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Abstract—Software engineers are being asked to develop software for increasingly regulated environments. 
When systems are not dependably compliant, companies must pay the high cost of non-compliance, including 
the cost of lost reputation and brand damage. Regulations represent the minimum level of security and 
dependability with which systems must comply. We develop a methodology for creating production rule models 
to aid developers in specifying legally compliant software requirements. By querying production rule models, 
software engineers can gain valuable knowledge of the legal text. They can perform an initial compliance 
analysis and obtain preliminary compliance requirements that can be further refined in consultation with a 
lawyer. We model the law using the legal concepts of rights, obligations, privileges, no-rights, powers, liabilities, 
immunities, and disabilities. Herein, we develop heuristics for specifying production rules that model legal texts. 
We refined our methodology within the context of a case study in which we model the Privacy Rule, Part E, of 
the Health Insurance Portability and Accountability Act (HIPAA). 

Index Terms—Healthcare, Logic Programming, Regulatory Compliance, Requirements Engineering 
——————————   �   —————————— 

1 INTRODUCTION

Company and brand reputation are increasingly driving infor-

mation privacy and security concerns, as companies are becom-

ing more mindful of the negative press that often results from 

privacy and security breaches [9]. Eighty-five percent of the 

respondents to the 2008 Ernst & Young Global Information 

Survey reported that lost reputation and brand damage are key 

drivers for information security in their companies [9]. Laws 

and regulations represent the minimum level of privacy and 

security with which companies must comply; regulatory com-

pliance is the starting point of protecting company and brand 

reputation. 

When software systems are not dependably compliant, com-

panies must pay the high cost of non-compliance, including the 

cost of lost reputation and brand damage. For example, consider 

the ChoicePoint data breach case [27]. Identity thieves fraudu-

lently accessed 163,000 accounts resulting in at least 800 ac-

counts of identity theft [27]. ChoicePoint paid over 27 million 

dollars in penalties, including fines, legal fees, and victim resti-

tution, as well as complying with government audits for 20 

years [27]. Recently, one of these audits uncovered additional 

breaches compromising 13,750 records, for which ChoicePoint 

paid an additional $275,000 in penalties [19].  

Complying with laws and regulations is challenging, be-

cause legal texts contain ambiguities, cross-references to sec-

tions of the same or different legal texts, and possibly conflict-

ing definitions and domain-specific terminology [26]. In addi-

tion, laws and regulations undergo frequent updates and 

amendments, requiring software engineers to manage and track 

these changes [26]. Cross-references to external legal texts 

should be explored to obtain additional software requirements. 

Engineers unfamiliar with the laws governing a domain need 

tools and techniques to help identify compliance requirements. 

In this paper, we develop a methodology for creating pro-

duction rule models of legal texts. We model the law using the 

legal concepts of rights, obligations, privileges, no-rights, pow-

ers, liabilities, immunities, and disabilities [16]. In addition, we 

introduce heuristics to aid in specifying production rule models. 

By querying our model, software engineers can gain valuable 

knowledge of the legal text. They can perform an initial com-

pliance analysis and obtain preliminary compliance require-

ments that can be further refined in consultation with a lawyer. 

We do not seek to replace lawyers; instead, we propose supple-

menting interactions with lawyers to make these interactions 

more efficient and reduce the cost of complying with relevant 

laws and regulations. 

Production rules are stated using Horn clauses connected by 

logical operators [3]. Each rule is an if-then statement. Many 

such rules combine to create a knowledge base, also called a 

rules base. To interact with this rules base, a query is presented 

as a top-level goal. An inference engine then uses a reasoning 

strategy, usually backwards chaining, to execute the rules in the 

rules base. The result is an affirmation or a refutation of the 

original query [28]. 

We developed the methodology and heuristics by modeling a 

portion of the Health Insurance Portability and Accountability 

Act
1
 (HIPAA). We modeled the Privacy Rule, which regulates 

the use of protected health information (PHI) by certain organi-

zations called covered entities. Failure to comply with the HI-

PAA can result in civil penalties of $25,000 per individual per 

violation per year and criminal penalties of a quarter million 

dollars and 10 years imprisonment. 

Regulatory compliance in the healthcare domain is timely; in 

February 2009, President Obama signed the American Recov-

ery and Reinvestment Act of 2009
2
 (ARRA), a stimulus pack-

age which appropriates 17 billion dollars for developing elec-

tronic health record (EHR) systems [36]—systems that will be 

regulated by HIPAA. The ARRA provides incentives to health-

care providers to adopt EHRs, with the goal of providing an 

EHR for each U.S. citizen by 2014 [36]. This is a significant 

 

1 45 CFR Parts 160, 162, and 164 
2 Pub. L. No. 111-5. (2009) 
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challenge, given that 90% of hospitals in the U.S. currently lack 

even basic EHR systems [17].  

