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Abstract—Maintenance of software applications requires unit
tests with high fault-detection capability. In practice, developers
face two major challenges when manually writing unit tests
with high fault-detection capability. First, developers may not
be able to write test data that test all important behaviors
of methods under test. Second, developers may unintentionally
write redundant unit tests that exercise the same behavior of
methods under test. To address these issues, developers can write
Parameterized Unit Tests (PUTs), instead of unit tests without
parameters, referred to as Conventional Unit Tests (CUTs). A
major benefit of PUTs compared to CUTs is that developers
do not need to provide test data in PUTs, since test data
can be generated automatically using a test-generation tool.
However, writing PUTs is more challenging than writing CUTs.
For example, PUTs typically encode algebraic specifications,
which are more abstract and general than sample-point behaviors
encoded by CUTs. On the other hand, existing applications often
include CUTs, which can be used to write PUTs with low effort.
To exploit the benefits of PUTs in practice, we propose a novel
approach to retrofit existing CUTs into PUTs. We conducted
an empirical study on three real-world applications to show the
benefits of retrofitting CUTs into PUTs. In our empirical study,
we show that our approach retrofits407 CUTs (4.6 KLOC) to 224

PUTs (4.0 KLOC). Along with achieving higher branch coverage
(a maximum increase of52% for one class under test and10% for
one application) than existing CUTs, our approach helps detect
19 new defects not detected by existing CUTs. Some of these
defects are quite complex and difficult to detect using existing
automatic test-generation tools alone.

I. I NTRODUCTION

Unit tests are widely adopted in software industry for
ensuring the high quality of production code. In general, main-
tenance of software applications requires unit tests with high
fault-detection capability. Although automatic test-generation
tools [1], [2], [3], [4], [5] can be used to generate unit tests
automatically, these tools cannot generate test oracles. There-
fore, these tools can detect only robustness-related defects such
as null pointer dereferencing exceptions [6]. Due to such
limitations of automatic test-generation tools, manuallywriting
unit tests is still a common practice in software industry.

When writing unit tests manually, developers can use their
domain knowledge in writing test oracles. Nevertheless, it
is challenging for developers to write all possible important
values for test data (such as argument values of methods
invoked in unit tests) that comprehensively exercise methods
under test in production code. This challenge in writing test
data could result in two major issues. First, developers may
not be able to write test data that exercise all important

01:public void CUT1() {
02: int elem = 1;
03: UIntStack stk = new UIntStack();
04: stk.Push(elem);
05: Assert.AreEqual(1, stk.Count()); }
06:public void CUT2() {
07: int elem = 30;
08: UIntStack stk = new UIntStack();
09: stk.Push(elem);
10: Assert.AreEqual(1, stk.Count()); }
11:public void CUT3() {
12: int elem1 = 1, elem2 = 30;
13: UIntStack stk = new UIntStack();
14: stk.Push(elem1);
15: stk.Push(elem2);
16: Assert.AreEqual(2, stk.Count()); }

Fig. 1. Three CUTs that test an unsigned-integer stack that does not accept
negative integers.

01:public void PUT(int[] elem) {
02: UIntStack stk = new UIntStack();
03: foreach (int i in elem) {
04: stk.Push(i); }
05: Assert.AreEqual(elem.Length, stk.Count()); }

Fig. 2. A single PUT replacing the three CUTs shown in Figure 1.

behaviors of methods under test, thereby resulting in unit
tests with low fault-detection capability. Second, developers
may write different test data that exercise the same behavior
of methods under test, thereby resulting in redundant unit
tests. These redundant unit tests increase only the testingtime
and do not increase the fault-detection capability. To show
illustrative examples of these issues, consider the three unit
tests shown in Figure 1 for testing thePush method of an
unsigned-integer stack classUIntStack . These three unit tests
exercise thePush method with different test data in different
test scenarios. For example, CUT1 and CUT2 exercisePush

with different argument values, when the stack is empty, while
CUT3 exercisesPush , when the stack is not empty. Consider
that there is a defect (inPush ) that can be detected by passing
a negative value as the argument toPush . These three tests
cannot detect the preceding defect, since these tests do notpass
a negative integer value as an argument. Furthermore, CUT2 is
a redundant unit test, sinceUIntStack has the same behavior
for all non-negative integers passed as arguments toPush .

To address these preceding issues with writing unit tests
manually, developers can use Parameterized Unit Tests
(PUTs) [7] that accept parameters, instead of unit tests that
do not accept parameters, referred to as Conventional Unit
Tests (CUTs). Indeed, CUTs can be considered as instances of
PUTs with test data for parameters. We next give three reasons
why writing PUTs is more beneficial than writing CUTs.



First, developers do not need to providetest datain a PUT
and instead need to provide only the variables that represent
the test data as parameters. The values for these parameters
can be generated automatically using a test-generation tool
such as a dynamic symbolic execution (DSE) engine [8],
[1], [9], [2]. Section II presents more details on how DSE
generates values for parameters of PUTs. Second, since test
data are automatically generated by DSE-based approaches
tend to exercise all feasible paths in the methods under test,
the fault-detection capabilityof PUTs is higher than that of
CUTs. Third, a single PUT can represent multiple CUTs,
thereby reducing thesize of test code. For example, the PUT
shown in Figure 2 tests the same or more behaviors of the
method under test as the three CUTs shown in Figure 1. Using
the PUT, a DSE-based approach can test the method under
test with other scenarios, such as pushing an element into a
stack with two or three elements, to achieve high structural
coverage of the method under test. Therefore, using the PUT,
a DSE-based approach can automatically generate test data
that passes a negative value to thePush method based on its
implementation, thereby detecting the defect not detectedby
the existing three CUTs.

Although PUTs help in addressing the issues with CUTs,
writing PUTs directly is quite challenging for the following
two reasons. First, in general, developers have to define the
expected behavior (in terms oftest oracles) for all possible
test data in PUTs, whereas in CUTs, the expected behavior
is defined only for a sample test data. In fact, PUTs typically
encode algebraic specifications [10]. Second, although PUTs
do not encode test data, PUTs still need to encode necessary
test scenarios (such as method-call sequences) for exercising
the code under test to achieve test objectives, which are
described using test oracles. For these two major reasons,
PUTs are still not widely adopted in software industry1.

