
Can Fault Prediction Models and Metrics be Used for Vulnerability Prediction?

Yonghee Shin and Laurie Williams

Department of Computer Science

North Carolina State University

Raleigh, NC, USA

{yonghee.shin, lawilli3}@ncsu.edu

Abstract— Finding security vulnerabilities requires a different

mindset than finding general faults in software - thinking like

an attacker. Therefore, security engineers looking to prioritize

security inspection and testing efforts may be better served by

a prediction model that indicates security vulnerabilities rather

than faults. At the same time, faults and vulnerabilities have

commonalities that may allow development teams to use

traditional fault prediction models and metrics for

vulnerability prediction. The goal of our study is to determine

whether fault prediction models can be used for vulnerability

prediction or if specialized vulnerability prediction models

should be developed when both are built with traditional

metrics of complexity, code churn, and fault history. We have

performed an empirical study on a widely-used, large open

source project, the Mozilla Firefox web browser, where 20% of

the source code files have faults and only 3% of the files have

vulnerabilities. Both the fault prediction model and the

vulnerability prediction model predicted vulnerabilities with

high recall (over 90%) and low precision (9%). The precision

from these vulnerability predictions was much lower than the

precision from fault prediction (47%). Our results suggest that

fault prediction models based upon traditional metrics can be

substituted for specialized vulnerability prediction models, but

requires significant improvement to reduce false positives.

Keywords- Software metrics; complexity metrics; fault

prediction; vulnerability prediction; open source projects

I. INTRODUCTION

Finding faults in software systems early in the
development life cycle is important to reduce software
maintenance costs that are caused by later fixes [1]. With
limited time and budget in development teams, efficient
allocation of inspection and testing efforts are also critical.
Hence, prediction of code locations that have high possibility
of having faults using the software metrics that are available
early in the development life cycle has been an active
research area (representative publications [2-7]). Recently,
the importance of predicting software vulnerabilities
(security problems) in software systems early in the
development life cycle is being emphasized (representative
publications [8-13]). Considering the explosive growth of
vulnerability reports in recent years [14], and the
immeasurable cost of insecure software [15], this growing
emphasis is no surprise.

Vulnerabilities and faults are similar in that both
vulnerabilities and faults can be caused by human mistakes
in the development process. The mistakes are often related to
complexity in code/design [16] and in changes to the code
[17]. Hence, complexity metrics and code churn metrics
have been used for fault prediction [5, 17, 18]. Additionally,
problematic code areas in one release tend to be also
problematic again in later releases [4]. These similarities
between vulnerabilities and faults may enable us to use the
traditional fault prediction metrics – complexity, code churn,
and fault history metrics for vulnerability prediction.

At the same time, vulnerabilities and faults are different
in that attackers actively seek vulnerabilities with malicious
or criminal intent, while faults are exposed based upon the
normal use of software. This difference necessitates software
engineers who conduct vulnerability detection to think like
an attacker and have special security skills. As a result, a
model trained for vulnerability prediction rather than fault
prediction may be necessary. Additionally the reported
vulnerabilities are much fewer than the reported faults in
many projects [19]. Finding vulnerabilities is akin to finding
a “needle in a haystack”, so perhaps a vulnerability
prediction model must be trained to find needles and not
haystacks.

These similarities and differences motivate us to
empirically investigate the effectiveness of traditional fault
prediction metrics to predict vulnerabilities. The goal of our
study is to determine whether fault prediction models can be
used for vulnerability prediction or if specialized
vulnerability prediction models should be developed when
both are built with traditional metrics of complexity, code
churn, and fault history.

To achieve our goal, we performed an empirical case
study on a widely-used open source project: the Mozilla
Firefox1 web browser. We built both fault prediction models
and vulnerability prediction models using the three types of
traditional fault prediction metrics and measured how
accurately the models predict vulnerable files. We also
compared the prediction performance of the fault prediction
models and the vulnerability prediction models to analyze
the effect of the numbers of reported faults and
vulnerabilities in fault and vulnerability prediction.

1 http://www.mozilla.com/

The contributions of this study are as follows:

 We provided empirical evidence that traditional fault
prediction metrics can detect a high portion of
vulnerable files, but should be significantly improved
to reduce false positives.

 We provided empirical evidence that fault prediction
models and vulnerability prediction models provide
similar prediction performance when they use the
traditional fault prediction metrics and can be used
interchangeably.

 We showed that fault and vulnerability predictions
are largely affected by the number of the reported
faults and vulnerabilities.

 As a by-product of our fault data gathering, we
showed that automated text classification is feasible
and useful to classify faulty files.

The rest of this paper is organized as follows: Section II
provides background and related work. Section III describes
study design including metrics, modeling techniques, and
evaluation methods. Section IV provides the results of our
case study. Section V discusses the implication of the results.
Section VI mentions threats to validity. Section VII
summarizes our study.

II. BACKGROUND AND RELATED WORK

This section provides the terms we use in this study and
discusses prior studies related with our study. We also
provide the binary classification evaluation criteria for
prediction.

A. Terms

A software fault is “an accidental conditional that causes
a functional unit to fail to perform its required function
[20].”

A software vulnerability is “an instance of an error in the
specification, development, or configuration of software such
that its execution can violate an [implicit or explicit] security
policy” [21]. A software vulnerability provides functionality
beyond required functionality, such as enabling an elevation
of privilege or providing more information about an internal
implementation of a system than necessary in an error
message. Attackers can exploit this additional functionality.

