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Abstract— Finding security vulnerabilities requires a different 

mindset than finding general faults in software - thinking like 

an attacker. Therefore, security engineers looking to prioritize 

security inspection and testing efforts may be better served by 

a prediction model that indicates security vulnerabilities rather 

than faults.  At the same time, faults and vulnerabilities have 

commonalities that may allow development teams to use 

traditional fault prediction models and metrics for 

vulnerability prediction. The goal of our study is to determine 

whether fault prediction models can be used for vulnerability 

prediction or if specialized vulnerability prediction models 

should be developed when both are built with traditional 

metrics of complexity, code churn, and fault history. We have 

performed an empirical study on a widely-used, large open 

source project, the Mozilla Firefox web browser, where 20% of 

the source code files have faults and only 3% of the files have 

vulnerabilities. Both the fault prediction model and the 

vulnerability prediction model predicted vulnerabilities with 

high recall (over 90%) and low precision (9%). The precision 

from these vulnerability predictions was much lower than the 

precision from fault prediction (47%).  Our results suggest that 

fault prediction models based upon traditional metrics can be 

substituted for specialized vulnerability prediction models, but 

requires significant improvement to reduce false positives.  

Keywords- Software metrics; complexity metrics; fault 

prediction; vulnerability prediction; open source projects 

I.  INTRODUCTION  

Finding faults in software systems early in the 
development life cycle is important to reduce software 
maintenance costs that are caused by later fixes [1]. With 
limited time and budget in development teams, efficient 
allocation of inspection and testing efforts are also critical.  
Hence, prediction of code locations that have high possibility 
of having faults using the software metrics that are available 
early in the development life cycle has been an active 
research area (representative publications [2-7]). Recently, 
the importance of predicting software vulnerabilities 
(security problems) in software systems early in the 
development life cycle is being emphasized (representative 
publications [8-13]). Considering the explosive growth of 
vulnerability reports in recent years [14], and the 
immeasurable cost of insecure software [15], this growing 
emphasis is no  surprise.   

Vulnerabilities and faults are similar in that both 
vulnerabilities and faults can be caused by human mistakes 
in the development process. The mistakes are often related to 
complexity in code/design [16] and in changes to the code 
[17]. Hence, complexity metrics and code churn metrics 
have been used for fault prediction [5, 17, 18]. Additionally, 
problematic code areas in one release tend to be also 
problematic again in later releases [4]. These similarities 
between vulnerabilities and faults may enable us to use the 
traditional fault prediction metrics – complexity, code churn, 
and fault history metrics for vulnerability prediction. 

At the same time, vulnerabilities and faults are different 
in that attackers actively seek vulnerabilities with malicious 
or criminal intent, while faults are exposed based upon the 
normal use of software. This difference necessitates software 
engineers who conduct vulnerability detection to think like 
an attacker and have special security skills. As a result, a 
model trained for vulnerability prediction rather than fault 
prediction may be necessary. Additionally the reported 
vulnerabilities are much fewer than the reported faults in 
many projects [19]. Finding vulnerabilities is akin to finding 
a “needle in a haystack”, so perhaps a vulnerability 
prediction model must be trained to find needles and not 
haystacks. 

These similarities and differences motivate us to 
empirically investigate the effectiveness of traditional fault 
prediction metrics to predict vulnerabilities. The goal of our 
study is to determine whether fault prediction models can be 
used for vulnerability prediction or if specialized 
vulnerability prediction models should be developed when 
both are built with traditional metrics of complexity, code 
churn, and fault history. 

To achieve our goal, we performed an empirical case 
study on a widely-used open source project: the Mozilla 
Firefox1 web browser. We built both fault prediction models 
and vulnerability prediction models using the three types of 
traditional fault prediction metrics and measured how 
accurately the models predict vulnerable files. We also 
compared the prediction performance of the fault prediction 
models and the vulnerability prediction models to analyze 
the effect of the numbers of reported faults and 
vulnerabilities in fault and vulnerability prediction.  

                                                           
1 http://www.mozilla.com/ 



The contributions of this study are as follows: 

 We provided empirical evidence that traditional fault 
prediction metrics can detect a high portion of 
vulnerable files, but should be significantly improved 
to reduce false positives.  

 We provided empirical evidence that fault prediction 
models and vulnerability prediction models provide 
similar prediction performance when they use the 
traditional fault prediction metrics and can be used 
interchangeably. 

 We showed that fault and vulnerability predictions 
are largely affected by the number of the reported 
faults and vulnerabilities. 

 As a by-product of our fault data gathering, we 
showed that automated text classification is feasible 
and useful to classify faulty files.  

The rest of this paper is organized as follows: Section II 
provides background and related work. Section III describes 
study design including metrics, modeling techniques, and 
evaluation methods. Section IV provides the results of our 
case study. Section V discusses the implication of the results. 
Section VI mentions threats to validity. Section VII 
summarizes our study. 