On the other hand, existing applications often include
CUTs [12], and the test oracles and test scenarios encoded
in these CUTs can be used to address the two major issues in
writing PUTs. To exploit the benefits of PUTs in practice, we
propose an approach that assists developers in retrofittingex-
isting CUTs into PUTs. We refer to the process of generalizing
CUTs to PUTs astest generalization. The key insight of our
approach, which helps achieve test generalization, is thatex-
isting applications often include CUTs and the test oraclesand
test scenarios of these CUTs can assist developers in writing
PUTs effectively with low effort. Our approach also includes
techniques that address the challenges that are classified into
two categories: challenges specific to test generalizationand
challenges in general for the existing DSE-based approaches
in generating test data for PUTs. Section III presents more
details on these two categories of challenges and describes
how our techniques help address these challenges.

In summary, our approach has two major benefits. First, our
approach provides a practical solution to adopt PUTs for gen-

1The concept of PUTs was introduced in 2005; however, only a few
developers currently use PUTs [11]

erating unit tests with high fault-detection capability. Second,
even developers or third-party testers with little knowledge
of the production code can use our approach to write PUTs
with low effort during software maintenance. Our vision is to
leverage existing artifacts, such as existing CUTs, in bridging
the gap between existing practices in software industry and
the new advancements in software-engineering research.

This paper makes the following major contributions:

∙ The first approach for assisting developers in retrofitting
existing CUTs into PUTs for leveraging the benefits of
PUTs in practice. To the best of our knowledge, we are
the first to propose a test-generalization approach.

∙ A set of techniques that can assist developers during
test generalization in addressing the challenges of test-
generalization and the limitations of existing DSE-based
approaches.

∙ The first empirical study to show the benefits of test gen-
eralization with three popular open-source applications.
Our results show that test generalization increases branch
coverage by4% (with a maximum increase of52% for
one class under test and10% for one application under
analysis) on average for all three applications used in our
empirical study. Our results show that test generalization
helps detect19 new defects not detected by existing
CUTs. Our results also show that neither the increase
in branch coverage nor all these defects can be detected
by adding additional tests via automatic test-generation
tools such as Randoop [5]. Finally, our results also show
that test generalization helps reduce the number of unit
tests by45%; 407 CUTs (4.6 KLOC) are retrofitted into
224 PUTs (4.0 KLOC), thereby reducing the test-code
size for potentially helping in better management of test
code.

II. BACKGROUND

We use Pex [11] as an example state-of-the-art DSE-based
test generation tool for generating CUTs using PUTs. Pex, a
part of Microsoft Visual Studio, is a white-box test generation
tool for .NET programs. Pex accepts PUTs and symbolically
executes the PUTs and the code under test to generate a set
of CUTs that can achieve high coverage of the code under
test. Initially, Pex explores the code under test with random
or default values and collects constraints along the execution
path. Pex next systematically negates parts of the collected
constraints and uses a constraint solver to generate concrete
values that guide program execution through alternate paths.
Pex has been widely used both in academia and industry,
which is reflected by its download counts (Feb. 2008 - Oct.
2009) that is greater than30000. Pex is applied on industrial
code bases and detected serious defects in a software compo-
nent, which had already been extensively tested [2].

III. A PPROACH

We next present our approach that assists developers in
achieving test generalization. Although we explain our ap-
proach using Pex, our approach is independent of Pex and



can be used with other DSE-based test generation tools [9].
Our approach is based on the following two requirements.

∙ R1: the PUT generalized from a passing CUT should not
result in false-positive failing CUTs being generated from
the PUT.

∙ R2: the PUT generalized from a CUT should help achieve
the same or higher structural coverage than the CUT and
should help detect the same or higher number of defects
than the CUT.

We next describe more details on these two requirements.
R1 ensures that test generalization does not introduce false
positives. In particular, a CUT generated from the PUT can
fail for two reasons: a defect in the method under test
(MT) or a defect in the PUT. Failing CUTs for the second
reason are considered as false positives. These failing CUTs
are generated when generalized PUTs do not satisfy either
necessary preconditions of the MT or assumptions on the input
domain of the parameters required for passing the test oracle.
On the other hand, R2 ensures that test generalization does not
introduce false negatives. The rationale is that PUTs provide
a generic representation of CUTs, and should be able to guide
a DSE-based approach in generating CUTs that exercise the
same or more paths in the MT than CUTs, and thereby should
have the same or higher fault-detection capability.

We next provide an overview of how a developer generalizes
existing CUTs to PUTs by using our approach to satisfy the
preceding requirements and then explain each step in detail
using illustrative examples from the NUnit framework [13].

A. Overview

Algorithm 1 shows the overview of our approach, which
includes five major steps: (S1)Parameterize, (S2) Generalize
Test Oracle, (S3)Add Assumptions, (S4)Add Factory Method,
and (S5)Add Mock Object. In our approach, Steps S1 and S2
are mandatory, whereas Steps S3, S4, and S5 are optional and
are used when R1 or R2 is not satisfied.

For an MT, the developer uses our algorithm to generalize
the set of CUTs of that MT, one CUT at a time. First, the
developer identifies concrete values and local variables in
the CUT and promotes them as parameters for a PUT (Line
7). Second, the developer generalizes the assertions in the
CUT to generalized test oracles in the PUT (Line8). After
generalizing test oracles, the developer applies Pex to generate
CUTs from PUTs (Line9). When any of the generated CUTs
fails (Line 11) the developer checks whether the reason for the
failing CUT(s) is due to illegal values generated by Pex for
the parameters (Line12), i.e., whether the failing CUTs are
false-positive CUTs. To avoid these false-positive CUTs and
thereby to satisfy R1, the developer adds assumptions on the
parameters to guide Pex to generate legal input values (Line
13). The developer then applies Pex again and continues this
process of adding assumptions till either no generated CUTs
fail or the generated CUTs fail due to defects in the MT.

