE tools (in the late 1990s),
a better approach would be to provide an accessible interface to these tools rather than
recreating them.

2.5 TeDUB

The Technical Drawings Understanding for the Blind (TeDUB) project involved the Kevin
system researchers, Blenkhorn and Evans, along with others [45, 44, 46, 47, 48, 49]. TeDUB
strived to make existing Unified Modeling Language (UML) (class, state, sequence, and
use case) and other types of diagrams accessible to the blind using the keyboard, joystick,
and screen reader. UML diagrams were input in the form of XML Metadata Interchange
(XMI) files exported from UML tools like Rational Rose [50] and ArgoUML [51]. These
were converted to TeDUB’s internal format using Extensible Stylesheet Language (XSL)
transformations. The Microsoft DirectX 8 API provided the interface to the Microsoft
Sidewinder and Saitek Cyborg 3D joysticks that were used.

11



Figure 9: TeDUB interface. [44]

The underlying graph of a UML diagram was represented as a hierarchical tree containing
individual nodes as well as “structural nodes” used for grouping. The structural nodes
provided context or summary information about their component nodes. The tree structure
was presented by a Windows Explorer style interface operated via the arrow keys thereby
providing hierarchical navigation. Warning sounds alerted the user when trying to access
a non-existent node. Nodes at the same level in the hierarchy were listed alphabetically
with the exception of UML state charts whose start and end nodes were listed first and last
respectively. This alphabetical listing facilitated the use of a letter key to cycle through
all nodes beginning with a particular letter as is done in Windows-style lists. Users were
able to “bookmark” nodes and retrace their path through the nodes using “back/forward”
functionality. Help with orientation was provided via a keystroke that returned the user to
the root node.

Additional information about the selected (current) node and its connections as well as
the ability to annotate it were available through the TeDUB interface shown in Figure 9. A
“find function,” which operated similarly to Windows Notepad, allowed the user to seach

12



Figure 10: TeDUB UML class diagram represented via text. [44, 49]

for a node in the diagram as well as to seach the annotations. Selecting a connection in
the TeDUB interface allowed the user to move to a new node thus providing connection-
based navigation. Another option was to navigate the graph via a joystick. If a node was
located in the current direction of the joystick, it was announced and its name appeared in
the joystick textfield in the interface. Pulling the joystick trigger moved the focus to the
indicated node. Keyboard users could similarly access nodes in 8 different directions from
the current node by using the number pad. This method did not work for nodes with more
than 8 connections. Neither the number pad nor the joystick worked when more than one
node was located in the same direction from the current node. The TeDUB interface was
augmented with a flattened Text View for UML diagrams as illustrated in Figure 10. This
view provided information about the nodes but not their connections. Users were able to
examine the Text View using standard keyboard and screen reader functions as well as a
“find function” provided by the application.

Evaluations of the TeDUB project by blind users found that the use of a joystick to
provide spatial information was helpful for maps, but not necessarily for other types of
diagrams. Warning sounds were appreciated, but context sounds, for example, representing
different countries in a map of Europe, were annoying and users turned them off. While
they generally found TeDUB effective for examining UML diagrams, they expressed a strong
desire to be able to create and examine them as well. Interestingly, Alasdair King, one of the
TeDUB researchers, comments on his personal website [52] that “with hindsight, the best
approach would be simply to convert a UML diagram (from an XMI file) into an HTML
document with lots of internal linking and plain text. This would be simpler and fit with
screenreader user’s standard ability to read web pages . . . look at the XSL files in config to
see how this might be accomplished.” Considering that we are all “visually impaired” with
respect to the world wide web, this may be a sensible approach.

13



Figure 11: Representation of a state chart in the Deep View interface. [53]

2.6 Deep View

Deep View was developed to allow blind users to create and edit node-link diagrams, both
alone and in collaboration with sighted users [53]. As a third-party plug-in, Deep View
provides an accessible custom interface to commercial diagram drawing applications. The
plug-in was incorporated by the researchers into Rational Rose [50] and Microsoft Visio
[54] to provide access to state charts and Entity Relationship Diagrams (ERD) respectively.
Deep View is written in Java using the Eclipse Standard Widget Toolkit (SWT) [55], whose
widgets are accessible via a screen reader.

The Deep View interface and its representation of a simple state chart using a treeview
are shown in Figure 11. Text describing nodes and links is customized for screen reader use
by placing the unique information first, for example, “Check temperature, STATE” instead
of “STATE, Check temperature.” The underlying graph is navigated similarly to the world
wide web. Selecting one of the links for the current node and pressing ENTER transfers focus
to the other endpoint. Pressing BACKSPACE returns focus to the previous node. A visited
node is noted by appending “visited” to its textual description. This scheme provides the
user with connection-based navigation. Deep View’s support of nested subdiagrams provides
hierarchical navigation (see Figure 12).

The edit menu and/or keyboard shortcuts are used to bring up simple dialogs that allow
the user to add nodes or links as well as edit the selected node/link as shown in Figure 13.
The selected node/link is removed whenever DELETE is pressed. A search dialog allows the
user to locate and transfer focus to a particular node. Another dialog provides the path(s)

14



Figure 12: Deep View representation of a subdiagram. [53]

Figure 13: Deep View dialogs for creating new nodes and links. [53]

between two nodes. An overview of graph features such as parallel paths (see Figure 14)
and cycles can be detected and presented to the user. Diagrams created in the Deep View
standalone interface may be rendered as visual diagram images using a GraphViz web service
[56, 57].

