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Abstract erful technique and a number of recent systems have been

successfully developed to demonstrate its great potential

Virtual machine (VM) introspection is a powerful tech- For example, Livewire [14] is the first introspection-based
nique for determining the specific aspects of executionintrusion detection system that aims to protect runninggue
within a guest in a virtualized environment. Unfortunately VMs from being compromised (e.g., by kernel rootkits).
existing introspection solutions share a common question-XenAccess [2], VMwatcher [17], VMwall [29], and oth-
able assumption. This assumption is embodied in the expecers [16, 18, 20] were developed to monitor VM execution
tation that original kernel data structures are respectgd b and infer guest-internal states or events (e.g., runniog pr
the untrusted guest and thus can be directly used to bridgecesses, loaded kernel modules, active network connections
the well-known semantic gap. In this paper, we assumeor ongoing guest system calls). These guest-internalsstate
the perspective of the attacker, and exploit this question-and events are needed for the purpose of either recording
able assumption to subvert VM introspection. In particular or denying the execution of suspicious programs. Most re-
we present an attack callddKSM (Direct Kernel Structure  cently, VMware has introduced VMsafe [32] technology
Manipulation), and show that it can effectively foil exisfi that can allow third-party security vendors to leverage the
VM introspection solutions into providing false informuati unique benefits of VM introspection to better monitor, pro-
By assuming this perspective, we hope to better understandect, and control guest VMs.
the challenges and opportunities for the development of fu-

ture reliable VM introspection solutions that anetvulner- opportunities that are simply not possible with physicat ma
able to the proposed attack. _ _ chines. A key challenge, however, that needs to be over-
Keywords: }ﬁrtugllzatlon, Introspection, Direct Kernel  ome is the so-callegemantic gaf10] between the exter-
Structure Manipulation nal and internal observations of a VM (Figure 1(a)). Specif-
ically, from outside the VM, we can get a view of the VM at
the virtual machine monitor (VMM) level, which includes
Research in virtualization technologies has gained sig- ItS régister values, memory pages, disk blocks and lowtleve
nificant momentum in recent years, mainly due to the many vents (€.g., execution of a privileged instruction); veieer
new opportunities to address a variety of computer systemfrom inside the VM, we can observe semantic-level entities
problems (including security and reliability). One keyltiec ~ (€:9- processes and files) and events (e.g., system calls).
nique behind these opportunities is callddual machine ~ This semantic gap is formed by the vast difference between
introspection The goal of VM introspection is to enable external and mte_rnal obse_rvatlons, manifesting the main
the observation of a VM'’s states and events from outside thechallenge for VM introspection.
VM; while facilitating this outside observation to have the To bridge the semantic gap (Figure 1(b)), one key obser-
same (or similar) semantic view of system states and eventsation behind existing introspection tools is that the gues
as if they were seen from inside the VM. This observabil- OS being introspected contains a set of data structures (e.g
ity is critical to enable tamper-resistant, high-fidelityV  those for process and file system management), which can
monitoring, which is in turn the basis of a wide range of op- be used as “templates” to interpret VMM-level VM obser-
portunities being actively explored, such as introsp@etio vations. As such, we can cast low-level VM observations to
based intrusion detection, fault-tolerance, serviceihgst  guest OS data structures to uncover the VM'’s semantic en-
and dynamic resource provisioning. tities and their states. As an example; by casting VM mem-
VM introspection has been touted as an extremely pow- ory page content to guest OS data structure definitions, we

The capability to introspect running VMs opens up many
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(a) The “semantic gap” challenge (b) Existing VM introspection tools (e.g., XenAccess [2])
Figure 1. Existing VM introspection tools bridge the “seman tic gap”

can locate and identify kernel data structures which haveour proposed attack technique can effectively control all
been defined to maintain semantic entities in the VM (e.g., three of these views. This means that an attacker can present
process control blocks and kernel modules). By following any desireaxternalview of the system to evade or circum-
these data structures, we can further derive their atetbut vent VM introspection, while presenting a completely dif-
(e.g., a process’ name, PID, page table etc.). In particu-ferentinternal view of the system to the guest. However,
lar, for a process, we can explore its virtual address spaceneither of these two views will represent taetual view of
through its page table and derive its user-level states, (e.g what is executing in the system.

variables at specific memory locations). We have developed a proof-of-concept DKSM prototype

However, a careful examination of existing VM intro- to illustrate this attack and show the fragility of existiimg
spection tools as well as our past experiences in buildingtrospection tools. In our prototype, we have successfully
some of them [16, 17] indicate theite effectiveness and re- Misrepresented several important types of information to
liability of VM introspection does not naturally come with- €Xisting VM introspection tools. Specifically, by maniptila
out questioh In particular, the main concern stems from ing information about running processes, loaded modules,
a common, fundamental assumption of VM introspection: and active network connections, we show that it is possi-
the guest OS being introspected is assumed to use the kerndlle for a new (and stealthier) class of introspection-tesis
data in a prescribed fashion by following these data struc-malware to emerge. In addition, we also examine possi-
ture templates. In other words, all existing introspection ble strategies to better cloak the DKSM attack and “raise
tools rely upon the fact that the underlying guest OS is con- the bar” even further for future enhanced VM introspection
forming to certain behaviors and idioms (with respect to techniques. Meanwhile, it is important to note that by ef-
these templates) which would, at first glance, appear to befectively evading existing VM introspection tools, our goa
rather obvious and set in stone. Unfortunately, as is mosthere is to expose the fundamental limitation of these tools;
often the case with introspection, the guest OS kernel couldthereby arguing for the need of next-generation VM intro-
be compromised. And once compromised, the assumptiorspection techniques with enhanced tamper-resistance. We

about the kernel respecting its own data structures become®elieve this higher level of diligence is increasingly impo
seriously questionable. tant especially considering the current trend of adopting v

tualization and related introspection-capable applceti

In this paper, we presemdirect Kernel Structure Ma- : ,
The rest of the paper is organized as follows. In Sec-

nipulation (DKSM) an attack which can effectively subvert

and confound existing VM introspection tools. Specifically 10N 2, We present the design of DKSM to invalidate the
by presenting DKSM, we show that it is possible to com- introspection assumption and enable the proposed attack.

