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Abstract

Virtual machine (VM) introspection is a powerful tech-
nique for determining the specific aspects of execution
within a guest in a virtualized environment. Unfortunately,
existing introspection solutions share a common question-
able assumption. This assumption is embodied in the expec-
tation that original kernel data structures are respected by
the untrusted guest and thus can be directly used to bridge
the well-known semantic gap. In this paper, we assume
the perspective of the attacker, and exploit this question-
able assumption to subvert VM introspection. In particular,
we present an attack calledDKSM (Direct Kernel Structure
Manipulation), and show that it can effectively foil existing
VM introspection solutions into providing false information.
By assuming this perspective, we hope to better understand
the challenges and opportunities for the development of fu-
ture reliable VM introspection solutions that arenotvulner-
able to the proposed attack.

Keywords: Virtualization, Introspection, Direct Kernel
Structure Manipulation

1 Introduction

Research in virtualization technologies has gained sig-
nificant momentum in recent years, mainly due to the many
new opportunities to address a variety of computer system
problems (including security and reliability). One key tech-
nique behind these opportunities is calledvirtual machine
introspection. The goal of VM introspection is to enable
the observation of a VM’s states and events from outside the
VM; while facilitating this outside observation to have the
same (or similar) semantic view of system states and events
as if they were seen from inside the VM. This observabil-
ity is critical to enable tamper-resistant, high-fidelity VM
monitoring, which is in turn the basis of a wide range of op-
portunities being actively explored, such as introspection-
based intrusion detection, fault-tolerance, service hosting,
and dynamic resource provisioning.

VM introspection has been touted as an extremely pow-

erful technique and a number of recent systems have been
successfully developed to demonstrate its great potential.
For example, Livewire [14] is the first introspection-based
intrusion detection system that aims to protect running guest
VMs from being compromised (e.g., by kernel rootkits).
XenAccess [2], VMwatcher [17], VMwall [29], and oth-
ers [16, 18, 20] were developed to monitor VM execution
and infer guest-internal states or events (e.g., running pro-
cesses, loaded kernel modules, active network connections,
or ongoing guest system calls). These guest-internal states
and events are needed for the purpose of either recording
or denying the execution of suspicious programs. Most re-
cently, VMware has introduced VMsafe [32] technology
that can allow third-party security vendors to leverage the
unique benefits of VM introspection to better monitor, pro-
tect, and control guest VMs.

The capability to introspect running VMs opens up many
opportunities that are simply not possible with physical ma-
chines. A key challenge, however, that needs to be over-
come is the so-calledsemantic gap[10] between the exter-
nal and internal observations of a VM (Figure 1(a)). Specif-
ically, from outside the VM, we can get a view of the VM at
the virtual machine monitor (VMM) level, which includes
its register values, memory pages, disk blocks and low-level
events (e.g., execution of a privileged instruction); whereas
from inside the VM, we can observe semantic-level entities
(e.g. processes and files) and events (e.g., system calls).
This semantic gap is formed by the vast difference between
external and internal observations, manifesting the main
challenge for VM introspection.

To bridge the semantic gap (Figure 1(b)), one key obser-
vation behind existing introspection tools is that the guest
OS being introspected contains a set of data structures (e.g.,
those for process and file system management), which can
be used as “templates” to interpret VMM-level VM obser-
vations. As such, we can cast low-level VM observations to
guest OS data structures to uncover the VM’s semantic en-
tities and their states. As an example; by casting VM mem-
ory page content to guest OS data structure definitions, we
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Figure 1. Existing VM introspection tools bridge the “seman tic gap”

can locate and identify kernel data structures which have
been defined to maintain semantic entities in the VM (e.g.,
process control blocks and kernel modules). By following
these data structures, we can further derive their attributes
(e.g., a process’ name, PID, page table etc.). In particu-
lar, for a process, we can explore its virtual address space
through its page table and derive its user-level states (e.g.,
variables at specific memory locations).

However, a careful examination of existing VM intro-
spection tools as well as our past experiences in building
some of them [16, 17] indicate thatthe effectiveness and re-
liability of VM introspection does not naturally come with-
out question! In particular, the main concern stems from
a common, fundamental assumption of VM introspection:
the guest OS being introspected is assumed to use the kernel
data in a prescribed fashion by following these data struc-
ture templates. In other words, all existing introspection
tools rely upon the fact that the underlying guest OS is con-
forming to certain behaviors and idioms (with respect to
these templates) which would, at first glance, appear to be
rather obvious and set in stone. Unfortunately, as is most
often the case with introspection, the guest OS kernel could
be compromised. And once compromised, the assumption
about the kernel respecting its own data structures becomes
seriously questionable.

In this paper, we presentDirect Kernel Structure Ma-
nipulation (DKSM), an attack which can effectively subvert
and confound existing VM introspection tools. Specifically,
by presenting DKSM, we show that it is possible to com-
promise a guest such that the kernel’s use of any field of
its data structures (or templates) could be potentially mod-
ified. The modification can be achieved by various tech-
niques that involve changing the associated syntax and se-
mantics of the underlying data structures, thus invalidating
the fundamental assumption of introspection. With this in-
validation, we are effectively creating three different views
of the system: (1) The first,internal, view comprises what
the OS (or various system routines such asps andnetstat)
sees; (2) The second,external, view comprises what an ex-
ternal introspection-based tool observes; (3) The third,ac-
tual, view comprises what is really going on in the system.
A piece of malware (e.g., a kernel rootkit) that implements

our proposed attack technique can effectively control all
three of these views. This means that an attacker can present
any desiredexternalview of the system to evade or circum-
vent VM introspection, while presenting a completely dif-
ferent internal view of the system to the guest. However,
neither of these two views will represent theactualview of
what is executing in the system.