After satisfying R1, the developer checks whether R2 is also
satisfied, i.e., the structural coverage achieved by generated
CUTs is at least as much as the coverage achieved by the

Algorithm 1 Test Generalization
Require: CUTs for an MT M

Ensure: PUTs

1: SetPUTs = �, gAllCUTs

2: for all c ∈ CUTs do
3: if gAllCUTs.Contains(c) then
4: Continue
5: end if
6: Setp = �, gCUTs = �, break = false

7: p = Parameterize(c)
8: p = GeneralizeTestOracle(c, p)
9: gCUTs = GenerateCUTs(p)

10: repeat
11: while !Execute(gCUTs) do
12: if LegalV alueIssue(gCUTs) then
13: p = AddAssumptions(p)
14: else
15: ReportDefect()
16: Continue
17: end if
18: end while
19: if Cov(M, gCUTs) < Cov(M,CUTs) then
20: if NPTypeParam(p) then
21: p = AddFactoryMetℎod(p)
22: end if
23: if EnviInteractionIssue(M) then
24: p = AddMockObj(p)
25: end if
26: else
27: break = true

28: end if
29: until break

30: PUTs.Add(p), gAllCUTs.Add(gCUTs)
31: end for
32: return PUTs

existing CUTs. If R2 is satisfied, then the developer proceeds
to the next CUT. On the other hand, if R2 is not satisfied,
then there could be two issues: (1) Pex was not able to
create desired object states for a non-primitive parameter[14],
and (2) the MT includes interactions with external environ-
ments [15]. Although DSE-based test-generation tools such
as Pex are effective in generating CUTs from PUTs whose
parameters are of primitive types, Pex or any other DSE-based
tool faces challenges in cases such as generating desirable
objects for non-primitive parameters. To address these two
issues, the developer writes factory methods (Line21) and
mock objects [15] (Line24), respectively, to assist Pex. More
details on these two steps are available in subsequent sections.

The developer repeats the last three steps till the require-
ments R1 and R2 are met, as shown in Loop10-29. Often,
multiple CUTs can be generalized to a single PUT. Therefore,
to avoid generalizing a CUT that is already generated by a
previously generalized PUT, the developer checks whether
the new CUT to be generalized belongs to already generated



00:public class SettingsGroup {
01: MemorySettingsStorage storage; ...
02: public SettingsGroup(MemorySettingsStorage storage ) {
03: this.storage = storage;
04: }
05: public void SaveSetting(string sn, object sv) {
06: object ov = storage.GetSetting( sn );
07: //Avoid change if there is no real change
08: if (ov != null ) {
09: if (ov is string && sv is string &&
(string)ov == (string)sv ||
10: ov is int && sv is int && (int)ov == (int)sv ||
11: ov is bool && sv is bool && (bool)ov == (bool)sv ||
12: ov is Enum && sv is Enum && ov.Equals(sv))
13: return;
14: }
15: storage.SaveSetting(sn, sv);
16: if (Changed != null)
17: Changed(this, new SettingsEventArgs(sn));
18: }}

Fig. 3. TheSettingsGroup class of the NUnit framework with the
SaveSetting method under test.

00://testGroup is of type SettingsGroup
01:[Test]
02:public void TestSettingsGroup() {
03: testGroup.SaveSetting("X", 5);
04: testGroup.SaveSetting("NAME", "Charlie");
05: Assert.AreEqual(5, testGroup.GetSetting("X"));
06: Assert.AreEqual("Charlie", testGroup.GetSetting(" NAME"));
07: }

Fig. 4. A CUT to test theSaveSetting method (shown in Figure 3)

CUTs (Lines 3 − 5). If so, the developer ignores the new
CUT; otherwise, the developer generalizes the new CUT. We
next illustrate each step of our approach using an MT and a
CUT from the NUnit framework shown in Figures 3 and 4,
respectively.

B. Example

1) Method under test and CUTs:Figure 3 shows an MT
SaveSetting from the SettingsGroup class of the NUnit
framework. TheSaveSetting method accepts a setting name
sn and a setting valuesv , and stores the setting in a storage
(represented by the member variablestorage ). The setting
value can be of typeint , bool , string , or enum. Before
storing the value,SaveSetting checks whether the same
value already exists for that setting in the storage. If the same
value already exists for that setting,SaveSetting returns
without making any changes to the storage.

Figure 4 shows a CUT for testing theSaveSetting

method. The CUT saves two setting values (of typesint

andstring ) and verifies whether the values are set properly
using theGetSetting method. The CUT verifies the expected
behavior of theSaveSetting method only for the setting
values of typesint and string . This CUT is the only test
for verifying SaveSetting and includes two major issues.
First, the CUT does not verify the behavior for the types
bool and enum. Second, the CUT does not cover thetrue

branch in Statement 8 of Figure 3. The reason is that the CUT
does not invoke theSaveSetting method more than once
with the same setting name. This CUT achieves10% branch
coverage of theSaveSetting method. We next explain how
the developer generalizes the CUT to a PUT and addresses
these two major issues via our test generalization.

2) S1 - Parameterize:For the CUT shown in Figure 4, the
developer promotes thestring “Charlie ” and theint 5 as

//PAUT: PexAssumeUnderTest
00:[PexMethod]
01:public void TestSettingsGroupPUT([PAUT] SettingsGro up st,
02: [PAUT] string sn, [PAUT] object sv) {
03: st.SaveSetting(sn, sv);
04: PexAssert.AreEqual(sv, st.GetSetting(sn)); }

Fig. 5. A PUT for the CUT shown in Figure 4.

//MSS: MemorySettingsStorage (class)
//PAUT: PexAssumeUnderTest (Pex attribute)
00:[PexFactoryMethod(typeof(MSS))]
01:public static MSS Create([PAUT]string[]
02: sn, [PAUT]object[] sv) {
03: PexAssume.IsTrue(sn.Length == sv.Length);
04: PexAssume.IsTrue(sn.Length > 0);
05: MSS mss = new MSS();
06: for (int count = 0; count < sn.Length; count++) {
07: mss.SaveSetting(sn[count], sv[count]);
08: }
09: return mss;
10: }

Fig. 6. An example factory method for the type
MemorySettingsStorage .

a single parameter of typeobject for the PUT. The advantage
of replacing concrete values with symbolic values (in the form
of parameters) is that Pex generates concrete values based on
the constraints encountered in different paths in the MT. Since
SaveSetting accepts the parameter of typeobject (shown
in Figure 5), Pex automatically identifies the possible types
for the object type such asint or bool from the MT and
generates concrete values for those types, thereby satisfying
R2. In addition to promoting concrete values as parameters
of PUTs, the developer promotes other local variables such
as the receiver object (testGroup ) of SaveSetting as
parameters. Promoting such receiver objects as parameterscan
help generate different object states (for those receiver objects)
that can help cover additional paths in the MT. Figure 5 shows
the PUT generalized from the CUT shown in Figure 4.