When a file has at least one reported fault, we call the file
faulty. When a file has at least one reported vulnerability, we
call the file vulnerable. We call a file that is neither faulty
nor vulnerable neutral.

B. Related Work

Fault Prediction Various metrics have been used for
fault prediction including product metrics such as OO design
and complexity metrics and process metrics such as code
churn and past fault history metrics [2-7, 17, 18]. We
summarize a few representative studies on fault prediction
using complexity, code churn, and fault history metrics
below.

Nagappan et al. [18] performed a post-release failure
prediction using complexity metrics on five Microsoft
software systems. Subsets of the complexity metrics were

statistically significantly correlated with the post-release
failures in all five projects. However, no single set of
complexity metrics was correlated with post-release failures
with all five projects. The researchers were able to find a
combination of complexity metrics which could significantly
predict post-release failures in all the five projects.

Nagappan and Ball [5] also performed a post-release
failure prediction using relative code churn metrics on
Windows Server 2003. Their multiple regression model
provided a high correlation between the estimated failures
and the actual failures in software modules (r=0.889 for the
Pearson correlation and r=0.929 for the Spearman rank
correlation). Their binary classification model correctly
classified 89% of modules when counting both true positives
and true negatives.

Graves et al. [17] observed frequently changed modules
and the modules with large changes tend to have more faults
than other modules. They also observed the recent changes
induce more faults than older changes.

Ostrand et al. [4] and Arisholm et al. [22] have used the
number of faults in prior releases for fault prediction and
found the fault history is useful for fault prediction.

Vulnerability Prediction Neuhaus et al. [11] performed a
vulnerability prediction on the Mozilla open source project
by analyzing the import (header file inclusion) and function
call relationships. Their prediction model provided 45%
recall and 70% precision, and estimated 82% of the known
vulnerabilities in the top 30% components predicted as
vulnerable.

Gegick et al. [13] predicted vulnerabilities using source
lines of code, alert density from a static analysis tool, and
code churn metrics. They performed a case study on a
commercial telecommunications software system at
component level. Their regression tree model predicted with
100% recall with 8% false positive rate at the best case.

Gegick et al. [9] also performed a study to investigate
whether the failures can be used as an indicator of
vulnerabilities. Their case study on a Cisco software system
found 57% of vulnerable components in the top nine percent
of the total component ranking, but with a high percentage of
false positives (48%).

Meneely and Williams [8] investigated the relationships
between the structure of developer collaboration and
vulnerabilities. Their empirical study with the Red Hat
Enterprise Linux kernel shows that files changed by nine or
more developers are more likely to have a vulnerability than
files changed by fewer developers.

Shin and Williams [12] investigated the relationships
between code complexity and vulnerabilities on the Mozilla
JavaScript engine at function level. The correlations between
code complexity and vulnerabilities were weak (Spearman
r=0.3 at best) but statistically significant. Shin and Williams
[10] also compared the prediction performance between fault
prediction models and vulnerability prediction models on the
Mozilla JavaScript engine at function level. The study
discussed in this paper uses a larger project, uses additional
metrics, uses an improved data training technique, uses
different prediction performance measurements, and

provides in-depth analysis on the use of fault prediction
models and metrics for the purpose of vulnerability
prediction.

None of the above studies investigated whether fault
prediction models can be used to predict vulnerabilities and
compared the effectiveness of fault prediction models and
vulnerability prediction models in depth as in our study.

C. Binary Classification Evaluation Criteria

We perform vulnerability prediction by classifying a file
as faulty (or vulnerable) according to the probability of a file
having faults (or vulnerabilities). A file is classified as faulty
(or vulnerable) if the predicted probability of having faults
(or vulnerabilities) is over 0.5 in our study. Binary
classification can have two kinds of errors: False Positives
(FP) and False Negatives (FN). An FP happens when a file is
classified as faulty or vulnerable when it is not. FPs can lead
to waste of resources in code inspection and testing. An FN
happens when a file is classified as neutral when it is not.
FNs can allow software systems to be released with faults
and vulnerabilities. Correct classifications are called True
Positives (TP) and True Negatives (TN). Table I summarizes
the four types of classification.

TABLE I. BINARY CLASSIFICATION RESULTS

 Predicted Yes Predicted No

Actual Yes TP FN

Actual No FP TN

From the binary classification results, we measured the
degree of correct classification using recall and precision.

 Recall is the ratio of the correctly classified true
positives to the actual positives as defined in the following
formula:

recall = TP / (TP + FN) (1)

Precision is the ratio of the correctly classified true
positives to the predicted positives as defined in the
following formula:

precision = TP / (TP + FP) (2)

III. STUDY DESIGN

The goal of our study is to determine whether fault
prediction models can be used for vulnerability prediction or
if specialized vulnerability prediction models should be
developed when both are built with traditional metrics of
complexity, code churn, and fault history. We broke the goal
into three specific questions, as will be discussed. In
subsections A through D, we will describe the dependent and
independent variables for the prediction models,
measurements of prediction performance, and the modeling
techniques that will be used to answer the questions.

Q1: Can traditional fault prediction metrics predict
faults with reasonable recall and precision?

We answer this question to provide a baseline of comparison
with the performance of vulnerability prediction. We build a

fault prediction model by training it with the fault status of a
file as a dependent variable and the traditional fault
prediction metrics as independent variables. We call the fault
prediction using a fault prediction model a FF prediction.
Then, we measure the recall and precision of the fault
prediction.