II. BACKGROUND AND RELATED WORK 

This section provides the terms we use in this study and 
discusses prior studies related with our study. We also 
provide the binary classification evaluation criteria for 
prediction.  

A. Terms 

A software fault is “an accidental conditional that causes 
a functional unit to fail to perform its required function 
[20].”     

A software vulnerability is “an instance of an error in the 
specification, development, or configuration of software such 
that its execution can violate an [implicit or explicit] security 
policy” [21].  A software vulnerability provides functionality 
beyond required functionality, such as enabling an elevation 
of privilege or providing more information about an internal 
implementation of a system than necessary in an error 
message. Attackers can exploit this additional functionality. 

When a file has at least one reported fault, we call the file 
faulty. When a file has at least one reported vulnerability, we 
call the file vulnerable. We call a file that is neither faulty 
nor vulnerable neutral.  

B. Related Work 

Fault Prediction Various metrics have been used for 
fault prediction including product metrics such as OO design 
and complexity metrics and process metrics such as code 
churn and past fault history metrics [2-7, 17, 18]. We 
summarize a few representative studies on fault prediction 
using complexity, code churn, and fault history metrics 
below. 

Nagappan et al. [18] performed a post-release failure 
prediction using complexity metrics on five Microsoft 
software systems. Subsets of the complexity metrics were 

statistically significantly correlated with the post-release 
failures in all five projects.  However, no single set of 
complexity metrics was correlated with post-release failures 
with all five projects. The researchers were able to find a 
combination of complexity metrics which could significantly 
predict post-release failures in all the five projects. 

Nagappan and Ball [5] also performed a post-release 
failure prediction using relative code churn metrics on 
Windows Server 2003. Their multiple regression model 
provided a high correlation between the estimated failures 
and the actual failures in software modules (r=0.889 for the 
Pearson correlation and r=0.929 for the Spearman rank 
correlation). Their binary classification model correctly 
classified 89% of modules when counting both true positives 
and true negatives. 

Graves et al. [17] observed frequently changed modules 
and the modules with large changes tend to have more faults 
than other modules. They also observed the recent changes 
induce more faults than older changes. 

Ostrand et al. [4] and Arisholm et al. [22] have used the 
number of faults in prior releases for fault prediction and 
found the fault history is useful for fault prediction. 

Vulnerability Prediction Neuhaus et al. [11] performed a 
vulnerability prediction on the Mozilla open source project 
by analyzing the import (header file inclusion) and function 
call relationships. Their prediction model provided 45% 
recall and 70% precision, and estimated 82% of the known 
vulnerabilities in the top 30% components predicted as 
vulnerable.  

Gegick et al. [13] predicted vulnerabilities using source 
lines of code, alert density from a static analysis tool, and 
code churn metrics. They performed a case study on a 
commercial telecommunications software system at 
component level. Their regression tree model predicted with 
100% recall with 8% false positive rate at the best case.  

Gegick et al. [9] also performed a study to investigate 
whether the failures can be used as an indicator of 
vulnerabilities. Their case study on a Cisco software system 
found 57% of vulnerable components in the top nine percent 
of the total component ranking, but with a high percentage of 
false positives (48%).  

Meneely and Williams [8] investigated the relationships 
between the structure of developer collaboration and 
vulnerabilities. Their empirical study with the Red Hat 
Enterprise Linux kernel shows that files changed by nine or 
more developers are more likely to have a vulnerability than 
files changed by fewer developers. 

Shin and Williams [12] investigated the relationships 
between code complexity and vulnerabilities on the Mozilla 
JavaScript engine at function level. The correlations between 
code complexity and vulnerabilities were weak (Spearman 
r=0.3 at best) but statistically significant. Shin and Williams 
[10] also compared the prediction performance between fault 
prediction models and vulnerability prediction models on the 
Mozilla JavaScript engine at function level. The study 
discussed in this paper uses a larger project, uses additional 
metrics, uses an improved data training technique, uses 
different prediction performance measurements, and 



provides in-depth analysis on the use of fault prediction 
models and metrics for the purpose of vulnerability 
prediction.  

None of the above studies investigated whether fault 
prediction models can be used to predict vulnerabilities and 
compared the effectiveness of fault prediction models and 
vulnerability prediction models in depth as in our study.  

C. Binary Classification Evaluation Criteria 

We perform vulnerability prediction by classifying a file 
as faulty (or vulnerable) according to the probability of a file 
having faults (or vulnerabilities). A file is classified as faulty 
(or vulnerable) if the predicted probability of having faults 
(or vulnerabilities) is over 0.5 in our study. Binary 
classification can have two kinds of errors: False Positives 
(FP) and False Negatives (FN). An FP happens when a file is 
classified as faulty or vulnerable when it is not. FPs can lead 
to waste of resources in code inspection and testing. An FN 
happens when a file is classified as neutral when it is not. 
FNs can allow software systems to be released with faults 
and vulnerabilities. Correct classifications are called True 
Positives (TP) and True Negatives (TN). Table I summarizes 
the four types of classification. 