Deep View can also be used to allow blind and sighted users to collaborate on creating
and working with a diagram. While a blind person uses the Deep View interface, a sighted
person uses the graphical interface provided by Rational Rose. The Sync subsystem, which
maintains a consistent shared data model, is used for communication between the interfaces
as well as concurrency control [58]. Changes made by a user are immediately apparent
in the other user’s interface. Nodes created by a blind user are placed in rows across the
top of the sighted user’s drawing canvas. Short audio icons alert the blind user that an
addition, deletion, or change has been made by the sighted user. A keyboard shortcut

15



Figure 14: Deep View representation of parallel paths. [53]

can be used to display a summary of recent edits to the diagram. Working together is
enhanced through a “semantic pointing” mechanism which allows nodes under discussion
to be highlighted by changing their background color in the visual interface with an option
in the Deep View interface to list only the highlighted nodes. The blind user’s currently
focused node is indicated by making its font larger and bolder in the visual interface thus
allowing the sighted user to follow the blind user’s navigation of the graph, a notion termed
“follow-me pointing.”

Deep View was evaluated by five blind participants and four blind/sighted pairs who
were able to use the interface to create and edit node-link diagrams. An interesting finding
was that the blind participants functioned by memorizing large portions of the diagrams.

2.7 Summary

A summary of the features included in the reviewed graph-based applications is provided
in Table 2. The table also includes ProofChecker, our application which is discussed in the
next section.

3 Work to Date

One of our goals is to include blind people in applications intended for general use, thereby
adhering to universal design principles as discussed in Section 1. Another important goal
is to provide them with graph representations that are “computationally equivalent” to
those employed by sighted people and not simply “informationally equivalent.” According
to Larkin and Simon [1]:

16



δ a b
q0 q2 q3
∗q1 q0 q1
q2 q0 q1
q3 q2 q3

Figure 15: Transition table and bubble diagram representations of a DFA.

Two representations are informationally equivalent if all of the information in the
one is also inferable from the other, and vice versa. Each could be constructed
from the information in the other. Two representations are computationally
equivalent if they are informationally equivalent and, in addition, any inference
that can be drawn easily and quickly from the information given explicitly in
the one can be drawn easily and quickly from the information given explicitly in
the other, and vice versa.

For example, in the context of automata theory, the same deterministic finite automaton
(DFA),8 may be represented by a transition table or a bubble diagram as shown in Figure
15. These representations are informationally equivalent, but when trying to determine
if a string such as abbabab is in the language of the DFA, it is most likely quicker and
easier to carry out this task using the diagram rather than the table. Thus, they are
not computationally equivalent. Whether or not the applications reviewed in the previous
section provide blind people with graph representations that are computationally equivalent
to those available to sighted people is unclear. However, all of them segregate blind users
to a separate interface and thus do not follow universal design principles.

Our efforts to provide computationally equivalent access to graphs include work on
two graph-based applications intended for universal use, ProofChecker [27] and SAS R©

Enterprise Miner [21]. Both are Java applications that make use of the Java Accessi-
bility API [59] and are intended for use with the JAWS screen reader [4]. In order for
a Windows-based assistive technology such JAWS to interact with the Java Accessibil-
ity API, the Java Access Bridge [60] must be installed. Examples and guidelines for
making Java applications accessible may be found in [61] and on our website located at
http://research.csc.ncsu.edu/accessibility/.

8A DFA is a type of directed graph.

17



3.1 ProofChecker

ProofChecker is a graphical program based on the notion of formal correctness proofs that
allows students to draw a DFA and determine whether or not it correctly recognizes a
given language. Because the states of a DFA partition the language over its alphabet into
equivalence classes, each state has a language associated with it. Conditions that describe
the language of each state are entered by the student in the form of conditional expressions
with function calls and/or regular expressions. A brute-force approach is then used to check
that each state’s condition correctly describes all of the strings in its language and that
none of the strings in the state’s language meet the condition for another state. Feedback
is provided that either confirms that the DFA correctly meets the given conditions or alerts
the student to a mismatch between the conditions and the DFA. A student’s DFA can be
saved in an XML file and reopened in ProofChecker and/or submitted for grading. An
automated checking tool, known as ProofGrader, can be used by instructors to determine
if a student’s DFA and the correct DFA for a given language are equivalent.

We originally designed ProofChecker to be a very visual application as shown in Figure
16. Like most graphical applications, its point-and-click interface relied heavily on the mouse
to draw and manipulate DFAs. When faced with the challenge of making ProofChecker
accessible to a blind automata theory student, our first approach was to have him use an
editor to modify an XML file which recorded a DFA and its state conditions and then have
ProofChecker tell him whether or not the new DFA was correct. While this approach was
informationally equivalent, it was very tedious and certainly not computationally equivalent.
Fortunately, without changing the sighted interface nor adding an awkward extension to
this interface, we were able to make it accessible to him and other blind students. This
was accomplished by mapping keystrokes to actions and setting the accessible descriptions
provided through the Java Accessibility API appropriately. Because the original sighted
interface is intact, blind and sighted individuals can use ProofChecker to simultaneously
access the same graph. What follows is a detailed description of the use of ProofChecker
in the context of automata theory correctness proofs as well as its original and accessible
interface.