promise a guest such that the kernel's use of any field of " Section 3, we show three implementation strategies, fol-
its data structures (or templates) could be potentially-mod '0Wed by the prototyping details and evaluation in Section
ified. The modification can be achieved by various tech- 4 In Section 5, we re-visit the nature of DKSM and suggest
niques that involve changing the associated syntax and seP0SSible defense mechanisms. Finally, we present related
mantics of the underlying data structures, thus invaligati WOrk in Section 6 and conclude the paper in Section 7.

thg fuqdamental assumptlon of |nt_rospect|on_. With th!s in- 5 DKSM Design

validation, we are effectively creating three differeraws

of the system: (1) The firsinternal, view comprises what In a nutshell, DKSM foils existing introspection tech-
the OS (or various system routines suctpasndnetsta} nigques by attacking the basic assumption upon which they
sees; (2) The secondxternal view comprises what an ex-  are based. Specifically, it is important to notice that DKSM
ternal introspection-based tool observes; (3) The tlaod, is based on the observation that the kernel data structures

tual, view comprises what is really going on in the system. (or templates) of a guest VM are key to any introspection
A piece of malware (e.g., a kernel rootkit) that implements tool, which means a DKSM attack can be launched in var-



ious ways to manipulate these kernel data structures. In2.2 Semantics-based Manipulation
the following, we examine three different approaches: (1)
syntax-based manipulatiowhere certain fields of kernel
data structures are added or removed;s@nantics-based
manipulationwhere the semantics of the underlying data
structures are changed; and (Bjltifaceted combo manip-
ulation which effectively combines the previous two. Note
all these attacks can effectively manipulate the kerned dat
structures to subvert introspection tools and their amalys

A more advanced form of the DKSM attack is to modify
the underlying semantics of the kernel data structures-of in
terest. Because the changed semantics can be transparent to
the OS while offering great consternation to introspection
tools, we consider this approach to be much more powerful
than the previous approach.

Specifically, kernel data structures contain a number of
member fields. Often, some of these fields are of similar

In this work, we assume the presence of guest kernel vul- : )
L . . types or widths. For example, in a kernel data structure that
nerabilities that can be potentially exploited by the dtaic . : ) . .
contains several integer values, one interesting attack in

to compromise the guest kernel and hijack the control flow. volves switching these inteaers around. Bv doing so. the un-
We consider this adversarial model because this is often the 9 9 - 5Y gso,

case how an introspection tool is deployed. By hijacking derlying OS can still use the correct integer fields of theadat

control flow, the attacker has the freedom to either modify structure. However, an external introspection tool would
- - . : assume the standard layout of the data structure (before the
existing kernel code or inject his own code for execution.

members are switched) to be true; therefore, it would assign

We also notice the recent emergence of return-oriented pro- . : :
: . o : incorrect semantics to these switched member fields. Fur-
gramming [8, 26, 15] and believe it is possible to launch

. ) . - ... ther, such a technique can be easily extended from integers
a_S|m|IarIy return-_onente_d DKSM attack. This possibility to strings, and eventually support any data types. Here, we
will be discussed in Section 3.3. : . .

also note that homogeneity of data types is not required at
all, which means that an integer field can be used to con-
tain a pointer to a C-style string, while a previous C-style

One potential approach to implementing a DKSM attack string pointer_ can b_e used as an actual ?ntege_r. Eﬁectively
involves adding or removing specific fields from particu- such a technique hides the actual data in plain sight as the

lar kernel data structures. By doing so, the template-basedi@@ has been neither redirected nor changed in any way.

approach of existing introspection tools will be using the I;owzve'r, when thg dlf‘ta IS blelgg m:}rospectgd, t'he tefmhplate—
wrong templates to infer guest states and thus derive inac- ased view essentially preciudes the examination of the ac-

curate results. Note that an added member field to the kernefual way in which this data is used. As a result, the VM

data structure may not impact introspection as the analysiéntros_pedgon teﬁhm?fue IS du(;]able to derive any accurate se
of existing member fields could be sufficient in inferring Mantics about the affected data structures.

guest VM states. However, a removed member field could F'OM another perspective, we can also achieve
greatly affect the accuracy and reliability of the resulis. semantics-based manipulation by redirecting chosen fields
mentioned in [13], certain fields of kernel data structures of kernel data structures to somewhere else. In other words,

are simply not used by the JSAs a result, their removal yarious fields_of interest are redirected to shadow location
would not adversely affect the OS kernel behavior. When an'nStéad of being exchanged with other members. By do-
introspection tool depends on any of these removed fields"d SO. the attack can create a data structure that is physi-
for the analysis, such syntax-based manipulation will evad Cally dis-contiguous (and the affected OS kernel will be in-
or even mislead the introspection analysis. strumente_d to operate seamlt_essly Wlth these dis-contiguou
From another perspective, we point out that this form kernel ObJ.eCtS).’ thus great_ly impacting the t_emplate-das_e
of the DKSM attack is subject to certain limitations as it introspection view. One nice property of this approach is

does not fundamentally hide or change the underlying se-that introspection tools are still presented with a pelject

mantics of the affected data structures. What happens isnatural and normal looking view of the system. No fields