3) S2 - Generalize Test Oracles:The developer next gen-
eralizes test oracles in the CUT. In the CUT, a setting is
stored in the storage usingSaveSetting and is verified
using GetSetting . By analyzing the CUT, the developer
generalizes the test oracle of the CUT by replacing the constant
value with the relevant parameter of the PUT. The test oracle
for the PUT is shown in Line4 of Figure 5.

In practice, generalizing the test oracle is a complex task,
since determining the expected output values for all the
generated inputs is not trivial. Therefore, to assist developers in
generalizing test oracles, we proposed15 PUT patterns, which
developers can use to analyze the existing CUTs and gener-
alize test oracles. More details of the patterns are available in
Pex documentation [16].

4) S3 - Add Assumptions:A challenge faced during test
generalization is that Pex requires guidance in generatinglegal
values for the parameters of PUTs. These legal values are the
values that satisfy preconditions of the MT and help setting
up test scenarios to pass test assertions (i.e., test oracles).
These assumptions help avoid generating false-positive CUTs,
thereby satisfying R1. For example, without any assumptions,
Pex by default generates illegalnull values for non-primitive
parameters such asst of the PUT shown in Figure 5. To guide
Pex in generating legal values, the developer adds sufficient
assumptions to the PUT. In the PUT, the developer annotates



01:public class MockXmlTextWriter {
02: public MockXmlTextWriter(string filename,

Encoding encoding) {
03: this.fileName = filename; }

05: public void WriteAttributeString(string att,
string val) {

06: xml = xml + " " + att + "=" + " "̈ + val + " "̈; }

07: public void Close() {
08: xml = xml.Replace("/> />", "/>" + System.

Environment.NewLine + "</" + startString + ">");
09: CreatedProjects.currentProject = xmlString; }
10: }

Fig. 7. Sample code from theMockXmlTextWriter mock object.

each parameter with the tagPexAssumeUnderTest 2, which
describes that the parameter should not benull and the type
of generated objects should be the same as the parameter type.
The developer adds further assumptions to PUTs based on the
behavior exercised by the CUT and the feedback received from
Pex.

5) S4 - Add Factory Method:In general, Pex (or any other
existing DSE-based approaches) faces challenges in generating
CUTs from PUTs that include parameters of non-primitive
types, since these parameters require method-call sequences
(that create and mutate objects of non-primitive types) to
generate desirable object states [14]. These desirable object
states are the states that are required to exercise new paths
or branches in the MT, thereby to satisfy R2. For example, a
desirable object state to cover thetrue branch of Statement 8
in Figure 3 is that thestorage object should already include
a value for the setting namesn .

To assist Pex in producing effective method-call sequences
that can help achieve desirable object states, developers
write method-call sequences inside factory methods, sup-
ported by Pex. The factory methods can have parameters and
Pex handles these parameters similar to the parameters of
PUTs. Figure 6 shows an example factory method for the
MemorySettingsStorage class. The factory method accepts
two arrays of setting names (sn ) and values (sv ), and adds
these entries to the storage. This factory method helps Pex
to generate method-call sequences that can create desirable
object states. For example, Pex can generate five names and
five values as arguments to the factory method for creating a
desirable object state with five elements in the storage3. The
same factory method can be reused for all other PUTs using
the MemorySettingsStorage class as a parameter type.

6) S5 - Add Mock Object:Pex (or any other existing DSE-
based approaches) also faces challenges in handling PUTs or
MT that interacts with the external environment such as the
file system. To address this challenge related to the interactions
with the environment, developers write mock objects for assist-
ing Pex [15]. These mock objects help test features in isolation
especially when PUTs or MT interact with environments such
as a file system. We next describe how developers use mock
objects with an illustrative example.

2PexAssumeUnderTest is a custom attribute provided by Pex.
3Note that the factory methods provide only assistance to Pex in achieving

the desirable object states, and Pex generates these objectstates based on the
branching conditions in the MT.

In the NUnitProject class of NUnit, thesave method
writes configuration information using theXmlTestWriter

class to an XML file. This XML file is expected to be
created when the project is created, i.e., when an in-
stance of NUnitProject is created. Two existing CUTs
SaveEmptyConfigs and SaveNormalProject test this
save method. These CUTs add configurations to the XML
project files and assert whether the files are saved in the right
format, and contain the added configuration information. Both
the CUTs use on a default instance (ofNUnitProject ) that is
created using the test setup method. Therefore, the requirement
to test thesave method is to provide the project configuration
file (the XML file) in a specific location, i.e., the directory
location where the project is saved (when a project is saved,a
new directory is created as the project directory and the XML
file is created in this directory).

To generalize these CUTs, the developer promotes the
project path (the parameter of thesave MT and a local
variable in the CUTs) as a parameter to the PUT. However,
generalization of these CUTs is not straightforward. By pro-
moting the project path as the PUT’s parameter, all generated
CUTs require XML files in specific locations (reflected by
generated values for the parameter). When thesave method
is invoked, these XML files should be available for being
accessed usingXmlTextWriter . Without such XML files,
the save method throws an exception, resulting false-positive
CUTs, thereby violating R1.

To avoid the complexity of creating a “real” file at a
“real” location for each generated CUT and to satisfy R1, the
developer mocks the expected behavior ofXmlTextWriter

to MockXmlFileWriter (shown in Figure 7). This mock
object simulates the behavior ofXmlTextWriter . However,
unlike the real object, the mock object uses astring field
and appends the input text to the field. Thus the mock
object replicates the actual behavior ofXmlTextWriter while
avoiding the interactions with the physical file system.

