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01:public void

02: int elem = 1;

03: UlntStack stk = new UlntStack();

04: stk.Push(elem);

05: Assert.AreEqual(1, stk.Count()); }
{

cuT1
Abstract—Maintenance of software applications requires unit 0 ¢

tests with high fault-detection capability. In practice, developers
face two major challenges when manually writing unit tests
with high fault-detection capability. First, developers may not 06-public void ouT2()

be able to write test data that test all important behaviors o7: int elem = 30;

of methods under test. Second, developers may unintentionally 08: UlntStack stk = new UlntStack();

write redundant unit tests that exercise the same behavior of 09 stk-Push(elem); _

methods under test. To address these issues, developers caritevr ﬂ;puﬁﬁse\%ﬁeEquaclgr’g)Btk‘?’“”t(»’ }

Parameterized Unit Tests (PUTSs), instead of unit tests without 12: int elem1 = 1, elem2 = 30;

parameters, referred to as Conventional Unit Tests (CUTs). A 13: UlntStack stk = new UlntStack();

major benefit of PUTs compared to CUTs is that developers 14: stk.Push(eleml);

do not need to provide test data in PUTs, since test data ig; ZfsszAhr(:Eg;?l(z stk.Count(); )
Fowever.witing PUTS is more challenging than aring CUTS. 9, & Three CUTS hattes an unsignediniegerstack tes dot accep
For example, PUTs typically encode algebraic specifications,

which are more abstract and general than sample-point behaviors

encoded by CUTs. On the other hand, existing applications often
include CUTSs, which can be used to write PUTs with low effort.
To exploit the benefits of PUTs in practice, we propose a novel
approach to retrofit existing CUTs into PUTs. We conducted
an empirical study on three real-world applications to show the
benefits of retrofitting CUTs into PUTs. In our empirical study,

01:public void PUT(int[] elem) {

02: UlntStack stk = new UlntStack();

03: foreach (int i in elem)

04: stk.Push(i); }

05: Assert.AreEqual(elem.Length, stk.Count()); }

Fig. 2. A single PUT replacing the three CUTs shown in Figure 1

we show that our approach retrofits407 CUTs (4.6 KLOC) to 224
PUTs (4.0 KLOC). Along with achieving higher branch coverage
(a maximum increase 0f52% for one class under test andl0% for
one application) than existing CUTs, our approach helps detect

behaviors of methods under test, thereby resulting in unit
tests with low fault-detection capability. Second, depels

may write different test data that exercise the same behavio
of methods under test, thereby resulting in redundant unit

19 new defects not detected by existing CUTs. Some of theseiests. These redundant unit tests increase only the tetieg
gﬁ{gﬁzﬂiﬁegﬁ ggnce?gﬁ)lﬁxto%?g ;gfr:?lt o detect using existing and do not increase the fault-detection capability. To show
illustrative examples of these issues, consider the thrée u
|. INTRODUCTION tests shown in Figure 1 for testing tiRish method of an
Unit tests are widely adopted in software industry founsigned-integer stack clagmtStack . These three unit tests
ensuring the high quality of production code. In generalinma exercise thePush method with different test data in different
tenance of software applications requires unit tests wigh h test scenarios. For example, CUT1 and CUT2 exereissh
fault-detection capability. Although automatic test-geation Wwith different argument values, when the stack is emptyJevhi
tools [1], [2], [3], [4], [5] can be used to generate unit &estCUT3 exercise®ush, when the stack is not empty. Consider
automatically, these tools cannot generate test oraclesreT that there is a defect (ihush) that can be detected by passing
fore, these tools can detect only robustness-relatedtdefech a negative value as the argumentRosh. These three tests
as null  pointer dereferencing exceptions [6]. Due to suctannot detect the preceding defect, since these tests gas®t
limitations of automatic test-generation tools, manueliiting @ negative integer value as an argument. Furthermore, C&JT2 i
unit tests is still a common practice in software industry. ~a redundant unit test, sinté#ntStack has the same behavior
When writing unit tests manually, developers can use thdor all non-negative integers passed as argumentush.
domain knowledge in writing test oracles. Nevertheless, it To address these preceding issues with writing unit tests
is challenging for developers to write all possible impotta manually, developers can use Parameterized Unit Tests
values for test data (such as argument values of methd@&JTs) [7] that accept parameters, instead of unit tests tha
invoked in unit tests) that comprehensively exercise nagthodo not accept parameters, referred to as Conventional Unit
under test in production code. This challenge in writing te§ests (CUTS). Indeed, CUTs can be considered as instances of
data could result in two major issues. First, developers m&WTs with test data for parameters. We next give three resason
not be able to write test data that exercise all importamthy writing PUTs is more beneficial than writing CUTs.



First, developers do not need to provitest datain a PUT erating unit tests with high fault-detection capabilitgcsnd,
and instead need to provide only the variables that represemen developers or third-party testers with little knovged
the test data as parameters. The values for these paramaibthe production code can use our approach to write PUTs
can be generated automatically using a test-generation tadth low effort during software maintenance. Our visionas t
such as a dynamic symbolic execution (DSE) engine [8kverage existing artifacts, such as existing CUTs, indind

[1], [9], [2]. Section II presents more details on how DSEhe gap between existing practices in software industry and
generates values for parameters of PUTs. Second, since tiestnew advancements in software-engineering research.
data are automatically generated by DSE-based approacheBhis paper makes the following major contributions:

tend to exercise all feasible paths in the methods under test, The first approach for assisting developers in retrofitting
the fault-detection Capablllt)Of PUTs is hlgher than that of existing CUTs into PUTs for |everaging the benefits of
CUTs. Third, a single PUT can represent multiple CUTs,  pUTs in practice. To the best of our knowledge, we are
thereby redUCing theize of test codd-or example, the PUT the first to propose a test-generaiization approach_
shown in Figure 2 tests the same or more behaviors of the, A set of techniques that can assist developers during
method under test as the three CUTs shown in Figure 1. USing test generaiization in addressing the Cha”enges of test-
the PUT, a DSE-based approach can test the method under generalization and the limitations of existing DSE-based
test with other scenarios, such as pushing an element into a approaches.

