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ABSTRACT
The process of achieving high structural coverage of the pro-
gram under test can be automated using Dynamic Sym-
bolic Execution (DSE), which generates test inputs to it-
eratively explore paths of the program under test. When
applied on real-world applications, DSE faces various chal-
lenges in generating test inputs to achieve high structural
coverage. Among issues related to these challenges, our
preliminary study identified two main types of issues: (1)
object-creation issues (OCI), where DSE fails to generate
method-call sequences to produce desirable object states;
(2) external-method-call issues (EMCI), where symbolic val-
ues are passed as arguments to third-party library methods
that are not instrumented by DSE. Automatically solving
these two main types of issues is challenging, since the explo-
ration space of generating method-call sequences for desir-
able object states is usually too huge, and instrumenting all
third-party libraries can cause explosion of the exploration
space. However, when provided with informative informa-
tion of issues, users can effectively assist DSE to achieve
high structural coverage. In this paper, we propose a gen-
eral approach, called Covana, to identify issues faced by DSE
via analyzing runtime information, and filter out irrelevant
issues using residual structural coverage. We provide two
techniques to instantiate our general approach to identify
OCIs and EMCIs. To show the effectiveness of Covana, we
conduct evaluations on two open source projects. Our re-
sults show that Covana effectively identifies 155 OCIs, and
43 EMCIs. Moreover, Covana effectively reduces 296 irrel-
evant issues out of 451 OCIs and 1567 irrelevant issues out
of 1610 EMCIs produced by a straightforward approach.

1. INTRODUCTION
A main objective of structural testing is to achieve full or

at least high structural coverage, such as statement cover-
age [2] and branch coverage [11] of the program under test.
Passing tests that achieve high structural coverage not only
indicate the thoroughness of the testing but also give high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

confidence of the quality of the program under test. Dy-
namic Symbolic Execution (DSE) [6, 9, 15] is a state-of-art
technique, which can be employed to automatically generate
test inputs that achieve high structural coverage. DSE in-
struments the program and executes the program with sym-
bolic values as inputs. During the execution, DSE collects
the path condition, which is the constraints on inputs ob-
tained from the predicates in branch statements, and negates
part of the constraints in the path condition to obtain a new
path for further exploration.

When DSE is applied on real-world applications, DSE
faces challenges in generating test inputs that can achieve
high structural coverage. Among various issues related to
these challenges, our preliminary study of applying DSE on
open source projects shows that many blocks or branches
in the program under test are not covered due to two main
types of issues: (1) object-creation issue (OCI) and (2) external-
method-call issue (EMCI).

Object-Creation issue (OCI). To achieve high struc-
tural coverage of object-oriented program, the generated
tests need to include specific method-call sequences for pro-
ducing desirable object states of the receiver or arguments
of the method under test. DSE typically identifies construc-
tors and public setter methods for different fields of a class
under test and uses them to form method-call sequences
for producing desirable object states. An OCI occurs when
DSE fails to generate method-call sequences to produce de-
sirable object states for achieving new structural coverage.
Figure 1 shows an example of OCI faced by DSE. For the
method TestPop, DSE cannot create an object of the class
Stack, whose size is more than 1, to cover the false branch
of Line 6. The reason is that the method Stack.Push needs
to be invoked to modify the value of the field Stack.items,
but Stack.Push is not included in the method-call sequences
generated for Stack, since Stack.Push is not a public setter
method for any field of Stack.

External-Method-Call issue (EMCI). For the pro-
gram under test, DSE does not by default instrument all
third-party libraries since it would substantially increase the
exploration space. Furthermore, DSE cannot instrument na-
tive system libraries that interact with environments, such
as the file system and network transmission. Thus, if sym-
bolic values are passed as arguments to methods that are not
instrumented (i.e., methods in libraries that are not instru-
mented), DSE can have problems in achieving high coverage
in two main situations: (1) Since DSE cannot structurally
explore the code that is not instrumented, DSE cannot col-
lect symbolic constraints resulted from executing external



public class Stack {
00: private List<object> items = new List<object>();
01: public void Push(object item) {
02: items.Add(item); }
03: public int Count() {
04: return items.Count; }
05: public object Pop() {
06: if(items.Count() == 0) {
07: throw new Exception("empty"); }
08: object result = items[items.Count()-1];
09: items.Remove(items.Count()-1);
10: return result;}
11: ...
12: public void TestPop(Stack stack) {
13: object item = stack.pop();
14: ... }

Figure 1: Example of object-creation issue

methods and the return values of them are always con-
crete values. If such return values are used in deciding a
subsequent branch, DSE may not collect the corresponding
symbolic constraints for the path condition or cannot solve
its new derived path condition correctly due to the missing
symbolic constraints inside the external methods. In Fig-
ure 2, since the branch statement at Line 3 use the return
value ret (a concrete value) of the external method Exter-

nalLib.Compute, the constraint ret > 5 cannot be collected.
As a result, DSE cannot generate test inputs to satisfy the
negation of this constraint needed for exploring the next
new path. (2) If an external method throws an exception
that aborts the program execution, and DSE cannot gen-
erate other inputs to cause the method not to throw an
exception, DSE cannot explore the remaining parts of the
program after the call site of this external method. In Figure
2, if the external method ExternalLib.ThrowException throws
an exception when the symbolic value z is passed as an ar-
gument, the program execution is aborted. Since Exter-

nalLib.ThrowException is an external method, DSE cannot
collect the symbolic constraints that lead to the exception
inside ExternalLib.ThrowException. If DSE cannot generate
other values for z to cause ExternalLib.ThrowException not
to throw an exception, DSE cannot explore the code from
Line 7 to 9.

Automatically solving these two main types of issues is
challenging. There exist several major method-call-sequence
generation approaches based on bounded-exhaustive tech-
niques [8,21], evolutionary techniques [7,19] , random tech-
niques [4,12], heuristic techniques [18], and mining produc-
tion code techniques [17]. Nonetheless, these approaches
cannot help DSE achieve branch coverage that is close to
100% [17], since the search space of method-call sequences
is too huge. Similarly, instrumenting all third-party libraries
can result in the explosion of exploration spaces, since DSE
needs to explore many more paths inside the third-party li-
braries. By instrumenting these libraries, we may further
get more external method calls since these libraries may in-
voke methods from other libraries that are not instrumented.
Furthermore, native system libraries that interact with en-
vironments cannot be explored by DSE since they cannot
be instrumented by DSE.