7) Generalized PUT:Figure 5 shows the final PUT after
the developer follows our approach. The PUT accepts three
parameters: an instance ofSettingsGroup , the name of the
setting, and its value. TheSaveSetting method can be used
to save either anint value or astring value (the method
accepts both types for its arguments). Therefore, the CUT
requires two method calls shown in Statements3 and 4 of
Figure 4 to verify whetherSaveSetting correctly handles
these types. On the other hand, only one method call is
sufficient in the PUT, since the variable is promoted to a
PUT parameter of typeobject . Pex automatically explores
the MT and generates CUTs that cover bothint andstring

types. Indeed, theSaveSetting method also acceptsbool

and enum types. The existing CUTs did not include test
data for verifying these two types. Our generalized PUT
automatically handles these additional types, highlighting a
primary advantage of test generalization in reducing the test
code significantly without reducing the behavior exercisedby
existing CUTs.

When we applied Pex on the PUT shown in Figure 5,



Pex generated8 CUTs from the PUT. These CUTs test the
SaveSetting method with different setting values of types
such asint or string or other non-primitive object types. As
described earlier, a single PUT can substitute multiple CUTs,
resulting in reduced test code. Furthermore, the CUT used for
generalization achieved branch coverage of10%, whereas the
CUTs generated from the generalized PUT achieved branch
coverage of90%. Although the PUT achieved higher code cov-
erage compared to the existing CUT, the PUT still could not
cover thetrue branch of Statement16 of the SaveSetting

method (Figure 3). The developer while doing generalization
can analyze these not-covered portions and then either enhance
PUTs or write new PUTs for achieving additional coverage of
those not-covered portions4.

IV. EMPIRICAL STUDY

We conducted an empirical study using three real-world ap-
plications to show the benefits of our approach in generalizing
CUTs to PUTs. In our empirical study, we show the benefits of
PUTs over existing CUTs usingfour metrics: branch coverage,
the number of detected defects, the number of tests (their
LOC) being reduced by test generalization, and the time taken
for test generalization. In particular, we address the following
four research questions in our empirical study:

∙ RQ1: Branch Coverage.How much higher percentage
of branch coverageis achieved by PUTs compared to
existing CUTs? Since PUTs are a generalized form of
CUTs, this research question helps to address whether
PUTs can achieve additional branch coverage compared
to CUTs. We focus on branch coverage, since detecting
defects via violating test assertions in unit tests can be
mapped to covering implicit branches within those test
assertions.

∙ RQ2: Defect Detection.How many newdefects(that are
not detected by CUTs) are detected by PUTs and vice-
versa? This research question helps to address whether
PUTs have higher fault-detection capabilities compared
to CUTs.

∙ RQ3: Test-code-size Reduction.How many tests are
reduced by generalizing CUTs to PUTs? This research
question addresses whether test generalization helps re-
duce the test-code size for potentially helping better
management of test code.

∙ RQ4: Generalization Effort. How much effort required
for generalizing CUTs to PUTs? This research question
helps to show that the effort required for generalization
is worthwhile, considering the generalization benefits.

We first present the details of subject applications and next
describe our setup for empirical study. Finally, we present
the results of our empirical study. The detailed results of
our empirical study are available at our project website https:
//sites.google.com/site/asergrp/projects/putstudy.

4Recall that the objective of our study is to generalize existing CUTs to
PUTs for comparing the benefits of PUTs over existing CUTs. Therefore,
here we do not show the step of writing additional PUTs that can achieve
additional branch coverage.

A. Subject Applications

We use three popular open source applications (as shown
by their download counts in their hosting web sites) in our
study: NUnit [13], DSA [17], and Quickgraph [18]. Table I(a)
shows the three subject applications. NUnit [13], a counterpart
of JUnit for Java, is a widely used open source unit-testing
framework for all .NET languages. Data Structures and Algo-
rithms (DSA) [17] is a library that contains implementation
of data structures and algorithms, a few of which are not
available in the NET 3.5 framework. QuickGraph [18] is a C#
graph library that provides various directed/undirected graph
data structures. While we used all namespaces and classes for
DSA and QuickGraph in our study, for NUnit, we used nine
classes from itsUtil namespace, which is one of the core
components of the framework.

Table I(b) shows the characteristics of the three subject
applications. Column “Downloads” shows the number of
downloads of the application (as listed in its hosting web site).
Column “Code Under Test” shows details of the code under
test (of the application) in terms of the number of classes
(“#Classes”), number of methods (“#Methods”), number of
lines of code (“#KLOC”), and the average and maximum
cyclometic complexity of the code under test. Similarly, Table
I(c) shows the statistics of existing CUTs in these subject
applications.

B. Empirical Study Setup

We next describe the setup of our study conducted by
the first and second authors of this paper for addressing
the preceding research questions. The authors are the third
and fourth year PhD students, respectively, with the same
experience of two years with PUTs and Pex. Before joining
the PhD program, the authors had three and five years of
programming experience, respectively, in software industry.
Each of the author conducted test generalization for half of
CUTs across all three subjects. The authors do not have the
knowledge of subject applications and conducted the study as
third-party testers. We expect that our test-generalization re-
sults can be much better, if the test generalization is performed
by the developers of these subject applications. The reasonis
that these developers can incorporate their domain knowledge
during test generalization to write more effective PUTs.

To address the preceding research questions, the authors
used three categories of CUTs. The first category of CUTs is
the set of existing CUTs available with subject applications.
The second category of CUTs is set of CUTs generated
from PUTs. To generate this second category of CUTs, the
authors generalized existing CUTs to PUTs and applied Pex
on those PUTs. The authors also measured the time taken for
generalizing each CUT to compute the generalization effortfor
addressing RQ4. The measured time includes the amount of
time taken for performing all steps described in our approach
and also applying Pex to generate CUTs from PUTs. The
third category of CUTs is the set of existing CUTs + new
CUTs (hereby referred to asRTs) that were generated using
an automatic random test-generation tool, called Randoop [5].