stack with two or three elements, to achieve hlgh StrUCtUral. The first empiricai Study to show the benefits of test gen-
coverage of the method under test. Therefore, using the PUT, eralization with three popular open-source applications.

a DSE-based approach can automatically generate test data Qur results show that test generalization increases branch

that passes a negative value to thesh method based on its coverage by!% (with a maximum increase df2% for
implementation, thereby detecting the defect not detEbSBd one class under test anid% for one app"ca’[ion under
the existing three CUTs. analysis) on average for all three applications used in our
Although PUTs help in addressing the issues with CUTs, empirical study. Our results show that test generalization
writing PUTs directly is quite challenging for the followgn helps detectl9 new defects not detected by existing
two reasons. First, in general, developers have to define the CUTs. Our results also show that neither the increase
expected behavior (in terms ¢ést oracley for all possible in branch coverage nor all these defects can be detected

test data in PUTs, whereas in CUTs, the expected behavior by adding additional tests via automatic test-generation
is defined only for a sample test data. In fact, PUTs typically  tools such as Randoop [5]. Finally, our results also show
encode algebraic specifications [10]. Second, althoughsPUT  that test generalization helps reduce the number of unit
do not encode test data, PUTs still need to encode necessary tests by45%; 407 CUTs (4.6 KLOC) are retrofitted into
test scenarios (such as method-call sequences) for ergrcis 224 PUTs (4.0 KLOC), thereby reducing the test-code
the code under test to achieve test objectives, which are sjze for potentially helping in better management of test
described using test oracles. For these two major reasons, code.
PUTSs are still not widely adopted in software industry

On the other hand, existing applications often include Il. BACKGROUND
CUTs [12], and the test oracles and test scenarios encodetiVe use Pex [11] as an example state-of-the-art DSE-based
in these CUTs can be used to address the two major issuetest generation tool for generating CUTs using PUTs. Pex, a
writing PUTs. To exploit the benefits of PUTSs in practice, w@art of Microsoft Visual Studio, is a white-box test genarat
propose an approach that assists developers in retroféing tool for .NET programs. Pex accepts PUTs and symbolically
isting CUTs into PUTs. We refer to the process of generalizirexecutes the PUTs and the code under test to generate a set
CUTs to PUTs agest generalizationThe key insight of our of CUTs that can achieve high coverage of the code under
approach, which helps achieve test generalization, isekat test. Initially, Pex explores the code under test with rando
isting applications often include CUTs and the test oraales or default values and collects constraints along the ei@tut
test scenarios of these CUTs can assist developers in gvritpath. Pex next systematically negates parts of the cotlecte
PUTSs effectively with low effort. Our approach also inclgdeconstraints and uses a constraint solver to generate d¢encre
techniques that address the challenges that are classified values that guide program execution through alternatespath
two categories: challenges specific to test generalizatimh Pex has been widely used both in academia and industry,
challenges in general for the existing DSE-based apprsacheéhich is reflected by its download counts (Feb. 2008 - Oct.
in generating test data for PUTs. Section Ill presents mo2€09) that is greater tha30000. Pex is applied on industrial
details on these two categories of challenges and describede bases and detected serious defects in a software compo-
how our techniques help address these challenges. nent, which had already been extensively tested [2].

In summary, our approach has two major benefits. First, our

approach provides a practical solution to adopt PUTs for gen Il APPROACH

We next present our approach that assists developers in

1The concept of PUTs was introduced in 2005; however, only va feaChieVing _teSt generalization. AIth.ou.gh we explain our ap-
developers currently use PUTSs [11] proach using Pex, our approach is independent of Pex and



can be used with other DSE-based test generation tools {gorithm 1 Test Generalization
Our approach is based on the following two requirements. Require: CUT's for an MT M
« R1: the PUT generalized from a passing CUT should n&hsure: PUT's
result in false-positive failing CUTs being generated from1: SetPUT's = ¢, gAlICUT's

the PUT. 2: for all ce CUTs do
« R2: the PUT generalized from a CUT should help achieve3: if gAlICUT's.Contains(c) then
the same or higher structural coverage than the CUT ant¥ _Contlnue
should help detect the same or higher number of defects end if
than the CUT. 6: Setp = ¢, gCUT's = ¢, break = false

p = Parameterize(c)

p = GeneralizeTestOracle(c, p)
gCUTs = GenerateCUT's(p)
repeat

We next describe more details on these two requirementgf
R1 ensures that test generalization does not introduce fal$’
positives. In particular, a CUT generated from the PUT car?’
fail for two reasons: a defect in the method under tesf:

(MT) or a defect in the PUT. Failing CUTs for the secondt
reason are considered as false positives. These failingsCU312:
are generated when generalized PUTs do not satisfy either
necessary preconditions of the MT or assumptions on thet inptf*
domain of the parameters required for passing the testeoract>
On the other hand, R2 ensures that test generalization dbes ¥
introduce false negatives. The rationale is that PUTs deovi 1’
a generic representation of CUTs, and should be able to guib%
a DSE-based approach in generating CUTs that exercise the
same or more paths in the MT than CUTSs, and thereby shouit
have the same or higher fault-detection capability. L

We next provide an overview of how a developer generaliz@é:
existing CUTs to PUTs by using our approach to satisfy the™
preceding requirements and then explain each step in detHi

while |Execute(gCUT's) do
if LegalValuelssue(gCUT's) then
p = AddAssumptions(p)
else
ReportDefect()
Continue
end if
end while
if Cov(M,gCUT's) < Cov(M,CUTs) then
if NPTypeParam(p) then
p = AddFactoryM ethod(p)
end if
if Envilnteractionlssue(M) then
p = AddMockObj(p)

using illustrative examples from the NUnit framework [13]. ;Z: I end if
: else
A. Overview 27: break = true
Algorithm 1 shows the overview of our approach, whicl?s: end if
until break

includes five major steps: (SParameterize(S2) Generalize 29:
Test Oracle (S3)Add AssumptiongS4)Add Factory Method  30: PUTs.Add(p), gAlICUT's.Add(gCUT's)
and (S5)Add Mock Objectln our approach, Steps S1 and S31: end for
are mandatory, whereas Steps S3, S4, and S5 are optional ahdeturn PUT's
are used when R1 or R2 is not satisfied.