We have developed a proof-of-concept DKSM prototype
to illustrate this attack and show the fragility of existingin-
trospection tools. In our prototype, we have successfully
misrepresented several important types of information to
existing VM introspection tools. Specifically, by manipulat-
ing information about running processes, loaded modules,
and active network connections, we show that it is possi-
ble for a new (and stealthier) class of introspection-resistant
malware to emerge. In addition, we also examine possi-
ble strategies to better cloak the DKSM attack and “raise
the bar” even further for future enhanced VM introspection
techniques. Meanwhile, it is important to note that by ef-
fectively evading existing VM introspection tools, our goal
here is to expose the fundamental limitation of these tools;
thereby arguing for the need of next-generation VM intro-
spection techniques with enhanced tamper-resistance. We
believe this higher level of diligence is increasingly impor-
tant especially considering the current trend of adopting vir-
tualization and related introspection-capable applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the design of DKSM to invalidate the
introspection assumption and enable the proposed attack.
In Section 3, we show three implementation strategies, fol-
lowed by the prototyping details and evaluation in Section
4. In Section 5, we re-visit the nature of DKSM and suggest
possible defense mechanisms. Finally, we present related
work in Section 6 and conclude the paper in Section 7.

2 DKSM Design

In a nutshell, DKSM foils existing introspection tech-
niques by attacking the basic assumption upon which they
are based. Specifically, it is important to notice that DKSM
is based on the observation that the kernel data structures
(or templates) of a guest VM are key to any introspection
tool, which means a DKSM attack can be launched in var-
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ious ways to manipulate these kernel data structures. In
the following, we examine three different approaches: (1)
syntax-based manipulationwhere certain fields of kernel
data structures are added or removed; (2)semantics-based
manipulationwhere the semantics of the underlying data
structures are changed; and (3)multifaceted combo manip-
ulation which effectively combines the previous two. Note
all these attacks can effectively manipulate the kernel data
structures to subvert introspection tools and their analysis.

In this work, we assume the presence of guest kernel vul-
nerabilities that can be potentially exploited by the attacker
to compromise the guest kernel and hijack the control flow.
We consider this adversarial model because this is often the
case how an introspection tool is deployed. By hijacking
control flow, the attacker has the freedom to either modify
existing kernel code or inject his own code for execution.
We also notice the recent emergence of return-oriented pro-
gramming [8, 26, 15] and believe it is possible to launch
a similarly return-oriented DKSM attack. This possibility
will be discussed in Section 3.3.

2.1 Syntax-based Manipulation

One potential approach to implementing a DKSM attack
involves adding or removing specific fields from particu-
lar kernel data structures. By doing so, the template-based
approach of existing introspection tools will be using the
wrong templates to infer guest states and thus derive inac-
curate results. Note that an added member field to the kernel
data structure may not impact introspection as the analysis
of existing member fields could be sufficient in inferring
guest VM states. However, a removed member field could
greatly affect the accuracy and reliability of the results.As
mentioned in [13], certain fields of kernel data structures
are simply not used by the OS.1 As a result, their removal
would not adversely affect the OS kernel behavior. When an
introspection tool depends on any of these removed fields
for the analysis, such syntax-based manipulation will evade
or even mislead the introspection analysis.

From another perspective, we point out that this form
of the DKSM attack is subject to certain limitations as it
does not fundamentally hide or change the underlying se-
mantics of the affected data structures. What happens is
that the data structure types are syntactically manipulated.
Therefore, if an introspection tool is changed to lessen its
dependency upon the syntax of related templates (e.g., by
leveraging only essential member fields [13]), the chances
are high that this attack is much less effective.

1A similar observation has led to the examination of reliability of ker-
nel data structure signatures for memory forensic analysis. Specifically,
when a signature involves a member that is not being used by the OS ker-
nel, an attacker could potentially misuse this member to evade or mislead
signature-based analysis. One such example is the backward pointer in the
all task list [13].

2.2 Semantics-based Manipulation

A more advanced form of the DKSM attack is to modify
the underlying semantics of the kernel data structures of in-
terest. Because the changed semantics can be transparent to
the OS while offering great consternation to introspection
tools, we consider this approach to be much more powerful
than the previous approach.

Specifically, kernel data structures contain a number of
member fields. Often, some of these fields are of similar
types or widths. For example, in a kernel data structure that
contains several integer values, one interesting attack in-
volves switching these integers around. By doing so, the un-
derlying OS can still use the correct integer fields of the data
structure. However, an external introspection tool would
assume the standard layout of the data structure (before the
members are switched) to be true; therefore, it would assign
incorrect semantics to these switched member fields. Fur-
ther, such a technique can be easily extended from integers
to strings, and eventually support any data types. Here, we
also note that homogeneity of data types is not required at
all, which means that an integer field can be used to con-
tain a pointer to a C-style string, while a previous C-style
string pointer can be used as an actual integer. Effectively,
such a technique hides the actual data in plain sight as the
data has been neither redirected nor changed in any way.
However, when the data is being introspected, the template-
based view essentially precludes the examination of the ac-
tual way in which this data is used. As a result, the VM
introspection technique is unable to derive any accurate se-
mantics about the affected data structures.