3.1.1 Overview of ProofChecker

The ProofChecker Graphical User Interface (GUI) has three main panels. The largest panel
is a canvas where the DFA is drawn. To the left of the canvas is a scrolling panel with a
text area for each state in which a condition describing its language can be entered. The
top left corner contains a panel where the student can enter comments about the DFA, for
example, a description of its language or its homework problem number.

The GUI also contains two tool bars, a general one which will be used for other formalisms
as well, and one specific to manipulating DFAs. A menu bar is available for working with
files, checking the DFA, and accessing Help.

This section describes how a sighted user would typically interact with ProofChecker
using the mouse, keyboard, and graphical components. The next section describes how a
blind user can do the same things using only the keyboard and the JAWS screen reader.

18



Figure 16: ProofChecker Graphical User Interface. [27]

Creating and Editing a DFA A new state is created by holding down the CTRL key
and left-clicking with the mouse on the canvas area. The CTRL key plus a right-click on a
state creates a self-transition. Right-dragging from one state to another while holding down
the CTRL key creates a transition between them. Each transition has an associated text
box where its alphabet symbol(s) can be entered. Clicking on the text box for an existing
transition allows for editing of its symbols.

A state and its transitions can be moved by dragging the state to a new location on
the canvas. Tool bar buttons are used to mark the selected state as the start and/or an
accepting state as well as to remove it and its transitions from the DFA. A button to remove
a single transition is also available.

Entering State Conditions Each state has an associated text area where a condition
describing its language may be entered. The default for expressing conditions is Function
Mode in which the strings in a state’s language are described in the form of a conditional
expression using one or more ProofChecker functions. Right-clicking on the text area brings

19



up a popup menu containing the available function choices as well as the option to switch
to Regular Expression Mode.

Checking the DFA for Correctness When the Check button is pressed or Check
> State Conditions is selected from the menu, the DFA is checked for correctness. The
student is first alerted if the DFA is not well-formed, i.e., does not contain a start state, does
not have a transition from each state on every alphabet symbol, etc. If it is well-formed, then
the state conditions the student has selected will be checked. This is done by generating
all strings over the alphabet up to an arbitrary length `. For each string, the program
checks that (a) it meets the condition of the state in which it ends up and (b) that it meets
the condition of only that state. Setting the value of ` to n + 2, where n is the number
of states, allows the checking to be done in a reasonable amount of time and is generally
successful in ferreting out student errors. After many semesters of using ProofChecker, only
one counterexample has been found in which a student’s conditions were correct for strings
of length up to n + 2, but the DFA was not. If the state conditions do not correctly match
the DFA, an error message is provided in a popup dialog box.

3.1.2 The Accessible Interface

The same functionality described in the previous section is provided to blind students
through keyboard shortcuts and audible feedback.

Navigation While sighted students can visually examine the GUI and select states, tran-
sitions, menu options, and text areas with the mouse, blind students must rely on audible
feedback and the keyboard to do the same.

The up/down arrow keys are used to move the programmatic focus from state i/i+1 to
state i+1/i in a DFA thereby providing order-based navigation. The ENTER key is used to
toggle between the selected state and its transitions. When a state’s transitions have focus,
the up/down arrow keys are used to move between them. Thus a state or transition can be
selected analogous to clicking on it with the mouse.

Each time a state is selected, its name and whether or not it is the start state and/or
an accepting state is voiced by the JAWS screen reader. We cause the voicing to occur by
resetting the Java accessible description for the canvas panel each time the focus and/or the
DFA changes. The voicing of information about a state’s “to” and “from” transitions may
be turned on/off using ALT-T and ALT-F respectively. This provision of several verbosity
levels allows the DFA to be audibly examined in the most efficient way for the task at hand.

The menu bar and menus are accessed through the use of mnemonics, with ALT-F, ALT-C,
and ALT-H being used to select the File, Check, and Help menus respectively. Pressing
F1 brings up a list of all available keyboard shortcuts as shown in Figure 17. This list is
automatically read aloud by the screen reader.

Creating and Editing a DFA CTRL-N is used to create a new state. States are drawn
on the canvas in rows of 5 each with state qi being drawn at row i/5, column i mod 5. This
can make for quite a jumble of states and transitions which is of absolutely no consequence
to a blind student. By dragging with the mouse, a sighted fellow student or instructor can
move the states to make the DFA more visible to them.

20



Figure 17: ProofChecker Help Message. [27]

A selected state is marked as the start state with CTRL-S and an accepting state with
CTRL-A. A transition from state qi to qj is created by first moving to state qi, entering
CTRL-SHIFT-N, then moving to state qj and entering CTRL-SHIFT-N to complete the transi-
tion. A self-transition on a selected state is created by entering CTRL-SHIFT-N twice. CTRL-R
is used to remove a state and its transitions or to remove a single transition. Table 4 gives
an example of using the keyboard to create part of the DFA in Figure 16 together with the
audible feedback voiced by JAWS.