Although it is challenging to automatically solve these
main types of issues, users can provide assistance to help
DSE solve these issues. For example, to solve OCIs, users
can provide factory methods that include method-call se-
quences to help DSE explore different object states. To solve
EMCIs, users can specify which class or library to instru-
ment, write mock objects, or set up the environments for the

// x, y, z are symbolic values of reference types
00: string text = ExternalLib.Format(x);
01: Console.Write("Result is: " + text);
02: int ret = ExternalLib.Compute(y);
03: if(ret > 5) {
04: // do something
05: ... }
06: ExternalLib.ThrowException(z);
07: if(z.GetValue() > 10) {
08: // do something
09: ... }

Figure 2: Example of external-method-call issue

external method calls that interact with the environments.
One key insight is that, when provided with informative in-
formation of issues and the related not-covered statements
or branches, users can effectively identify the problems and
provide corresponding assistance to help DSE achieve high
structural coverage.

A straightforward approach that reports every encoun-
tered issue can be employed to identify issues. For example,
it can report every object type involved in a path condition
that requires object states that cannot be produced by DSE,
and report every encountered external method call during
program executions. A major challenge of applying this ap-
proach is that many reported issues are false warnings, i.e.,
irrelevant to the problems that prevent DSE from achiev-
ing higher coverage. For example, it reports both Stack and
List<object> as OCIs for the program shown in Figure 1,
since the false branch of items.Count() == 0 involves the ob-
ject types of the argument Stack and its field Stack.items.
However, the field Stack.items can be changed only by in-
voking the method Stack.Push or Stack.Pop in Stack, so re-
porting List<object> as an OCI is a false warning. Similarly,
reporting the method Console.Write in Figure 2 as EMCI is
also a false warning, since it only reads and prints the argu-
ments. Such false warnings are referred as irrelevant issues
in the following sections.

To address the major challenge in identifying issues faced
by DSE, in this paper, we present a novel approach, called
Covana. Covana effectively identifies issues that prevent
DSE from achieving high coverage by analyzing runtime
information, and filters out irrelevant issues using residual
structural coverage [13], i.e., the structural coverage not yet
achieved. In our approach, we first apply DSE on the pro-
gram under test to generate test inputs and collect runtime
information and residual structural coverage, such as not-
covered statements or branches. Our approach then ana-
lyzes the runtime information to identify issues and uses
the residual structural coverage to filter out irrelevant issues
that are not related to not-covered statements or branches.

Furthermore, we propose two techniques that instantiate
this general approach to effectively identify OCIs and EM-
CIs. To identify OCIs, our approach first extracts the object
types of receiver or argument objects and their fields from
path conditions. Our approach then analyzes whether the
fields can be assigned by invoking a constructor or a public
setter method of their declaring classes to identify the object
types whose states cannot be produced by DSE.

To identify EMCIs, our approach assigns symbolic track-
ers1 to the return values of the external method calls. In
this way, our approach can identify external methods whose

1A symbolic tracker is a lightweight symbolic value that can
be used to collect constraints in branch statements, but the
collected constraints on the symbolic value are intentionally
ignored by the constraint solver.



return values are used in one of the subsequent branches.
Moreover, our approach monitors program executions to
identify the external method calls that throw exceptions.
All these identified issues are further filtered out by using
the information of residual structural coverage.

This paper makes the following major contributions:

• We propose the first general approach to identify issues
that prevent DSE from achieving high structural cov-
erage by analyzing runtime information of DSE, and
filter out irrelevant issues using residual structural cov-
erage.

• We propose a technique that extracts the object types
of receiver or argument objects and their fields from
path conditions, and reports only the object types whose
states cannot be produced by DSE as OCIs.

• We propose a novel technique that identifies two types
of external methods as EMCIs: (1) external methods
whose return values are used in one of the subsequent
branches; (2) external methods that throw exceptions
preventing DSE from exploring remaining parts of the
program after the call sites of the external methods.

• We have implemented our approach as a tool upon a
state-of-the-art industrial testing tool, Pex [18], and
conducted evaluations on open source projects. Our
results show that our general approach instantiated
with two techniques effectively identifies 155 OCIs and
43 EMCIs. Moreover, our evaluation results show that
our approach effectively reduces 296 irrelevant issues
out of 451 OCIs and 1567 irrelevant issues out of 1610
EMCIs produced by a straightforward approach.

2. DYNAMIC SYMBOLIC EXECUTION
Dynamic Symbolic Execution (DSE) executes the pro-

gram symbolically, starting with arbitrary inputs. Along
the execution path, DSE collects symbolic constraints on
program inputs in branch nodes (being runtime instance of
branch statements) to form an expression, called the path
condition. To obtain a new path that takes a different
branch, one of the branch nodes in the path condition is
negated to create a new path condition that shares the pre-
fix up to the node being negated with the old path. Then a
constraint solver is used to compute test inputs that satisfy
the new path condition. These generated test inputs again
are fed into the program to explore different paths of the pro-
gram. Ideally, all feasible paths can be exercised eventually
through such iterations of path variations. However, when
DSE is applied on real-world applications, various issues can
occur to prevent DSE from achieving high structural cover-
age. Algorithm 2.1 [22] shows the general iterative DSE
algorithm.

In practice, it turns out that choosing program input i

to satisfy ¬J(i) (new path condition resulted from branch-
node negation) is not always possible for various reasons:
(1) Some path conditions obtained by negating part of the
constraints from path condition can be infeasible. (2) Some
path conditions cannot be solved due to the limitation of
the used constraint solver (e.g. floating-point arithmetics).
(3) Some path conditions are too complex and require too
much time to solve. (4) Some path conditions may require
object states that cannot be produced by the method-call
sequences generated by DSE, corresponding to OCIs.