From another perspective, we can also achieve
semantics-based manipulation by redirecting chosen fields
of kernel data structures to somewhere else. In other words,
various fields of interest are redirected to shadow locations
instead of being exchanged with other members. By do-
ing so, the attack can create a data structure that is physi-
cally dis-contiguous (and the affected OS kernel will be in-
strumented to operate seamlessly with these dis-contiguous
kernel objects), thus greatly impacting the template-based
introspection view. One nice property of this approach is
that introspection tools are still presented with a perfectly
natural and normal looking view of the system. No fields
are missing or added, nor do the meanings of various mem-
ber fields in the kernel data structures appear to be unusual.
However, unfortunately for the introspection tools, the OS
is not using this data in any meaningful way. As a result, we
can further use it to provide false information in an attempt
to mislead or simply confuse the external view generated by
introspection.

Specifically, a rootkit that chooses to employ this spe-
cific technique has the intriguing opportunity to present an
external view of the system (to introspection tools), as well
as an internal view (to running anti-virus software for ex-
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ample). Theexternalview is completely false and consists
of anything and everything that the rootkit wishes the in-
trospection tool to see. Similarly, theinternal view can be
anything and everything that the rootkit wishes the OS to
see. Neither of these views have to be remotely accurate.
They simply have to satisfy current expectations, such as
those of the underlying OS, or fundamental assumptions,
such as those of introspection. However, the reality, i.e.,the
actualview, of what is going on in the system can be hidden
away from all parties.

2.3 Multifaceted Combo Manipulation

A third approach is to combine the above two attacks to-
gether to launch a multifaceted combo attack. This is pos-
sible because there is no limitation in the presented attacks
restricting them to be mutually exclusive.

Specifically, a combo attack would involve first redirect-
ing all accesses of the specific data, followed by switching
the various sibling members with one another, while simul-
taneously adding and removing unused member fields to the
various data structures. An introspection tool would have
to first untangle the complex interweaved web of seman-
tics encompassing each structure (since all the introspection
tool’s templates now have become useless). Then it would
have to try to derive and understand the appropriate seman-
tics of the various data structures. After it has successfully
realized such a hard goal, the introspection tool is finally
left with the reality that none of this data is even being used
because it has all been redirected. We notice that this partic-
ular process is remarkably similar to the existing arms-race
between malware obfuscation and reverse engineering. As a
result, DKSM can make things arbitrarily hard for analysis.

This combo attack interestingly puts the attacker in the
position of a “defender”. One is, in essence, defending
against the introspection tool’s attempts to find out the truth.
The various stages of the attack can be viewed as layers of
“defense” that the introspection tool must break through to
find the truth, only to be presented with another false and
even more complicated set of circumstances to have to deal
with. In addition, certain implementation details such as
shadow scheme and return scheme (Section 3) make such
an attack very attractive as it can not only effectively sub-
vert all existing introspection tools, but also significantly
raise the bar for next-generation ones.

3 Implementation Strategies

In this section, we present different schemes with vary-
ing stealthiness guarantees and respective prototyping dif-
ficulties to implement the proposed DKSM attack. Specif-
ically, we first examine adirect schemethat achieves the
DKSM effect by directly changing existing kernel code that
accesses the kernel data. Then we present ashadow scheme
that shadows the execution of the attack code to achieve

the same goal (e.g., by hijacking kernel control flow with-
out tampering with existing kernel code). We then present
a return schemethat misuses existing code via the use of
return-oriented programming [26, 15]. Each scheme builds
upon the previous one. In the following, we also examine
the strengths and weaknesses of each scheme.

3.1 Direct Scheme

In the direct scheme, the kernel code which accesses the
data is directly manipulated. Using an exploit, malicious
LKM, or other delivery mechanism to gain root access, this
scheme proceeds to overwrite those instructions that access
data of interest and detour their execution. When those in-
structions are to be executed, the detoured execution will
include additional logic to decide how those instructions
should be instrumented to reflect theinternal view of the
current kernel data. For example, when certain member
fields are re-located to another memory page, the corre-
sponding kernel data-accessing code will be redirected to
access the data from the new location. Also, when storing
the redirected data (e.g., PIDs, port numbers, and module
names), we can further obfuscate this data to foil potential
analysis attempts. For instance, the data can be split apart
such that PIDs do not appear close to one another in the
redirected form, strings can be altered programmatically to
foil statistical analysis, and so on.

We note that this scheme can be detected if a VM intro-
spection tool chooses to examine the memory locations con-
taining the original instructions and verify kernel code in-
tegrity. Specifically, a tool that carried out such an analysis
would easily detect the compromise of kernel code. And by
analyzing how the code is modified, the tool may piece to-
gether a real view of the system, independent of the various
results of the syntax and semantics based attacks. Although
the obfuscations of kernel data and non-contiguous layout
of kernel objects can make this task significantly harder, a
persistent introspection tool may eventually defeat theseob-
fuscations. More importantly, the introspection tool would
infer that the guest kernel code was compromised, thus ex-
posing the presence of an attack.