Entering State Conditions CTRL-G is used to move from the selected state and its
condition and vice-versa. CTRL-O is used to popup the function choices; the up/down arrow
keys are used to move between them and the space bar is used to select one of them. CTRL-M
toggles between Function Mode and Regular Expression Mode.

21



Checking the DFA for Correctness Entering ALT-C followed by ALT-S initiates check-
ing of the DFA. The contents of the popup dialog box that alerts students to errors or
success is read aloud by JAWS.

3.2 SAS R© Enterprise Miner

Based on our work with ProofChecker, the author was invited to work at SAS Institute
to improve the accessibility of Enterprise Miner, a data mining application. The layout of
its interface, as shown in Figure 3, is very similar to that of ProofChecker. The Diagram
Workspace panel on the right contains a process flow diagram (PFD). Information associated
with the currently selected node or link is displayed in an editable Property Sheet Table
to the left of the Diagram Workspace. Due to Sec. 508 regulations, it is important that
Enterprise Miner be accessible via the keyboard and JAWS screen reader. The following
enhancements were made.

Process Flow Diagram The PFD nodes and links were navigable via the keyboard,
but the selected node/link was not voiced by JAWS. This was remedied by resetting the
accessible description of the PFD panel each time a Java ItemEvent occurred which signaled
a move to and the selection of a different node/link. This caused JAWS to voice the name
of the newly selected node/link.

Interface Navigation In order to examine and edit the Property Sheet Table associated
with the selected node/link, a blind person must be able to transfer focus to the table using
the F6 key.9 Pressing F6, however, caused the node/link to be deselected and its Property
Sheet to be removed from the interface. This was remedied by trapping and consuming the
F6 keypress and transferring focus directly to the Property Sheet.

Property Sheet Table Whenever a cell of a Property Sheet Table was selected, its con-
tent was not read aloud by JAWS. This was remedied by resetting the accessible description
of the table whenever a Java ListSelectionEvent occurred which signaled the move to a new
table cell. This caused JAWS to voice the content of the newly selected table cell.

3.3 Summary

ProofChecker was successfully used to create DFAs by the blind student in question who
was also involved in the accessibility efforts. While he still preferred designing DFAs on
paper with the help of a sighted scribe, he felt that ProofChecker had great potential for
making DFAs and graphs in general more accessible to blind students. He was also the
subject of a user study of ProofChecker and Enterprise Miner conducted at SAS Institute
by the author. During the ProofChecker study, we observed that detecting mistakes in a
DFA that are readily apparent to a sighted user took quite a bit longer for him. Finding
ways to “level the playing field” between sighted and blind users is an interesting challenge.
The results of the Enterprise Miner study are company confidential.

9The F6 key is used to navigate among the internal windows in a multiple document interface.

22



Figure 18: Pulley problem from Larkin and Simon. [1]

4 Future Directions

Retired Stanford University professor Dr. Jeff Ullman states that ideally a thesis topic
should be selected based on the need of some “customer.”[62] Certainly blind programmers
and computer science students qualify as “customers” based on their need to access graphs,
especially UML diagrams. Unfortunately blind programmers are increasingly left out of the
design process due to the use of UML for object-oriented design. Despite the work to date,
the need for accessible UML and simple graph sketching tools is still current as evidenced by
recent email messages posted to the Programming Blind mailing list [63, 64, 65]. Packages
such as Microsoft Office Visio, while somewhat accessible to screen reader users, are intended
for drawing graphs and other types of diagrams, not for manipulating them and using them
for problem solving. Based on our experience with ProofChecker and Enterprise Miner and
drawing on ideas from the reviewed work, we propose the development of a universally
accessible graph sketching tool.

A blind beginning programming student was recently observed using the Windows
Notepad editor as a “computational tool” for evaluating a complicated arithmetic expres-
sion, such as 41 % 7 * 3 / 5 + 5 / 3 * 4.5. He copied and pasted the expression into
Notepad, found the leftmost operation of highest precedence, replaced it with its value, and
continued in this manner until only one operand remained. This same student had diffi-
culty in physics due to the inaccessibility of the diagrams. In a similar way to the Notepad
example, an accessible graph sketching tool would provide him and others with a tool for
working not only with graphs, but some physics and other types of problems. For example,
the pulley problem shown in Figure 18 is used by Larkin and Simon as an example of how
a diagram is more readily used for problem solving than a lengthy sentential form of the

23



Figure 19: Pulley problem solved using graph representation.

same problem [1]. This problem involves determining weight W2 given weight W1. The
same diagram could be drawn as a graph and subsequently solved as illustrated by Figure
19. With the ability to navigate the graph and modify the labels of the nodes and edges,
a blind (or sighted) student could use physics principles to determine the tensions on the
ropes and eventually the value of W2.