TABLE I.  BINARY CLASSIFICATION RESULTS 

 Predicted Yes Predicted No 

Actual Yes TP FN 

Actual No FP TN 

 

From the binary classification results, we measured the 
degree of correct classification using recall and precision. 

  Recall is the ratio of the correctly classified true 
positives to the actual positives as defined in the following 
formula: 

recall = TP / (TP + FN) (1) 

Precision is the ratio of the correctly classified true 
positives to the predicted positives as defined in the 
following formula: 

precision = TP / (TP + FP) (2) 

III. STUDY DESIGN 

The goal of our study is to determine whether fault 
prediction models can be used for vulnerability prediction or 
if specialized vulnerability prediction models should be 
developed when both are built with traditional metrics of 
complexity, code churn, and fault history. We broke the goal 
into three specific questions, as will be discussed. In 
subsections A through D, we will describe the dependent and 
independent variables for the prediction models, 
measurements of prediction performance, and the modeling 
techniques that will be used to answer the questions. 

Q1: Can traditional fault prediction metrics predict 
faults with reasonable recall and precision?  

We answer this question to provide a baseline of comparison 
with the performance of vulnerability prediction. We build a 

fault prediction model by training it with the fault status of a 
file as a dependent variable and the traditional fault 
prediction metrics as independent variables. We call the fault 
prediction using a fault prediction model a FF prediction. 
Then, we measure the recall and precision of the fault 
prediction.  

Reasonable levels of recall and precision might differ 
depending on the criticality of the projects. Since there is no 
standard on prediction performance that indicates software 
quality good enough, we consider 70% recall and 70% 
precision as reasonable, as has been reported in other fault 
and vulnerability prediction studies [2, 6, 11, 23]. Note that 
not many studies reported both recall and precision or 
provided both high recall and high precision at the same 
time. Ref. [2] provided only recall (71% on average), but not 
precision. In [11], precision was 70%, but recall was 45%. 
Only [6] provided 70% recall and 70% precision. In [23], 
among the 56 predictions using various classification 
techniques on five projects, only 14 predictions provided 
over 70% recall, but precision was not reported. Note that all 
these studies have been performed on different projects, or 
used different metrics or modeling techniques, or performed 
on different sizes of entities such as component or file. 
Therefore, interpretation and comparison of the prediction 
results from different studies require caution.  

We present the relationships between metrics, models, 
and the purpose of the prediction in Fig. 1 through Fig. 3.  

 

 

Figure 1.  Fault prediction using a fault prediction model (FF prediction) 

Q2: Can fault prediction models predict vulnerabilities 
with reasonable recall and precision?  

If fault prediction models can be used for vulnerability 
prediction, organizations do not need to spend extra time and 
resources to create separate models for vulnerability 
prediction.   Therefore, we build the same fault prediction 
model as we built for Q1 and count the number of correctly 
predicted vulnerable files contained in the list of predicted 
faulty files. We call the vulnerability prediction using a fault 
prediction model a VF prediction. The result of the VF 
prediction is measured in terms of the recall and precision of 
the correctly predicted vulnerable files. We consider that a 
fault prediction model is effective for vulnerability 
prediction if both recall and precision are higher than 70%.  

 

 

Figure 2.  Vulnerability prediction using a fault prediction model (VF 

model) 

Q3: Can vulnerability prediction models using 
traditional fault prediction metrics predict vulnerabilities 
with reasonable recall and precision?  



To answer this question, we build a vulnerability prediction 
model by training it with the vulnerability status of a file as a 
dependent variable and the traditional fault prediction 
metrics as independent variables. Then, we measure the 
recall and precision of the predicted vulnerable files. We call 
the vulnerability prediction using a vulnerability prediction 
model a VV prediction. We consider that a vulnerability 
prediction model is effective if both recall and precision are 
higher than 70%.  

 

 

Figure 3.   Vulnerability prediction using a vulnerability prediction model 

(VV model) 

A. Dependent and Independent Variables 

In our study, the dependent variable for a fault prediction 
model is the probability that a file will have at least one fault. 
The dependent variable for a vulnerability prediction model 
is the probability that a file will have at least one 
vulnerability.  

Table II provides the definitions of the complexity, code 
churn, and fault history metrics that are used as independent 
variables in this study. 

B. Evaluation Criteria for Prediction Performance 

To clarify recall and precision from the three types of 
predictions (FF, FV, and VV), we redefine recall and 
precision that we defined in Section II.C as follows: 

RecallFF  is the ratio of the correctly classified faulty files 
to the actual faulty files using a fault prediction model.  

RecallVF and RecallVV are the ratios of the correctly 
classified vulnerable files to the actual vulnerable files using 
a fault prediction model and a vulnerability prediction 
model, respectively. 

We define precisionFF, precisionVF, and precisionVV  in the 
same way as we define recallFF, recallVF, and recallVV. 