Reasonable levels of recall and precision might differ
depending on the criticality of the projects. Since there is no
standard on prediction performance that indicates software
quality good enough, we consider 70% recall and 70%
precision as reasonable, as has been reported in other fault
and vulnerability prediction studies [2, 6, 11, 23]. Note that
not many studies reported both recall and precision or
provided both high recall and high precision at the same
time. Ref. [2] provided only recall (71% on average), but not
precision. In [11], precision was 70%, but recall was 45%.
Only [6] provided 70% recall and 70% precision. In [23],
among the 56 predictions using various classification
techniques on five projects, only 14 predictions provided
over 70% recall, but precision was not reported. Note that all
these studies have been performed on different projects, or
used different metrics or modeling techniques, or performed
on different sizes of entities such as component or file.
Therefore, interpretation and comparison of the prediction
results from different studies require caution.

We present the relationships between metrics, models,
and the purpose of the prediction in Fig. 1 through Fig. 3.

Figure 1. Fault prediction using a fault prediction model (FF prediction)

Q2: Can fault prediction models predict vulnerabilities
with reasonable recall and precision?

If fault prediction models can be used for vulnerability
prediction, organizations do not need to spend extra time and
resources to create separate models for vulnerability
prediction. Therefore, we build the same fault prediction
model as we built for Q1 and count the number of correctly
predicted vulnerable files contained in the list of predicted
faulty files. We call the vulnerability prediction using a fault
prediction model a VF prediction. The result of the VF
prediction is measured in terms of the recall and precision of
the correctly predicted vulnerable files. We consider that a
fault prediction model is effective for vulnerability
prediction if both recall and precision are higher than 70%.

Figure 2. Vulnerability prediction using a fault prediction model (VF

model)

Q3: Can vulnerability prediction models using
traditional fault prediction metrics predict vulnerabilities
with reasonable recall and precision?

To answer this question, we build a vulnerability prediction
model by training it with the vulnerability status of a file as a
dependent variable and the traditional fault prediction
metrics as independent variables. Then, we measure the
recall and precision of the predicted vulnerable files. We call
the vulnerability prediction using a vulnerability prediction
model a VV prediction. We consider that a vulnerability
prediction model is effective if both recall and precision are
higher than 70%.

Figure 3. Vulnerability prediction using a vulnerability prediction model

(VV model)

A. Dependent and Independent Variables

In our study, the dependent variable for a fault prediction
model is the probability that a file will have at least one fault.
The dependent variable for a vulnerability prediction model
is the probability that a file will have at least one
vulnerability.

Table II provides the definitions of the complexity, code
churn, and fault history metrics that are used as independent
variables in this study.

B. Evaluation Criteria for Prediction Performance

To clarify recall and precision from the three types of
predictions (FF, FV, and VV), we redefine recall and
precision that we defined in Section II.C as follows:

RecallFF is the ratio of the correctly classified faulty files
to the actual faulty files using a fault prediction model.

RecallVF and RecallVV are the ratios of the correctly
classified vulnerable files to the actual vulnerable files using
a fault prediction model and a vulnerability prediction
model, respectively.

We define precisionFF, precisionVF, and precisionVV in the
same way as we define recallFF, recallVF, and recallVV.

If organizations have to inspect too many files only to
find a small percentage of faults and vulnerabilities, the
models are not efficient. Therefore, we additionally
measured the number of files and lines of code to be
inspected as a result of fault and vulnerability prediction. We
define File Inspection ratio (FI) as the ratio of files to be
inspected to the total number of files as a result of prediction
as in the following formula:

FI = (TP + FP) / (TP + FP + TN + FN) (3)

FIV and FIF are the ratios of files to be inspected to the
total files as a result of vulnerability prediction and fault
prediction, respectively. FIV=0.2 and recallV=0.8 indicates
that 80% of the vulnerable files can be found in the 20% of
the predicted files. If we randomly choose files to be
inspected, a security engineer may have to inspect 80% of
the total files to detect 80% of the vulnerable files.
Therefore, FIV=0.2 and recallV=0.8 indicate that the model is
effective in reducing file inspection and testing efforts.

Even though a file can be a logical unit for code
inspection, a large file may require more effort to maintain
than small files. Therefore, we additionally measure Line
Inspection ratio (LI). LI is the ratio of lines of source code to
be inspected to the total lines of code as a result of
prediction. First, we define the lines of code in the files that

TABLE II. DEFINITIONS OF METRICS

Metric Definition

CountLineCode
The number of lines of code in a

file.

CountLineCodeDecl
The number of lines of variable

declarations.

CountDeclFunction
The number of functions defined in

a file.

EssentialComplexity

(average, sum)

The number of branches after

iteratively reducing all the

programming primitives such as a

for loop in a function’s control

flow graph into a node until the

graph cannot be reduced any

further. Completely well-structured

code has essential complexity 1. We

used the average and sum values for

each file.

CyclomaticStrict

(average, sum, max)

The number of conditional

statements in a function. We used

the average, sum, and maximum

values for each file.

MaxNesting

(average, sum, max)

The maximum nesting level of

control constructs such as if or

while statements in a function.

We used the average, sum, and

maximum values for each file.

CommentDensity
The ratio of lines of comments to

lines of code.

FanIn

(average, sum, max)

The number of inputs to a function

such as parameters and global

variables. We used the average,

sum, and maximum values for each

file.

FanOut

(average, sum, max)

The number of assignment to the

parameters to call a function or

global variables. We used the

average, sum, and maximum values

for each file.

NumChanges The number of check-ins for a file.

LinesChanged The number of code lines changed.

LinesInserted The number of code lines inserted.

LinesDeleted The number of code lines deleted.

LinesNew The number of new code lines.