Algorithm 2.1 Dynamic Symbolic Execution (DSE)

/*J is the set of already analyzed program inputs*/
Set J := φ;
loop

Choose program input i such that ¬J(i)
stop if no such i can be found
Output i;
Execute P (i); record path condition C /*C(i) holds*/
Set J := J ∨ C /*viewing C as the set {i|C(i)}*/

end loop

After DSE generates new test inputs, DSE instruments
the program and executes the program with these inputs.
By default, DSE does not instrument all third party libraries
due to explosion of the exploration spaces, and DSE cannot
instrument native system libraries that interact with envi-
ronments, such as file system and network transmission li-
braries. Thus, symbolic values may flow to methods that
are not instrumented. In this case, DSE may not achieve
high structural coverage if the return values of the external
method calls are used in subsequent branch statements or if
exceptions are thrown during the execution of the external
method calls to abort the whole program executions.

Boundary issues are issues that occur during program ex-
ecutions, mainly caused by loops or too many paths in the
program under test. The program under test may have loops
whose number of iterations depend on the symbolic values
or whose bodies include branches executed for many times
or infinitely. DSE iteratively explores the paths inside loops,
preventing DSE from exploring new paths in the remaining
parts of the program. To prevent such issues in keeping DSE
busy in negating the branch nodes inside loops, DSE pro-
vides default boundary values for imposing bounds for DSE,
e.g., the maximum number of exploration iterations and the
maximum number of negated branch nodes in a path.

To inform users the issues that prevent DSE from achiev-
ing high structural coverage, DSE needs to report these is-
sues with the related not-covered statements or branches.
Our Covana approach, described in section 5, can effectively
identify these issues, with OCIs and EMCIs as our focus,
and reduce irrelevant issues reported by a straightforward
approach.

3. PRELIMINARY STUDY
In this section, we discuss the distribution of the issues

that we empirically observed by applying a state-of-the-art
DSE tool, Pex [18], on open source projects for achieving
high structural coverage. The analysis of these issues helps
motivate our approach. We choose Pex as the DSE tool
in our empirical study and later we implemented our ap-
proach upon it for two reasons: (1) Pex can explore all
public methods of any real-world .NET code bases and gen-
erate test inputs automatically; (2) Pex has been applied
internally in Microsoft to test core components of the .NET
runtime infrastructure and found serious issues [18]. We ap-
ply Pex on the core libraries of SvnBridge [16], xUnit [23],
Math.NET [10], and QuickGraph [14], until all the methods
has been explored by Pex or Pex run out of memory and
cannot continue to generate test inputs. After Pex generates
test inputs and outputs coverage files, we select 10 source
files that achieve low coverage in each project, and manu-



Project Cov % OCI EMCI Boundary Limitation

SvnBridge 56.26 11 (42.31%) 15 (57.69%) 0 (0%) 0 (0%)
xUnit 15.54 8 (72.73%) 3 (27.27%) 0 (0%) 0 (0%)
Math.Net 62.84 17 (70.83%) 1 (4.17%) 4 (16.67%) 2 (8.33%)
QuickGraph 53.21 10 (100%) 0 (0%) 0 (0%) 0 (0%)
Total 49.87 46 (64.79%) 19 (26.76%) 4 (5.63%) 2 (2.82%)

Table 1: Main issues for not-covered branches in 10 files from core libraries of four open source projects

ally investigate the issues that contribute to the not-covered
statements and branches.

Table 1 shows the distribution of the issues that pre-
vents DSE from achieving high structural coverage. Column
“Project” lists the name of each project and Column “Cov
%” shows the block coverage achieved by Pex. The other
four columns gives the number and the percentage of the
not-covered branches caused by different types of issues.

The top main type of issues is object-creation issues (64.79%),
shown in Column “OCI”, since DSE cannot generate desir-
able objects required to cover certain branches. Among the
programs that have OCIs, we observed that many gener-
ated test inputs contain method-call sequences to produce
not null argument objects with null object for their fields,
since DSE cannot figure out method-call sequneces to pro-
duce desirable objects for the fields. In this case, if we use
a straightforward approach to report all the object types
involved in these path conditions, we can get OCIs of the
argument objects and their fields, resulting in the irrelevant
issues of the argument objects.

The second main type of issues is external-method-call
issue (26.76%), shown in Column “EMCI”, since symbolic
values flow to methods that are not instrumented. In our
study, we encountered many external method calls, 405 in 40
files, but only 4.7% (19 in 405) caused problems to prevent
DSE from achieving high structural coverage. If we use a
straightforward approach to report all these external meth-
ods, we can get many irrelevant issues that are not related
to any not-covered statment or branch.

The third main type of issues is boundary issues (5.63%),
shown in Column“Boundary”, mostly caused by loops in the
program under test. Some programs under test have loops
whose number of iterations depends on symbolic values, and
DSE keeps negating branch nodes to increase the number of
iterations of the loops, which prevents DSE from exploring
other paths in the remaining parts of the program.

The last main type of issues is limitations of the used
constraint solver (2.82%), shown in Column “Limitation”,
since the used constraint solver cannot compute exact solu-
tions to floating-point arithmetics. The reason why we did
not have so many not-covered branches due to this type of
issues is that DSE generates approximate integers for con-
straints that contain floating-point arithmetics, which are
able to cover certain branches.

Our approach proposed in this paper is a general approach
to effectively identify issues that prevent DSE from achiev-
ing high structural coverage. Since the top two main types
of issues are OCIs and EMCIs, which cannot be effectively
identified by the straightforward approach, we propose two
specific techniques to instantiate our general approach to
effectively identify these two main types of issues. In ad-
dition, our approach can effectively reduce irrelevant issues
produced by the straightforward approach.

4. EXAMPLE

We next explain how our approach, instantiated with two
specific techniques, identifies OCIs and EMCIs with two il-
lustrative examples.

4.1 Object-Creation Issue (OCI)
Figure 3 shows a class FixedSizeStack that has a field

stack of type Stack, which is shown in Figure 1. Fixed-

SizeStack has a upper bound of the number of objects that
can be pushed into the stack. To guarantee the size bound-
ing, the method FixedSizeStack.Push throws an exception
when the size of a stack has reached the bound (10 in the
example). The method TestPush receives an object as argu-
ment and invokes the method FixedSizeStack.Push to push
the object to the stack for testing. To cover the true branch
at Line 4 of the method FixedSizeStack.Push, the generated
test inputs need to include method-call sequences to cre-
ate a full FixedSizeStack whose size is 10. Since the field
FixedSizeStack.stack can be assigned directly by invoking
the constructor of FixedSizeStack and passing an object of
Stack as an argument, the difficulty of generating an ob-
ject of FixedSizeStack whose size is 10 lies in generating an
object of Stack whose size is equal to 10. However, as dis-
cussed in Section 1, DSE cannot generate an object of Stack

whose size is more than 1, since its field Stack.items can be
changed only by invoking the method Stack.Push. In this
case, we need to report an OCI of the class type Stack.