If organizations have to inspect too many files only to 
find a small percentage of faults and vulnerabilities, the 
models are not efficient. Therefore, we additionally 
measured the number of files and lines of code to be 
inspected as a result of fault and vulnerability prediction. We 
define File Inspection ratio (FI) as the ratio of files to be 
inspected to the total number of files as a result of prediction 
as in the following formula: 

FI = (TP + FP) / (TP + FP + TN + FN) (3) 

FIV  and FIF are the ratios of files to be inspected to the 
total files as a result of vulnerability prediction and fault 
prediction, respectively. FIV=0.2 and recallV=0.8 indicates 
that 80% of the vulnerable files can be found in the 20% of 
the predicted files. If we randomly choose files to be 
inspected, a security engineer may have to inspect 80% of 
the total files to detect 80% of the vulnerable files. 
Therefore, FIV=0.2 and recallV=0.8 indicate that the model is 
effective in reducing file inspection and testing efforts.   

Even though a file can be a logical unit for code 
inspection, a large file may require more effort to maintain 
than small files. Therefore, we additionally measure Line 
Inspection ratio (LI). LI is the ratio of lines of source code to 
be inspected to the total lines of code as a result of 
prediction. First, we define the lines of code in the files that 

TABLE II. DEFINITIONS OF METRICS 

Metric Definition 

CountLineCode 
The number of lines of code in a 

file. 

CountLineCodeDecl 
The number of lines of variable 

declarations. 

CountDeclFunction 
The number of functions defined in 

a file. 

EssentialComplexity 

(average, sum) 

The number of branches after 

iteratively reducing all the 

programming primitives such as a 

for loop in a function’s control 

flow graph into a node until the 

graph cannot be reduced any 

further. Completely well-structured 

code has essential complexity 1. We 

used the average and sum values for 

each file. 

CyclomaticStrict 

(average, sum, max) 

The number of conditional 

statements in a function. We used 

the average, sum, and maximum 

values for each file.  

MaxNesting 

(average, sum, max) 

The maximum nesting level of 

control constructs such as if or 

while statements in a function. 

We used the average, sum, and 

maximum values for each file. 

CommentDensity 
The ratio of lines of comments to 

lines of code. 

FanIn 

(average, sum, max) 

The number of inputs to a function 

such as parameters and global 

variables. We used the average, 

sum, and maximum values for each 

file. 

FanOut 

(average, sum, max) 

The number of assignment to the 

parameters to call a function or 

global variables. We used the 

average, sum, and maximum values 

for each file. 

NumChanges The number of check-ins for a file. 

LinesChanged The number of code lines changed. 

LinesInserted The number of code lines inserted. 

LinesDeleted The number of code lines deleted. 

LinesNew The number of new code lines. 

NumPriorFaults 
The number of faults in the prior 

release. 

 



were true positives as TPLOC, similarly with TNLOC, FPLOC, 
and FNLOC. Then, LI is defined as in the following formula: 

LI = (TPLOC + FPLOC)  / (TPLOC + FPLOC + TNLOC + FNLOC) (4) 

LIV  and LIF  are the ratios of lines of code to be inspected 
to the total lines of code as a result of vulnerability 
prediction and fault prediction, respectively. Note that a 
small number of large files may contain many faults and 
vulnerabilities. Then, LI can be large when FI is small. In 
this case, a high value of LI does not necessarily mean that 
the model is inefficient. If we predict faults and 
vulnerabilities at a finer granularity such as function level 
rather than file level, the model may result in smaller LI. 
Therefore, we value FI than LI as a better evaluation 
criterion. 

For ease of read, we use percentage instead of ratio in the 
rest of this paper. For example, recall 0.8 will be presented as 
80% recall. 

C. Prediction Models 

We used a logistic regression technique to predict faulty 
files and vulnerable files. Logistic regression techniques 
have been effective in fault prediction [3, 6, 18].  

Logistic regression techniques calculate the probability 
of an event occurring by relating the linear combination of 
independent variables to the log of odds of an event (logit) 
[24]. This way the outcome has a value range of 0 to 1. The 
formula for the logit and the probability of an event resolved 
from the logit are as follows: 

logit = ln(
p

p

1

) = β0 + β1x1 + … +  βnxn = z            (5) 

p = 
z-1

1

e
 

We used the logistic regression implemented in Weka 3.7 
tool2. 

We additionally tried other classification techniques 
including Bayesian network, J48, and RandomForest. 
However, the results from those techniques were similar to 
the results from the logistic regression. Lessmann et al. [25]  
also observed no significant difference in 17 classification 
techniques that they tested for fault prediction. Therefore, we 
provide only the results from the logistic regression. 

Prior studies have shown that the prediction performance 
of using only a small set of variables are as good as using 
many variables [2]. By finding the small set of the most 
effective variables, we can focus on the most effective 
variables as well as reducing the time for data collection, 
model training, and prediction. We used a variable selection 
method, InfoGain, to select seven variables that provide the 
highest information gain [26]. Except for this variable 
selection option, we used the default options for the logistic 
regression implemented in Weka. 