For an MT, the developer uses our algorithm to generalize
the set of CUTs of that MT, one CUT at a time. First, thexisting CUTs. If R2 is satisfied, then the developer proseed
developer identifies concrete values and local variables tm the next CUT. On the other hand, if R2 is not satisfied,
the CUT and promotes them as parameters for a PUT (Litteen there could be two issues: (1) Pex was not able to
7). Second, the developer generalizes the assertions in theate desired object states for a non-primitive paranj&tédy
CUT to generalized test oracles in the PUT (Lige After and (2) the MT includes interactions with external environ-
generalizing test oracles, the developer applies Pex tergan ments [15]. Although DSE-based test-generation tools such
CUTs from PUTs (Line9). When any of the generated CUTsas Pex are effective in generating CUTs from PUTs whose
fails (Line 11) the developer checks whether the reason for tiparameters are of primitive types, Pex or any other DSEébase
failing CUT(s) is due to illegal values generated by Pex fdool faces challenges in cases such as generating desirable
the parameters (Liné2), i.e., whether the failing CUTs are objects for non-primitive parameters. To address these two
false-positive CUTs. To avoid these false-positive CUTd arissues, the developer writes factory methods (L#i¢ and
thereby to satisfy R1, the developer adds assumptions on theck objects [15] (Line4), respectively, to assist Pex. More
parameters to guide Pex to generate legal input values (Lihetails on these two steps are available in subsequenbisecti
13). The developer then applies Pex again and continues thiSThe developer repeats the last three steps till the require-
process of adding assumptions till either no generated CUTents R1 and R2 are met, as shown in Ladp29. Often,
fail or the generated CUTs fail due to defects in the MT. multiple CUTs can be generalized to a single PUT. Therefore,

After satisfying R1, the developer checks whether R2 is also avoid generalizing a CUT that is already generated by a
satisfied, i.e., the structural coverage achieved by geterapreviously generalized PUT, the developer checks whether
CUTs is at least as much as the coverage achieved by the new CUT to be generalized belongs to already generated




00:public class SettingsGroup { /IPAUT: PexAssumeUnderTest

01: MemorySettingsStorage storage; ... 00:[PexMethod]

02: public SettingsGroup(MemorySettingsStorage storage ) { 0l:public void TestSettingsGroupPUT([PAUT] SettingsGro up st,

03: this.storage = storage; 02: [PAUT] string sn, [PAUT] object sv) {

04: } 03: st.SaveSetting(sn, sv);

05: public void SaveSet ti ng(string sn, object sv) { 04: PexAssert.AreEqual(sv, st.GetSetting(sn)); }

06:  object ov = storage.GetSetting( sn ); Fig. 5. A PUT for the CUT shown in Figure 4.

07: /lAvoid change if there is no real change

08: if (ov != null ) { /IMSS: MemorySettingsStorage (class)

09: if (ov is string && sv is string && /IPAUT: PexAssumeUnderTest (Pex attribute)

(string)ov == (string)sv || 00:[PexFactoryMethod(typeof(MSS))]

10: ov is int && sv is int && (intjov == (int)sv || Ol:public static MSS Create([PAUT]string[]

11: ov is bool && sv is bool && (bool)ov == (bool)sv || 02: sn, [PAUT]object]] sv)

12: ov is Enum && sv is Enum && ov.Equals(sv)) 03: PexAssume.IsTrue(sn.Length == sv.Length);

13: return; 04: PexAssume.IsTrue(sn.Length > 0);

14: } 05: MSS mss = new MSS();

15: storage.SaveSetting(sn, sv); 06: for (int count = 0; count < sn.Length; count++) {

16: if (Changed != null) 07: mss.SaveSetting(sn[count], sv[count]);

17: Changed(this, new SettingsEventArgs(sn)); 08:

18:  }} 09: return mss;

Fig. 3. TheSettingsGroup  class of the NUnit framework with the 10:}

SaveSetting  method under test. Fig. 6. ) An example factory method for the type
00://testGroup is of type SettingsGroup MemorySettlngsStorage

01:[Test . .

Oz:Lubnl void TestSettingsGroup() { a single parameter of typsmbject for the PUT. The advantage
03 testGroup.SaveSetting("X", 5); A of replacing concrete values with symbolic values (in thenfo
o fj;ng“f’eEgxzﬁgn'?gétgg'\ffGetgz;mg()x)) of parameters) is that Pex generates concrete values based o
06: }Assert.AreEquaI("Charlie", testGroup.GetSetting(" NAME"); the constraints encountered in different paths in the Mic&i
07:

SaveSetting  accepts the parameter of typbject (shown

in Figure 5), Pex automatically identifies the possible $ype
CUTs (Lines3 — 5). If so, the developer ignores the newfor the object type such asnt or bool from the MT and
CUT, otherwise, the developer generalizes the new CUT. Wenerates concrete values for those types, thereby sagjsfy
next illustrate each step of our approach using an MT andr®. In addition to promoting concrete values as parameters
CUT from the NUnit framework shown in Figures 3 and 4of PUTSs, the developer promotes other local variables such

Fig. 4. A CUT to test theSaveSetting  method (shown in Figure 3)

respectively. as the receiver objecttestGroup ) of SaveSetting  as
parameters. Promoting such receiver objects as parancaters
B. Example help generate different object states (for those recebjercts)

1) Method under test and CUTigure 3 shows an MT that can help cover additional paths in the MT. Figure 5 shows
SaveSetting  from the SettingsGroup  class of the NUnit the PUT generalized from the CUT shown in Figure 4.
framework. TheSaveSetting method accepts a setting name 3) S2 - Generalize Test OracleThe developer next gen-
sn and a setting valuev, and stores the setting in a storageralizes test oracles in the CUT. In the CUT, a setting is
(represented by the member varialsterage ). The setting stored in the storage usingaveSetting and is verified
value can be of typént , bool , string , or enum. Before using GetSetting . By analyzing the CUT, the developer
storing the value SaveSetting  checks whether the samegeneralizes the test oracle of the CUT by replacing the eonst
value already exists for that setting in the storage. If ti@es value with the relevant parameter of the PUT. The test oracle
value already exists for that settin§aveSetting  returns for the PUT is shown in Linel of Figure 5.
without making any changes to the storage. In practice, generalizing the test oracle is a complex task,