that the data structure types are syntactically manipdilate Ereer ][irzlsdss"}g ?r{ealg:rilde,l rézrtszt%itr&ee?:gseg :/(?Ezuusnz?selg
Therefore, if an introspection tool is changed to lessen its PP :

dependency upon the syntax of related templates (e.g., byHowever, unfortunately for the introspection tools, the OS

leveraging only essential member fields [13]), the chances'csargloftul:;:g? Ltg:‘ i(tj?ct)a I:]oiindyer?ael"siglﬁgilrnvgi)g rﬁi Z;e;;g’mwi
are high that this attack is much less effective. P P

to mislead or simply confuse the external view generated by
1A similar observation has led to the examination of reliapitif ker- introspection.
nel data structure signatures for memory_forensic_ analysmeciically, Specifically, a rootkit that chooses to employ this spe-
when a signature involves a member that is not being used bySe® i tachnique has the intriguing opportunity to present an
nel, an attacker could potentially misuse this member to evadesiead . . .
external view of the system (to introspection tools), ad wel

signature-based analysis. One such example is the backoiautépin the c ) \ o
all task list [13]. as an internal view (to running anti-virus software for ex-

2.1 Syntax-based Manipulation




ample). Theexternalview is completely false and consists the same goal (e.g., by hijacking kernel control flow with-
of anything and everything that the rootkit wishes the in- out tampering with existing kernel code). We then present
trospection tool to see. Similarly, thieternal view can be areturn schemehat misuses existing code via the use of
anything and everything that the rootkit wishes the OS to return-oriented programming [26, 15]. Each scheme builds
see. Neither of these views have to be remotely accurateupon the previous one. In the following, we also examine
They simply have to satisfy current expectations, such asthe strengths and weaknesses of each scheme.
those of the underlying OS, or fundamental assumptions,
such as those of introspection. However, the reality,the.,, 3.1 Direct Scheme
actualview, of whatis going on in the system can be hidden |, the direct scheme, the kernel code which accesses the
away from all parties. data is directly manipulated. Using an exploit, malicious
2.3 Multifaceted Combo Manipulation LKM, or other delivery mechanism to _gain ropt access, this
scheme proceeds to overwrite those instructions that acces
A third approach is to combine the above two attacks to- data of interest and detour their execution. When those in-
gether to launch a multifaceted combo attack. This is pos-structions are to be executed, the detoured execution will
sible because there is no limitation in the presented attack include additional logic to decide how those instructions
restricting them to be mutually exclusive. should be instrumented to reflect theternal view of the
Specifically, a combo attack would involve first redirect- current kernel data. Eor example, when certain member
ing all accesses of the specific data, followed by switching fields are re-located to another memory page, the corre-
the various sibling members with one another, while simul- sponding kernel data-accessing code will be redirected to
taneously adding and removing unused member fields to thegccess the data from the new location. Also, when storing
various data structures. An introspection tool would have the redirected data (e_g_, PIDs, port numbers, and module
to first untangle the complex interweaved web of seman- names), we can further obfuscate this data to foil potential
tics encompassing each structure (since all the introgpect  analysis attempts. For instance, the data can be split apart
tool's templates now have become useless). Then it wouldsych that PIDs do not appear close to one another in the
have to try to derive and understand the appropriate semanredirected form, strings can be altered programmatically t
tics of the various data structures. After it has succelysful  fojl statistical analysis, and so on.
realized such a hard goal, the introspection tool is finally  \We note that this scheme can be detected if a VM intro-
left with the reality that none of this data is even being used Spection tool chooses to examine the memory locations con-
because it has all been redirected. We notice that thiscparti taining the original instructions and verify kernel code in
ular process is remarkably similar to the existing arm®rac tegrity. Specifically, a tool that carried out such an arialys
between malware obfuscation and reverse engineering. As yould easily detect the compromise of kernel code. And by
result, DKSM can make things arbitrarily hard for analysis. ana|yzing how the code is modified, the tool may piece to-
This combo attack interestingly puts the attacker in the gether a real view of the system, independent of the various
position of a “defender”. One is, in essence, defending results of the syntax and semantics based attacks. Although
against the introspection tool's attempts to find out ththtru  the obfuscations of kernel data and non-contiguous layout
The various stages of the attack can be viewed as layers obf kernel objects can make this task significantly harder, a
“defense” that the introspection tool must break through to persistent introspection tool may eventua”y defeat tlobse
find the truth, only to be presented with another false and fyscations. More importantly, the introspection tool webul
even more complicated set of circumstances to have to deajnfer that the guest kernel code was compromised, thus ex-
with. In addition, certain implementation details such as posing the presence of an attack.
shadow scheme and return scheme (Section 3) make such
an attack very attractive as it can not only effectively sub- 3.2 Shadow Scheme
vert all existing introspection tools, but also signifidgnt

. . From another perspective, our second scheme aims to
raise the bar for next-generation ones.

use a shadow memory implementation to increase the at-
tack’s stealthiness and thus make it harder for detection.
Particularly, a shadow memory implementation is a spe-
In this section, we present different schemes with vary- cific form of split memory where data and code are sepa-
ing stealthiness guarantees and respective prototypfag di rated from one another. Our scheme is inspired by available
ficulties to implement the proposed DKSM attack. Specif- split memory systems [24, 25, 28, 30] on tk&6 architec-
ically, we first examine alirect schemehat achieves the ture and misuses this technique for our attack. Specifically
DKSM effect by directly changing existing kernel code that in a shadow memory implementation, one can exploit the
accesses the kernel data. Then we presshadow scheme caching mechanisms of th&6 architecture to present one
that shadows the execution of the attack code to achieveview of memory mapped in cache, while the original code

3 Implementation Strategies



Algorithm 1: TLB Poisoning sibly invalidated by context switches, the algorithm marks
the global bit to prevent this from happening (step 3).