After we train a model on a training data set, we 
measured the prediction performance of the model on a test 

                                                           
2 http://www.cs.waikato.ac.nz/ml/weka/ 

data set. For this purpose, we used 10x10 cross-validation 
[26]. In 10x10 cross-validation, nine folds of data are used as 
a training data set and one fold of data is used as a test data 
set. Each fold is used exactly once as a test data set. Then the 
ten folds cross-validation is repeated ten times. Therefore, 
we performed 100 times of prediction for each model and 
report the average of the results in this paper. 

The numbers of files with faults or vulnerabilities are 
much smaller than the numbers of files without faults or 
vulnerabilities in our study. This smaller set of data is called 
a minor class and the larger set of data is called a major 
class. Since the classification techniques try to reduce the 
error of the major class [26], the minor class often has high 
false negatives. Considering the impact of a single exploited 
vulnerability, lowering false negatives are relatively more 
important than lowering false positives in vulnerability 
prediction. To deal with this issue, we applied data sampling 
that has been effective in fault prediction with unbalance 
data [27, 28].  Specifically we used an under-sampling 
technique to train a model by randomly removing the data 
instances in the major class from the training set until the 
number of data instances in the major class and the number 
of data instances in the minor class become equal. We 
performed the under-sampling for each run of 10x10 cross-
validation.  

Although logistic regression does not assume normal 
distribution of data and therefore does not require data 
transformation, recall has improved by log transformation in 
practice. We provide the results of log transformation in this 
study. 

IV. A CASE STUDY: MOZILLA FIREFOX BROWSER 

Mozilla Firefox is a widely-used open source web 
browser. Firefox is written in C/C++ and consists of 11,051 
files and over 2 million lines of source code. In this study, 
we used Firefox 2.0.  

A. Data Collection 

We collected faults reported since the release of Firefox 
2.0 and before the release of Firefox 3.0 from the Mozilla 
Bugzilla3 bug database.  Each bug report includes the details 
of a bug including bug description, bug status, bug resolution 
method, and bug patches. Bug status indicates the life cycle 
of a bug such as NEW, ASSIGNED, VERIFIED, 
RESOLVED, and CLOSED. Bug resolution indicates the 
method by which a bug has been resolved such as FIXED, 
WONTFIX, and DUPLICATE. From a bug patch, we can 
identify the files that have been changed to remove faults. 
The bug reports include both enhancements and faults, when 
we are interested only in faults. However, the bug reports do 
not have explicit information that we can automatically 
distinguish between enhancements and faults.  To facilitate 
the classification of enhancements and faults, we used 
automated text classification. The details of the automated 
text classification are described in Section IV. B. We 
considered only the bug reports that were classified as faults 

                                                           
3 https://bugzilla.mozilla.org/ 



by the automated text classification and whose status became 
RESOLVED or VERIFIED by fixing the faults. We counted 
the number of bug reports that have bug patches for a file as 
a surrogate measure of the number of faults in a file. Over 
80,000 bug reports have been reported between the releases 
of Firefox 2.0 and Firefox 3.0. Among these, 6,965 bug 
reports were flagged as RESOLVED or VERIFIED status 
after the bugs have been fixed and had patches written in 
C/C++. 

We collected vulnerabilities reported for Firefox 2.0 to 
Firefox 2.0.0.19 from the Mozilla Foundation Security 
Advisories (MFSAs)4. Each MFSA includes bug IDs for the 
bug reports in the bug database. From these bug reports, we 
identified the files that have changed to mitigate 
vulnerabilities. To count the number of vulnerabilities in a 
file, we counted the number of bug reports that are included 
in MFSAs and that have bug patches for the file. Among 
11,051 total files, 2,261 files were classified as faulty (20% 
of the total files), 363 files were vulnerable (3% of the total 
files), and 294 files were both faulty and vulnerable as in Fig. 
4. Note that a file can have both vulnerabilities and faults and 
80% of the vulnerable files also have faults in Firefox 2.0. 

To collect the complexity metrics, we used a commercial 
source code analysis tool, Understand C++5.   

To collect the code churn metrics, we searched the 
modified files from the CVS source code repository. We 
collected the changes that have been made for the 12 months 
before the release of Firefox 2.0. For the measurement of 
faults, vulnerabilities, and code churn, we only considered 
the changes made to C/C++ and their header files, excluding 
other files such as scripts since the complexity metrics were 
available only for C/C++ files.  

To collect the fault history metric from the prior release 
of Firefox 2.0, we collected faults from Firefox 1.0 and its 
minor releases using the same procedure we used for Firefox 
2.0. Table III shows the means and medians of five 
representative metrics per file. In Table III, both faulty files 
and vulnerable files have higher complexity, more frequent 
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and larger changes, and more past faults than neutral files. Of 
note, vulnerable files tend to have higher complexity, more 
frequent and larger changes, and more past faults than faulty 
files in Firefox 2.0.  