The remainder of this paper is outlined as follows: Section 2 

reviews related work; Section 3 provides an introduction to 

Prolog; Section 4 presents our methodology and heuristics for 

developing production rule models; Section 5 discusses our 

HIPAA case study; Section 6 considers threats to validity; and 

Section 7 provides summary remarks and outlines future work. 

2 RELATED WORK 

In this section, we discuss related work in requirements engi-

neering, logic programming, and expert systems. We model the 

law using Hohfeld’s eight legal concepts. A legal theorist, 

Hohfeld developed the concepts to clarify the meaning of the 

term “right” [16]. The eight Hohfeld concepts are: 
 

right – A claim an actor makes that places obligations on other 

actors [16]. For example, an individual has a right to be no-

tified of an organization’s privacy practices. 
 

obligation – An action an actor is required, by law, to carry out. 

Hohfeld calls these duties [16]. For example, a covered en-

tity is obligated to disclose PHI to the US Department of 

Health and Human Services (HHS) so that HHS can verify 

the covered entity’s compliance with HIPAA. 
 

privilege – An actor is free from an obligation. A privilege is an 

action an actor is allowed to perform but not required to 

perform [16]. For example, a covered entity has the privi-

lege to include a patient in its directory of individual’s in 

its facility. 
 

no-right – Explicitly states that an actor does not have a right 

[16]. For example, an inmate does not have the right to be 

notified of a covered entity’s privacy practices. 
 

power – The capability of an actor to change a legal relation 

and imply liabilities on others [16]. For example, covered 

entities have the power to enter into contracts with busi-

ness associates. 
 

liability – A responsibility to perform some action [16]. For 

example, business associate of a covered entity are liable to 

safeguard PHI, but are not obligated to do so until they re-

ceive PHI from the covered entity. 
 

immunity – Just as a privilege signifies that an actor is free from 

an obligation, an immunity expresses that an actor is free 

from a legal power [16]. In other words, an immunity is a 

no-liability. For example, in the US, non-profit organiza-

tions are immune from the liability of paying taxes. 
 

disability – Whereas a no-right express that another party does 

not hold a right, a disability expresses that a party does not 

hold a legal power [16]. For example, a covered entity does 

not have the power to authorize a business associate to use 

or disclose PHI beyond what HIPAA allows. 
 

The concepts are paired through the opposite and correlative 

relationships. A party cannot hold concepts that are opposites, 

for example, individuals cannot have both a right to amend PHI 

about them as well as a no-right to amend PHI about them. Cor-

relative concepts are concepts that imply each other. For exam-

ple, if an individual has a right to be notified of an organiza-

tion’s privacy practices, the organization is obligated to notify 

the individual. We discuss Hohfeld’s concepts further in Section 

4.1. 

2.1 Requirements Engineering and the Law 

In our previous work, we presented a methodology for develop-

ing production rule models [23]. We used the legal concepts of 

rights, obligations, and permissions (privileges) to model the 

law, and developed the methodology based on a case study of 

four HIPAA Privacy Rule sections [23]. Herein, we refine this 

methodology to include the additional Hohfeldian concepts of 

no-rights, powers, liabilities, immunities, and disabilities. As 

discussed in Section 5, these additional concepts allow us to 

capture important legal requirements that our previous analysis 

missed. In addition, we specify heuristics to aid in the develop-

ment of legal texts. We base our refined methodology and heu-

ristics on fifteen sections of the HIPAA Privacy Rule. We have 

used our four-section model for checking the iTrust Medical 

Records Systems requirements for HIPAA compliance [24]. 

Breaux et al. use the Frame Based Requirements Analysis 

Method (FBRAM) to extract rights and obligations from regula-

tory texts [5, 6, 8]. They applied their methodology to the HI-

PAA Privacy Rule, but focused on access control rules [6], 

whereas we model both the access control rules as well as the 

procedural rules placed on covered entities. Our ontology dif-

fers from Breaux et al.’s in that we incorporate all eight of the 

Hohfeldian concepts in our model, whereas Breaux et al. solely 

focus on rights and obligations [5, 8]. We previously used the 

three concepts of rights, obligations, and permissions to model 

the legal text [23]. We rename permissions to privileges to dis-

ambiguate from the use of the term “permission” as used in 

prior work—Breaux et al. uses permissions to denote rights [5, 

6, 8], whereas we denote privileges through our prior use of the 

term “permission.” We modify two techniques from Breaux et 

al’s methodology for use in our methodology presented in Sec-

tion 4. First, in normative phrase analysis, legal text statements 

are classified based on the natural language phrases in the state-

ment [5, 8]. As discussed in Section 4.1.1, we expand normative 

phrase analysis to include all eight of Hohfeld’s concepts, not 

just rights and obligations. Second, we employ rights and obli-

gations balancing to identify implied rights and obligations [8], 

that is, a right of one group imposes an obligation on others. In 

this paper, we expand rights and obligation balancing to ac-

commodate additional legal concepts (see Section 4.1.1). 