Figure 4 shows a CUT for testing thsaveSetting since determining the expected output values for all the
method. The CUT saves two setting values (of typigs generated inputs is not trivial. Therefore, to assist dgyls in
andstring ) and verifies whether the values are set propertyeneralizing test oracles, we propodédPUT patterns, which
using theGetSetting method. The CUT verifies the expectedlevelopers can use to analyze the existing CUTs and gener-
behavior of theSaveSetting method only for the setting alize test oracles. More details of the patterns are awvailiab
values of typesnt andstring . This CUT is the only test Pex documentation [16].
for verifying SaveSetting  and includes two major issues. 4) S3 - Add AssumptionsA challenge faced during test
First, the CUT does not verify the behavior for the typegeneralization is that Pex requires guidance in generétiye
bool andenum. Second, the CUT does not cover thhee  values for the parameters of PUTs. These legal values are the
branch in Statement 8 of Figure 3. The reason is that the CWdlues that satisfy preconditions of the MT and help setting
does not invoke thesaveSetting method more than onceup test scenarios to pass test assertions (i.e., test syacle
with the same setting name. This CUT achiet8%6 branch These assumptions help avoid generating false-positivesCU
coverage of thesaveSetting method. We next explain how thereby satisfying R1. For example, without any assumption
the developer generalizes the CUT to a PUT and addresfex by default generates illegalll  values for non-primitive
these two major issues via our test generalization. parameters such as of the PUT shown in Figure 5. To guide

2) S1 - ParameterizeFor the CUT shown in Figure 4, the Pex in generating legal values, the developer adds sufficien
developer promotes thatring  “Charlie " and theint 5 as assumptions to the PUT. In the PUT, the developer annotates



01:public class MockXmITextWriter {

02: public MockXmITextWriter(string filename, In the NUnitProject class of NUnit, thesave method
0 this‘ﬁIeNameE”:"fCi’lg?arf]';?Od'”g) ! { writes configuration information using thémITestWriter

’ class to an XML file. This XML file is expected to be
05 public void W”teA“”b“‘es"‘”Q(S‘"S';ﬁns“\vlal) ( created when the project is created, i.e., when an in-
06: xml = xml + " "+ att + =+ " fyval + oty stance of NUnitProject is created. Two existing CUTs
07: public void Close() ( SaveEmptyConfigs and SaveNormaIErOJect_ test this
08: xml = xml.Replace("/> />, "/>" + System. save method. These CUTs add configurations to the XML
00: Cre;g‘é'gﬁgggg-gj‘j&'{‘;;e Cf’: :m?tsfi:if;f_'”g + > ) project files and assert whether the files are saved in thé righ
10: } ' format, and contain the added configuration informatiorthBo

Fig. 7. Sample code from thlockXmITextWriter ~ mock object. ~ the CUTSs use on a default instance ffnitProject ) that is
created using the test setup method. Therefore, the reqginte
each parameter with the tapxAssumeUnderTest 2, which g test thesave method is to provide the project configuration
describes that the parameter should nohtle and the type fjje (the XML file) in a specific locationi.e., the directory
of generated objects should be the same as the parameter typR&tion where the project is saved (when a project is saved,
The developer adds further assumptions to PUTs based on 4@ directory is created as the project directory and the XML
behavior exercised by the CUT and the feedback received fr@a is created in this directory).

Pex. To generalize these CUTSs, the developer promotes the
5) S4 - Add Factory Methodtn general, Pex (or any otherproject path (the parameter of thmve MT and a local
existing DSE-based approaches) faces challenges in gegerayariable in the CUTS) as a parameter to the PUT. However,
CUTs from PUTs that include parameters of non-primitivgeneralization of these CUTSs is not straightforward. By-pro
types, since these parameters require method-call seegieRfoting the project path as the PUT’s parameter, all gengrate
(that create and mutate objects of non-primitive types) ©OUTs require XML files in specific locations (reflected by

generate desirable object states [14]. These desirablﬂ:tobbenerated values for the parameter). Whenstne method
states are the states that are required to exercise new p@hgvoked, these XML files should be available for being
or branches in the MT, thereby to satisfy R2. For example,g@cessed usingmiTextWriter . Without such XML files,
desirable object state to cover thee branch of Statement 8 the save method throws an exception, resulting false-positive
in Figure 3 is that thetorage  object should already include cuTs, thereby violating R1.
a value for the setting nanen. To avoid the complexity of creating a “real” file at a
To assist Pex in producing effective method-call sequencegal” location for each generated CUT and to satisfy R1, the
that can help achieve desirable object states, developgéseloper mocks the expected behaviorxofiTextWriter
write method-call sequences inside factory methods, Sug- MockXmiFileWriter (shown in Figure 7). This mock
ported by Pex. The factory methods can have parameters apfbct simulates the behavior dfniTextWriter . However,
Pex handles these parameters similar to the parameters,§ffke the real object, the mock object usestang  field
PUTs. Figure 6 shows an example factory method for th@d appends the input text to the field. Thus the mock
MemorySettingsStorage  class. The factory method acceptgbject replicates the actual behavionohiTextwriter ~ while
two arrays of setting namesr() and valuesgv), and adds avoiding the interactions with the physical file system.
these entries to the storage. This factory method helps Pex) Generalized PUT:Figure 5 shows the final PUT after
to generate method-call sequences that can create desirghd developer follows our approach. The PUT accepts three
object states. For example, Pex can generate five names gaghmeters: an instance ®éttingsGroup , the name of the
five values as arguments to the factory method for creatingsetting, and its value. Th@aveSetting method can be used
desirable object state with five elements in the stotagiee tg save either aint value or astring  value (the method
same factory method can be reused for all other PUTs usifgcepts both types for its arguments). Therefore, the CUT
the MemorySettingsStorage  class as a parameter type. requires two method calls shown in Statemehtand 4 of
6) S5 - Add Mock ObjectPex (or any other existing DSE- Figure 4 to verify whetheSaveSetting  correctly handles
based approaches) also faces challenges in handling PUTsheke types. On the other hand, only one method call is
MT that interacts with the external environment such as tkgfficient in the PUT, since the variable is promoted to a
file system. To address this challenge related to the irtterec pUT parameter of typebject . Pex automatically explores
with the environment, developers write mock objects foistss the MT and generates CUTs that cover bisth andstring
ing Pex [15]. These mock objects help test features in isolat types. Indeed, th&aveSetting method also acceptsool
especially when PUTs or MT interact with environments sucind enum types. The existing CUTs did not include test
as a file system. We next describe how developers use megka for verifying these two types. Our generalized PUT
objects with an illustrative example. automatically handles these additional types, highliuhta
_ _ _ primary advantage of test generalization in reducing tisé te
-PexAssumeUnderTest s a custom attribute provided by Pex.  ¢qde significantly without reducing the behavior exercibgd
Note that the factory methods provide only assistance to iPexhieving