Input: Splitting Page Address (addr), Pagetable Entry

for addr (pte) In the meantime, due to the !imited size of ITLB and
DTLB caches, the cached entries, under TLB pressure,
1invalidate.instr_tlb(pte; could be replaced due to the side-effect of another untlate
2 pte =t he_shadow.code_page (addr); memory access. In order to have a reliable split-memory
3 mar k_gl obal (pte); scheme, there is a need to re-populate the invalidateaentri
4 reload.instr_tlb(pte); in the cache after they are replaced. Note a persistent TLB
5 pte =t he_ori g-code_page (addr) ; cache is possible if it is managed by software. However, if

managed by hardware, this becomes much more challeng-

ing. The Shadow Walker rootkit [28] overcomes this chal-
memory pages simply contain the untampered values to po_Ienge by Ieveraging certain.protection bits .associate.d _wit
tentially mislead introspection. page table entries. In particular, by marking the original
code pages not executableX), when they are to be exe-
cuted, a page fault occurs, and a small piece of logic can
execute to dictate the values that are supposed to be seen
by whatever is accessing these pages. More specifically,

are examined, they appear to be completely pristine and un—if the pages are simply read or .written tof these operatiqns
changed. In shadow mode, one basic way to achieve this?© Fhrough Fo the page contammg the 9r|g|nal values with
is to tamper with function pointers (not code) in the related nc_J”mter(c:jetptlg n hﬁwzve(zjr,tfor an J:ntst?;ctlon fetch, the IBI'L_th
execution paths that contain those instructions and retdire wilt need 1o be reloaded 1o point to the memory page wi
their execution to our own code to launch the attack. Al- the .DKSM code. Therefore, one lastimportant thing tq han-
though this scheme still requires the execution of our own dle 'E to re-gain the cpntrol to relr?ad. flushehd TI,‘B entries. h
attack code, it avoids the need to modify existing kernel 1 Nere are two main approaches: (1) The first approac
code. In the following, we examine in more detail, an ad- can directly modify the IDT .(Interrupt Descrlptgr Tab_le) to
vanced split-memory implementation that has been used inhljaCk the page fault handling routine. One limitation of

existing kernel rootkits, i.e., Shadow Walker [28]. Lhis arrJ]proacdh:[ howetvtehr, is trg_i]f_ thte_ intr??ﬁeclgo_lpttobﬁls C_I‘fm
Specifically, split-memory is achieved by intelligently e enhanced to spot the modification of the abe. 10

poisoning the TLB (Translation Lookaside Buffer) cache tmh't'tgatf th?tawetﬁan choc;se to ?r']la?k a fu?cul(t)r;] pother
for better stealthiness. This is made possible due to tre pre atis focatead In the execution path of page fault handiing.

ence of separate instruction cache (ITLB) and data CacheThe misuse of such a function pointer is significantly more

(DTLB) on commodityx86 processors. Both instruction stealthier than the direct modification of IDT (that has well

fetch and data access are eventually achieved through ITLB}(nOWn values). (2) The second approach invalves the debug

and DTLB, respectively. The separation of ITLB and DTLB :re]glsterf (ID t'? S).I Spec;)f |calll(y, (.)nte C?ﬂ use ttr;]em 0 refga||?
is intended to achieve better performance as instructidn an € control by placing breakpoints either on he page fau

data typically have different locality properties. In Algo handling routine or those instructions that access thegkern

rithm 1, we show how this split-memory can be realized. data of interest. By doing so, we can minimize the changes

Basically, the algorithm invalidates the previous ITLB fo the system. The downsides, however, include the lim-
Y 9 P . ited availability of DRs (which can greatly restrict the kca

entry (this is achieved by the step 1) that points to the origi . L
nal code page and reloads it with the new shadow code pageOf launching the DKSM attack) and the possibility that the

The code in the shadow page implements the DKSM attackcontents of these DRs can be inspected as well to detect
L . . such anomalies.

(by redirecting certain member fields of kernel data struc-

tures to some other locations). For the purpose of TLB poi- g g

soning, the shadow code page will not immediately contain

a five-bytejmp (for the purpose of detouring the execution Our next strategy is to apply the notion of return-oriented

to the DKSM code as in the direct mode). Instead, it will programming [8, 15, 26] that can effectively bypass exist-

contain another speciphp which returns back to the inser-  ing code integrity protection schemes. As pointed out ear-

tion point where the Algorithm 1 is executed. This special lier, thedirect schemaeeds to modify existing kernel code

jmpis intended to facilitate the step 4 in two ways: Firstly, and the modification will likely be trapped by code integrity

it causes this page to be loaded into the ITLB. Secondly, it protection schemes. Similarly, tishadow schemeequires

returns the control back to the insertion point and resumesthe execution of attack code in the kernel space and the ex-

the execution to the redirection code for DKSM. Consid- ecution of unverified attack code, though common in com-

ering the fact that entries in the TLB cache could be pos- promised systems that are being introspected, will be pre-

Note this shadow mode can facilitate (redirection-based)
semantics manipulation and make it harder for introspactio
tools to handle. In particular, if the original instructsthat
would have been overwritten for detouring in direct mode