NumPriorFaults
The number of faults in the prior

release.

were true positives as TPLOC, similarly with TNLOC, FPLOC,
and FNLOC. Then, LI is defined as in the following formula:

LI = (TPLOC + FPLOC) / (TPLOC + FPLOC + TNLOC + FNLOC) (4)

LIV and LIF are the ratios of lines of code to be inspected
to the total lines of code as a result of vulnerability
prediction and fault prediction, respectively. Note that a
small number of large files may contain many faults and
vulnerabilities. Then, LI can be large when FI is small. In
this case, a high value of LI does not necessarily mean that
the model is inefficient. If we predict faults and
vulnerabilities at a finer granularity such as function level
rather than file level, the model may result in smaller LI.
Therefore, we value FI than LI as a better evaluation
criterion.

For ease of read, we use percentage instead of ratio in the
rest of this paper. For example, recall 0.8 will be presented as
80% recall.

C. Prediction Models

We used a logistic regression technique to predict faulty
files and vulnerable files. Logistic regression techniques
have been effective in fault prediction [3, 6, 18].

Logistic regression techniques calculate the probability
of an event occurring by relating the linear combination of
independent variables to the log of odds of an event (logit)
[24]. This way the outcome has a value range of 0 to 1. The
formula for the logit and the probability of an event resolved
from the logit are as follows:

logit = ln(
p

p

1

) = β0 + β1x1 + … + βnxn = z (5)

p =
z-1

1

e

We used the logistic regression implemented in Weka 3.7
tool2.

We additionally tried other classification techniques
including Bayesian network, J48, and RandomForest.
However, the results from those techniques were similar to
the results from the logistic regression. Lessmann et al. [25]
also observed no significant difference in 17 classification
techniques that they tested for fault prediction. Therefore, we
provide only the results from the logistic regression.

Prior studies have shown that the prediction performance
of using only a small set of variables are as good as using
many variables [2]. By finding the small set of the most
effective variables, we can focus on the most effective
variables as well as reducing the time for data collection,
model training, and prediction. We used a variable selection
method, InfoGain, to select seven variables that provide the
highest information gain [26]. Except for this variable
selection option, we used the default options for the logistic
regression implemented in Weka.

After we train a model on a training data set, we
measured the prediction performance of the model on a test

2 http://www.cs.waikato.ac.nz/ml/weka/

data set. For this purpose, we used 10x10 cross-validation
[26]. In 10x10 cross-validation, nine folds of data are used as
a training data set and one fold of data is used as a test data
set. Each fold is used exactly once as a test data set. Then the
ten folds cross-validation is repeated ten times. Therefore,
we performed 100 times of prediction for each model and
report the average of the results in this paper.

The numbers of files with faults or vulnerabilities are
much smaller than the numbers of files without faults or
vulnerabilities in our study. This smaller set of data is called
a minor class and the larger set of data is called a major
class. Since the classification techniques try to reduce the
error of the major class [26], the minor class often has high
false negatives. Considering the impact of a single exploited
vulnerability, lowering false negatives are relatively more
important than lowering false positives in vulnerability
prediction. To deal with this issue, we applied data sampling
that has been effective in fault prediction with unbalance
data [27, 28]. Specifically we used an under-sampling
technique to train a model by randomly removing the data
instances in the major class from the training set until the
number of data instances in the major class and the number
of data instances in the minor class become equal. We
performed the under-sampling for each run of 10x10 cross-
validation.

Although logistic regression does not assume normal
distribution of data and therefore does not require data
transformation, recall has improved by log transformation in
practice. We provide the results of log transformation in this
study.

IV. A CASE STUDY: MOZILLA FIREFOX BROWSER

Mozilla Firefox is a widely-used open source web
browser. Firefox is written in C/C++ and consists of 11,051
files and over 2 million lines of source code. In this study,
we used Firefox 2.0.

A. Data Collection

We collected faults reported since the release of Firefox
2.0 and before the release of Firefox 3.0 from the Mozilla
Bugzilla3 bug database. Each bug report includes the details
of a bug including bug description, bug status, bug resolution
method, and bug patches. Bug status indicates the life cycle
of a bug such as NEW, ASSIGNED, VERIFIED,
RESOLVED, and CLOSED. Bug resolution indicates the
method by which a bug has been resolved such as FIXED,
WONTFIX, and DUPLICATE. From a bug patch, we can
identify the files that have been changed to remove faults.
The bug reports include both enhancements and faults, when
we are interested only in faults. However, the bug reports do
not have explicit information that we can automatically
distinguish between enhancements and faults. To facilitate
the classification of enhancements and faults, we used
automated text classification. The details of the automated
text classification are described in Section IV. B. We
considered only the bug reports that were classified as faults

3 https://bugzilla.mozilla.org/

by the automated text classification and whose status became
RESOLVED or VERIFIED by fixing the faults. We counted
the number of bug reports that have bug patches for a file as
a surrogate measure of the number of faults in a file. Over
80,000 bug reports have been reported between the releases
of Firefox 2.0 and Firefox 3.0. Among these, 6,965 bug
reports were flagged as RESOLVED or VERIFIED status
after the bugs have been fixed and had patches written in
C/C++.

We collected vulnerabilities reported for Firefox 2.0 to
Firefox 2.0.0.19 from the Mozilla Foundation Security
Advisories (MFSAs)4. Each MFSA includes bug IDs for the
bug reports in the bug database. From these bug reports, we
identified the files that have changed to mitigate
vulnerabilities. To count the number of vulnerabilities in a
file, we counted the number of bug reports that are included
in MFSAs and that have bug patches for the file. Among
11,051 total files, 2,261 files were classified as faulty (20%
of the total files), 363 files were vulnerable (3% of the total
files), and 294 files were both faulty and vulnerable as in Fig.
4. Note that a file can have both vulnerabilities and faults and
80% of the vulnerable files also have faults in Firefox 2.0.