the desirable object states, and Pex generates these siajsst based on the existing CUTs. ) ) .
branching conditions in the MT. When we applied Pex on the PUT shown in Figure 5,



Pex generated CUTs from the PUT. These CUTs test theA. Subject Applications

SaveSetting  method with different setting values of types \ve yse three popular open source applications (as shown
such asnt orstring ~ or other non-primitive object types. ASpy their download counts in their hosting web sites) in our
described earlier, a single PUT can substitute multiple &UTstydy: NUnit [13], DSA [17], and Quickgraph [18]. Table 1(a)
resulting in reduced test code. Furthermore, the CUT used fgows the three subject applications. NUnit [13], a coygater
generalization achieved branch coveragd @, whereas the of junit for Java, is a widely used open source unit-testing
CUTs generated from the generalized PUT achieved branghmework for all .NET languages. Data Structures and Algo-
coverage 090%. Although the PUT achieved higher code covyjthms (DSA) [17] is a library that contains implementation
erage compared to the existing CUT, the PUT still could n@§ gata structures and algorithms, a few of which are not
cover thetrue  branch of StatementG of the SaveSetting  ayajlable in the NET 3.5 framework. QuickGraph [18] is a C#
method (Figure 3). The developer while doing generalizatiqyraph library that provides various directed/undirecteaiph
can analyze these not-covered portions and then eitheneehgjata structures. While we used all namespaces and classes for
PUTSs or write new PUTs for achieving additional coverage ¢isa and QuickGraph in our study, for NUnit, we used nine
those not-covered portiohs classes from itaJtli  namespace, which is one of the core
IV. EMPIRICAL STUDY components of the framework.
Table I(b) shows the characteristics of the three subject
pplications. Column “Downloads” shows the number of
wnloads of the application (as listed in its hosting web)si

We conducted an empirical study using three real-world ap
plications to show the benefits of our approach in genen@jizid

gllj_-rrs to PUT_s.tI_n ogrUeTmplrl_cal study,t\(ve Ehow ';]he benefits olumn “Code Under Test” shows details of the code under
S Over existing s usirigur metrics branch coverage, test (of the application) in terms of the number of classes

the number of detected defects, the number of tests (th I " “ "
. o . Classes”), number of methods (“#Methods”), number of
LOC) being reduced by test generalization, and the timenta nes of code (“#KLOC”), and the average and maximum

for test generalization. In particular, we address theofailhg cyclometic complexity of the code under test. Similarlybla

four research questions in our empirical sFudy: I(c) shows the statistics of existing CUTs in these subject
o RQ1: Branch Coverage.How much higher percentage yppications.

of branch coverageds achieved by PUTs compared to

existing CUTs? Since PUTs are a generalized form & Empirical Study Setup

CUTs, this research question helps to address whetheive next describe the setup of our study conducted by

PUTs can achieve additional branch coverage comparée first and second authors of this paper for addressing
to CUTs. We focus on branch coverage, since detectitige preceding research questions. The authors are the third
defects via violating test assertions in unit tests can b@d fourth year PhD students, respectively, with the same
mapped to covering implicit branches within those tesixperience of two years with PUTs and Pex. Before joining

assertions. the PhD program, the authors had three and five years of

« RQ2: Defect Detection.How many newdefectgthat are programming experience, respectively, in software ingust
not detected by CUTSs) are detected by PUTs and vicEach of the author conducted test generalization for half of
versa? This research question helps to address whetl&JTs across all three subjects. The authors do not have the
PUTs have higher fault-detection capabilities comparéghowledge of subject applications and conducted the stsdy a
to CUTs. third-party testers. We expect that our test-generatinate-

« RQ3: Test-code-size ReductionHow many tests are sults can be much better, if the test generalization is ped
reduced by generalizing CUTs to PUTs? This researgly the developers of these subject applications. The reigson
question addresses whether test generalization helpstret these developers can incorporate their domain kn@sled
duce the test-code size for potentially helping betteluring test generalization to write more effective PUTSs.
management of test code. To address the preceding research questions, the authors

» RQ4: Generalization Effort. How much effort required used three categories of CUTs. The first category of CUTSs is
for generalizing CUTs to PUTs? This research questiahe set of existing CUTs available with subject applicagion
helps to show that the effort required for generalizatiohe second category of CUTs is set of CUTs generated
is worthwhile, considering the generalization benefits. from PUTs. To generate this second category of CUTs, the

We first present the details of subject applications and nextthors generalized existing CUTs to PUTs and applied Pex

describe our setup for empirical study. Finally, we preseat those PUTs. The authors also measured the time taken for

the results of our empirical study. The detailed results @eneralizing each CUT to compute the generalization effort

our empirical study are available at our project websitpstt addressing RQ4. The measured time includes the amount of

/Isites.google.com/site/asergrp/projects/putstudy. time taken for performing all steps described in our apgnoac

and also applying Pex to generate CUTs from PUTs. The

4Recall that the_ objective of our study is to gengra!ize @dsCUTs 10 third category of CUTs is the set of existing CUTs + new

rITUTs for comparing the benefits of PUTs over existing CUTs.r&loee, CUTSs (hereby referred to #BT9 that were generated using
ere we do not show the step of writing additional PUTs that aehieve

additional branch coverage. an automatic random test-generation tool, called Randdpp [