Return Scheme



vented if the kernel code integrity is strictly enforced. To Once these kernel objects are determined, a follow-up ques-
bypass these protection mechanisms, we naturally turn tation is “what are the related instructions that will access
return-oriented programming so that the proposed DKSM these data structures?” There are two complementary ap-
attacks become harder to defeat. proaches. The first one is to analyze the kernel source code
Note that in our prototype, we did not implement this and identify those instructions that will access the kernel
return scheme. The reasons are that return-oriented proobjects of interest. The second one is to profile the execu-
gramming can achieve Turing-completeness in performingtion of OS kernel and locate every instruction that touches
malicious computation and existing research efforts havethe chosen kernel objects. In our prototype, considering
already successfully developed a return-oriented program the convenience of system development and our past ex-
ming compiler [8, 15, 26]. Considering the main purpose of perience [34, 35], we take the second approach. Specif-
this work is to expose the fundamental limitation of exigtin  ically, we modified the open-source whole system emula-
introspection techniques, we use a loadable kernel modulgor, QEMU 0.9.1. By logging every memory access, the
to implement the other two modes. In this way, we can still modified QEMU is used to show those instructions that ac-
model the same level of access a DKSM attack would have,cess a given list of memory locations (containing the kernel

if implemented based on return-oriented programming. objects of interest). We also point out that debug registers
(DRs) can be used to profile these locations in a production
4 Prototyping and Evaluation system, avoiding the need of a modified QEMU.

. After identifying the relevant instructions, we then
We have implemented a proof-of-concept DKSM proto- |5 nch the DKSM attack by loading a kernel module. When
type and used it to attack a Uburfi)4 system to demon-  peing [oaded, the module initializes a shadow copy of the
str{;\te its capablllty to control the external view presdntg affected kernel objects and patches all these instructions
to introspection tools (e.g. XenAccess) as well as the in- nemary 1o redirect their accesses. With the redirectiaa, th
ternal view presented to various system management roUe|ated memory accesses will go to the shadow copy instead
tines (e.g., top, ps, Ismod, and netstat). In the following, uf the original copy. In the following, we discuss three rep-
we present our prototyping details, three representaéise ¢ yogentative examples in detail on how a DKSM attack can
studies, and related performance evaluation. be used to manipulate running processes, loaded modules,

. . . and active network connections, respectively.
4.1 Prototyping Details & Case Studies

In our prototype, we first prepare all kernel data struc- 4.1.1  Attack|: Manipulating running processes

ture manipulation routines in a loadable kernel _module To manipulate running processes, we choose one important
(LKM). To launch the DKSM attack, we either directly member field, i.e., PID, to demonstrate the DKSM attack.
modify the existing kernel code (the direct mode) or indi- For another important member field, i.e., the process name,
rectly hijack the control flow (the shadow mode) and then since its manipulation is identical to that of module name,
invoke these routines in the LKM to manipulate kernel data we defer its discussion to the next subsection.
structures. For simplicity, we focus our DKSM attack on  As described earlier, we first need to find out those mem-
redirection-based semantics manipulation in the context o ory addresses that contain the PID field and then profile the
direct mode. _ guest execution to locate all kernel instructions that s€ce

Before launching a DKSM attack, there are two ques- the PID field. At first, we thought this could be challeng-
tions which must be answered. (1) The first one is “what ing due to the dynamic nature of running processes (as new
are the specific kernel data structures which should be cho-ones will be dynamically created). Fortunately, it turng ou
sen for the DKSM attack_?”. To answer this question, we se- that the kernel treats its access of the PID field in a generic
lect |mp_0rtant kernel ob_jects which are frequently attaickg way. Specifically, if we just profile the memory access for
by existing kernel rootkits. Consequently, our goal here is one particular PID, the identified instructions will be ap-
to misrepresent the information about running processes plicable for all PIDs in the system. This is not surprising
loaded kernel modules, active network connections. (2)since commodity OS kernels need to support dynamic ker-
. _ o nel objects. As a result, there always exigt:aV mapping

For the TLB-based shadow scheme, our prototyping experieie  from the kernel instructions to the accessed kernel objects
cates there exists a subtle architectural issue that affieetTLB flushing. . . . . .
Specifically, there exist a vast variety of virtual machine tamnmple- For our rec_ilrectlon purposes_, t_here is a need to maintain a
mentations and running modes. Some of them will involve a waowitch 1 : 1 mapping between the original PID and the correspond-
(from the guest to the virtual machine monitor and vice_ vensahe pro- ing shadow copy. Accordingly, when shadowing the related
cess of re-gaining the control (Section 3). A world switch fion-para- PIDs, we will have to emulate the original kernel instruc-
virtualized guests will flush the TLB, leading to unneceggsrformance . T . .
penalty. Fortunately, it is being avoided in recent proceswith tagged-  L1ON, denve_ the exact PID th_at is being accessed, lookup the
TLB support [4]. 1 : 1 mapping, and then redirect the memory access.
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root@inside: —# ps -A root@outside: s# process-list 5
PID TTY TIME CMD L] *EEEEE

inmit 1] pirect

e0:00: 00 kthreadd 2] Kernel

00:00: 08 ksoftirqd/e 3] sStructure

00:00: 00 watchdog/,© 5] Manipulation:

060 :060:800 events/0

00:00: 90 khelper

00:00:08 async/mgr

00:00:00 kintegritydse

kblockd/s®

ee:00:00 kseriod

20 :00: 90 khungtaskd

e0:00:08 pdflush

ee:00: 90 pdflush

20 :00:08 kswapd®

280:090:0@ aio/Q

00:00:00 crypto/s6

00:90:90 kjournald

N
0]
o
0]
@
@
@

13] Subverting
21] wvirtual

34] Machine

55] Introspection

144] for

3771 Fun
6181 and
287] Profit
1597]

R N R I R RN EN RN NN RN
[o]
o]
[o]
o]
a
@

il e L e L L e L e e L e e e P T
-

111 7 06:80:01 udewvd iig;% by
960 tty4 08:00: 08 getty 67651 sina
261 ttys 08:00: 08 getty [10998] banhram
967 Tty 00:00: 08 getty ram,
978 tty3 00:00:00 getty [17711] Xuxian
973 ttye 00:00:08 getty [28657] Jiang,
1003 7 ee:e0:e@ syslogd [46368] Zhi
1021 7 0e:00:00 dd [750825] wang,
1823 7 ee:00:00 klogd [121393] mMike
1041 7 00:00:080 dbus-daemon [126418] Grace,
1962 7 00:00:90 sshd [317811] Jinku
1114 7 00:00:00 atd [514229] Li
1139 7 00:00:08 cron [832048] and
1158 7 00:00:00 apacheZz [1346269] Dongyan
1159 @ 08:008: 88 apachez [2178389] Xu
1168 7 00:00:00 apache2 [3524578] ===+
1179 @ 08:008: 088 apachez [5702887]
1234 ttyl 02:00: 08 getty [9227465]
1235 ttyse 00:00: 08 getty [149308352]
root@inside:~# [] root@outside: # [
(a) Aninside view of running processes frgra (b) An external view of running processes frofanAccess

Figure 2. A DKSM attack against running processes

When an external introspection tool applies the original instrumentation code will have to compensate for the addi-
data structure as a template to infer the guest state, ibwill tionally overwritten instructions as a part of the instrume
accessing the original memory locations. However, thesetation. After that, we need to seamlessly return the execu-
locations areno longerused by the kernel. In other words, tion to where it is jumped from.

if we simply write an arbitrary number value (e.g., 42) into In our experiment, after loading the DKSM module to
the original PID field, from that particular moment, intro- launch the attack, we run the commapgl-Ato get anin-
spection will report the PID as 42. ternal viewof running processes and use thecess-list

As a running example, the PID field of tli@it process  command that comes with XenAccess to obtaiesternal
(PID 1) on our Ubuntu 9.04 install is locatediatdf 8301 ec. view. For comparison, the results are shown in Figures 2(a)
This memory address is derived from taesk struct struc- and 2(b), respectively.
ture of theinit process (located @trdf830000) and the off- We point out that the internal view is a genuine view that

set of the PID field inask struct(0x1ec). With this address,  has not been manipulated. The main intention here is to
we then exercise possible code paths in the profiler (e.g., byshow the correctness of the manipulation logic implemented
running commands such @s top, cat, /proc/1/schedand in this DKSM attack. However, for the external view, the in-
so on) to identify related PID-accessing instructions. The formation has been completely distorted (the manipulation
profiling results indicate that there only exist two locago of process names will be discussed in the next case study).
0xc01b 798 (in kernel functiomexttgid) and0zc0117a52 An astute reader may observe that the introspection-based
(in proc_schedshowtask. With the help of a disassembler, PIDs actually follow the Fibonacci sequence, showing the

these two instructions are presented as follows: fact that there is no synthetic limitation (other than the ac
OxcO1bf798: 8b 80 ec 01 00 00 mov  Oxlec(%ax), %eax tual 32-bit width restriction) when launching the DKSM at-
0xc0117a52: 8b 81 ec 01 00 00 mov  Oxlec(%ecx), %eax tack against the 32-bit PID field of the task. Our experience

confirms that similar steps can be used to handle the redi-

After identifying these two instructions, we can then load rection of almost all other basic data types.

the LKM to create a shadow copy of the PIDs of all running
processes and then replace these two witinato ourin- 4.1 5 Agack II: Manipulating Loaded Modules
strumentation code. Our instrumentation code essentially

performs the memory access redirection from the original In this experiment, we apply the DKSM attack to manip-
memory location to the corresponding shadow copy. During ulate the views about loaded kernel modules. Specifically,
our prototyping, we experience several caveats when thesave choose the module name field to demonstrate our attack.
instructions were being patched. For example, the instruc- Redirecting a name string is similar to, but slightly dif-
tion that accesses the kernel object of interest may be lesderent from, the redirection of non-string types. In par-
than five bytes in length, thus it is unable to accommodateticular, most of our previous steps remain the same. We
the five-byte-longmp instruction. As a result, subsequent first find out the memory address that contains the module
instructions will need to be overwritten, which means our names. Using a kernel modud39cpas an example, its
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root@inside:~# lsmod root@inside:/# lsmod root@utside:/# module-list 5

Module Size \Used by Module Size \Used by hello

8139%too 21296 © hello 21296 © world

8139cp 18188 @ world 18188 @ ruut@cutside:/#D

root@inside:~# [] root@inside:/# []
(a) Aninside view of loaded modules from the (b) Aninside view of loaded modules from the (c) An external view of loaded modules from
first run oflsmodbefore launching the attack second run ofsmodafter launching the attack XenAccessfter launching the attack

Figure 3. A DKSM attack against loaded modules
name field on our system is locatedCatc084d5cc. Simi- also use thenodule-listcommand that comes with XenAc-

larly, this memory address is derived from the module struc- cess to obtain aexternalview. The results are shown in
ture for the8139cpmodule (located aflze084d5c¢0) com- Figures 3(a), 3(b), and 3(c), respectively. From the fig-
bined with the offset of the name field in the module struc- ure, our attack module successfully controls both internal
ture Ozc). Just as we did previously, we exercised possible and external views. It is important to note that a number
code paths in the profiler (e.g., by running commands suchof introspection-based tools [14, 17] have been developed
aslsmodandcat /proc/modulesto identify related module-  to compare its external view with an internal view and any
name-accessing instructions. The profiling results indica discrepancy will indicate the presence of a hidden malware.
that there only exists one instructiontatc0248131 (in the The coordinated control of both internal and external views
string routine): is needed by DKSM to foil such a cross-view comparison.