TABLE I

(a)
Subject
Applications

NUnit
DSA
QuickGraph

(b) Characteristics of subject applications.

Downloads Code Under Test
#Classes #Methods #KLOC Avg. Complexity Max. Complexity

193, 5635 9 87 1.4 1.48 14
2241 27 259 2.4 2.09 16
7969 56 463 6.2 1.79 16

(c) Statistics of existing CUTs.

Existing Test Code
#Classes #CUTs #KLOC

9 49 0.9
20 337 2.5
9 21 1.2

Subject Branch Coverage Overall Max.
Inc. Inc.

CUTs CUTs + RTs (#) PUTs

NUnit 78% 78% (144) 88% 10% 52%

DSA 91% 91% (615) 92% 1% 1%

QuickGraph 87% 88% (3628) 89% 2% 11%

TABLE II
BRANCH COVERAGE ACHIEVED BY THE EXISTINGCUTS, CUTS + RTS,

AND CUTS GENERATED BYPEX USING THE GENERALIZEDPUTS.

01: public void RemoveSetting(string settingName) {
02: int dot = settingName.IndexOf( ’.’ );
03: if (dot < 0)
04: storageKey.DeleteValue(settingName, false);
05: else {
06: using(RegistryKey subKey = storageKey.OpenSubKey(

settingName.Substring(0,dot),true)) {
07: if (subKey != null)
08: subKey.DeleteValue(

settingName.Substring(dot + 1)); }
09: }
10: }

Fig. 8. RemoveSetting method whose coverage is increased by60%

due to test generalization.

This third category (CUTs + RTs) helps show that the benefits
of test generalization cannot be achieved by simply generating
additional tests using tools such as Randoop. To address
RQ1, the authors measured branch coverage using a coverage
measurement tool, called NCover6. To address RQ2 and RQ3,
the authors measured the number of failing tests and computed
the code metrics (LOC) using CLOC7 tool, respectively. The
authors did not compare the execution time of CUTs for all
three categories, since the time taken for executing CUTs of
all categories is negligible (< 20 sec).

C. RQ1: Branch Coverage

We next describe our empirical results for addressing RQ1.
Table II shows the branch coverage achieved by executing
the existing CUTs, CUTs + RTs, and the CUTs generated by
Pex using the generalized PUTs. The values in brackets (#)
for CUTs + RTs indicate the number of RTs, i.e., the tests
generated by Randoop (using a default timeout of180 sec).
Column “Overall Inc.” shows the overall increase in the branch
coverage from the existing CUTs to the generalized PUTs.
Column “Max. Inc.” shows the maximum increase for a class
or namespace in the respective subject applications.

Column “Overall Inc.” shows that the branch coverage
is increased by 10%, 1%, and 2% for NUnit, DSA, and
QuickGraph, respectively. Furthermore, Column “Max Inc.”
shows that the maximum branch coverage for a class or a
namespace is increased by 52%, 1%, and 11% for NUnit,
DSA, and QuickGraph, respectively. One major reason for

6http://www.ncover.com/
7http://cloc.sourceforge.net/

not achieving an increase in the coverage for DSA is that
the existing CUTs already achieved high branch coverage and
PUTs help achieve a little higher coverage than existing CUTs.

To show that the increase in the branch coverage achieved
by PUTs is not trivial to achieve, we compare the results of
PUTs with CUTs + RTs. The increase in the branch coverage
achieved by CUTs + RTs compared to CUTs alone is0%,
0%, and1% for NUnit, DSA, and QuickGraph, respectively.
This comparison shows that the improvement in the branch
coverage achieved by PUTs is not trivial to achieve, since
the branches that are not covered by the existing CUTs are
generally quite difficult to cover (as shown in the results of
CUTs + RTs).

D. RQ2: Defects

To address RQ2, we identify the number of defects detected
by PUTs. We did not find any failing CUTs among existing
CUTs of the subject applications. Therefore, we consider the
defects detected by failing tests among the CUTs generated
from PUTs as new defects not detected by existing CUTs.
In addition to the defects detected by PUTs, we also inspect
the failing tests among the RTs to compare the fault-detection
capabilities of PUTs and RTs.

In summary, our PUTs found15 new defects in DSA and
4 new defects in NUnit. After our inspection, we reported
the failing tests on their hosting websites8. On the other
hand, RTs include90, 25, and 738 failing tests for DSA,
NUnit, and QuickGraph, respectively. Since RTs are generated
automatically using Randoop, RTs do not include test oracles.
Therefore, an RT is considered as a failing test, if the execution
of RT results in an uncaught exception being thrown. In our
inspection of these failing tests in RTs, we found that only18
failing tests for DSA are related to4 real defects in DSA, since
the same defect is detected by multiple failing tests. These4
defects are also detected by our PUTs. The remaining failing
tests are due to two major issues. First, exceptions raised by
RTs are expected. In our approach, we address this issue by
adding annotations to PUTs regarding expected exceptions.We
add these additional annotations based on expected exceptions
in CUTs. Second, illegal test data such asnull values passed
as arguments to methods invoked in RTs. In our approach, we
address this issue of illegal test data by adding assumptions to
PUTs in Step S1. This issue of illegal test data in RTs show
the significance of Step S1 in our approach.

To further show the significance of generalized PUTs, we
applied Pex on these applications without these PUTs and by

8Reported bugs can be found at the DSA CodePlex website with defect
IDs from 8846 to 8858 and the NUnit SourceForge website with defect IDs
2872749, 2872752, and2872753.



//To test Remove item not present
01: public void RemoveCUT() {
02: Heap<int> actual = new Heap<int> {2, 78, 1, 0, 56 };
03: Assert.IsFalse(actual.Remove(99));
04: }

Fig. 9. Existing CUT to test theRemove method ofHeap.
01: public void RemoveItemPUT (

[PAUT]List<int> input, int item) {
02: Heap<int> actual = new Heap<int> (input);
03: if (input.Contains(item)) {
04: ..... }
05: else {
06: PexAssert.IsFalse(actual.Remove(randomPick));
07: PexAssert.AreEqual(input.Count, actual.Count);
08: CollectionAssert.AreEquivalent(actual, input); }
09: }

Fig. 10. A generalized PUT of the CUT shown in Figure 9.

using PexWizard. PexWizard is a tool provided with Pex and
this tool automatically generates PUTs (without test oracles)
for each public method in the application. We found that
the generated CUTs include23, 170, and17 failing tests for
DSA, NUnit, and QuickGraph, respectively. However, similar
to Randoop, only2 tests are related to2 real defects (also
detected by our generalized PUTs) in DSA, and the remaining
failing tests are due to the preceding two issues described for
Randoop.