3.2 Shadow Scheme

From another perspective, our second scheme aims to
use a shadow memory implementation to increase the at-
tack’s stealthiness and thus make it harder for detection.
Particularly, a shadow memory implementation is a spe-
cific form of split memory where data and code are sepa-
rated from one another. Our scheme is inspired by available
split memory systems [24, 25, 28, 30] on thex86architec-
ture and misuses this technique for our attack. Specifically,
in a shadow memory implementation, one can exploit the
caching mechanisms of thex86architecture to present one
view of memory mapped in cache, while the original code
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Algorithm 1 : TLB Poisoning
Input : Splitting Page Address (addr), Pagetable Entry

for addr (pte)

invalidate instr tlb (pte);1

pte =the shadow code page (addr);2

mark global (pte);3

reload instr tlb (pte);4

pte =the orig code page (addr) ;5

memory pages simply contain the untampered values to po-
tentially mislead introspection.

Note this shadow mode can facilitate (redirection-based)
semantics manipulation and make it harder for introspection
tools to handle. In particular, if the original instructions that
would have been overwritten for detouring in direct mode
are examined, they appear to be completely pristine and un-
changed. In shadow mode, one basic way to achieve this
is to tamper with function pointers (not code) in the related
execution paths that contain those instructions and redirect
their execution to our own code to launch the attack. Al-
though this scheme still requires the execution of our own
attack code, it avoids the need to modify existing kernel
code. In the following, we examine in more detail, an ad-
vanced split-memory implementation that has been used in
existing kernel rootkits, i.e., Shadow Walker [28].

Specifically, split-memory is achieved by intelligently
poisoning the TLB (Translation Lookaside Buffer) cache
for better stealthiness. This is made possible due to the pres-
ence of separate instruction cache (ITLB) and data cache
(DTLB) on commodityx86 processors. Both instruction
fetch and data access are eventually achieved through ITLB
and DTLB, respectively. The separation of ITLB and DTLB
is intended to achieve better performance as instruction and
data typically have different locality properties. In Algo-
rithm 1, we show how this split-memory can be realized.

Basically, the algorithm invalidates the previous ITLB
entry (this is achieved by the step 1) that points to the origi-
nal code page and reloads it with the new shadow code page.
The code in the shadow page implements the DKSM attack
(by redirecting certain member fields of kernel data struc-
tures to some other locations). For the purpose of TLB poi-
soning, the shadow code page will not immediately contain
a five-bytejmp (for the purpose of detouring the execution
to the DKSM code as in the direct mode). Instead, it will
contain another specialjmpwhich returns back to the inser-
tion point where the Algorithm 1 is executed. This special
jmp is intended to facilitate the step 4 in two ways: Firstly,
it causes this page to be loaded into the ITLB. Secondly, it
returns the control back to the insertion point and resumes
the execution to the redirection code for DKSM. Consid-
ering the fact that entries in the TLB cache could be pos-

sibly invalidated by context switches, the algorithm marks
the global bit to prevent this from happening (step 3).

In the meantime, due to the limited size of ITLB and
DTLB caches, the cached entries, under TLB pressure,
could be replaced due to the side-effect of another unrelated
memory access. In order to have a reliable split-memory
scheme, there is a need to re-populate the invalidated entries
in the cache after they are replaced. Note a persistent TLB
cache is possible if it is managed by software. However, if
managed by hardware, this becomes much more challeng-
ing. The Shadow Walker rootkit [28] overcomes this chal-
lenge by leveraging certain protection bits associated with
page table entries. In particular, by marking the original
code pages not executable (NX), when they are to be exe-
cuted, a page fault occurs, and a small piece of logic can
execute to dictate the values that are supposed to be seen
by whatever is accessing these pages. More specifically,
if the pages are simply read or written to, these operations
go through to the page containing the original values with
no interception; however, for an instruction fetch, the ITLB
will need to be reloaded to point to the memory page with
the DKSM code. Therefore, one last important thing to han-
dle is to re-gain the control to reload flushed TLB entries.

There are two main approaches: (1) The first approach
can directly modify the IDT (Interrupt Descriptor Table) to
hijack the page fault handling routine. One limitation of
this approach, however, is that the introspection tools can
be enhanced to spot the modification of the IDT table. To
mitigate that, we can choose to hijack a function pointer
that is located in the execution path of page fault handling.
The misuse of such a function pointer is significantly more
stealthier than the direct modification of IDT (that has well-
known values). (2) The second approach involves the debug
registers (DRs). Specifically, one can use them to regain
the control by placing breakpoints either on the page fault
handling routine or those instructions that access the kernel
data of interest. By doing so, we can minimize the changes
to the system. The downsides, however, include the lim-
ited availability of DRs (which can greatly restrict the scale
of launching the DKSM attack) and the possibility that the
contents of these DRs can be inspected as well to detect
such anomalies.

3.3 Return Scheme

Our next strategy is to apply the notion of return-oriented
programming [8, 15, 26] that can effectively bypass exist-
ing code integrity protection schemes. As pointed out ear-
lier, thedirect schemeneeds to modify existing kernel code
and the modification will likely be trapped by code integrity
protection schemes. Similarly, theshadow schemerequires
the execution of attack code in the kernel space and the ex-
ecution of unverified attack code, though common in com-
promised systems that are being introspected, will be pre-
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vented if the kernel code integrity is strictly enforced. To
bypass these protection mechanisms, we naturally turn to
return-oriented programming so that the proposed DKSM
attacks become harder to defeat.