B. Classification of Fault and Enhancement 

We performed automated text classification to classify 
bug reports as enhancements or faults because classifying the 
bug reports manually would take too long time and impede 
future repeated studies. In automated text classification, 
words in documents are used as features to compute the 
similarity between documents. Automated text classification 
has been used for various purposes including spam email 
filtering. Antoniol et al. [29] has also performed automated 
text classification of the bug reports for faults and 
enhancements of the Mozilla project. Their logistic 
regression model provided 76% recall and 82% precision. 
We performed a similar approach to their study. However, 
our classification has been performed only for the bug 
reports that have patches written in C/C++ for Firefox 2.0. 
We performed the bug report classification in the following 
four steps: 

Step 1. Create a training data set. To create a training 
data set, we manually classified 600 sample bug reports as 
fault or enhancement using the titles and bug descriptions as 
texts. A few examples of the terms that frequently appear in 
the bug reports for faults are failure, error, and memory 
corruption. A few examples of the terms frequently appear 
in the bug reports for enhancements include add, implement, 
and improve. 

Step 2. Test the feasibility of automated bug classification 
with the sample bug reports. The process is performed in the 
following sub-steps. 

Step 2.1. Preprocess the texts. In this step, we first 
removed punctuations and converted all words to lower case. 
Then, we applied the standard Porter stemmer [30] that 
removes suffixes from various forms of verbs (-ed, -ing, etc.) 
or plural forms of words. Finally we created a term 
frequency vector that includes frequency of words in each 
bug report.  

Step 2.2. Split the term frequency vector into training and 
testing sets. In this step, we split the 90% of the instances in 
the term frequency vector as a training data set and 10% of 
them as a test data set. 

 

 

Figure 4. Distribution of faulty and vulnerable files in Firefox 2.0 

 

TABLE III. COMPARISON OF MEAN AND MEDIAN VALUES OF METRICS 

 Neutral Files Faulty Files Vulnerable 

Files 

 Mean Med. Mean Med. Mean Med. 

LOC 136 33 480 193 867 363 

SumCyclomaticStrict 30 4 136 33 250 105 

NumChanges 1 0 10 4 25 11 

LinesChanged 61 0 451 52 1081 216 

NumPriorFaults 1 0 8 4 19 8 

 



Step 2.3. Build classification models and perform cross-
validation. We chose 100 words as independent variables 
using the InfoGain variable selection method and built a 
logistic regression model using the training data set. Then we 
classified bug reports in the test data set using the model. We 
repeated Step 2.2 and Step 2.3 100 times for 10x10  cross-
validation.  The logistic regression model provided 88% 
recall and 85% precision. We consider this performance is 
enough for our purpose of fault classification. Therefore, we 
continue to Step 3. 

Step 3. Perform bug classification of all 6,965 bug 
reports. The process is performed in the following two sub-
steps. 

Step 3.1. Preprocess the texts. Use the same method in 
Step 2.1. 

Step 3.2. Build a classification model and perform 
classification. In this step, we used the whole set of 
manually-classified sample bug reports from Step 1 to train 
the model. Then we classified the remaining 6,365 bug 
reports using the trained model. 

We used Weka 3.7 for the preprocessing and 
classification.  

C. Prediction Results 

Q1: Can the traditional fault prediction metrics predict 
faults with reasonable recall and precision?  

To answer this question, we measured recallFF, 
precisionFF, FIF, and LIF. As shown in Fig. 5, the fault 
prediction model predicted 74% of the total faulty files 
(recallFF) in 33% of the total files (FIF,) and in 67% of the 
total lines of code (LIF). Among the files predicted as faulty, 
47% was correctly predicted (precisionFF). Compared with 
random file selection, the fault prediction model reduced the 
number of files to be inspected by 56% to detect 74% of the 
total faulty files.  

In summary, the FF prediction provided reasonable recall 
(over 70%), but low precision (below 70%). Although the 
precision is not high enough, we continue to answer Q2 and 
Q3 to see whether the traditional fault prediction metrics are 
more (or less) effective in vulnerability prediction than in 
fault prediction.    

Q2: Can fault prediction models predict vulnerabilities 
with reasonable recall and precision?  

To answer this question, we measured recallVF and 

precisionVF. Because we use the model that we used to 
answer Q1, the amount of inspection (FIF and LIF) is the 
same as the results from Q1. As shown in Fig. 6, the fault 
prediction model predicted 92% of the total vulnerable files 
(recallVF) in 33% of the total files (FIF,) and in 67% of the 
total lines of code (LIF). Among the files predicted as 
vulnerable, 9% was correctly predicted (precisionVF). 
Compared with random file selection, the fault prediction 
model reduced the number of files to be inspected by 64% to 
detect 92% of the total vulnerable files.  

In summary, the VF prediction provided very high recall 
(92%), but much lower precision (9%) than our 70% 
criterion and the precision from the FF prediction. Although 
the VF prediction effectively reduced the number of files to 

be inspected, still a large amount of unnecessary inspection 
and testing is expected because of the low precision. 