To collect the complexity metrics, we used a commercial
source code analysis tool, Understand C++5.

To collect the code churn metrics, we searched the
modified files from the CVS source code repository. We
collected the changes that have been made for the 12 months
before the release of Firefox 2.0. For the measurement of
faults, vulnerabilities, and code churn, we only considered
the changes made to C/C++ and their header files, excluding
other files such as scripts since the complexity metrics were
available only for C/C++ files.

To collect the fault history metric from the prior release
of Firefox 2.0, we collected faults from Firefox 1.0 and its
minor releases using the same procedure we used for Firefox
2.0. Table III shows the means and medians of five
representative metrics per file. In Table III, both faulty files
and vulnerable files have higher complexity, more frequent

4 http://www.mozilla.org/security/known-vulnerabilities/
5 http://www.scitools.com/

and larger changes, and more past faults than neutral files. Of
note, vulnerable files tend to have higher complexity, more
frequent and larger changes, and more past faults than faulty
files in Firefox 2.0.

B. Classification of Fault and Enhancement

We performed automated text classification to classify
bug reports as enhancements or faults because classifying the
bug reports manually would take too long time and impede
future repeated studies. In automated text classification,
words in documents are used as features to compute the
similarity between documents. Automated text classification
has been used for various purposes including spam email
filtering. Antoniol et al. [29] has also performed automated
text classification of the bug reports for faults and
enhancements of the Mozilla project. Their logistic
regression model provided 76% recall and 82% precision.
We performed a similar approach to their study. However,
our classification has been performed only for the bug
reports that have patches written in C/C++ for Firefox 2.0.
We performed the bug report classification in the following
four steps:

Step 1. Create a training data set. To create a training
data set, we manually classified 600 sample bug reports as
fault or enhancement using the titles and bug descriptions as
texts. A few examples of the terms that frequently appear in
the bug reports for faults are failure, error, and memory
corruption. A few examples of the terms frequently appear
in the bug reports for enhancements include add, implement,
and improve.

Step 2. Test the feasibility of automated bug classification
with the sample bug reports. The process is performed in the
following sub-steps.

Step 2.1. Preprocess the texts. In this step, we first
removed punctuations and converted all words to lower case.
Then, we applied the standard Porter stemmer [30] that
removes suffixes from various forms of verbs (-ed, -ing, etc.)
or plural forms of words. Finally we created a term
frequency vector that includes frequency of words in each
bug report.

Step 2.2. Split the term frequency vector into training and
testing sets. In this step, we split the 90% of the instances in
the term frequency vector as a training data set and 10% of
them as a test data set.

Figure 4. Distribution of faulty and vulnerable files in Firefox 2.0

TABLE III. COMPARISON OF MEAN AND MEDIAN VALUES OF METRICS

 Neutral Files Faulty Files Vulnerable

Files

 Mean Med. Mean Med. Mean Med.

LOC 136 33 480 193 867 363

SumCyclomaticStrict 30 4 136 33 250 105

NumChanges 1 0 10 4 25 11

LinesChanged 61 0 451 52 1081 216

NumPriorFaults 1 0 8 4 19 8

Step 2.3. Build classification models and perform cross-
validation. We chose 100 words as independent variables
using the InfoGain variable selection method and built a
logistic regression model using the training data set. Then we
classified bug reports in the test data set using the model. We
repeated Step 2.2 and Step 2.3 100 times for 10x10 cross-
validation. The logistic regression model provided 88%
recall and 85% precision. We consider this performance is
enough for our purpose of fault classification. Therefore, we
continue to Step 3.

Step 3. Perform bug classification of all 6,965 bug
reports. The process is performed in the following two sub-
steps.

Step 3.1. Preprocess the texts. Use the same method in
Step 2.1.

Step 3.2. Build a classification model and perform
classification. In this step, we used the whole set of
manually-classified sample bug reports from Step 1 to train
the model. Then we classified the remaining 6,365 bug
reports using the trained model.

We used Weka 3.7 for the preprocessing and
classification.

C. Prediction Results

Q1: Can the traditional fault prediction metrics predict
faults with reasonable recall and precision?

To answer this question, we measured recallFF,
precisionFF, FIF, and LIF. As shown in Fig. 5, the fault
prediction model predicted 74% of the total faulty files
(recallFF) in 33% of the total files (FIF,) and in 67% of the
total lines of code (LIF). Among the files predicted as faulty,
47% was correctly predicted (precisionFF). Compared with
random file selection, the fault prediction model reduced the
number of files to be inspected by 56% to detect 74% of the
total faulty files.

In summary, the FF prediction provided reasonable recall
(over 70%), but low precision (below 70%). Although the
precision is not high enough, we continue to answer Q2 and
Q3 to see whether the traditional fault prediction metrics are
more (or less) effective in vulnerability prediction than in
fault prediction.

Q2: Can fault prediction models predict vulnerabilities
with reasonable recall and precision?

To answer this question, we measured recallVF and

precisionVF. Because we use the model that we used to
answer Q1, the amount of inspection (FIF and LIF) is the
same as the results from Q1. As shown in Fig. 6, the fault
prediction model predicted 92% of the total vulnerable files
(recallVF) in 33% of the total files (FIF,) and in 67% of the
total lines of code (LIF). Among the files predicted as
vulnerable, 9% was correctly predicted (precisionVF).
Compared with random file selection, the fault prediction
model reduced the number of files to be inspected by 64% to
detect 92% of the total vulnerable files.