Note that in our prototype, we did not implement this
return scheme. The reasons are that return-oriented pro-
gramming can achieve Turing-completeness in performing
malicious computation and existing research efforts have
already successfully developed a return-oriented program-
ming compiler [8, 15, 26]. Considering the main purpose of
this work is to expose the fundamental limitation of existing
introspection techniques, we use a loadable kernel module
to implement the other two modes. In this way, we can still
model the same level of access a DKSM attack would have,
if implemented based on return-oriented programming.

4 Prototyping and Evaluation

We have implemented a proof-of-concept DKSM proto-
type and used it to attack a Ubuntu9.04 system to demon-
strate its capability to control the external view presented
to introspection tools (e.g. XenAccess) as well as the in-
ternal view presented to various system management rou-
tines (e.g., top, ps, lsmod, and netstat). In the following,
we present our prototyping details, three representative case
studies, and related performance evaluation.

4.1 Prototyping Details & Case Studies

In our prototype, we first prepare all kernel data struc-
ture manipulation routines in a loadable kernel module
(LKM). To launch the DKSM attack, we either directly
modify the existing kernel code (the direct mode) or indi-
rectly hijack the control flow (the shadow mode) and then
invoke these routines in the LKM to manipulate kernel data
structures. For simplicity, we focus our DKSM attack on
redirection-based semantics manipulation in the context of
direct mode.2

Before launching a DKSM attack, there are two ques-
tions which must be answered. (1) The first one is “what
are the specific kernel data structures which should be cho-
sen for the DKSM attack?”. To answer this question, we se-
lect important kernel objects which are frequently attacked
by existing kernel rootkits. Consequently, our goal here is
to misrepresent the information about running processes,
loaded kernel modules, active network connections. (2)

2For the TLB-based shadow scheme, our prototyping experienceindi-
cates there exists a subtle architectural issue that affects the TLB flushing.
Specifically, there exist a vast variety of virtual machine monitor imple-
mentations and running modes. Some of them will involve a world switch
(from the guest to the virtual machine monitor and vice versa) in the pro-
cess of re-gaining the control (Section 3). A world switch for non-para-
virtualized guests will flush the TLB, leading to unnecessary performance
penalty. Fortunately, it is being avoided in recent processors with tagged-
TLB support [4].

Once these kernel objects are determined, a follow-up ques-
tion is “what are the related instructions that will access
these data structures?” There are two complementary ap-
proaches. The first one is to analyze the kernel source code
and identify those instructions that will access the kernel
objects of interest. The second one is to profile the execu-
tion of OS kernel and locate every instruction that touches
the chosen kernel objects. In our prototype, considering
the convenience of system development and our past ex-
perience [34, 35], we take the second approach. Specif-
ically, we modified the open-source whole system emula-
tor, QEMU 0.9.1. By logging every memory access, the
modified QEMU is used to show those instructions that ac-
cess a given list of memory locations (containing the kernel
objects of interest). We also point out that debug registers
(DRs) can be used to profile these locations in a production
system, avoiding the need of a modified QEMU.

After identifying the relevant instructions, we then
launch the DKSM attack by loading a kernel module. When
being loaded, the module initializes a shadow copy of the
affected kernel objects and patches all these instructionsin
memory to redirect their accesses. With the redirection, the
related memory accesses will go to the shadow copy instead
of the original copy. In the following, we discuss three rep-
resentative examples in detail on how a DKSM attack can
be used to manipulate running processes, loaded modules,
and active network connections, respectively.

4.1.1 Attack I: Manipulating running processes

To manipulate running processes, we choose one important
member field, i.e., PID, to demonstrate the DKSM attack.
For another important member field, i.e., the process name,
since its manipulation is identical to that of module name,
we defer its discussion to the next subsection.

As described earlier, we first need to find out those mem-
ory addresses that contain the PID field and then profile the
guest execution to locate all kernel instructions that access
the PID field. At first, we thought this could be challeng-
ing due to the dynamic nature of running processes (as new
ones will be dynamically created). Fortunately, it turns out
that the kernel treats its access of the PID field in a generic
way. Specifically, if we just profile the memory access for
one particular PID, the identified instructions will be ap-
plicable for all PIDs in the system. This is not surprising
since commodity OS kernels need to support dynamic ker-
nel objects. As a result, there always exist a1 : N mapping
from the kernel instructions to the accessed kernel objects.
For our redirection purposes, there is a need to maintain a
1 : 1 mapping between the original PID and the correspond-
ing shadow copy. Accordingly, when shadowing the related
PIDs, we will have to emulate the original kernel instruc-
tion, derive the exact PID that is being accessed, lookup the
1 : 1 mapping, and then redirect the memory access.
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(a) An inside view of running processes fromps (b) An external view of running processes fromXenAccess

Figure 2. A DKSM attack against running processes

When an external introspection tool applies the original
data structure as a template to infer the guest state, it willbe
accessing the original memory locations. However, these
locations areno longerused by the kernel. In other words,
if we simply write an arbitrary number value (e.g., 42) into
the original PID field, from that particular moment, intro-
spection will report the PID as 42.