To identify this OCI, our approach first collects path con-
ditions for which DSE cannot produce desirable object states.
In this example, the collected path condition is the path
condition that leads to a path follows the true branch at
Line 4. From this path condition, our approach extracts the
involved object types of the argument object FixedSizeS-

tack and its fields, FixedSizeStack, FixedSizeStack.stack,
and Stack.items. By analyzing the argument object Fixed-

SizeStack and its fields, our approach identifies Stack as the
object type that causes an OCI and reports it as a candidate
issue. Since the path condition results in a new path that
follows the true branch at Line 4, which is not covered, our
approach confirms this candidate issue as an OCI related to
a not-covered branch.

4.2 External-Method-Call Issue (EMCI)
EMCIs occur when symbolic values flow to methods that

are not instrumented and whose return values are used to

public class FixedSizeStack {
00: private Stack stack;
01: public FixedSizeStack(Stack stack) {
02: this.stack = stack; }
03: public void Push(object item) {
04: if(stack.Count() == 10) {
05: throw new Exception("full"); }
06: stack.Push(item); }
07: ... }
08: public void TestPush(FixedSizeStack stack,

object item){
09: stack.Push(item); }

Figure 3: FixedSizeStack implemented using Stack



decide a subsequent branch. In the example shown in Fig-
ure 2, both ExternalLib.Format and ExternalLib.Compute re-
ceive symbolic values x and y as arugments, and have re-
turn values, text and ret, respectively. By tracking text,
our approach detects that text is passed to Console.Write

as an argument. Since Console.Write does not has any re-
turn value and only reads the value from text, Console.Write
does not cause any problem for DSE. After text flows to
Console.Write, text is never used in any subsequent branch
statement, so ExternalLib.Format is not considered as an is-
sue. By tracking ret, our approach detects that ret is used
in the branch statement at Line 3, and reports External-

Lib.Compute as a candidate EMCI. Our approach then checks
the residual structural coverage to see whether the branches
at Line 3 is covered. If one of the branches is not covered,
ExternalLib.Compute is reported as an EMCI related to the
not-covered branch at Line 3.

Another situation where EMCIs occur is external methods
that receive symbolic values as arguments throw exceptions
to abort program executions, preventing DSE from explor-
ing the remaining parts of the program after the call sites
of external methods. In the example, the method External-

Lib.ThrowException receives a symbolic value, z, as an argu-
ment. Instead of returning a value, ExternalLib.ThrowException
throws an exception. If DSE cannot generate different values
of z that can cause ExternalLib.ThrowException not to throw
an exception, the remaining parts of program after the call
site of ExternalLib.ThrowException, Lines 7 to 9, cannot be
explored or covered by DSE. To detect such situation, our
approach collects runtime informtion about external meth-
ods that throw exceptions. In our example, our approach
identifies ExternalLib.ThrowException as a candidate EMCI
by extracting external methods that throw exceptions from
the collected runtime information. By checking the residual
structural coverage of Lines 7 to 9, if none of them is cov-
ered, our approach confirms this external method call as an
EMCI related to Lines 7 to 9.

5. APPROACH
Figure 4 shows the overview of our Covana approach. Our

approach consists of three main components: information
collector, issue analyzer, and irrelevant issue filter. The in-
formation collector is integrated into a DSE engine to collect
runtime information, such as path conditions and external
method calls, and residual structural coverage, such as not-
covered statements and branches. The issue analyzer ac-
cepts the runtime information and identifies different types
of issues. The irrelevant issue filter accepts the candidate
issues produced by the issue analyzer and uses the residual
structural coverage to filter out candidate issues that are
not related to any not-covered statements or branches. In
our current prototype, we instantiate this general approach
with two techniques to identify the top two main types of
issues: OCIs and EMCIs. We next discuss these three main
components with the specific information collectors, issue
analyzers, and filters for identifying OCIs and EMCIs.

5.1 Information Collector
The information collector is integrated into the DSE en-

gine to collect necessary runtime information for issue anal-
ysis. The runtime information of DSE includes the path
conditions used to generate test inputs, the external method
call encountered, the boundaries exceeded (e.g., timeout and
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Figure 4: Overview of Covana

too many exploration iterations) and so on. In our current
prototype, to collect the information of path conditions and
external method calls for analyses of OCIs and EMCIs, we
provide three information collectors: path-condition collec-
tor, method-result tracker, and exception collector.

5.1.1 Path-Condition Collector
After each execution of the program under test, DSE strate-

gically selects a branch node2 of the collected path condition
and negate the branch node to obtain a new path condi-
tion. This new path condition is sent to a constraint solver
for computing new test inputs that follow a new path. If
the new path condition requires object states that cannot
be produced by DSE, the path-condition collector records
the path condition and the related branch whose branch
node is negated. In the program shown in Figure 3, the col-
lected path condition is FixedSizeStack s3 = new ∧ Stack s2

= s3.stack ∧ List<object> s1 = s2.items ∧ int s0 = s1._size

∧ s0 == 10, and the branch collected is the true branch at
Line 4.