The development of a universally accessible graph sketching tool would allow blind and
sighted people to work alone or together using the same interface to create and/or examine
graphs and use them for design, problem solving, and teaching/learning. By providing
animation capability the tool could be used for illustrating various graph algorithms such
as breadth/depth first search, minimum spanning tree, shortest path, etc. as well as the
solution of problems in other domains – see Figure 20 for an example [66]. If a sequence
of graphs in an animation (or a single graph) were output to a Braille embosser, a blind
student could study it in tactile form. An even more exciting possiblity would be the use of
a full screen refreshable Braille display to provide an animation [67].

We plan to do the following initial work towards the development of a universally acces-
sible graph sketching tool:

• Build a graph sketching prototype that allows users to create directed and undirected
graphs using the mouse and/or keyboard.

• Identify graph creation and interaction methods for blind users which come as close
as possible to providing them with a computationally equivalent experience to that
of sighted users. The interaction methods should leverage the unique abilities and
accommodational strategies of blind people such as superior item recall and serial
memory, the tendency to encode spatial information in a sequential rather than global
representation [68], and heightened auditory awareness.

• Develop graph layout techniques that allow graphs created by blind people to be shared
with sighted people. Possibilities include automated graph layout algorithms, layout

24



Figure 20: Depth-first Search Example. [66]

commands (North, South, etc.), predefined templates for various types of graphs (tree,
free body diagram, etc.), and the use of a recursive 3x3 grid (See Figure 2).

Our continued work on a universally accessible graph sketching tool will provide ground-
breaking work in an important research area as well as practical help for blind people who
currently have very limited access to combinatorial graphs.

25



References

[1] Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11(1):65–100, 1987. 1, 16, 23, 24

[2] Forrester Research Inc. The wide range of abilities and its impact on computer tech-
nology. Technical report, Microsoft Corp., 2003. Available at
http://www.microsoft.com/enable/download/default.aspx. 1

[3] Eric Bergman and Earl Johnson. Towards accessible human-computer interaction.
Advances in human-computer interaction (vol. 5), pages 87–113, 1995. 2

[4] Jaws for windows.
Available at http://www.freedomscientific.com/fs products/software jaws.asp.
2, 17

[5] Window-Eyes.
Available at http://www.gwmicro.com/Window-Eyes/. 2

[6] ZoomText Magnifier/Reader.
Available at http://www.aisquared.com/Products/ZoomTextMRD/index.cfm. 2

[7] Orca.
Available at http://live.gnome.org/Orca. 2

[8] Linux screen reader.
Available at http://live.gnome.org/LSR. 2

[9] Voiceover.
Available at http://www.apple.com/accessibility/voiceover/. 2

[10] Dragon naturallyspeaking.
Available at http://www.nuance.com/naturallyspeaking/. 2

[11] Richard E. Ladner, Melody Y. Ivory, Rajesh Rao, Sheryl Burgstahler, Dan Comden,
Sangyun Hahn, Matthew Renzelmann, Satria Krisnandi, Mahalakshmi Ramasamy,
Beverly Slabosky, Andrew Martin, Amelia Lacenski, Stuart Olsen, and Dmitri Groce.
Automating tactile graphics translation. In Assets ’05: Proceedings of the 7th interna-
tional ACM SIGACCESS conference on Computers and accessibility, pages 150–157,
New York, NY, USA, 2005. ACM. 2

[12] Chandrika Jayant, Matt Renzelmann, Dana Wen, Satria Krisnandi, Richard Ladner,
and Dan Comden. Automated tactile graphics translation: in the field. In Assets ’07:
Proceedings of the 9th international ACM SIGACCESS conference on Computers and
accessibility, pages 75–82, New York, NY, USA, 2007. ACM. 2

[13] P. Parente and G. Bishop. BATS: The Blind Audio Tactile Mapping System. Proceed-
ings of the ACM Southeast Regional Conference, 2003. 2

26



[14] Haixia Zhao, Catherine Plaisant, Ben Shneiderman, and Jonathan Lazar. Data sonifi-
cation for users with visual impairment: A case study with georeferenced data. ACM
Trans. Comput.-Hum. Interact., 15(1):1–28, 2008. 3, 5

[15] Hesham M. Kamel and James A. Landay. A study of blind drawing practice: creating
graphical information without the visual channel. In Assets ’00: Proceedings of the
fourth international ACM conference on Assistive technologies, pages 34–41, New York,
NY, USA, 2000. ACM Press. 3

[16] Hesham M. Kamel and James A. Landay. Sketching images eyes-free: a grid-based
dynamic drawing tool for the blind. In Assets ’02: Proceedings of the fifth international
ACM conference on Assistive technologies, pages 33–40, New York, NY, USA, 2002.
ACM Press. 3

[17] James L. Alty and Dimitrios I. Rigas. Communicating graphical information to blind
users using music: the role of context. In CHI ’98: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 574–581, New York, NY, USA,
1998. ACM Press/Addison-Wesley Publishing Co. 3

[18] James L. Alty and Dimitrios Rigas. Exploring the use of structured musical stimuli
to communicate simple diagrams: the role of context. Int. J. Hum.-Comput. Stud.,
62(1):21–40, 2005. 3

[19] Dimitrios Rigas and James Alty. The rising pitch metaphor: an empirical study. Int.
J. Hum.-Comput. Stud., 62(1):1–20, 2005. 3