As a running example, the PID field of theinit process
(PID 1) on our Ubuntu 9.04 install is located at0xdf8301ec.
This memory address is derived from thetaskstructstruc-
ture of theinit process (located at0xdf830000) and the off-
set of the PID field intaskstruct(0x1ec). With this address,
we then exercise possible code paths in the profiler (e.g., by
running commands such asps, top, cat, /proc/1/sched, and
so on) to identify related PID-accessing instructions. The
profiling results indicate that there only exist two locations:
0xc01bf798 (in kernel functionnext tgid) and0xc0117a52

(in proc schedshowtask). With the help of a disassembler,
these two instructions are presented as follows:

0xc01bf798: 8b 80 ec 01 00 00 mov 0x1ec(%eax),%eax
0xc0117a52: 8b 81 ec 01 00 00 mov 0x1ec(%ecx),%eax

After identifying these two instructions, we can then load
the LKM to create a shadow copy of the PIDs of all running
processes and then replace these two with ajmp to our in-
strumentation code. Our instrumentation code essentially
performs the memory access redirection from the original
memory location to the corresponding shadow copy. During
our prototyping, we experience several caveats when these
instructions were being patched. For example, the instruc-
tion that accesses the kernel object of interest may be less
than five bytes in length, thus it is unable to accommodate
the five-byte-longjmp instruction. As a result, subsequent
instructions will need to be overwritten, which means our

instrumentation code will have to compensate for the addi-
tionally overwritten instructions as a part of the instrumen-
tation. After that, we need to seamlessly return the execu-
tion to where it is jumped from.

In our experiment, after loading the DKSM module to
launch the attack, we run the commandps -Ato get anin-
ternal viewof running processes and use theprocess-list
command that comes with XenAccess to obtain anexternal
view. For comparison, the results are shown in Figures 2(a)
and 2(b), respectively.

We point out that the internal view is a genuine view that
has not been manipulated. The main intention here is to
show the correctness of the manipulation logic implemented
in this DKSM attack. However, for the external view, the in-
formation has been completely distorted (the manipulation
of process names will be discussed in the next case study).
An astute reader may observe that the introspection-based
PIDs actually follow the Fibonacci sequence, showing the
fact that there is no synthetic limitation (other than the ac-
tual 32-bit width restriction) when launching the DKSM at-
tack against the 32-bit PID field of the task. Our experience
confirms that similar steps can be used to handle the redi-
rection of almost all other basic data types.

4.1.2 Attack II: Manipulating Loaded Modules

In this experiment, we apply the DKSM attack to manip-
ulate the views about loaded kernel modules. Specifically,
we choose the module name field to demonstrate our attack.

Redirecting a name string is similar to, but slightly dif-
ferent from, the redirection of non-string types. In par-
ticular, most of our previous steps remain the same. We
first find out the memory address that contains the module
names. Using a kernel module8139cpas an example, its
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(a) An inside view of loaded modules from the
first run of lsmodbefore launching the attack

(b) An inside view of loaded modules from the
second run oflsmodafter launching the attack

(c) An external view of loaded modules from
XenAccessafter launching the attack

Figure 3. A DKSM attack against loaded modules

name field on our system is located at0xe084d5cc. Simi-
larly, this memory address is derived from the module struc-
ture for the8139cpmodule (located at0xe084d5c0) com-
bined with the offset of the name field in the module struc-
ture (0xc). Just as we did previously, we exercised possible
code paths in the profiler (e.g., by running commands such
aslsmodandcat /proc/modules) to identify related module-
name-accessing instructions. The profiling results indicate
that there only exists one instruction at0xc0248131 (in the
string routine):

0xc0248131: 89 e5 mov %esp,%ebp

We can see that thestring function is responsible for the
module name access. However, if we overwrite this func-
tion, we would intercept the checking of every single string
that the kernel deals with. This is certainly not a tenable and
efficient solution. Instead, what needs to occur is the move-
ment of our redirection to one semantic level higher and for
us to identify the corresponding call sites that invoke the
string routine. As a result, we identify them showroutine.
The related instructions are located at0xc013c542 (shown
below). By overriding the value ofeax, we can successfully
control how the module names are eventually printed.

0xc013c542: 83 c0 08 add $0x8,%eax
0xc013c545: 89 44 24 08 mov %eax,0x8(%esp)

If we look back at the previous attack on running pro-
cesses, there are two instructions (at0xc0249959 and
0xc02481bc) that access the process name field. They ap-
pear in frequently used routines,strnlen and string. In-
terestingly, by moving our redirection one level higher,
we identify a common instruction (add $0x2d4,%edx) at
0xc0185651 in the get taskcommfunction. In our instru-
mentation, we simply examine the current content inedx,
use it to locate the corresponding shadow string, and reload
it with the shadow copy. By doing so, we can not only han-
dle both instructions, but also avoid redirecting an instruc-
tion that occurs in a very frequently executed loop.