5.1.2 Method-Result Tracker
The method-result tracker receives a callback from the

DSE engine when the execution of a method call is finished.
If the method is not instrumented by DSE, the method call
is an external method call and each argument of the method
is checked to see whether the argument is a symbolic value
or not. If any argument is a symbolic value, our approach
creates a symbolic tracker and assign it to the return value of
the external method call. The symbolic values of these sym-
bolic trackers carry the information of the external meth-
ods and can be used by the DSE engine to collect symbolic
constraints on these symbolic trackers. However, the col-
lected constraints on the symbolic trackers are intentionally
ignored by the constraint solver when computing new in-
puts. As a result, while reducing the performance overhead,
our approach does not have any side effect to the original
executions during information collection. These symbolic
trackers result in the constraints on the return values in
the subsequent branch statements to be collected into the
path condition. The method-result tracker records the path
condition and its related branches when the method-result
tracker identifies any external methods to track. In the code

2A branch node represents an runtime instance of a condi-
tional branch in the code during execution.



snippet shown in Figure 2, our approach tracks the external
methods ExternalLib.Format and ExternalLib.Compute, since
both of them receive symbolic values as arguments. The ex-
ternal method Console.Write receives the return value text

of ExternalLib.Format as part of the argument, but it does
not have any return value. Thus our approach simply ig-
nores Console.Write. Since text is not used in any subse-
quent branch statement, no symbolic constraints on text is
collected into the path condition. In this way, External-

Lib.Format is filtered out automatically. The return value
ret of ExternalLib.Compute is used in the branch statement
at Line 3, so the symbolic constraints on ret is collected
into the path condition for later issue analysis. The related
branches of this path condition are the branches at Line 3.

5.1.3 Exception Collector
Whenever an exception is thrown during program execu-

tion, the exception collector receives a callback from DSE;
this callback provides the information of the method that
throws the exception, the input arguments of the method,
and the exception. If the method is an external method and
the input arguments contain symbolic values, the exception
collector collects the information of the method and the ex-
ception. In the code snippet shown in Figure 2, the method
ExternalLib.ThrowException is collected for later issue anal-
ysis, since ExternalLib.ThrowException throws an exception
when receiving the symbolic value z as the argument.

5.2 Issue Analyzer
The issue analyzer takes runtime information of DSE as

input and identifies different types of candidate issues that
may prevent DSE from achieving high structural coverage.
In our current prototype, we provide object-creation-issue
analyzer and external-method-call-issue analyzer to identify
OCIs and EMCIs.

5.2.1 Object-Creation-Issue Analyzer
The object-creation-issue-analyzer accepts the path con-

ditions collected by the path-condition collector to identify
OCIs. From the symbolic values in a path condition, our
approach extracts the object types of receiver or argument
objects and their fields. In the example shown in Figure
3, our approach extracts the object type of the argument
object, FixedSizeStack, and its fields FixedSizeStack.stack,
Stack.items, and List<object>._size from the path condi-
tion collected by the path-condition collector.

If our approach cannot extract any field from the path
condition, our approach directly report the object type of
the receiver or argument object as an OCI. In our example
of FixedSizeStack, since there are three fields extracted from
the path condition, our approach need further analysis of
these fields to identify the object type whose state cannot
be produced by DSE. The object type of argument object
and its fields extraced from the path condition are shown as
below.
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If a field can be assigned by invoking a constructor or
a public setter method of its declaring class, DSE can cre-

Issue ObjectCreationIssueAnalysis(PathCondition pc) {
00: TypeEx argType = pc.GetArgumentObjectType();
01: Field[] fields = pc.GetInvolvedField();
02: Branch branch = pc.GetRelatedBranch();
03: if(fields.Length == 0) {
04: return new ObjectIssue(argType,branch)); }
05: Field current = null;
06: for(int i = 0;i < fields.Length;i++) {
07: current = fields[i];
08: TypeEx dec = current.GetDeclaringType();
09: if(!dec.HasConstructorFor(current) &&

!dec.HasSetterMethodFor(current)) {
10: return dec; } }
11: return new ObjectIssue(current.GetType(),branch); }

Figure 5: Object-Creation Issue Analysis

ate an object of the field’s class type and assign the object
to the field by invoking the corresponding constructor or
public setter method. In this case, it is the object type of
the field, not its declaring type, that causes an OCI. In our
example, FixedSizeStack.stack can be assigned by invoking
the construcor of FixedSizeStack. Thus, to create an ob-
ject of FixedSizeStack whose size is 10, DSE needs to create
an object of Stack and assign it to FixedSizeStack.stack by
passing it as an argument to the construcor of FixedSizeS-

tack.
If a field cannot be assigned with an object directly by in-

voking a constructor or a public setter method of its declar-
ing class, the object state of the field can be changed only by
invoking other public methods of its declaring class. Hence,
its declaring class type should be reported as an OCI. In our
example, the field Stack.items cannot be assigned with an
object of List<object> by invoking any constructor or pub-
lic setter method of Stack. Thus, to change the object state
of Stack.items, DSE need specific method-call sequences of
Stack instead of List<object>. As a result, our approach re-
ports the object type Stack as a candidate OCI. The pseudo-
code for identifying the object type is shown in Figure 5.

5.2.2 External-Method-Call-Issue Analyzer
The external-method-call-issue analyzer accepts the path

conditions collected by the method-result tracker and the
exceptions and methods collected by the exception collec-
tor to identify EMCIs. To identify external methods whose
return values are used in subsequent branch statements,
the external-method-call-issue analyzer extracts the sym-
bolic trackers from the path conditions. From these symbolic
trackers, the analyzer extracts the information of the corre-
sponding external methods. For the code snippet shown in
Figure 2, the external method extracted is ExternalLib.Compute.
The external-method-call-issue analyzer then constructs a
candidate EMCI using the information of the extracted ex-
ternal method (ExternalLib.Compute) and the related branches
of the path condition (the branches at Line 3). To iden-
tify external methods that throw exceptions when receiv-
ing symbolic values as arguments, the analyzer first extracts
the call site of the external methods from the exception in-
formation. In our example, the call site is the statement
at Line 6, which invokes the external method External-

Lib.ThrowException. The analyzer then uses the call site and
the recored external method, ExternalLib.ThrowException, to
create a candidate EMCI.

5.3 Irrelevant Issue Filter
The irrelevant issue filter uses the residual structural cov-

erage to filter out the candidate issues that are not related to
any not-covered statements or branches. We provide irrele-



vant issue filters for OCI and EMCI in our current prototype.

5.3.1 Irrelevant-Object-Creation-Issue Filter
For a candidate OCI produced from a path condition, our

approach checks whether the related branch of the path con-
dition is covered. If it is included in the residual structural
coverage, our approach figures out that the branch is not
covered. Otherwise, our approach filters out the candidate
issue. In the example shown in Figure 3, the related branch
of the path condition, from which the OCI of Stack is re-
ported, is the true branch at Line 4. If this branch is not
covered, our approach does not filter out the OCI of Stack.
The output of the filter is the OCIs that are related to not-
covered branches.