[20] D. Sumikawa. Guidelines for the integration of audio cues into computer user interfaces.
Technical Report UCRL 53656, Lawrence Livermore National Laboratory, 1985. 3

[21] Data mining with SAS R© Enterprise Miner.
Available at http://www.sas.com/technologies/analytics/datamining/miner/. 4,
17

[22] Section 508 homepage: Electronic and information technology. Available at
http://www.access-board.gov/508.htm. 4

[23] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In VL ’96: Proceedings of the 1996 IEEE Symposium on Visual Lan-
guages, page 336, Washington, DC, USA, 1996. IEEE Computer Society. 5

[24] G.A. Miller. The magical number seven, plus or minus two: Some limits on our capacity
for information processing. Psychological Review, 63(2):81–97, 1956. 5

[25] The Center for Universal Design, College of Design, North Carolina State University.
Available at http://www.design.ncsu.edu/cud/. 6, 33

[26] Sheryl E. Burgstahler and Rebecca C. Cory, editors. Universal Design in Higher Edu-
cation From Principles to Practice. Harvard Education Press, 2008. 6

27



[27] Matthias F. Stallmann, Suzanne P. Balik, Robert D. Rodman, Sina Bahram, Michael C.
Grace, and Susan D. High. Proofchecker: an accessible environment for automata
theory correctness proofs. In ITiCSE ’07: Proceedings of the 12th annual SIGCSE
conference on Innovation and technology in computer science education, pages 48–52,
New York, NY, USA, 2007. ACM Press. 6, 17, 19, 21, 34

[28] Andrea R. Kennel. AudioGraf: a diagram-reader for the blind. In Assets ’96: Proceed-
ings of the second annual ACM conference on Assistive technologies, pages 51–56, New
York, NY, USA, 1996. ACM Press. 6

[29] A. Brown, R. D. Stevens, and S. Pettifer. Issues in the non-visual presentation of
graph based diagrams. In E. Banissi, K. Borner, C. Chen, M. Dastbaz G. Clapworthy,
A. Faiola, E. Izquierdo, C. Maple, J. Roberts, C. Moore, A. Ursyn, and J. J. Zhang,
editors, Proceedings of the 8th International Conference on Information Visualisation,
pages 671–676. IEEE, July 2004. 7

[30] Andy Brown, Steve Pettifer, and Robert Stevens. Evaluation of a non-visual molecule
browser. In Assets ’04: Proceedings of the 6th international ACM SIGACCESS con-
ference on Computers and accessibility, pages 40–47, New York, NY, USA, 2004. ACM
Press. 7

[31] FreeTTS. Available at http://freetts.sourceforge.net/. 7

[32] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.
7

[33] A. Brown, R. D. Stevens, and S. Pettifer. Audio representation of graphs: a quick look.
In Proceedings of the 12th International Conference on Auditory Display, June 2006. 8

[34] Matt Calder, Robert F. Cohen, Jessica Lanzoni, Neal Landry, and Joelle Skaffa. Teach-
ing data structures to students who are blind. In ITICSE ’07: Proceedings of the 12th
annual SIGCSE conference on Innovation and technology in computer science educa-
tion, New York, NY, USA, 2007. ACM Press. 9

[35] Robert F. Cohen, Rui Yu, Arthur Meacham, and Joelle Skaff. Plumb: displaying
graphs to the blind using an active auditory interface. In Assets ’05: Proceedings of the
7th international ACM SIGACCESS conference on Computers and accessibility, pages
182–183, New York, NY, USA, 2005. ACM Press. 8

[36] Robert F. Cohen, Valerie Haven, Jessica A. Lanzoni, Arthur Meacham, Joelle Skaff, and
Michael Wissell. Using an audio interface to assist users who are visually impaired with
steering tasks. In Assets ’06: Proceedings of the 8th international ACM SIGACCESS
conference on Computers and accessibility, pages 119–124, New York, NY, USA, 2006.
ACM Press. 8

[37] Matt Calder, Robert F. Cohen, Jessica Lanzoni, and Yun Xu. PLUMB: an interface for
users who are blind to display, create, and modify graphs. In Assets ’06: Proceedings
of the 8th international ACM SIGACCESS conference on Computers and accessibility,
pages 263–264, New York, NY, USA, 2006. ACM Press. 8

28



[38] Robert F. Cohen, Arthur Meacham, and Joelle Skaff. Teaching graphs to visually
impaired students using an active auditory interface. In SIGCSE ’06: Proceedings of
the 37th SIGCSE technical symposium on Computer science education, pages 279–282,
New York, NY, USA, 2006. ACM Press. 8

[39] Richard C. Holt, Andy Schürr, Susan Elliott Sim, and Andreas Winter. Gxl: A graph-
based standard exchange format for reengineering. Science of Computer Programming,
60(2):149–170, 4 2006. 9

[40] Microsoft speech api (sapi) 5.3. Available at
http://msdn.microsoft.com/en-us/library/ms723627(VS.85).aspx. 9

[41] DirectX 10. Available at
http://www.microsoft.com/games/en-US/aboutgfw/Pages/directx10.aspx. 9

[42] P. Blenkhorn and D. G. Evans. Using speech and touch to enable blind people to access
schematic diagrams. J. Netw. Comput. Appl., 21(1):17–29, 1998. 10, 11