In summary, the VF prediction provided very high recall
(92%), but much lower precision (9%) than our 70%
criterion and the precision from the FF prediction. Although
the VF prediction effectively reduced the number of files to

be inspected, still a large amount of unnecessary inspection
and testing is expected because of the low precision.

Q3: Can vulnerability prediction models using
traditional fault prediction metrics predict vulnerabilities
with reasonable recall and precision?

To answer this question, we measured recallVV,
precisionVV, FIV, and LIV . The vulnerability prediction model
correctly predicted 84% of the total vulnerable files
(recallVV) in 23% of the total files (FIV,) and in 60% of the
total lines of code (LIV). Among the files predicted as
vulnerable, 12% was correctly predicted (precisionVV).
Compared with random file selection, the vulnerability
prediction model reduced the number of files to be inspected
by 72% to detect 84% of the total vulnerable files. Fig. 7
presents the results of the VV prediction and compares them
with the results from the VF prediction in Q2.

Since the VV prediction provided worse performance in
recall and better performance in precision than the VF
prediction, we wondered whether the result will be the same
if we change the threshold for the binary classification of
vulnerable and non-vulnerable files. After we changed the
classification threshold of the VV prediction to 0.7, all the
performance measures between the two types of the models
became very close (Fig. 8). The recall and precision for the
VF prediction were 92% and 9%, respectively. The recall
and precision for the VV prediction became 90% and 3%,
respectively. This result suggests that fault prediction models
can be used as a substitute for vulnerability prediction
models when traditional metrics are used. We consider the
reason that the two types of models provided the similar
performance is because a high percentage of files with
vulnerabilities also have faults in Firefox 2.0; 80% of the
vulnerable files also have faults in Fig. 4.

Figure 5. Fault prediction results using fault prediction models (FF

prediction)

Figure 6. Vulnerability prediction results using fault prediction

models (VF prediction)

In summary, the VV prediction provided high recall, but
low precision. Additionally the VV prediction provided
similar performance to the VF prediction when the
classification threshold was adjusted, suggesting fault
prediction models can be used as a substitute for
vulnerability prediction.

D. Analysis of the “Needle Effect”

Only 3% of the files and only 13% of the faulty files are
vulnerable files (Fig. 4), making a vulnerability prediction a
task of finding a needle in a haystack. Therefore, we expect
the performance of fault prediction and vulnerability
prediction will be different. At the same time, we observed
the difference in the measurements of the three types of
metrics between faulty files and vulnerable files, which also
can lead to the difference in prediction performance. As we
expected, we can observe a fairly large difference in
performance between the FF prediction and the VV
prediction from the answers for Q1 and Q3. Fig. 9 puts the
results from Q1 and Q3 together. The VV prediction
provides 18% higher recall and 38% lower precision than the
FF prediction.

We investigated whether this difference occurs largely
because vulnerabilities are more rare occasions compared
with faults (needle effects) by adjusting the number of faulty
files in fault prediction. Our hypothesis is that if the
difference in the prediction performance is mainly because of
the difference in the numbers of the reported faults and
vulnerabilities, the performance of the FF prediction and the

VV prediction will be similar if we adjust the number of
faulty files. To test this hypothesis, we randomly selected a
subset of faulty files and marked them as neutral assuming
those files have not been reported as faulty. In Fig. 10, FF
and VV represent the fault prediction model and the
vulnerability prediction model that we used to answer Q1
and Q3. FF1, FF2, and FF3 are the fault prediction models
built with as three times, as twice, and the same number of
faulty files as the number of vulnerable files, respectively,
after the remaining faulty files are marked as neutral. The
number of faulty and vulnerable files used for the models are
presented in Fig. 10.

In Fig. 10, recallFF, FIFF, and LIFF from the fault
predictions (FF, FF1, FF2, and FF3) are only slightly
different depending on the difference in the numbers of
faulty files. However, precisionFF becomes dramatically
lower when the number of faulty files becomes small. These
results show that precision is greatly affected by the needle
effect in general. However, the noticeable difference in
recall, FI, and LI between the four FF predictions and the
VV prediction may have been caused by the actual
difference in the characteristics between faulty and
vulnerable files that we have already observed in Table III.
Especially, the performance from the VV prediction is better
than the performance from the FF prediction in all the
performance measurements when the numbers of the faulty
files and the vulnerable files are the same. This result
suggests that the traditional fault prediction metrics are even
more effective for vulnerability prediction than fault
prediction depending on the numbers of reported faults and
vulnerabilities.

Figure 7. Comparison of the results of VF prediction and VV

prediction

Figure 8. Comparison of the results of VF prediction and VV

prediction with adjusted classification threshold

Figure 9. Comparison of the results of FF prediction and VV prediction

Figure 10. Effects of the number of faulty and vulnerable files

In summary, precision is largely affected by the amount
of reported faults and vulnerabilities. However, the
differences in the measures of complexity, code churn, and
fault history metrics between faulty and vulnerable files also
brings the difference in prediction performance.

V. DISCUSSION

Overall, the traditional fault prediction metrics provided
similarly high recall and low precision in vulnerability
prediction from both the VV prediction and the VF
prediction. When the numbers of faulty files and
vulnerability files are the same, the performance of the VV
prediction using the traditional fault prediction metrics was
better than the performance of the FF prediction. In both the
fault and vulnerability predictions, the most frequently
selected metrics by the InfoGain variable selection method
were NumPriorFaults, NumChanges, LinesChanged,
LinesInserted, LinesDeleted, CountLineCode, and
CountLineCodeDecl.