TABLE |

(@ (b) Characteristics of subject applications. (c) Statistics of existing CUTSs.
Subject Downloads Code Under Test Existing Test Code
Applications #Classes|[ #Methods| #KLOC | Avg. Complexity [ Max. Complexity #Classes| #CUTs | #KLOC
NUnit 193, 563° 9 87 1.4 1.48 14 9 49 0.9
DSA 2241 27 259 2.4 2.09 16 20 337 25
QuickGraph 7969 56 463 6.2 1.79 16 9 21 12
Subject Branch Coverage O}’necrfa” '\I"nix not achieving an increase in the coverage for DSA is that
CUTs [ CUTs + RTs (#)| PUTs the existing CUTSs already achieved high branch coverage and
NUnit 78% 78% (144) | 88% | 10% | 52% PUTs help achieve a little higher coverage than existing €UT
DSA 91% 91% (615) | 92% 1% 1% To show that the increase in the branch coverage achieved
QuickGraph| 87% 88% (3628) | 89% | 2% | 11% by PUTs is not trivial to achieve, we compare the results of
TABLE II PUTs with CUTs + RTs. The increase in the branch coverage

BRANCH COVERAGE ACHIEVED BY THE EXISTINGCUTS, CUTs + RTSs, achieved by CUTs + RTs compared to CUTs aloné)%;
AND CUTS GENERATED BYPEX USING THE GENERALIZEDPUTS. . . .
0%, and 1% for NUnit, DSA, and QuickGraph, respectively.

01: public void RemoveSetting(string settingName) { This comparison shows that the improvement in the branch

o '”tifd(‘gm: jeot;'”g"‘ame-'”dexo“ e coverage achieved by PUTs is not trivial to achieve, since

04: storageKey.DeleteValue(settingName, false); the branches that are not covered by the existing CUTs are

05: else { i e i

oo using(RegistryKey subKey = storageKey.OpenSubKey( generally quite difficult to cover (as shown in the results of
settingName.Substring(0,dot),true)) { CUTs + RTS).

07: if (subKey != null)

08: subKeyéggilr?;%\/aarl‘uee(s ubsting(dot + 1) , D. RQ2: Defects

oo: } ’ To address RQ2, we identify the number of defects detected

10: 3 by PUTs. We did not find any failing CUTs among existing

Fig. 8. RemoveSettin method whose coverage is increased . .. .
duge to test generanzatioﬂ 9 -t CUTs of the subject applications. Therefore, we consider th

defects detected by failing tests among the CUTs generated
This third category (CUTs + RTs) helps show that the beneffigm PUTs as new defects not detected by existing CUTSs.
of test generalization cannot be achieved by simply geimgratin addition to the defects detected by PUTs, we also inspect
additional tests using tools such as Randoop. To address failing tests among the RTs to compare the fault-detecti
RQ1, the authors measured branch coverage using a coverggabilities of PUTs and RTs.
measurement tool, called NCofeffo address RQ2 and RQ3, |n summary, our PUTs found5 new defects in DSA and
the authors measured the number of failing tests and comiputenew defects in NUnit. After our inspection, we reported
the code metrics (LOC) using CLGGool, respectively. The the failing tests on their hosting websftesOn the other
authors did not compare the execution time of CUTs for alland, RTs include90, 25, and 738 failing tests for DSA,
three categories, since the time taken for executing CUTs QUnit, and QuickGraph, respectively. Since RTs are geadrat
all categories is negligible<( 20 sec). automatically using Randoop, RTs do not include test osacle
C. ROQ1: Branch Coverage Therefore, an RT is considered as a failing test, if the eti@cu

) o ) of RT results in an uncaught exception being thrown. In our
We next describe our empirical results for addressing quﬁspection of these failing tests in RTs, we found that orly

Table Il shows the branch coverage achieved by executingjing tests for DSA are related toreal defects in DSA, since

the existing CUTs, CUTs + RTs, and the CUTs generated Rys same defect is detected by multiple failing tests. These
Pex using the generalized PUTs. The values in brackets

e : {fects are also detected by our PUTs. The remaining failing
for CUTs + RTs indicate the number of RTs, i.e., the teS{ss(s are due to two major issues. First, exceptions raiged b
generated by Randoop (using a default timeoul &l Sec). Rrs are expected. In our approach, we address this issue by
Column “Overall Inc.” s'hqws the overall increase |n'the lotan adding annotations to PUTs regarding expected exceptigas.
coverage from the existing CUTs to the generalized PUTgyq these additional annotations based on expected exeepti
Column “Max. Inc.” shows the maximum increase for a clagy cyts. Second, illegal test data suchrag  values passed

or namespace in the respective subject applications. as arguments to methods invoked in RTs. In our approach, we
~ Column “Overall Inc.” shows that the branch coveraggqqress this issue of illegal test data by adding assungption

is increased by 10%, 1%, and 2% for NUnit, DSA, ang s in Step S1. This issue of illegal test data in RTs show

QuickGraph, respectively. Furthermore, Column “Max Incpq significance of Step S1 in our approach.

shows that the maximum branch coverage for a class or ar, fyrther show the significance of generalized PUTS, we

is i 0 0 0 it . .
namespace is increased by 52%, 1%, and 11% for NUnij,sjieq pex on these applications without these PUTs and by
DSA, and QuickGraph, respectively. One major reason for

8Reported bugs can be found at the DSA CodePlex website witctde
Shttp://www.ncover.com/ IDs from 8846 to 8858 and the NUnit SourceForge website with defect IDs
"http://cloc.sourceforge.net/ 2872749, 2872752, and 2872753.



/[To test Remove item not present

400

01: public void RemoveCUT() { 7 CUTs
02: Heap<int> actual = new Heap<int> {2, 78, 1, 0, 56 }; 350 P X PUTs
03: Assert.IsFalse(actual.Remove(99)); 300 | 7

04: }

250

Fig. 9. Existing CUT to test th&kemove method ofHeap.