[43] P.T. Ward and S.J. Mellor. Structured development for real-time systems, volume 1-3.
New Jersey: Prence Hall, 1985. 10

[44] A. King, P. Blenkhorn, D. Crombie, S. Dijkstra, G. Evans, and J. Wood. Presenting
UML software engineering diagrams to blind people. Proceedings of 9th International
Conference on Computers Helping People with Special Needs,(Lecture Notes in Com-
puter Science LNCS 3118), 2004. 11, 12, 13

[45] Helen Petrie, Christoph Schlieder, Paul Blenkhorn, David Gareth Evans, Alasdair King,
Anne-Marie O’Neill, George T. Ioannidis, Blaithin Gallagher, David Crombie, Rolf
Mager, and Maurizio Alafaci. TeDUB: A system for presenting and exploring technical
drawings for blind people. In ICCHP ’02: Proceedings of the 8th International Con-
ference on Computers Helping People with Special Needs, pages 537–539, London, UK,
2002. Springer-Verlag. 11

[46] M. Horstmann, C. Hagen, A. King, S. Dijkstra, D. Crombie, D.G. Evans, G.T. Ioan-
nidis, P. Blenkhorn, O. Herzog, and C. Schlieder. TeDUB: Automatic interpretation
and presentation of technical diagrams for blind people. CVHI 2004—Conference and
Workshop on Assistive Technologies for Vision and Hearing Impairment, 2004. 11

[47] Mike Födisch, David Crombie, and George Ioannidis. TeDUB: Providing access to
technical drawings for print impaired people.
Available at citeseer.ist.psu.edu/542183.html. 11

[48] Technical drawings understanding for the blind.
Available at http://www.tedub.org/tedubsystem en.html. 11

[49] Alasdair Robin King. Re-presenting visual content for blind people. PhD thesis, Uni-
versity of Manchester, Manchester, England, 2006.
Available at http://www.alasdairking.me.uk/research/PhD.htm. 11, 13

29



[50] Rational Rose product line. Available at
http://www-01.ibm.com/software/awdtools/developer/rose/. 11, 14

[51] ArgoUML. Available at http://argouml.tigris.org/. 11

[52] Alasdair King. TeDUB and accessible UML.
Available at http://www.alasdairking.me.uk/tedub/index.htm. 13

[53] Dorian Miller. Can we work together? PhD thesis, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina, 2009.
Available at http://search.lib.unc.edu/search?R=UNCb5970444. 14, 15, 16

[54] Microsoft Office Visio.
Available at http://office.microsoft.com/en-us/visio/default.aspx. 14

[55] SWT: The standard widget toolkit. Available at http://www.eclipse.org/swt/. 14

[56] E.R. Gansner and S.C. North. An open graph visualization system and its applications
to software engineering. Software Practice and Experience, 30(11):1203–1233, 2000. 15

[57] Graphviz - graph visualization software. Available at http://www.graphviz.org/. 15

[58] Jonathan P. Munson and Prasun Dewan. Sync: A java framework for mobile collabo-
rative applications. Computer, 30(6):59–66, 1997. 15

[59] Package javax.accessibility. Available at http://java.sun.com/j2se/1.5.0/docs/api/
javax/accessibility/package-summary.html. 17

[60] Sun Developer Network. Java access bridge. Available at
http://java.sun.com/products/accessbridge/. 17

[61] Robert F. Cohen, Alexander V. Fairley, David Gerry, and Gustavo R. Lima. Accessibil-
ity in introductory computer science. In Proc. 36th SIGCSE Tech. Symp. on Computer
Science Education, pages 17–21, 2005. 17

[62] Jeffrey D. Ullman. Viewpoint advising students for success. Commun. ACM, 52(3):34–
37, 2009. 23

[63] Programming blind email list.
Available at http://www.freelists.org/list/programmingblind. 23

[64] Accessibility of software for degree email thread, March 2010. Available at
http://www.freelists.org/post/programmingblind/
Accessibility-of-software-for-degree. 23

[65] Creating simple graphics email thread, June 2010. Available at
http://www.freelists.org/post/programmingblind/
Creating-simple-graphics,1. 23

[66] McGill university: School of computer science winter 1997 class notes for 308-251b data
structures and algorithms topic #26: Depth-first search. Available at
http://www.cs.mcgill.ca/ cs251/OldCourses/1997/topic26/. 24, 25

30



[67] N. Di Spigna, P. Chakraborti, D. Winick, P. Yang, T. Ghosh, and P. Franzon. The
integration of novel eap-based braille cells for use in a refreshable tactile display. volume
7642, page 76420A. SPIE, 2010. 24

[68] Noa Raz, Ella Striem, Golan Pundak, Tanya Orlov, and Ehud Zohary. Superior serial
memory in the blind: A case of cognitive compensatory adjustment. Current Biology,
17(13):1129 – 1133, 2007. 24

31



Table 1: Laws Governing Accessibility in the United States

Rehabilitation Act of 1973, as amended in 1998
Section 504 -requires universities receiving federal assistance to provide equal access to stu-

dents with disabilities.
Section 508 -requires federal agencies to make their electronic and information technology

(EIT) accessible to members of the public with disabilities.
-mandates that most purchases of EIT by the federal government be accessible
to disabled federal employees.