We next explain an example defect detected in theHeap

class of the DSA application by CUTs generated from gener-
alized PUTs. The details of remaining defects can be found at
our project website. TheHeap class is a heap implementation
in the DataStructure namespace. This class includes meth-
ods to add, remove, and heapify the elements in the heap. The
Remove method of the class takes an item to be removed as
a parameter and returnstrue when the item to be removed
is in the heap, and returnsfalse otherwise. Figure 9 shows
the existing CUT that checks whether theRemove method
returnsfalse when an item that is not in the heap is passed
as the parameter. On execution, this CUT passed; exposing
no defect in the code under test and there are no other CUTs
(in the test suite) that exercise the behavior of the method.
However, from our generalized PUT shown in Figure 10, a
few of the generated CUTs failed, exposing a defect in the
Remove method. The test data for the failing tests had the
following common characteristics: the heap size is less than 4
(the input parameter of the PUT is of size less than4), the
item to be removed is0 (the item parameter of the PUT), and
the item0 was not already added to the heap (the generated
value for input did not contain the item0).

When we inspected the causes of the failing tests, we found
that in the constructor of theHeap class, a default array of
size 4 (of type int ) is created to store the items. In C#,
an integer array is by default assigned values zero to the
elements of the array. Therefore, there is always an item0
in the heap unless an input list of size greater than or equal
to 4 is passed as parameter. Therefore, on calling theRemove

method to remove the item0, even when there is no such
item in the heap, the method returnstrue indicating that the
item has been successfully removed and causing the assertion
statement to fail (Statement6 of the PUT). However, this
defect was not detected by the CUT shown in Figure 9 since
the unit test assigns the heap with5 elements (Statement2) and

Fig. 11. Comparison of the number of CUTs and PUTs

therefore the defect-exposing scenario of heap size< 4 cannot
be exercised. These19 new defects that were not detected by
the existing CUTs show that PUTs are an effective means for
rigorous testing of the code under test.

E. RQ3: Test-code-size Reduction

We next address RQ3 of whether test generalization can
help reduce the test-code size. We use two metrics to address
this research question. First, we compare the number of CUTs
and the number of PUTs. Second, we compare the LOC of
CUTs and PUTs. The reason for the second metric is that a
low number of PUTs with a high number of LOC does not
help in reducing the test-code size.

Figure 11 shows the comparison of the number of CUTs
with PUTs for all subject applications. The x-axis shows the
subject application and y-axis shows the number of CUTs or
PUTs. In total, we generalized407 CUTs to 224 PUTs that
achieved higher branch coverage than CUTs and also detected
new defects that are not detected by the CUTs. The figure
shows the reduction in the number of tests for the subjects
DSA and NUnit, since often multiple CUTs are generalized
to a single PUT. For example, Figures 1 and 2 show two CUTs
and the corresponding single generalized PUT, respectively.

We observed that reduction in the number of unit tests
can help in better management of test code. For example,
consider the PUT shown in Figure 10. This PUT replaces three
CUTs and detects a new defect (described in Section IV-D)
in the DSA application. A fix for that defect is to add a new
constructor (for theHeap class) that accepts size of the heap
as a parameter. However, such fix requires changing three
CUTs. Although refactoring tools can be used to automatically
replace the old constructor with the new constructor in all
three CUTs, the developer still needs to provide test data for
the new parameter in those three CUTs. Instead, with test
generalization, it is sufficient to change one PUT, since the
PUT represents all three CUTs, and the developer does not
need to provide test data. In our study, we also observed an
exceptional case, where a CUT is generalized to more than one
PUT. Section V discusses more about this exceptional case.

Figure 13 shows the results of comparing the LOC of CUTs
and PUTs. For DSA and QuickGraph, the LOC of PUTs is less
than the LOC of CUTs, whereas for NUnit, the LOC of PUTs
is slightly more than the LOC of CUTs. Section V describes
why the LOC of PUTs for NUnit is slightly more than the LOC
of CUTs. As shown in Figure 11, for QuickGraph, although
there is no reduction in the number of CUTs, the LOC of



//PAUT = PexAssumeUnderTest
01:public void AddFirstTest([PAUT]SinglyLinkedList<in t> sll,

[PAUT]int[] ne) {
02: PexAssume.IsTrue(ne.Length > 1);
03: PexAssume.IsTrue(sll.Count == 0);
04: for (int i = 0; i < ne.Length; i++)
05: sll.AddFirst(ne[i]);
06: PexAssert.AreEqual(ne[ne.Length - 1], sll.Head.Valu e);
07: PexAssert.AreEqual(ne[0], sll.Tail.Value);
08: PexAssert.AreEqual(ne.Length, sll.Count); }

Fig. 12. PUT for theAddFirst method under test.

Fig. 13. Comparison of Lines of Code of CUTs and PUTs.

PUTs is reduced by 37%, showing the significance of test
generalization. For DSA, the reduction in the LOC (7.8%)
is not as significant as the reduction in the number of tests
(50.2%). We identify that among new LOC written for PUTs,
many statements are related to the additionalusing statements
or new annotations that do not affect the effort in maintaining
test code. Therefore, our results show that test generalization
can help reduce the number of tests (and LOC) and thereby
reduce the efforts in maintaining test code.

F. RQ4: Generalization Effort

We next address RQ4 regarding the manual effort required
for the generalization of CUTs to PUTs. Both authors equally
split the existing CUTs of all three subject applications. The
cumulative effort of both the authors in conducting the study
is 2.8, 13.8, and 1.5 hours for subject applications NUnit,
DSA, and QuickGraph, respectively. Our measured timings
are primarily dependent on four factors: expertise with PUTs
and Pex tool, knowledge of the subject applications, number
of CUTs and the number of transformed PUTs, and the
complexity of a CUT or a transformed PUT. Although the
authors have experience with PUTs and using Pex, the authors
do not have the knowledge of these subject applications.
Therefore, we expect that the developers of these subject
applications, although unfamiliar with PUTs or Pex, may take
similar amount of effort. Overall, our results show that the
effort of test generalization is worthwhile considering the
benefits that can be gained through generalization.