0xc0248131: 89 e5 mov %esp, %ebp 4.1.3 Attack Il Manipulating Network Connections

) o _ Next, we present our DKSM attack against network connec-
We can see that tretring function is responsible for the  tjons. Note that the manipulation of network connection in-
module name access. However, if we overwrite this func- ormation is remarkably similar to what we have discussed
tion, we would intercept the checking of every single string gq far. Particularly, the redirection of port numbers is@stn
that the kernel deals with. This is certainly notatenabté an ne same as the redirection of the process’ PID in Section
efficient solution. Instead, what needs to occur is the move-4 1 1. The manipulation of the name of a running process
ment of our redirection to one semantic level higher and for \yhich owns a network connection is extremely similar to
us to identify the corresponding call sites that invoke the the process/module name redirection in Section 4.1.2. This
string routine. As a result, we identify the_showroutine. similarity highlights an intriguing aspect of any DKSM at-
The related instructions are located)at013¢542 (shown  tack: For different kernel objects that are being affectgd b
below). By overriding the value @ax we can successfully e attack, though the underlying semantics might be vastly
control how the module names are eventually printed. different, they share a limited set of common attack mech-
0xc013c542: 83 O 08 add  $0x8, Yeax anisms. In the following, we only present an abbreviated
0xc013c545: 89 44 24 08 rov Y%eax, 0x8( %esp) description of this experiment.
In our experiment, we choose to hide an active net-
If we look back at the previous attack on running pro- work connection as the demonstration. We found that the
cesses, there are two instructions (atc0249959 and  tcp4seqshowfunction is the one that iterates across the
0zc02481bc) that access the process name field. They ap-list of network connections. Therefore, a simple attack on
pear in frequently used routinestrnlen and string. In- the iteration code is designed to achieve the intendedtsesul
terestingly, by moving our redirection one level higher, After the attack, we ran theetstattommand to list the TCP
we identify a common instructionadd $0x2d4,%edkat  connections in the LISTEN state and wrot@@twork-list
0zc0185651 in the gettask commfunction. In our instru-  utility based on XenAccess to list the TCP ports as well as
mentation, we simply examine the current conteneax the applications that own these ports. The results are shown
use it to locate the corresponding shadow string, and reloadn Figures 4(a) and 4(b), respectively. As we can see, one
it with the shadow copy. By doing so, we can not only han- active TCP port, i.e., 80, is hidden from the external view.
dle both instructions, but also avoid redirecting an instru

tion that occurs in a very frequently executed loop. 4.2 Performance
0xc0249959: 80 38 00  cnpb  $0xO0, (%ax) To evaluate the performance impact from the proposed
0xc02481bc: Of b6 04 13 movzbl (%ebx, %edx, 1), %eax DKSM attack, we use a default Ubuntu 9.04 32-bit install

To demonstrate our attack, we first run the command on a standard Dell Optiplex 760 desktop machine. The
Ismodto get an authentimternal view of loaded modules.  desktop has 4GB of memory and an Intel Core2 Quad CPU
Then we load the DKSM module, re-run the same com- Q9550 processor, running at 2.83GHz. We choose two per-
mand to get a manipulatedternal view. After that, we formance measurement tasks: the Apache HTTP through-
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— Network List

root@inside:~# netstat -ano | grep LISTEN | grep tcp rort  Procese

tcp °] 0 0.0.0.0:80 0.09.0.0:% LISTEN off (09.00/0/0) 22 sshd

tep o ¢] 0 0.0.0.0:22 0.0.8.8:% LISTEN off (0.80/6/8) e 1 ports detected

root@inside:~# D root@outside:/# []

(a) An inside view of network connections frometstat (b) An external view of network connections frokenAccess

Figure 4. A DKSM attack against network connections

put benchmarking tool and kernel compilation. Our HTTP ~ Unmanipulatable structures The first one involves
benchmarks were performed with a one minute duration, the inability of DKSM to redirect certain structures thag ar

at a concurrency level of. The kernel compilation runs  specified and used by the CPU directly. For example, the
consist of compiling the kernel ten times and taking the av- global descriptor table (GDT), the interrupt descriptdni¢a
erage of the reported time. Each measurement task is per(IDT), the task state segment (TSS), and so forth. These
formed twice: one with DKSM disabled and another en- structures, once loaded into the CPU cannot be changed
abled. When enabled, the DKSM attack achieves the ma-implicitly. To change them, an explicit reload operation is
nipulation of running processes, loaded modules, and ac-necessary. For example, thet instruction will reload the
tive network connections (Section 4.1). We summarize our IDTR to a given memory address. Fortunately, these mali-

results in Table 1. cious reloads can be easily detected and defeated. Sinilarl
DKSM | DKSM for an introspection tool, it is important to start from the-u
(NO) (YES) Overhead manipulatable data structure as a base and then gradually
Apache 5% expand from it to reliably infer other guest states.
911.341| 886.483 . ,
(#regs/sec) Untamperable control flow To influence the kernel's
Kernel 247.788| 248.777| 0.4% (User) interpretation of a particular kernel object, DKSM needs to
Compilation | 189.835| 194.556| 2.5% (System) maintain its ownactual view on how the object should be
(seconds) | 449.93 | 452.35 | 0.5% (Total) accessed. To do that, there is a need for DKSM to hijack

the control flow, either by directly modifying existing ker-
nel code (the direct mode) or indirectly tampering with a
From the table, we can see the DKSM-infected system function pointer (the shadow mode) or a return address (the
causes a 2.7% slowdown in the measured HTTP through-return mode). As such, if a full kernel control-flow integrit
put. In our experiments, we noticed up to a 5% variation (CFl) guarantee can be made about a system, such a guar-
simply across multiple sets of runs. For the kernel compi- antee will disallow DKSM to execute in the first place. Un-
lation, the overhead of the total elapsed time to compile thefortunately, there are no working systems [23] developed
kernel is 0.5%. Again, a higher variation was noticed acrossyet to guarantee the kernel CFl, due to the fact that the
multiple compilation runs, leading us to firmly believe that enforcement of kernel CFl is much more challenging than