Q3: Can vulnerability prediction models using 
traditional fault prediction metrics predict vulnerabilities 
with reasonable recall and precision?  

To answer this question, we measured recallVV, 
precisionVV, FIV, and LIV . The vulnerability prediction model 
correctly predicted 84% of the total vulnerable files 
(recallVV) in 23% of the total files (FIV,) and in 60% of the 
total lines of code (LIV). Among the files predicted as 
vulnerable, 12% was correctly predicted (precisionVV). 
Compared with random file selection, the vulnerability 
prediction model reduced the number of files to be inspected 
by 72% to detect 84% of the total vulnerable files. Fig. 7 
presents the results of the VV prediction and compares them 
with the results from the VF prediction in Q2. 

Since the VV prediction provided worse performance in 
recall and better performance in precision than the VF 
prediction, we wondered whether the result will be the same 
if we change the threshold for the binary classification of 
vulnerable and non-vulnerable files. After we changed the 
classification threshold of the VV prediction to 0.7, all the 
performance measures between the two types of the models 
became very close (Fig. 8). The recall and precision for the 
VF prediction were 92% and 9%, respectively. The recall 
and precision for the VV prediction became 90% and 3%, 
respectively. This result suggests that fault prediction models 
can be used as a substitute for vulnerability prediction 
models when traditional metrics are used. We consider the 
reason that the two types of models provided the similar 
performance is because a high percentage of files with 
vulnerabilities also have faults in Firefox 2.0; 80% of the 
vulnerable files also have faults in Fig. 4. 

 
Figure 5. Fault prediction results using fault prediction models (FF 

prediction) 

 

Figure 6. Vulnerability prediction results using fault prediction 

models (VF prediction) 



In summary, the VV prediction provided high recall, but 
low precision. Additionally the VV prediction provided 
similar performance to the VF prediction when the 
classification threshold was adjusted, suggesting fault 
prediction models can be used as a substitute for 
vulnerability prediction.  

 

D. Analysis of the “Needle Effect” 

Only 3% of the files and only 13% of the faulty files are 
vulnerable files (Fig. 4), making a vulnerability prediction a 
task of finding a needle in a haystack. Therefore, we expect 
the performance of fault prediction and vulnerability 
prediction will be different. At the same time, we observed 
the difference in the measurements of the three types of 
metrics between faulty files and vulnerable files, which also 
can lead to the difference in prediction performance. As we 
expected, we can observe a fairly large difference in 
performance between the FF prediction and the VV 
prediction from the answers for Q1 and Q3. Fig. 9 puts the 
results from Q1 and Q3 together. The VV prediction 
provides 18% higher recall and 38% lower precision than the 
FF prediction.  

We investigated whether this difference occurs largely 
because vulnerabilities are more rare occasions compared 
with faults (needle effects) by adjusting the number of faulty 
files in fault prediction. Our hypothesis is that if the 
difference in the prediction performance is mainly because of 
the difference in the numbers of the reported faults and 
vulnerabilities, the performance of the FF prediction and the 

VV prediction will be similar if we adjust the number of 
faulty files. To test this hypothesis, we randomly selected a 
subset of faulty files and marked them as neutral assuming 
those files have not been reported as faulty. In Fig. 10, FF 
and VV represent the fault prediction model and the 
vulnerability prediction model that we used to answer Q1 
and Q3. FF1, FF2, and FF3 are the fault prediction models 
built with as three times, as twice, and the same number of 
faulty files as the number of vulnerable files, respectively, 
after the remaining faulty files are marked as neutral. The 
number of faulty and vulnerable files used for the models are 
presented in Fig. 10. 

In Fig. 10, recallFF, FIFF, and LIFF from the fault 
predictions (FF, FF1, FF2, and FF3) are only slightly 
different depending on the difference in the numbers of 
faulty files. However, precisionFF becomes dramatically 
lower when the number of faulty files becomes small. These 
results show that precision is greatly affected by the needle 
effect in general. However, the noticeable difference in 
recall, FI, and LI between the four FF predictions and the 
VV prediction may have been caused by the actual 
difference in the characteristics between faulty and 
vulnerable files that we have already observed in Table III. 
Especially, the performance from the VV prediction is better 
than the performance from the FF prediction in all the 
performance measurements when the numbers of the faulty 
files and the vulnerable files are the same.  This result 
suggests that the traditional fault prediction metrics are even 
more effective for vulnerability prediction than fault 
prediction depending on the numbers of reported faults and 
vulnerabilities.  

 
Figure 7. Comparison of the results of VF prediction and VV 

prediction 

 

Figure 8. Comparison of the results of VF prediction and VV 

prediction with adjusted classification threshold 

 

Figure 9. Comparison of the results of FF prediction and VV prediction 

 

Figure 10. Effects of the number of faulty and vulnerable files 



In summary, precision is largely affected by the amount 
of reported faults and vulnerabilities. However, the 
differences in the measures of complexity, code churn, and 
fault history metrics between faulty and vulnerable files also 
brings the difference in prediction performance. 