Americans with Disabilities Act of 1990 (ADA)
-outlaws discrimination in the private sector.

Telecommunications Act of 1996
Section 255 -requires manufacturers of telecommunications products and services to make

them accessible to people with disabilities.

Table 2: Summary of Accessible Graph-based Applications

Feature AudioGraf Kekulé PLUMB Kevin TeDUB Deep View ProofChecker
Connection-based Navigation

√ √ √ √ √

Order-based Navigation
√

Hierarchical Navigation
√ √ √ √

Overview
√ √

Verbosity Level
√ √

Details on Demand
√ √ √

Sound
√ √ √ √ √

Orientation
√

Grouping
√ √ √ √

Annotation
√

Search
√ √ √

Create/edit ?
√ √ √

Positional Mental Model
√ √ √

Universal Design
√

32



Table 3: Universal Design Principles [25]

Principle Definition
1. Equitable Use The design is useful and marketable to people with diverse abili-

ties.
2. Flexibility in Use The design accommodates a wide range of individual preferences

and abilities.
3. Simple and Intuitive Use Use of the design is easy to understand, regardless of the user’s

experience, knowledge, language skills, or current concentration
level.

4. Perceptible Information The design communicates necessary information effectively to the
user, regardless of ambient conditions or the user’s sensory abili-
ties.

5. Tolerance for Error The design minimizes hazards and the adverse consequences of
accidental or unintended actions.

6. Low Physical Effort The design can be used efficiently and comfortably and with a
minimum of fatigue.

7. Size and Space for Ap-
proach and Use

Appropriate size and space is provided for approach, reach, ma-
nipulation, and use regardless of user’s body size, posture, or
mobility.

33



K
ey

st
ro

ke
C

om
m

en
t

A
cc

es
si

bl
e

de
sc

ri
pt

io
n

C
T
R
L
-
n

q0
dr

aw
n

at
po

si
ti

on
(0

,0
)

“S
ta

te
q0

is
se

le
ct

ed
.”

C
T
R
L
-
s

In
co

m
in

g
ar

ro
w

dr
aw

n
to

q0
“S

ta
te

q0
is

se
le

ct
ed

.
It

is
th

e
st

ar
t

st
at

e”
C
T
R
L
-
n

q1
dr

aw
n

at
po

si
ti

on
(0

,1
)

“S
ta

te
q1

is
se

le
ct

ed
.”

C
T
R
L
-
a

R
in

g
dr

aw
n

ar
ou

nd
q1

“S
ta

te
q1

is
se

le
ct

ed
.

It
is

an
ac

ce
pt

in
g

st
at

e”
C
T
R
L
-
s
h
i
f
t
-
n

St
ar

ts
dr

aw
in

g
tr

an
si

ti
on

fr
om

q1
“”

C
T
R
L
-
s
h
i
f
t
-
n

Se
lf-

tr
an

si
ti

on
dr

aw
n

to
q1

;
fo

cu
s

in
te

xt
fie

ld
“q

1
se

lf-
lo

op
s

on
th

e
sy

m
bo

ls
:”

b
b

en
te

re
d

in
tr

an
si

ti
on

te
xt

fie
ld

“q
1

se
lf-

lo
op

s
on

th
e

sy
m

bo
ls

:
b.

”
e
n
t
e
r

q1
is

hi
gh

lig
ht

ed
“S

ta
te

q1
is

se
le

ct
ed

.
It

is
an

ac
ce

pt
in

g
st

at
e”

C
T
R
L
-
s
h
i
f
t
-
n

St
ar

ts
dr

aw
in

g
tr

an
si

ti
on

fr
om

q1
“”

↓
q0

is
hi

gh
lig

ht
ed

“S
ta

te
q0

is
se

le
ct

ed
.

It
is

th
e

st
ar

t
st

at
e.

C
ur

-
re

nt
ly

cr
ea

ti
ng

a
tr

an
si

ti
on

st
ar

ti
ng

fr
om

st
at

e
q1

.”
C
T
R
L
-
s
h
i
f
t
-
n

T
ra

ns
it

io
n

dr
aw

n
fr

om
q1

to
q0

.
fo

cu
s

in
te

xt
fie

ld
“q

1
tr

an
si

ti
on

s
to

st
at

e
q0

on
th

e
sy

m
bo

ls
:

”
a

a
en

te
re

d
in

tr
an

si
ti

on
te

xt
fie

ld
“q

1
tr

an
si

ti
on

s
to

st
at

e
q0

on
th

e
sy

m
bo

ls
:

a.
”

T
ab

le
4:

A
cc

es
si

bl
e

In
te

rf
ac

e
E

xa
m

pl
e.

[2
7]

34


	Introduction
	Diagram Accessibility
	Accessible Graph-based Applications
	Graph Accessibility Issues


	Related Work
	AudioGraf
	Kekulé
	PLUMB
	Kevin
	TeDUB
	Deep View
	Summary

	Work to Date
	ProofChecker
	Overview of ProofChecker
	The Accessible Interface

	SAS® Enterprise Miner
	Summary

	Future Directions