5.3.2 Irrelevant-External-Method-Call-Issue Filter
For the candidate EMCIs whose return values are used in

subsequent branches, our approach uses the residual struc-
tural coverage to check whether one of these branches is not
covered. If all these branches are covered, our approach fil-
ters out the candidate issues. In the code snippet shown
in Figure 2, if both branches at Line 3 are covered, the
candidate EMCI of ExternalLib.Compute is filtered out. For
the candidate EMCIs that throws exceptions, our approach
uses the residual structural coverage to check whether the
remaining parts of the program, i.e., the parts that can be
executed after the normal return of the external method, are
covered. If the remaining parts of the program are already
covered by previously generated test inputs, our approach
filters out the candidate issue. In the code snippet shown in
Figure 2, the remaining parts our approach need to check are
Lines 7 to 9 in Figure 2, since the exception is thrown from
the statement at Line 6 and there is no branches after Line
6. If Lines 7 to 9 are already covered, our approach filters
out the candidate EMCI of ExternalLib.ThrowException.

6. EVALUATIONS
We conducted two evaluations to show the effectiveness

of Covana. In our evaluations, we used two popular .NET
applications: xUnit [23] and QuickGraph [14]. In our eval-
uations, we answer the following research questions:

• RQ1: How effective is Covana in identifying the two
main types of issues, OCIs and EMCIs?

• RQ2: How effective is Covana in reducing the issues
reported by the straightforward approach?

We next provide details of the metrics that we collect in our
evaluations. To measure the effectiveness of our approach
in identifying OCIs and EMCIs, we measure the number of
issues that are found for the not-covered branches of the
subject applications. We then measure the false positives,
i.e., the number of irrelevant issues that are identified by our
approach as relevant issues and the false negatives, i.e., the
number of relevant issues that are not identified as relevant
issues. To measure the effectiveness of our approach in re-
ducing irrelevant issues produced by the straightforward ap-
proach 3, we compare the number of issues identified by the
straightforward approach with the number of issues identi-
fied by our approach in applications under test and measure
the number of issues reduced by our approach. In addition,
we measure the false positives, i.e., the real irrelevant issues
reported by the straightforward approach but not identified

by Covana, and the false negatives, i.e., the real relevant is-
sues reported by the straightforward approach but identified
as irrelevant issues by Covana.

We next provide details on the subject applications and
evaluation setup, and the results of two evaluations.

6.1 Subjects and Evaluation Setup
We used two popular .NET applications for evaluating our

Covana approach: xUnit [23] and QuickGraph [14]. xUnit
is a unit testing framework for .NET program development.
xUnit includes 223 classes and interfaces with 13 KLOC.
QuickGraph is a C# graph library that provides various
directed and undirected data structures of graphs. Quick-
Graph also provides graph algorithms such as depth-first
search, topological sort, and shortest path [3]. QuickGraph
includes 165 classes and interfaces with 5 KLOC.

In our evaluations, we use Pex [5, 18] as our DSE test
generation tool. We implemented the information collectors
of our approach as extensions to Pex for the information
collection. We first applied Pex on each subject applica-
tion to generate test inputs and collect runtime information
and residual structural coverage. Using the collected infor-
mation as input, the analysis tool implemented based on
our approach is executed to identify OCIs and EMCIs. To
compare the effectiveness of our approach with the straight-
forward approach, we also implemented an analysis based
on the straightforward approach and executed it with the
collected information to identify OCIs and EMCIs.

We next discuss the results of our evaluations in terms
of the effectiveness of Covana in identifying OCIs and EM-
CIs, and in reducing the irrelevant issues reported by the
straightforward approach.

6.2 RQ1: Effectiveness
In this section, we address the research question RQ1 of

how effectively Covana identifies OCIs and EMCIs. To ad-
dress this question, we measure the number of false positives
and the number of false negatives generated by Covana. To
measure values for these metrics, we executed the analysis
tool implemented using our approach with the information
collected from Pex as inputs, and manually classified the
issues reported by the tool as false positives and false nega-
tives.

Table 2 shows the results for all the assemblies in both
subject applications. Columns “Application Assembly” and
“# File” list the number of source files in each application
assembly. Columns “Object-Creation Issue” and “External-
Method-Call Issue” show the OCIs and EMCIs identified by
Covana. Subcolumn “# Issue” gives the number of relevant
issue identified by us manually. Subcolumn “Found” gives
the number of relevant issues identified by Covana, and sub-
column “# FP” and “# FN” give the number of false posi-
tives and false negatives, respectively. The results show that
our approach identifies 155 OCIs with 20 as false positives
and 28 as false negatives. The reason why we have 17.17 %
(28 in 163) issues as false negatives is that in our prototype
analysis tool, we did not implement the logics required to
handle Dictionay objects (C# version of HashMap) and static
fields of classes. In addition, our approach identifies 43 EM-
CIs with only 1 false positive and 2 false negatives. We

3The straightforward approach reports every object type of
argument object and its fields in the path condition and
reports every encountered external method calls



Application Assembly # File Object-Creation Issue External-Method-Call issue
# Issue # Found # FP # FN # Issue # Found # FP # FN

xUnit 71 67 68 13 11 24 24 0 0
xUnit.Extensions 17 5 7 3 1 2 2 0 0
xUnit.Console 7 2 2 0 0 2 2 0 0
xUnit.Gui 12 3 3 0 0 3 1 0 2
xUnit.Runner.Msbuild 6 14 15 1 0 0 0 0 0
xUnit.Runner.Tdnet 3 5 5 0 0 1 1 0 0
xUnit.Runner.Utility 28 12 7 0 4 9 9 0 0
Quickgraph 3 0 0 0 0 0 0 0 0
Quickgraph.Algorithms 12 11 7 0 4 0 0 0 0
Quickgraph.Algorithms.Graphviz 14 20 20 2 2 3 4 1 0
Quickgraph.Collections 19 11 6 1 6 0 0 0 0
Quickgraph.Concepts 35 5 5 0 0 0 0 0 0
Quickgraph.Exceptions 3 0 0 0 0 0 0 0 0
Quickgraph.Predicates 9 8 8 0 0 0 0 0 0
Quickgraph.Representations 3 2 2 0 0 0 0 0 0
Total 242 163 155 20 28 44 43 1 2