There have been two goal-oriented approaches to legal com-

pliance in the requirements literature. The Ghanavati et al. ap-

proach [11, 12] is based on the User Requirements Notation 

(URN), which is composed of use cases and an i*-like goal 

notation [43]. They use URN to model business practices and 

legal texts, and compare the two models using traceability links 

to identify potential areas of noncompliance [11, 12]. In con-

trast, we go beyond traceability between models by maintaining 

traceability across all requirements artifacts back to the legal 

text, and forwards to the software design and implementation. 

Ghanavati et al. limit their examination to business practices 

rather than software requirements, and do not explain how to 

specify their goal model of the law. The Siena et al. framework, 

called Nomos [34, 35], is similar to our approach in that they 

model the law using Hohfeld’s eight legal concepts [35], for-

malizing the concepts using deontic logic. They then extract the 
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concepts from the law and model them using a goal-oriented 

approach based on i*. However, Siena et al. do not analyze the 

Hohfeldian concepts individually; instead, they combine each 

of the correlative concepts into a single predicate [35]. As we 

will discuss in Section 5, failing to analyze all the concepts can 

overlook legal requirements. Additionally, Siena et al. do not 

provide guidance to software engineers about how to extract the 

concepts from the law, and only demonstrate their methodology 

on a textbook example. In contrast, we provide prescriptive 

guidance for extracting legal concepts from the law and have 

successfully applied our preliminary approach to an existing 

system [24]. 

Hassan and Logrippo extract compliance requirements from 

law using an approach based on the Unified Modeling Lan-

guage (UML) [15]. Once extracted, they model these require-

ments in Alloy, a logic-based modeling language. They specify 

categories of legal statements, such as declarative statements 

(declaring a fact) and procedural statements (if-then statements) 

[15]. Their only publication does not explain the extraction 

process [15] or how to classify legal statements. Using formal 

methods, like Alloy and description logic, is important for dem-

onstrating that legal compliance methods are automatable, but 

they are inefficient and too rigid given how regulations evolve 

[7]. 

May et al. formalize a section of HIPAA (§164.506) using 

Privacy APIs and then use the Spin model checker to find loop 

holes and perform other queries on the law [25]. They use pub-

lic comments from an earlier version of HIPAA to test their 

model [25]. Like production rule models, model is queryable. 

However, their model only covers one section of HIPAA, 

whereas we have modeled the entire HIPAA Privacy Rule, Part 

E. Additionally, they use simple flags to signify environmental 

variables and externally cross-referenced texts [25]. Thus, the 

software engineer is burdened with the task of manually follow-

ing and resolving external cross-references. 

2.2 Logic Programming and the Law 

Logic programming and the law was a popular area of research 

in the eighties and nineties [1, 2, 31, 32, 33]. Among these ef-

forts, our work is most similar to the ESPLEX project [2] in 

which the land leasing legislation used by Biagoli et al. is a 

general regulation impacting multiple domains. Similarly, the 

HIPAA impacts several domains: healthcare, law enforcement, 

the correctional system, educational institutions, etc. Biagioli et 

al. also outline a methodology, albeit by example only, for con-

verting legal texts to production rules and for identifying obli-

gations and permissions in the legal text. Research to date has 

failed to provide a repeatable, systematic methodology for 

translating legal texts into production rules, instead using a trial 

and error methodology [32], whereas others only present their 

methodology by example [1, 2, 31]. Finally, the methodologies 

used in legal knowledge based systems have been criticized as 

being too ad hoc to be reliable or maintainable [39]. 