V. DISCUSSION 

Overall, the traditional fault prediction metrics provided 
similarly high recall and low precision in vulnerability 
prediction from both the VV prediction and the VF 
prediction. When the numbers of faulty files and 
vulnerability files are the same, the performance of the VV 
prediction using the traditional fault prediction metrics was 
better than the performance of the FF prediction. In both the 
fault and vulnerability predictions, the most frequently 
selected metrics by the InfoGain variable selection method 
were NumPriorFaults, NumChanges, LinesChanged, 
LinesInserted, LinesDeleted, CountLineCode, and 
CountLineCodeDecl. 

The reason of the high recall from the vulnerability 
predictions can be attributed to the fact that files with high 
complexity, frequent and large changes, and many past faults 
tend to have more vulnerabilities than files with low 
complexity, less frequent and small changes, and small past 
faults. However, the precision of the vulnerability 
predictions was much lower (9% after adjusting the 
classification threshold) than the precision of the fault 
prediction (47%) because only a small percentage of files 
was vulnerable. This dependence on the amount of reported 
vulnerabilities in vulnerability prediction has two 
implications. First, if the amount of the reported 
vulnerabilities is small just because the latent vulnerabilities 
have not been discovered yet, we can expect a large portion 
of the false positives could be actually true positives that will 
be reported as vulnerable files as time passes. If so, it is 
worth to spend extra efforts to inspect and test the predicted 
vulnerable files. Second, if the number of reported 
vulnerabilities is actually small even after enough time has 
passed after the release of software, it will be difficult to 
expect high precision from a vulnerability prediction using 
the traditional fault prediction metrics in general.  

Alhazmi and Ray [19] reported that the ratio of 
vulnerabilities to the total number of faults was 1-5% in their 
study with five versions of Microsoft Windows operating 
systems and two versions of Red Hat Linux systems. In our 
study, the ratio of vulnerable files to the total faulty files is 
16%. Although the number of files to be inspected is reduced 
by over 64% compared to random file selection in both the 
VF prediction and the VV prediction, 33% of 11,051 files is 
still many files (3,647). Therefore, further prioritization 
should be followed from expert’s judgment or from using 
other methods such as static analysis tools in addition to the 
use of vulnerability prediction. Note that static analysis tools 
alone cannot guide the security inspection and testing 
because static analysis tools are also known to have a high 
percentage of false positives, and the results from static 
analysis tools also require prioritization [31, 32].  

VI. THREATS TO VALIDITY 

We used the fault prediction metrics that have been 
frequently used and effective in fault prediction in prior 
studies. However, other fault prediction metrics may provide 
different results.  

The number of faults and vulnerabilities in a file can vary 
depending on the methods of fault and vulnerability 
collection. For Firefox, we counted the number of faults and 
vulnerabilities by counting the number of bug reports with 
bug patches for a file. However, patches may have not been 
committed to the source code repository, or vulnerabilities 
and faults have been fixed but the patches have not been 
posted on the bug database.  However, considering the 
maturity of the development process of Firefox, we believe 
the missing counts of vulnerabilities and faults are not at the 
level that can threaten our results.  

We assumed the efficiency of inspection is proportional 
to the number of files and the lines of code to be inspected. 
However, the efficiency of inspection may vary depending 
on the complexity of the problem implemented in the code 
and the importance of the code in terms of security. Since 
these factors are not readily obtainable in an objective way, 
experts’ judgment should be accompanied when the models 
are used in organizations. 

The classification of faults and enhancements for Firefox 
is not perfect and has room to be improved. However, we 
believe that the 88% recall and 85% precision for the training 
data set is reasonably high. 

Since our study has been done to a single project, further 
replicated studies are required to generalize our observations 
to other projects. However, we believe our study increases 
the understanding on vulnerability prediction and reveals 
concerns that should be cared in the application of 
vulnerability prediction in organizations and in future 
research. 

VII. SUMMARY 

We investigated whether fault prediction models can be 
used for vulnerability prediction or if specialized 
vulnerability prediction models should be developed when 
both are built with the traditional fault prediction metrics of 
complexity, code churn, and fault history. We examined the 
effectiveness of those metrics for vulnerability prediction on 
the Mozilla Firefox 2.0 web browser. In our study, the fault 
prediction model and the vulnerability prediction model 
provided similar prediction results for vulnerability 
prediction. Both the fault prediction model and the 
vulnerability prediction model predicted vulnerabilities with 
high recall of over 90% and effectively reduced the number 
of files to be inspected after adjusting the classification 
threshold. However, precision was very low (9%) leading to 
a waste of resources in security inspection and testing 
primarily because that the number of reported vulnerabilities 
was small. Our analysis on Firefox 2.0 indicates that fault 
prediction models based upon traditional metrics can be 
substituted for specialized vulnerability prediction models, 
but requires significant improvement to reduce false 



positives. Finding better metrics that predict vulnerable code 
locations is our ongoing research.   
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