Table 2: Evaluation results showing the effectiveness of Covana in identifying OCIs and EMCIs
public class TestClassCommand : ITestClassCommand {
00: readonly Dictionary<MethodInfo, object> fixtures

= new Dictionary<MethodInfo, object>();
01: Random randomizer = new Random();
02: ITypeInfo typeUnderTest;
03: ...
04: public TestClassCommand(ITypeInfo typeUnderTest) {
05: this.typeUnderTest = typeUnderTest; }
06: public Exception ClassStart() {
07: try {
08: foreach (Type @interface in

typeUnderTest.Type.GetInterfaces()) {
09: ... } }
10: ... }
11: public Exception ClassFinish() {
12: foreach (object fixtureData in fixtures.Values) {
13: ... } } }

Figure 6: TestClassCommand class of xUnit

discuss the details of the false negative that we found for
EMCIs in Section 7.

We next provide examples to describe scenarios where our
approach effectively identifies OCIs and EMCIs. We also de-
scribe scenarios where our approach produces false positives
and false negatives.

Figure 6 shows the class TestClassCommand of the Xunit.Sdk

namespace. When we applied Pex to generate test inputs
for the method TestClassCommand.ClassStart, Pex generated
only one test input and achieved low block coverage of 2/27
(7.14%). The generated test input included method-call se-
quences that invoked the constructor of TestClassCommand

and passed null as the argument to create an object of Test-
ClassCommand. This generated test input indicates that Pex
has figured out how to create objects of TestClassCommand. In
the method TestClassCommand.ClassStart, the loop at Line 8
requires the field TestClassCommand.typeUnderTest to be not
null. Since Pex cannot find in the application any public
class that implements the interface ITypeInfo to create such
an object for TestClassCommand.typeUnderTest, Pex cannot
generate more useful test inputs. Thus, we need to report an
OCI of the interface type ITypeInfo. By analyzing path con-
ditions that involve private fields of objects that are test in-
puts, our approach extracts the argument object TestClass-

Command and its field TestClassCommand.typeUnderTest. By an-
alyzing TestClassCommand and TestClassCommand.typeUnderTest,
our approach figures out that TestClassCommand.typeUnderTest
can be assigned by using the public constructor of the class
TestClassCommand, and reports an OCI of ITypeInfo.

Similarly, Pex achieves low coverage block coverage of
6/16 (37.50%) when generating test inputs for the method
TestClassCommand.ClassFinish. The reason is that the loop
at Line 12 requires the field TestClassCommand.fixtures to
hold at least one item. Since there is no constructor or
public setter method to assign an object to TestClassCom-

mand.fixtures, other public methods of TestClassCommand need
to be invoked to change the value of TestClassCommand.fixtures.
Thus, we need to report TestClassCommand as an OCI. Our
approach cannot detect such situation since the object type
of the field fixtures is Dictionary and we did not implement
the logics to handle such type. Hence, our approach did not
identify the object type of the fixtures as an OCI for the
not-covered branch at Line 12.

Figure 7 shows two methods: (1) the method ParseComman-

dLine of the class Program in the namespace Xunit.ConsoleClient

and (2) the constructor of the class Executor in the names-
pace Xunit.Sdk. For ParseCommandLine, Pex achieved low
block coverage of 44/154 (28.57%), because it cannot gener-
ate test inputs to cause the external method call File.Exists
to return true. Since the out variable assemblyFile is as-
signed with the value of args[0] (a symbolic value), our
approach assigned a symbolic tracker to the return value of
File.Exists and found that the return value was used in the
not-covered branch at Line 1 (the false branch). Thus, our
approach correctly reported an EMCI of File.Exists. For
the constructor of the class Executor, Pex achieved low block
coverage of 2/5 (40%), because Pex generated a null object
as the argument for the constructor, which caused the ex-
ternal method call Path.GetFullPath to throw an exception.
Our approach collected this exception and Path.GetFullPath

during information collection. By checking the coverage of
the remaining parts of the program after the call site of
Path.GetFullPath, our approach found that none of them was
covered. As a result, our approach reported Path.GetFullPath

as an EMCI. Although another external method Console.WriteLine

at Line 2 received assemblyFile as part of the argument, this
external method did not have any return value. As a result,
our approach correctly filtered out this external method Con-

sole.WriteLine.

6.3 RQ2: Issue Reduction
In this section, we address the research question RQ2 of

how effectively our approach reduces the number of issues
reported by the straightforward approach. To address this



Application Object-Creation Issue External-Method-Call Issue
# SF # Covana # Reduced # FP # FN # SF # Covana # Reduced # FP # FN

xUnit 335 107 228 (68.06%) 17 16 1313 39 1274 (97.03%) 0 2
QuickGraph 116 48 68 (58.62%) 3 12 297 4 293 (98.65%) 1 0
Total 451 155 296 (65.63%) 20 28 1610 43 1567( 97.33%) 1 2

Table 3: Evaluation results showing the effectiveness of Covana in reducing issues produced by the straight-
forward approach
static bool ParseCommandLine(string[] args,

out string assemblyFile, ...) {
00: assemblyFile = args[0];
...
01: if (!File.Exists(assemblyFile)) {
02: Console.WriteLine("error: assem-
bly file not found: {0}", assemblyFile);
03: return false; }
...
public Executor(string assemblyFilename) {
04: this.assemblyFilename = Path.GetFullPath(assemblyFilename);
05: ... }

Figure 7: Two methods that have EMCIs in xUnit

question, we compare the number of issues reported by the
straightforward approach and our approach, and measure
the number of issues reduced by our approach. In addition,
we measure the false positives, i.e., the real irrelevant issues
reported by the straightforward approach but not identified
by Covana, and the false negatives, i.e., the real relevant is-
sues reported by the straightforward approach but identified
as irrelevant issues by Covana. To measure values for these
metrics, we executed the analysis tool implemented based
on the straightforward approach with the information col-
lected from Pex as inputs, and manually classified the issues
reduced by our tool as false positives and false negatives.