V. D ISCUSSION ANDFUTURE WORK

In our results related to test-code maintenance, there is a
scenario where the number of PUTs is more than the number
of CUTs. The reason is that it is sometimes difficult to
generalize test oracles in a few cases. For example, consider
the following CUT:
public void Canonicalize() {

PexAssert.AreEqual(@"C:/folder1/file.tmp",
PathUtils.Canonicalize(@"C:/folder1/./folder2/
../file.tmp")); }

The Canonicalize method in PathUtils accepts a
string parameter and uses a complex procedure to trans-
form the input into a standard form. It is easy to
identify the expected output for concrete strings such
as C:/folder1/.../folder2/.../file.tmp . However,
when the CUT is generalized with a parameter for the input
string, it is challenging to identify the expected output. Al-
though a developer can provide an alternative implementation
for the Canonicalize method, the amount of required effort
could be higher than the effort required to write the implemen-
tation of the actual method under test. To address this issue
in our empirical study, we split the CUT into multiple PUTs
during test generalization. For those PUTs with difficulties
in generalizing test oracles, we do not generalize the test
assertions, and instead replace assertions with statements that
print outputs suitable for manual review. These PUTs can still
help in detecting defects related to exceptions such asnull

pointer exceptions.
For NUnit, the LOC of PUTs is more than the LOC of

CUTs. The reason is that to generalize2 CUTs to PUTs,
the respective test objectives requiredspecializedtest data,
such as that a tree structure of keys was required to test
the ClearTestKey method of theNUnitRegistry class.
In order to create such specialized test data, we created the
required test setup that increased the LOC of PUTs for NUnit.

VI. RELATED WORK

Pex [2] accepts PUTs and uses dynamic symbolic execution
to generate test inputs. Although we use Pex terminology in
describing our procedure, our procedure is independent of Pex
and can be applied with other testing tools that accept unit tests
with parameters such as JUnitFactory [19] for Java testing.
Other existing tools such as Parasoft Jtest [20] and Code-
ProAnalytiX [21] adopt the design-by-contract approach [22]
and allow developers to specify method preconditions, post-
conditions, and class invariants for the unit under test and
carry out symbolic execution or random testing to generate
test inputs. More recently, Saff et al. [23] propose theory-
based testing and generalize six Java applications to show that
the proposed theory-based testing is more effective compared
to traditional example-based testing. A theory is a partial
specification of a program behavior and is a generic form of
unit tests where assertions should hold for all inputs that satisfy
the assumptions specified in the unit tests. A theory is similar
to a PUT and Saff et al.’s approach uses these defined theories
and applies the constraint solving mechanism based on path
coverage to generate test inputs similar to Pex. In contrastto
our study, their study does not provide a systematic procedure
of writing generalized PUTs or show empirical evidence of
benefits of PUTs as shown in our study.

There are existing approaches [3], [5], [24] that can auto-
matically generate required method-call sequences that achieve
different object states. However, in practice, each approach has
its own limitations. For example, Pacheco et al.’s approach[5]
generates method-call sequences randomly by incorporating



feedback from already generated method-call sequences. How-
ever, such a random approach can still face challenges in
generating desirable method-call sequences, since often there
is little chance of generating required sequences at random.
In our test generalization, we manually write factory methods
to assist Pex in generating desirable object states for non-
primitive data types, when Pex’s demand-driven strategy faces
challenges.

In our previous work [15], we presented an empirical study
to analyze the use of parameterized mock objects in unit
testing with PUTs. We showed that using a mock object can
ease the process of unit testing and identified challenges faced
in testing code when there are multiple APIs that need to be
mocked. In our current study, we also use mock objects in
our testing with PUTs. However, our previous study showed
the benefits of mock objects in unit testing, while our current
study shows the use of mock objects to help achieve test
generalization. In our other previous work with PUTs [25],
we propose mutation analysis to help developers in identifying
likely locations in PUTs that can be improved to make
more general PUTs. In contrast, our current study suggests
a systematic procedure of retrofitting CUTs for parameterized
unit testing.

VII. T HREATS TO VALIDITY

The threats to external validity primarily include the degree
to which the subject programs, defects, and CUTs are rep-
resentative of true practice. The subject applications used in
our empirical study range from small-scale to medium-scale
applications that are widely used in the software industry as
shown by their number of downloads. We tried to alleviate
the threats related to detected defects by inspecting the source
code and by reporting the defects to the developers of the
application under test. These threats could further be reduced
by conducting more studies with wider types of subjects in
our future work. The threats to internal validity are due to
manual process involved in generalizing CUTs to PUTs. Our
study results can be biased based on our experience and
knowledge of the subject applications. These threats can be
reduced by conducting more case studies with more subject
applications and other human subjects. The results in our study
can also vary based on other factors such as the effectiveness
of generalized PUTs and test-generation capability of Pex.

VIII. C ONCLUSION

Recent advances in software testing introduced parameter-
ized unit tests (PUTs) [7], which are a generalized form of
conventional unit tests (CUTs). With PUTs, developers do not
need to provide test data (in PUTs), which are generated auto-
matically using a test-generation approach. Although PUTsare
more beneficial than CUTs, PUTs are still not widely adopted
in software industry. In this paper, we proposed an approach
for leveraging the benefits of PUTs and increasing the fault-
detection capability of existing CUTs with low effort via test
generalization. Our empirical results show that test general-
ization helped reduce407 CUTs (4.6 KLOC) to224 PUTs

(4.0 KLOC). Along with achieving higher branch coverage (a
maximum increase of52% for one class under test and10%
for one application under analysis), test generalization helped
detect19 new defects not detected by existing CUTs. In future
work, we plan to automate our approach to further reduce the
manual effort required for test generalization.
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