0xc0249959: 80 38 00 cmpb $0x0,(%eax)
0xc02481bc: 0f b6 04 13 movzbl (%ebx,%edx,1),%eax

To demonstrate our attack, we first run the command
lsmodto get an authenticinternal view of loaded modules.
Then we load the DKSM module, re-run the same com-
mand to get a manipulatedinternal view. After that, we

also use themodule-listcommand that comes with XenAc-
cess to obtain anexternalview. The results are shown in
Figures 3(a), 3(b), and 3(c), respectively. From the fig-
ure, our attack module successfully controls both internal
and external views. It is important to note that a number
of introspection-based tools [14, 17] have been developed
to compare its external view with an internal view and any
discrepancy will indicate the presence of a hidden malware.
The coordinated control of both internal and external views
is needed by DKSM to foil such a cross-view comparison.

4.1.3 Attack III: Manipulating Network Connections

Next, we present our DKSM attack against network connec-
tions. Note that the manipulation of network connection in-
formation is remarkably similar to what we have discussed
so far. Particularly, the redirection of port numbers is almost
the same as the redirection of the process’ PID in Section
4.1.1. The manipulation of the name of a running process
which owns a network connection is extremely similar to
the process/module name redirection in Section 4.1.2. This
similarity highlights an intriguing aspect of any DKSM at-
tack: For different kernel objects that are being affected by
the attack, though the underlying semantics might be vastly
different, they share a limited set of common attack mech-
anisms. In the following, we only present an abbreviated
description of this experiment.

In our experiment, we choose to hide an active net-
work connection as the demonstration. We found that the
tcp4 seqshow function is the one that iterates across the
list of network connections. Therefore, a simple attack on
the iteration code is designed to achieve the intended results.
After the attack, we ran thenetstatcommand to list the TCP
connections in the LISTEN state and wrote anetwork-list
utility based on XenAccess to list the TCP ports as well as
the applications that own these ports. The results are shown
in Figures 4(a) and 4(b), respectively. As we can see, one
active TCP port, i.e., 80, is hidden from the external view.

4.2 Performance

To evaluate the performance impact from the proposed
DKSM attack, we use a default Ubuntu 9.04 32-bit install
on a standard Dell Optiplex 760 desktop machine. The
desktop has 4GB of memory and an Intel Core2 Quad CPU
Q9550 processor, running at 2.83GHz. We choose two per-
formance measurement tasks: the Apache HTTP through-
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(a) An inside view of network connections fromnetstat (b) An external view of network connections fromXenAccess

Figure 4. A DKSM attack against network connections

put benchmarking tool and kernel compilation. Our HTTP
benchmarks were performed with a one minute duration,
at a concurrency level of4. The kernel compilation runs
consist of compiling the kernel ten times and taking the av-
erage of the reported time. Each measurement task is per-
formed twice: one with DKSM disabled and another en-
abled. When enabled, the DKSM attack achieves the ma-
nipulation of running processes, loaded modules, and ac-
tive network connections (Section 4.1). We summarize our
results in Table 1.

DKSM DKSM
(NO) (YES) Overhead

Apache 911.341 886.483 2.7%

(#reqs/sec)
Kernel 247.788 248.777 0.4% (User)

Compilation 189.835 194.556 2.5% (System)
(seconds) 449.93 452.35 0.5% (Total)

Table 1. Summary of experiments

From the table, we can see the DKSM-infected system
causes a 2.7% slowdown in the measured HTTP through-
put. In our experiments, we noticed up to a 5% variation
simply across multiple sets of runs. For the kernel compi-
lation, the overhead of the total elapsed time to compile the
kernel is 0.5%. Again, a higher variation was noticed across
multiple compilation runs, leading us to firmly believe that
this overhead is statistically insignificant.

5 Discussion

In this section, we re-visit the nature of the proposed
DKSM attack and aim to better understand the limitations
of existing introspection tools. This analysis is necessary
as it can lead to countermeasures that can be potentially de-
ployed to defend against DKSM and insights for the devel-
opment of next-generation, reliable introspection tools.

In the various instantiations of DKSM (Section 2), we
can see that the success of DKSM is directly proportional
to its scope and capability of kernel data access. This ratio
directly translates into the efficacy of the attack. For exam-
ple, if DKSM was unable to redirect or manipulate a par-
ticular field or data structure, then it would be much harder
or even impossible to attack such kernel data, and conse-
quently it might be unable to foil various types of intro-
spection analysis. This results in two potential limitations
of DKSM which can be leveraged for defense purposes.

Unmanipulatable structures The first one involves
the inability of DKSM to redirect certain structures that are
specified and used by the CPU directly. For example, the
global descriptor table (GDT), the interrupt descriptor table
(IDT), the task state segment (TSS), and so forth. These
structures, once loaded into the CPU cannot be changed
implicitly. To change them, an explicit reload operation is
necessary. For example, thelidt instruction will reload the
IDTR to a given memory address. Fortunately, these mali-
cious reloads can be easily detected and defeated. Similarly,
for an introspection tool, it is important to start from the un-
manipulatable data structure as a base and then gradually
expand from it to reliably infer other guest states.

Untamperable control flow To influence the kernel’s
interpretation of a particular kernel object, DKSM needs to
maintain its ownactual view on how the object should be
accessed. To do that, there is a need for DKSM to hijack
the control flow, either by directly modifying existing ker-
nel code (the direct mode) or indirectly tampering with a
function pointer (the shadow mode) or a return address (the
return mode). As such, if a full kernel control-flow integrity
(CFI) guarantee can be made about a system, such a guar-
antee will disallow DKSM to execute in the first place. Un-
fortunately, there are no working systems [23] developed
yet to guarantee the kernel CFI, due to the fact that the
enforcement of kernel CFI is much more challenging than
the user-level counterparts [3] (e.g., because of the support
of multi-tasking and asynchronous interrupts in commodity
OS kernel design). Alternatively, a weaker form of seman-
tic integrity [5] can be used to detect the violation of kernel
data invariants. Recent efforts [6] have made encouraging
progress toward this direction by inferring these invariants.