Table 3 shows the results of both subject applications.
Column “Application” lists the names of the subject appli-
cations. Columns “Object-Creation Issue” and “External-
Method-Call Issue” show the OCIs and EMCIs identified
by the straightforward approach and Covana, respectively.
Subcolumn “# SF” gives the number of issues identified by
the straightforward approach, subcolumn“Covana”gives the
number of issues identified by Covana, and subcolumns “#
FP” and “# FN” give the number of false positives and
false negatives. The results show that our approach reduces
65.63% (296 in 451) OCIs with 20 as false positives and 28
as false negatives, and reduces 97.33% (1567 in 1610) EM-
CIs with only 1 false positive and 2 false negatvies. These
results show that our approach effectively reduces the irrel-
evant issues produced by the straighforward approach with
low false positives and false negatives.

7. DISCUSSION AND FUTURE WORK
In this section, we discuss some of the issues of the current

implementation of our Covana approach and how they can
be addressed.

Static Field. In our evaluations, we observed that a few
classes contained static fields that were initialized inside the
classes. These static fields were later used by some branches
and some of these branches were not covered by DSE. Since
DSE did not automatically assign symbolic values to static
fields, DSE was not able to collect symbolic constraints on
these static fields. In future work, we plan to assign sym-
bolic trackers to these static fields, so that our approach can
collect the symbolic constraints on these static fields for our
analysis.

// methods in Line 1, 2, 4 are external methods
public static List<RecentlyUsedAssembly> LoadAssem-
blyList() {
00: ...
01: using (var xunitKey = Registry.CurrentUser.

CreateSubKey(XUNIT_KEY_NAME))
02: using (var recentKey = xunitKey.

CreateSubKey(RECENT_ASSEMBLIES_KEY_NAME)) {
03: for (int index = 0; ; ++index)
04: using (var itemKey = recentKey.

OpenSubKey(index.ToString())) {
05: if (itemKey == null) {
06: break; }
07: if (itemKey != null) {
08: ... } } } }

Figure 8: The method LoadAssemblyList in the class
RecentlyUsedAssemblyList of xUnit

Precise Analysis of Path Condition. In our current
implementation, we extract object types of argument ob-
jects and their fields from a path condition. In this way, if
there is only one solution to a path condition, our approach
works correctly. However, some path conditions contain dis-
junctions of complex conditions, which can result in several
possible solutions to the path condition. In this case, our
approach needs to check every possible solution to the path
condition and find out why the path condition cannot be
satisfied. We plan to integrate a more precise path condi-
tion analyzer to our approach in future work, so that our
approach can carry out the analysis more effectively.

Concrete Arguments for External Method Call.
Our current implementation tracks the return values of ex-
ternal methods if the methods receive symbolic values. How-
ever, in our evaluation, there were a few cases where the ex-
ternal methods received concrete values as arguments, and
resulted in some not-covered branches. The external method
recentKey.OpenSubKey, shown in Figure 8, received a concrete
value returned by index.ToString(). Since its return value
itemKey of recentKey.OpenSubKey is null, the false branch at
Line 5 is not covered. In this case, our approach cannot
detect the problem, since our approach does not track the
return value of any external method that does not receive
any symbolic values as an argument. Using symbolic track-
ers, our approach can be easily extended to track every ex-
ternal method call, no matter whether it receives symbolic
values as arguments or not. However, tracking every exter-
nal method call may incur many false positives and increase
the performance overhead significantly, since the number of
encountered external method calls during the program ex-
ecutions is not trivial. In future work, we plan to conduct
experiments to measure the effectiveness and performance
overhead when our approach tracks every external method
call.

8. RELATED WORK
Coverage Analysis. Pavlopoulou and Young [13] devel-

oped a residual coverage monitoring tool for Java, which pro-
vides richer feedback from actual use of deployed software.



Since their approach aims to reduce the performance over-
head for gathering structural test coverage from deployed
software, their approach did not provide a way to analyze
the coverage, while our approach analyzes the residual struc-
tural coverage gathered from DSE to filter out irrelevant
issues.

Explaining Failures of Program Analysis. Dinck-
lage and Diwan [20] propose an analysis language and build
a system to produce reasons when the program analyses fail
to produce desirable results. The objective of their approach
is to express arbitrary data flow analyses using their analysis
language and compute reasons for the failures. Although our
approach is remotely related to their approach in terms of
helping explain causes of residual structural coverage in the
form of issues, our approach focuses on a significantly differ-
ent problem and includes significantly different techniques
needed for addressing unique challenges in identifying and
filtering issues that prevent DSE from achieving high struc-
tural coverage.

Symbolic Execution. Anand et al. [1] propose type-
dependence analysis, which performs a context- and field-
sensitive interprocedural static analysis to identify the parts
of the application that may be unsuitable for symbolic ex-
ecution, such as third-party libraries. Their approach iden-
tifies external method calls that are problematic in sym-
bolic execution by carrying out static analysis to determine
whether an external method call receives symbolic values
as arguments. To identify EMCIs, our approach not only
checks whether external methods receive symbolic values as
arguments, but also tracks their return values to determine
whether their return values are used in not-covered branches.

9. CONCLUSION
The process of achieving high structural coverage of the

program under test can be automated using DSE, which
generates test inputs to iteratively explore paths of the pro-
gram under test. When DSE is applied on real-world appli-
cations, there are a number of issues that prevent DSE from
achieving high structural coverage, with OCIs and EMCIs
as the top two main types of issues. To effectively iden-
tify these issues for users to provide assistance to DSE, we
presented Covana, a general approach to identify issues by
analyzing runtime information and filter out irrelevant is-
sues by using the residual structural coverage of DSE. We
provided two techniques to instantiate our general approach
to identify OCIs and EMCIs by analyzing path conditions
and external method calls collected during the test genera-
tion of DSE. We conducted evaluations on two open source
projects to demonstrate the effectiveness of Covana. The re-
sults show that Covana effectively identifies 155 OCIs, and
43 EMCIs. In addition, Covana reduces irrelevant issues in-
cluding 65.63% (296 in 451) OCIs and 97.33% (1567 in 1610)
EMCIs produced by the straightforward approach with low
false positives and false negatives.
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