The reason of the high recall from the vulnerability
predictions can be attributed to the fact that files with high
complexity, frequent and large changes, and many past faults
tend to have more vulnerabilities than files with low
complexity, less frequent and small changes, and small past
faults. However, the precision of the vulnerability
predictions was much lower (9% after adjusting the
classification threshold) than the precision of the fault
prediction (47%) because only a small percentage of files
was vulnerable. This dependence on the amount of reported
vulnerabilities in vulnerability prediction has two
implications. First, if the amount of the reported
vulnerabilities is small just because the latent vulnerabilities
have not been discovered yet, we can expect a large portion
of the false positives could be actually true positives that will
be reported as vulnerable files as time passes. If so, it is
worth to spend extra efforts to inspect and test the predicted
vulnerable files. Second, if the number of reported
vulnerabilities is actually small even after enough time has
passed after the release of software, it will be difficult to
expect high precision from a vulnerability prediction using
the traditional fault prediction metrics in general.

Alhazmi and Ray [19] reported that the ratio of
vulnerabilities to the total number of faults was 1-5% in their
study with five versions of Microsoft Windows operating
systems and two versions of Red Hat Linux systems. In our
study, the ratio of vulnerable files to the total faulty files is
16%. Although the number of files to be inspected is reduced
by over 64% compared to random file selection in both the
VF prediction and the VV prediction, 33% of 11,051 files is
still many files (3,647). Therefore, further prioritization
should be followed from expert’s judgment or from using
other methods such as static analysis tools in addition to the
use of vulnerability prediction. Note that static analysis tools
alone cannot guide the security inspection and testing
because static analysis tools are also known to have a high
percentage of false positives, and the results from static
analysis tools also require prioritization [31, 32].

VI. THREATS TO VALIDITY

We used the fault prediction metrics that have been
frequently used and effective in fault prediction in prior
studies. However, other fault prediction metrics may provide
different results.

The number of faults and vulnerabilities in a file can vary
depending on the methods of fault and vulnerability
collection. For Firefox, we counted the number of faults and
vulnerabilities by counting the number of bug reports with
bug patches for a file. However, patches may have not been
committed to the source code repository, or vulnerabilities
and faults have been fixed but the patches have not been
posted on the bug database. However, considering the
maturity of the development process of Firefox, we believe
the missing counts of vulnerabilities and faults are not at the
level that can threaten our results.

We assumed the efficiency of inspection is proportional
to the number of files and the lines of code to be inspected.
However, the efficiency of inspection may vary depending
on the complexity of the problem implemented in the code
and the importance of the code in terms of security. Since
these factors are not readily obtainable in an objective way,
experts’ judgment should be accompanied when the models
are used in organizations.

The classification of faults and enhancements for Firefox
is not perfect and has room to be improved. However, we
believe that the 88% recall and 85% precision for the training
data set is reasonably high.

Since our study has been done to a single project, further
replicated studies are required to generalize our observations
to other projects. However, we believe our study increases
the understanding on vulnerability prediction and reveals
concerns that should be cared in the application of
vulnerability prediction in organizations and in future
research.

VII. SUMMARY

We investigated whether fault prediction models can be
used for vulnerability prediction or if specialized
vulnerability prediction models should be developed when
both are built with the traditional fault prediction metrics of
complexity, code churn, and fault history. We examined the
effectiveness of those metrics for vulnerability prediction on
the Mozilla Firefox 2.0 web browser. In our study, the fault
prediction model and the vulnerability prediction model
provided similar prediction results for vulnerability
prediction. Both the fault prediction model and the
vulnerability prediction model predicted vulnerabilities with
high recall of over 90% and effectively reduced the number
of files to be inspected after adjusting the classification
threshold. However, precision was very low (9%) leading to
a waste of resources in security inspection and testing
primarily because that the number of reported vulnerabilities
was small. Our analysis on Firefox 2.0 indicates that fault
prediction models based upon traditional metrics can be
substituted for specialized vulnerability prediction models,
but requires significant improvement to reduce false

positives. Finding better metrics that predict vulnerable code
locations is our ongoing research.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation Grant No. 0716176 and the CAREER Grant No.
0346903. Any opinions expressed in this material are those
of the author(s) and do not necessarily reflect the views of
the National Science Foundation. We also thank the NCSU
Software Engineering Realsearch group and especially Andy
Meneely for their careful reviews and helpful suggestions on
the paper.

REFERENCES

[1] B.W. Boehm, Software engineering economics, Prentice-Hall Inc.,
1981.

[2] T. Menzies, J. Greenwald, and A. Frank, "Data mining static code
attributes to learn defect predictors," IEEE Trans. Software Eng., vol.
33, no. 1, 2007, pp. 2-13.

[3] V.R. Basili, L.C. Briand, and W.L. Melo, "A validation of object-
oriented design metrics as quality indicators," IEEE Trans. Software
Eng., vol. 22, no. 10, 1996, pp. 751-761.

[4] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, "Predicting the location
and number of faults in large software systems," IEEE Trans.
Software Eng., vol. 31, no. 4, 2005, pp. 340-355.

[5] N. Nagappan, and T. Ball, "Use of relative code churn measures to
predict system defect density," Proc. the 27th International
Conference on Software Engineering, St. Louis, MO, USA, May 15-
21 2005, pp. 284-292.