Our work differs from prior work in logic programming in a 

few specific ways. First, the nature of the HIPAA legislation is 

inherently different from that of legislation used in prior work 

in production rule modeling of legal texts [1, 31, 32, 33]. The 

legal documents used in these efforts usually seek to answer a 

single question. For example, in the British Nationality Act 

effort [32], the query considered is whether or not an individual 

is a British citizen. In contrast, the HIPAA Privacy Rule does 

not have one query that unifies the document. Instead, its broad 

nature allows many possible queries; for example, queries about 

access control and the right of notice, the interactions between 

organizations, etc. Moreover, there are 31 different types of 

stakeholders mentioned in the HIPAA Privacy Rule alone. HI-

PAA’s broader scope makes it challenging to predict potential 

queries. We employ Hohfeld’s concepts to capture a broader 

range of potential queries on the model because all are required 

in order to provide a holistic view of a compliant software sys-

tem [22]. Second, no prior work has used production rule mod-

els to create legally compliant software. Instead, they focused 

on: improving the understanding of law using production rules 

[2]; knowledge representation research rather than practical 

uses of production rule models [1, 32]; aiding law makers in 

drafting legislation [32]; and legal reasoning [2, 31, 33]. Third, 

we consider all the Hohfeldian concepts that are expressed in 

the regulations, not just obligations and privileges. Because 

rights impose obligations on other parties [8], they are an im-

portant source of legal requirements. 

Lam et al.’s proof of concept compliance checker determines 

whether an email message complies with three HIPAA Privacy 

Rule sections before it is transmitted [20]. To accomplish this, 

they translated the three sections into a version of Prolog, fo-

cusing on paragraphs that address access to Protected Health 

Information (PHI) [20]. Based on this analysis, they develop a 

set of eight message characteristics, used to make compliance 

decisions, but do not justify why these message characteristics 

are sufficient to determine compliance [20]. In contrast, we 

specify a variety of legal preconditions beyond Lam et al.’s 

eight message characteristics [23, 24]. Additionally, they do not 

provide a means to verify that their formalization provides a 

correct interpretation of the law [20]. They claim that handling 

cross-references is easy but fail to show how [20], and re-

searchers have repeatedly noted that cross-references are both 

challenging and critical in determining legal compliance with 

confidence [1, 6, 14, 25, 26]. 

2.3 Expert Systems and Law 

An expert system captures the knowledge of a human expert in 

a particular domain and makes it accessible for non-experts [13, 

21]. Like production rules, expert systems also have a knowl-

edge base and an inference engine to make use of that knowl-

edge [30]. Visser et al. provide a methodology, based on the 

CommonKADS methodology [30], for constructing legal 

knowledge-based systems that seek to replicate the legal rea-

soning performed by a lawyer [40, 41]. Bench-Capon describes 

expert systems as: interactive; based on one narrow domain of 

expertise; having the ability to reason under uncertain or in-

complete information; and capturing “rules of thumb” used by 

domain experts. Popple defines a legal expert system as a “sys-

tem that provides answers to legal questions in a form that one 

would expect from a lawyer” and that “the output from [a legal 

expert system] should be usable without further legal analysis” 

[29]. We do not seek to construct an expert system nor do we 

seek to replace lawyers because legal interpretation is complex, 

changes over time, and depends on factors beyond the text of a 

legal document, such as case law, industry standards and cur-

rent practice, and administrative clarifications. 
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3 PROLOG PRIMER 

We employ Prolog to encode production rules because of its 

relatively straightforward design and its prior use in the area of 

legal knowledge representation [1 2, 31, 32, 33]. The syntax of 

a Prolog rule is: 
 

<result> :- 
 <condition1>, 

 <condition2>, ... 
 <conditionN>. 
 

Where the symbol :- is interpreted as the if conditional, the 

comma symbol is interpreted as logical-and, and the period 

symbol is interpreted as a full stop (the end of a rule). The result 

is evaluated to true only if {condition1, condition2,..., 

conditionN} are evaluated to true. The Prolog rule fa-

ther(X,Y) :- male(X), child(Y,X) is read “X is the 

father of Y if X is male and Y is the child of X.” 

In Prolog, an atom is a quoted string, name, or a sequence of 

special characters (:- is one example). A variable signifies a 

single yet unspecified quantity and begins with a capital letter. 

A predicate is a relationship between atoms [37]. The produc-

tion rule model makes use of two built-in Prolog predicates. 

The assert(NewFact) procedure adds a new fact to the 

knowledge base. Similarly, the retract(Fact) procedure 

removes the first occurrence of the specified fact from the rules 

base [37]. 

The strength of Prolog to answer queries comes from two 

concepts: unification and backtracking [28]. Unification occurs 

when the inference engine attempts to find a single value to 

bind to multiple occurrences of a variable. For example, unifi-

cation would occur if a single value is found for the variable 

Org in the predicates coveredEntity(Org) and health-

Plan(Org). The inference engine uses backtracking to deter-

mine the result of a query. The initial query is treated as a top-

level goal, then the engine searches the rules to determine the 

goal’s value through trial and error. 