Table 1. Summary of experiments

this overhead is statistically insignificant. the user-level counterparts [3] (e.g., because of the stippo
of multi-tasking and asynchronous interrupts in commodity
5 Discussion OS kernel design). Alternatively, a weaker form of seman-

tic integrity [5] can be used to detect the violation of kdrne

In this section, we re-visit the nature of the proposed a5 jnvariants. Recent efforts [6] have made encouraging
DKSM attack and aim to better understand the limitations progress toward this direction by inferring these invatsan

of existing introspection tools. This analysis is necessar . . ]
as it can lead to countermeasures that can be potentially de- More fundamentally, if we re-examine the nature of in-
ployed to defend against DKSM and insights for the devel- (FoSPection, an external introspection tool aims to arealyz
opment of next-generation, reliable introspection tools. & 9uest which is not trusted. However, it still depends
In the various instantiations of DKSM (Section 2), we N the guest-maintained memory state and expects the un-
can see that the success of DKSM is directly proportional {fusted guest to respect the kemel data structure tersplate
to its scope and capability of kernel data access. This ratiotherefore leading to &ust inversionproblem. This prob-
directly translates into the efficacy of the attack. For exam |€m fundamentally explains the effectiveness of our attack
ple, if DKSM was unable to redirect or manipulate a par- a_lnd equivalently the fragility of existing mtrospe_ctlomils;-
ticular field or data structure, then it would be much harder tions. For the very same reason, we also believe that ex-
or even impossible to attack such kemel data, and conse!Sting memory snapshot-based memory analysis tools and
quently it might be unable to foil various types of intro- forensics systems [1, 9, 13] share the same limitation.

spection analysis. This results in two potential limitago From another perspective, in this paper, we have so far
of DKSM which can be leveraged for defense purposes.  only explored the spatial aspect of DKSM (i.e., the layout



of a data structure), not the temporal aspect. Considering The second approach to VM introspection is to take a
the dynamics of a guest OS, an introspection-based analyhybrid approach by having two entities, one inside and an-
sis of a running guest typically requires a period of time to other outside. The goal here is to obtain the advantages of
complete and is thus temporally limited in its capability to having a semantic-rich view of the guest with the help of an
obtain a consistent view. To partially address that, some in internal entity while still protecting the internal entityom
trospection tools such as VIX [21] choose to pause guest ex-being corrupted. SIM [27] is a recent research system that
ecution while performing introspection activities. Howev  is moving towards this direction. However, in its current
this adversely perturbs the execution of the guest VM. Fur- implementation, the current internal agent, though rugnin
ther, the asynchronous and independent nature of externainside the guest context, still suffers from the semantje ga
introspection still implies it may not be mutually excluded as it is designed not to rely on any existing kernel code. As
when the guest is running in a critical section, resulting in such, it is still vulnerable to the proposed DKSM attack.
an inconsistent view. It is part of our future work to assess From another perspective, as it is running inside the guest,
the extent and scale of this limitation. it has unique advantages that can be leveraged to be robust
Finally, as is often the case in security, a particular tech- in defending against the DKSM attack. It will be interesting
nigue can be used for both defense and offense. In this vaneto examine this possibility in our future work.
DKSM is beneficial for more than just circumventing intro- The problem of VM introspection can be easily likened
spection. With its capability of re-mapping the underlying to that of malware reverse engineering. Malware, similar
semantics of the system, it will be interesting to leverage to a VM, offers no semantics which are directly available
DKSM to introduce artificial diversity to the running guest for analysis. In this regard, the DKSM attack reflects the
system. Particularly, the integration of DKSM with exigfin  ongoing arms-race [11, 15, 28] between malware obfusca-
randomization efforts such as address-space layout randomtion and de-obfuscation. From another perspective, DKSM
ization (ASLR) can better foil kernel exploitation attermpt s still constrained due to its need of transitioning commod
ity OS kernel to support the manipulated data structure. As
6 Related Work discussed in Section 5, this constraint leads to several op-

. o L portunities that can be explored for future defense.
As virtualization has become a ubiquitous technology

[7,.1.2, 1_9, 31, 33], VM introspection also joins the trend, 7 Conclusion

gaining in strength and popularity. The ability to host vir-

tual machines as guests on one hardware platform has fa- In this paper, we have shown that current VM introspec-

cilitated research capabilities which could not exist lgasi tion techniques are subject to an attack called DKSM. By

before [2, 9, 14, 16, 17, 18, 22, 23, 27, 25, 29]. Besides theviolating their basic assumption about the use of underly-

overwhelming cost savings and consolidation related ben-ing kernel data structures, a DKSM attack can change the

efits of virtualization technology, introspection techmg syntax and semantics of kernel data structures in a running

have benefited as well. For example, with VM introspec- guest. We have developed a proof-of-concept prototype and

tion, we can now analyze a running guest OS. This form of used it to manipulate important system information (e.g.,

live VM introspection has a much higher chance of bridging running processes, loaded kernel modules, and active net-

the semantic gap [10] when compared to the static memorywork connections) to successfully foil existing introspec

image analysis of the past. tion tools into reporting false information. By exposing
VM Introspection can be executed in two different ways. this fundamental limitation, we aim to examine the chal-

The first one involves the introspection completely running lenges as well as opportunities for the development of next-

outside of the guest. Several examples of the external ap-generation, reliable VM introspection techniques.

proach exist [2, 5, 14, 16, 17, 18, 21, 29]. This approach

benefits from a much stronger level of isolation, and thus References
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