[6] T. Zimmermann, and N. Nagappan, "Predicting defects using network
analysis on dependency graphs," Proc. the 13th International
Conference on Software Engineering, Leipzig, Germany, 10 - 18 May
2008, pp. 531-540.

[7] T.M. Khoshgoftaar, E.B. Allen, K.S. Kalaichelvan, and N. Goel,
"Early quality prediction: A case study in telecommunications," IEEE
Software, vol. 13, no. 1, 1996, pp. 65-71.

[8] A. Meneely, and L. Williams, "Secure open source collaboration: An
empirical study of linus' law” computer and communications
security," Proc. Computer and Communications Security (CCS),
Chicago, IL, November 2009, pp. p453-462.

[9] M. Gegick, P. Rotella, and L. Williams, "Toward non-security
failures as a predictor of security faults and failures," Proc.
International Symposium on Engineering Secure Software and
Systems, Leuven, Belgium, February 04-06 2009, pp. 135-149.

[10] Y. Shin, and L. Williams, "An empirical model to predict security
vulnerabilities using code complexity metrics," Proc. International
symposium on Empirical Software Engineering and Measurement,
Kaiserslautern, Germany2008, pp. 315-317.

[11] S. Neuhaus, T. Zimmermann, and A. Zeller, "Predicting vulnerable
software components," Proc. the 14th ACM Conference on Computer
and Communications Security (CCS’07), Alexandria, Virginia, USA,
October 29–November 2 2007, pp. 529 - 540.

[12] Y. Shin, and L. Williams, "Is complexity really the enemy of software
security?," Proc. the 4th ACM Workshop on Quality of Protection,
Alexandria, Virginia, USA, Oct. 27 2008, pp. 47-50.

[13] M. Gegick, L. Williams, J. Osborne, and M. Vouk, "Prioritizing
software security fortification through code-level metrics," Proc. 4th
ACM workshop on Quality of protection, Alexandria, Virginia, Oct.
27 2008, pp. 31-38.

[14] G. McGraw, Software security: Building security in, Addison-
Wesley, 2006.

[15] D. Rice, Geekonomics: The real cost of insecure software, Addison-
Wesley Professional, 2007.

[16] T.J. McCabe, "A complexity measure," IEEE Trans. Software Eng.,
vol. 2, no. 4, 1976, pp. 308-320.

[17] T.L. Graves, A.F. Karr, J.S. Marron, and H. Siy, "Predicting fault
incidence using software change history," IEEE Trans. Software Eng.,
vol. 26, no. 7, 2000, pp. 653-661.

[18] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict
component failures," Proc. the 28th International Conference on
Software Engineering, Shanghai, China, May 20-28 2006, pp. 452-
461.

[19] O.H. Alhazmi, Y.K. Malaiya, and I. Ray, "Measuring, analyzing and
predicting security vulnerabilities in software systems," Computers &
Security, vol. 26, no. 3, 2007, pp. 219-228.

[20] IEEE, "IEEE std 982.1-1988 IEEE standard dictionary of measures to
produce reliable software," The Institute of Electrical and Electronics
Engineers, 1988.

[21] I.V. Krsul, "Software vulnerability analysis," PhD dissertation,
Purdue University, 1998.

[22] E. Arisholm, and L.C. Briand, "Predicting fault-prone components in
a java legacy system," Proc. the 2006 ACM/IEEE International
Symposium on Empirical Software Engineering, Rio de Janeiro,
Brazil, Sep. 21-22 2006, pp. 8-17.

[23] L. Guo, Y. Ma, B. Cukic, and H. Singh, "Robust prediction of fault-
proneness by random forests," Proc. the 15th International
Symposium on Software Relaibility Engineering (ISSRE'04), Saint-
Malo, Bretagne, France2004, pp. 417-428.

[24] R.L. Ott, and M. Longnecker, An introduction to statistical methods
and data analysis, 5th ed., Duxbury, 2001.

[25] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings," IEEE Trans. Software Eng., vol. 34,
no. 4, 2008, pp. 485-496.

[26] I.H. Witten, and E. Frank, Data mining: Practical machine learning
tools and techniques, 2nd ed., Morgan Kaufmann Publishers, 2005.

[27] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.
Matsumoto, "The effects of over and under sampling on fault-prone
module detection," Proc. 1st International Symposium on Empirical
Software Engineering and Measurement, Madrid, Spain, 20-21 Sept.
2007, pp. 196-204.

[28] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
"Implications of ceiling effects in defect predictors " Proc. the 4th
International Workshop on Predictor Models in Software Engineering
(PROMISE'08), Leipzig, Germany, May 2008, pp. 47-54.

[29] G. Antoniol, K. Ayari, M.D. Penta, F. Khomh, and Y.-G. Guéhéneuc,
"Is it a bug or an enhancement? A text-based approach to classify
change requests," Proc. the 2008 conference of the center for
advanced studies on collaborative research, Ontario, Canada, Oct. 27-
30 2008.

[30] M.F. Porter, "An algorithm for suffix stripping," Program, vol. 16, no.
3, 1980, pp. 130-137.

[31] S. Kim, and M.D. Ernst, "Which warnings should i fix first?," Proc.
the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, Sep. 3-7 2007, pp. 45 - 54.

[32] S. Heckman, and L. Williams, "On establishing a benchmark for
evaluating static analysis alert prioritization and classification
techniques," Proc. 2nd International Symposium on Empirical
Software Engineering and Measurement, Kaiserslautern, Germany,
Oct. 9-10 2008, pp. 41-50.