01: public void RemoveltemPUT ( 200

[PAUT]List<int> input, int item) { 150 \
02: Heap<int> actual = new Heap<int> (input); 100
03: if (input.Contains(item))
04: ... } 50
05: else { ol ‘ 777 \\\
06: PexAssert.IsFalse(actual.Remove(randomPick)); DSA NUnit QuickGraph
07: PexAssert.AreEqual(input.Count, actual.Count); . .
08: CollectionAssert.AreEquivalent(actual, input); } Fig. 11. Comparison of the number of CUTs and PUTs
09: }

therefore the defect-exposing scenario of heap siZecannot
. _ _ _ _ _ be exercised. These) new defects that were not detected by
using PexWizard PexWizard is a tool provided with Pex andhe existing CUTs show that PUTs are an effective means for

this tool automatically generates PUTs (without test @sicl rigorous testing of the code under test.
for each public method in the application. We found that

the generated CUTSs includis, 170, and 17 failing tests for E. RQ3: Test-code-size Reduction
DSA, NUnit, and QuickGraph, respectively. However, simila We next address RQ3 of whether test generalization can
to Randoop, only2 tests are related t@ real defects (also help reduce the test-code size. We use two metrics to address
detected by our generalized PUTSs) in DSA, and the remainitigs research question. First, we compare the number of CUTs
failing tests are due to the preceding two issues descritwed &nd the number of PUTs. Second, we compare the LOC of
Randoop. CUTs and PUTs. The reason for the second metric is that a
We next explain an example defect detected in ifeap low number of PUTs with a high number of LOC does not
class of the DSA application by CUTs generated from genérelp in reducing the test-code size.
alized PUTs. The details of remaining defects can be found atFigure 11 shows the comparison of the number of CUTs
our project website. Theleap class is a heap implementationwith PUTs for all subject applications. The x-axis shows the
in the DataStructure ~ namespace. This class includes metlsubject application and y-axis shows the number of CUTs or
ods to add, remove, and heapify the elements in the heap. HgTs. In total, we generalized7 CUTs to 224 PUTs that
Remove method of the class takes an item to be removed ashieved higher branch coverage than CUTs and also detected
a parameter and returnsie when the item to be removednew defects that are not detected by the CUTs. The figure
is in the heap, and returrfslse otherwise. Figure 9 shows shows the reduction in the number of tests for the subjects
the existing CUT that checks whether tRemove method DSA and NUnit, since often multiple CUTs are generalized
returnsfalse when an item that is not in the heap is passeo a single PUT. For example, Figures 1 and 2 show two CUTs
as the parameter. On execution, this CUT passed; exposamgl the corresponding single generalized PUT, respegtivel
no defect in the code under test and there are no other CUT8Ve observed that reduction in the number of unit tests
(in the test suite) that exercise the behavior of the methazthn help in better management of test code. For example,
However, from our generalized PUT shown in Figure 10, eonsider the PUT shown in Figure 10. This PUT replaces three
few of the generated CUTs failed, exposing a defect in ti@UTs and detects a new defect (described in Section IV-D)
Remove method. The test data for the failing tests had thea the DSA application. A fix for that defect is to add a new
following common characteristics: the heap size is less tha constructor (for theHeap class) that accepts size of the heap
(theinput parameter of the PUT is of size less thénthe as a parameter. However, such fix requires changing three
item to be removed i8 (theitem parameter of the PUT), and CUTs. Although refactoring tools can be used to automayical
the item0 was not already added to the heap (the generategplace the old constructor with the new constructor in all
value forinput did not contain the iten®). three CUTs, the developer still needs to provide test data fo
When we inspected the causes of the failing tests, we foutlt new parameter in those three CUTSs. Instead, with test
that in the constructor of theleap class, a default array of generalization, it is sufficient to change one PUT, since the
size 4 (of type int ) is created to store the items. In C#PUT represents all three CUTs, and the developer does not
an integer array is by default assigned values zero to theed to provide test data. In our study, we also observed an
elements of the array. Therefore, there is always an idemexceptional case, where a CUT is generalized to more than one
in the heap unless an input list of size greater than or eqURAUT. Section V discusses more about this exceptional case.
to 4 is passed as parameter. Therefore, on callingRiééreove Figure 13 shows the results of comparing the LOC of CUTs
method to remove the iterfi, even when there is no suchand PUTs. For DSA and QuickGraph, the LOC of PUTs is less
item in the heap, the method retunnse indicating that the than the LOC of CUTs, whereas for NUnit, the LOC of PUTs
item has been successfully removed and causing the asserioslightly more than the LOC of CUTs. Section V describes
statement to fail (Statemertt of the PUT). However, this why the LOC of PUTSs for NUnit is slightly more than the LOC
defect was not detected by the CUT shown in Figure 9 sinoé CUTs. As shown in Figure 11, for QuickGraph, although
the unit test assigns the heap witkelements (Statemefj and there is no reduction in the number of CUTs, the LOC of

Fig. 10. A generalized PUT of the CUT shown in Figure 9.



/IPAUT = PexAssumeUnderTest

01:public void[PAA\\tﬂquF]:;stETensgg[PAUT%SinglyLi“kedList<i” & sl The Canonicalize method in PathUtils accepts a
02:  PexAssume.lsTrue(ne.Length > 1); string  parameter and uses a complex procedure to trans-
At form the input into a standard form. It is easy to
05: sll.AddFirst(ne[il); ' identify the expected output for concrete strings such
06: PexAssert.AreEqual(ne[ne.Length - 1], sll.Head.Valu e); . :
or- PexAssert AreEqual(ne[o], sl Tail Value) as C./folderl/.../fglderZ/.../fllg.tmp _ . However,
08:  PexAssert.AreEqual(ne.Length, sll.Count); } when the CUT is generalized with a parameter for the input
Fig. 12. PUT for theAddFirst ~ method under test. string, it is challenging to identify the expected outpui- A
2000 though a developer can provide an alternative implememtati
. for the Canonicalize ~ method, the amount of required effort
25007 Q S pUTs could be higher than the effort required to write the implame
2000 tation of the actual method under test. To address this issue
1500 ] in our empirical study, we split the CUT into multiple PUTs
00 v during test generalization. For those PUTs with difficdtie
% \ N in generalizing test oracles, we do not generalize the test
5007 assertions, and instead replace assertions with stateriexit
o+ : _ : _ print outputs suitable for manual review. These PUTs cdh sti
> o auickereen help in detecting defects related to exceptions suchuéis
Fig. 13. Comparison of Lines of Code of CUTs and PUTs. pointer exceptions.