More fundamentally, if we re-examine the nature of in-
trospection, an external introspection tool aims to analyze
a guest which is not trusted. However, it still depends
on the guest-maintained memory state and expects the un-
trusted guest to respect the kernel data structure templates,
therefore leading to atrust inversionproblem. This prob-
lem fundamentally explains the effectiveness of our attack
and equivalently the fragility of existing introspection solu-
tions. For the very same reason, we also believe that ex-
isting memory snapshot-based memory analysis tools and
forensics systems [1, 9, 13] share the same limitation.

From another perspective, in this paper, we have so far
only explored the spatial aspect of DKSM (i.e., the layout
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of a data structure), not the temporal aspect. Considering
the dynamics of a guest OS, an introspection-based analy-
sis of a running guest typically requires a period of time to
complete and is thus temporally limited in its capability to
obtain a consistent view. To partially address that, some in-
trospection tools such as VIX [21] choose to pause guest ex-
ecution while performing introspection activities. However,
this adversely perturbs the execution of the guest VM. Fur-
ther, the asynchronous and independent nature of external
introspection still implies it may not be mutually excluded
when the guest is running in a critical section, resulting in
an inconsistent view. It is part of our future work to assess
the extent and scale of this limitation.

Finally, as is often the case in security, a particular tech-
nique can be used for both defense and offense. In this vane,
DKSM is beneficial for more than just circumventing intro-
spection. With its capability of re-mapping the underlying
semantics of the system, it will be interesting to leverage
DKSM to introduce artificial diversity to the running guest
system. Particularly, the integration of DKSM with existing
randomization efforts such as address-space layout random-
ization (ASLR) can better foil kernel exploitation attempts.

6 Related Work

As virtualization has become a ubiquitous technology
[7, 12, 19, 31, 33], VM introspection also joins the trend,
gaining in strength and popularity. The ability to host vir-
tual machines as guests on one hardware platform has fa-
cilitated research capabilities which could not exist easily
before [2, 9, 14, 16, 17, 18, 22, 23, 27, 25, 29]. Besides the
overwhelming cost savings and consolidation related ben-
efits of virtualization technology, introspection techniques
have benefited as well. For example, with VM introspec-
tion, we can now analyze a running guest OS. This form of
live VM introspection has a much higher chance of bridging
the semantic gap [10] when compared to the static memory
image analysis of the past.

VM Introspection can be executed in two different ways.
The first one involves the introspection completely running
outside of the guest. Several examples of the external ap-
proach exist [2, 5, 14, 16, 17, 18, 21, 29]. This approach
benefits from a much stronger level of isolation, and thus
protection. Unfortunately, because this introspection isper-
formed outside of the guest, its view is also an external one
and cannot benefit from the implicit advantages afforded to
the internal view. Namely, an external view has to bridge a
significant semantic gap [10]. This results in a much more
complex implementation of introspection techniques with
its VMM-level view of the guest. In several of the imple-
mentations such as Livewire [14], VMwatcher [17], VM-
scope [16], and VMwall [29], the systems have to recon-
struct the semantics of what is executing within the guest
and thus are vulnerable to the proposed DKSM attack.

The second approach to VM introspection is to take a
hybrid approach by having two entities, one inside and an-
other outside. The goal here is to obtain the advantages of
having a semantic-rich view of the guest with the help of an
internal entity while still protecting the internal entityfrom
being corrupted. SIM [27] is a recent research system that
is moving towards this direction. However, in its current
implementation, the current internal agent, though running
inside the guest context, still suffers from the semantic gap
as it is designed not to rely on any existing kernel code. As
such, it is still vulnerable to the proposed DKSM attack.
From another perspective, as it is running inside the guest,
it has unique advantages that can be leveraged to be robust
in defending against the DKSM attack. It will be interesting
to examine this possibility in our future work.

The problem of VM introspection can be easily likened
to that of malware reverse engineering. Malware, similar
to a VM, offers no semantics which are directly available
for analysis. In this regard, the DKSM attack reflects the
ongoing arms-race [11, 15, 28] between malware obfusca-
tion and de-obfuscation. From another perspective, DKSM
is still constrained due to its need of transitioning commod-
ity OS kernel to support the manipulated data structure. As
discussed in Section 5, this constraint leads to several op-
portunities that can be explored for future defense.

7 Conclusion

In this paper, we have shown that current VM introspec-
tion techniques are subject to an attack called DKSM. By
violating their basic assumption about the use of underly-
ing kernel data structures, a DKSM attack can change the
syntax and semantics of kernel data structures in a running
guest. We have developed a proof-of-concept prototype and
used it to manipulate important system information (e.g.,
running processes, loaded kernel modules, and active net-
work connections) to successfully foil existing introspec-
tion tools into reporting false information. By exposing
this fundamental limitation, we aim to examine the chal-
lenges as well as opportunities for the development of next-
generation, reliable VM introspection techniques.
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