PUTs is reduced by 37%, showing the significance of testFor NUnit, the LOC of PUTs is more than the LOC of
generalization. For DSA, the reduction in the LOC (7.8%¢UTs. The reason is that to generalizeCUTs to PUTs,

is not as significant as the reduction in the number of tedh¢ respective test objectives requirspecializedtest data,
(50.2%). We identify that among new LOC written for PUTssuch as that a tree structure of keys was required to test
many statements are related to the additiosalg statements the ClearTestkey — method of theNUnitRegistry  class.

or new annotations that do not affect the effort in maintagni In order to create such specialized test data, we created the
test code. Therefore, our results show that test gengriah]za required test setup that increased the LOC of PUTs for NUnit.
can help reduce the number of tests (and LOC) and thereby

reduce the efforts in maintaining test code. VI. RELATED WORK

F. RQ4: Generalization Effort Pex [2] accepts PUTs and uses dynamic symbolic execution

to, generate test inputs. Although we use Pex terminology in
o g -

ﬁescrlbmg our procedure, our procedure is independenexf P

dnd can be applied with other testing tools that accept esist

We next address RQ4 regarding the manual effort requir
for the generalization of CUTs to PUTs. Both authors equal

zglrltgtflhaetiveexift;g?t ngJ;hothae"atlz{ﬁgr:L:?ig;ggg;ﬁat't%?e; ith parameters such as JUnitFactory [19] for Java testing.
9 ¥ Cgther existing tools such as Parasoft Jtest [20] and Code-

is 2.8, 13.8, and 1.5 hours for subject applications NUni ) .

: . .. ProAnalytiX [21] adopt the design-by-contract approach][2
grSeA,riar:?:rilQléllngrzzzzic (r)?lsi?oeucru:‘/aeclzét/brguéxmeizzgrsv?th“gg hd allow developers to specify method preconditions, -post
and pPex toc))/l krﬁ)owled e of the sub'ecf a plications numbcecgnditions, and class invariants for the unit under test and

' 9 ) PP ' carry out symbolic execution or random testing to generate
of CUTs and the number of transformed PUTs, and tf}e

i est inputs. More recently, Saff et al. [23] propose theory-
complexity of a CL.JT ora transformed PL.JT' Although thebased testing and generalize six Java applications to dfew t
authors have experience with PUTs and using Pex, the autht S proposed theory-based testing is more effective copipar
do not have the knowledge of these subject applicatioqg.

Therefore, we expect that the developers of these subjecttrgqlthnal example-based tes:tlng. A.theory IS a partial
o . ) Specification of a program behavior and is a generic form of
applications, although unfamiliar with PUTs or Pex, mayetak . . . .
ST unit tests where assertions should hold for all inputs taasfy
similar amount of effort. Overall, our results show that th

T . o ﬁ1e assumptions specified in the unit tests. A theory is aimil
effort of test generalization is worthwhile consideringe th ) . .
, : - to a PUT and Saff et al.'s approach uses these defined theories
benefits that can be gained through generalization.

and applies the constraint solving mechanism based on path
V. DISCUSSION ANDFUTURE WORK coverage to generate test inputs similar to Pex. In conteast

In our results related to test-code maintenance, there id [ study, their study does not provide a systematic praeedu

scenario where the number of PUTs is more than the numg rertlng generalized PUTs or show empirical evidence of

of CUTs. The reason is that it is sometimes difficult t enefits of PUTs as shown in our study.

generalize test oracles in a few cases. For example, ccunsideThere are existing approaches [3], [5], [24] that can auto-

the following CUT: matlcally ge_nerate required meth_od-call sequences tiha\ae
public void Canonicalize() { different object states. However, in practice, each apgras
PexAssert. AreEqual(@"C:ffolderd/file.tmp", its own limitations. For example, Pacheco et al.’s apprdath

PathUtils.Canonicalize(@"C:/folderl/./folder2/ A i
Jile.tmp")); } generates method-call sequences randomly by incorpgratin



feedback from already generated method-call sequences. H¢4.0 KLOC). Along with achieving higher branch coverage (a
ever, such a random approach can still face challengesnwaximum increase 052% for one class under test and%
generating desirable method-call sequences, since dfae t for one application under analysis), test generalizatielpéd
is little chance of generating required sequences at randaietectl9 new defects not detected by existing CUTSs. In future
In our test generalization, we manually write factory melt$o work, we plan to automate our approach to further reduce the
to assist Pex in generating desirable object states for nananual effort required for test generalization.
primitive data types, when Pex’s demand-driven strategg<a
challenges.

|n our preV|ous Work [15], we presented an emp”'lcal Stud}pl] P. Godefr0|q, l\!’.'KIarIund, and K. Sen, “DART: Directed tamated
t lyze the use of parameterized mock objects in unj random testing, irProc. PLDI, 2005, pp. 213-223.
0 a.may. p . | ; fﬁ] N. Tillmann and J. de Halleux, “Pex - white box test genermtfor
testing with PUTs. We showed that using a mock object can  .NET.” in Proc. TAP 2008, pp. 134-153.
ease the process of unit testing and identified challengesifa [3] tC tcsafl””ejf ang \fft STF‘;afatngak'Sv "chrsajhe“ a %‘(;’Z"ammess
. . . ester Tor Java,Soltw. Pract. ExXpervol. , NO. y .
in testing code when there are multiple APIs that nee.d to b ] C. Pacheco and M. D. Ernst, “Eclat: Automatic generatiod alassifi-
mocked. In our current study, we also use mock objects in  cation of test inputs,” irProc. ECOOP 2005, pp. 504-527.
our testing with PUTs. However, our previous study showedp] C. Pacheco, S. K. Lahiri, M. D. Emnst, and T. Ball, “Feedkalirected
the benefits of mock objects in unit testing, while our cutren random test generation,” IRroc. ICSE: 2007, pp. 75-84.

e ) i g, . [6] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Ernst,
study shows the use of mock objects to help achieve test “An empirical comparison of automated generation and classidic
generalization. In our other previous work with PUTs [25], techniques for object-oriented unit testing,”noc. ASE 2006, pp. 59—

we propose mutation analysis to help developers in identfy 7] 08.
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