The distinction between Prolog and production rules is the 

use of working memory, a temporary storage area where inter-

mediate results are stored. With working memory, a result only 

needs to be computed once, and can then be reused at many 

stages of computation. Lacking working memory, Prolog re-

computes each intermediate result, even if it has been computed 

before. We add temporary storage to Prolog, however, by add-

ing a working memory predicate, wm(X), where X is an element 

in working memory. Once an intermediate result is computed, 

we add it to the working memory. When an intermediate result 

is required, this memory is checked before the result is com-

puted. At the completion of a query, the memory is erased. 

4 METHODOLOGY WITH HEURISTICS 

In this section, we describe our methodology for creating pro-

duction rule models of legal texts. Figure 1 displays the Produc-

tion Rule Modeling methodology. The inputs to the methodol-

ogy are a legal text and a legal ontology. The methodology con-

sists of a preparatory step, Create Rule Patterns of Ontological 

Concepts, and two activities, Specify Production Rules and 

Refactoring. In the preparatory step, the software engineer de-

fines rule patterns for each concept in the inputted legal ontol-

ogy (Section 4.1). The two activities are described below: 
 

Activity 1: Specify Production Rules 

Step 1. Classify the rule pattern based on the lan-

guage present in the legal text. 

Step 2. Identify the rule parameters for the pattern 

classified in step 1. 

Step 3. Identify which preconditions cause a rule to 

be applied. 

Step 4. Remove disjunctions using case splitting 

Step 5. Identify rules implied by the ontology. 

Activity 2: Refactor – Identify patterns in the rules to reduce 

rule and condition count. 
 

The output of the methodology is a production rule model of 

the legal text. In the remainder of this section, we describe the 

legal ontology we use in our case study, heuristics for specify-

ing production rules, and heuristics for refactoring. 

We define two terms that we use in this section. First, a 

statement is an independent clause in the legal text. Second, an 

actor is a person, organization, or other entity explicitly defined 

or referenced in the legal text. Example actors include a cov-

ered entity, a doctor, and a health insurance issuer. 

4.1 Legal Ontology & Rule Patterns 

 

Fig. 1. Production Rule Modeling Methodology Overview 
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In this subsection, we present the legal ontology we used to 

model the law and the Prolog pattern for each concept in the 

ontology. In our case study, we used the Hohfeldian concepts to 

model the law. We provide definitions for each of these con-

cepts in Section 2. 

Table 1 displays the eight Hohfeldian concepts, the produc-

tion rule pattern that expresses that concept, the correlative con-

cept, the opposite concept, and the normative phrases used to 

identify the concept in the Privacy Rule. For each of the 

Hohfeldian concepts, we specify a production rule pattern dur-

ing the preparatory step Create Rule Patterns of Ontological 

Concepts. For example, if a covered entity is obligated by 

§164.512(f)(2)(ii) of the Privacy Rule to not disclose PHI to a 

third party, we express this obligation as: 
 

must(CE, 

 not(discloses(CE, 

   ThirdParty 

   PHI 

 ‘164.512(f)(2)(ii)’). 
 

To maintain traceability from the legal text to the production 

rules, we adopt Sherman’s solution [33]; we include an addi-

tional parameter, Source, with each pattern specifying the 

source of the rule. For instance, the obligation listed above is 

specified in §164.512(f)(2)(ii) of the HIPAA Privacy Rule. 

Each of the Hohfeldian concepts has a correlative concept 

[16]—one concept implies another concept. For example, if an 

individual has a right to be notified of the uses and disclosures 

of his PHI by a covered entity, the covered entity is obligated to 

provide such a notice. Table 1 lists the concept implied by each 

concept. We discuss implied rules further in Section 4.2.5. Also, 

each concept has an opposite concept—an actor cannot hold 
both a concept and its opposite. Table 1 lists each con-
cept’s opposite concept. We use opposite concepts to ex-
press exception cases in Section 4.2.3. To classify sections of 

the legal text, we use normative phrase analysis [8]; we list the 

normative phrases in Table 1. Immunities lack normative 

phrases because we did not encounter either of these concepts 

expressed in the Privacy Rule. We discuss this normative phrase 

analysis further in Section 4.2.1. 

4.2 Heuristics for Specifying Production Rules 

In this section, we present heuristics for each of the five steps in 

the Specify Production Rules activity. We illustrate our meth-

odology and heuristics using concrete examples from our HI-

PAA Privacy Rule case study. As done in related work [5], we 

do not include document meta-information such as table of 

contents, title pages, appendices, or paragraph and section head-

ings in our analysis. Our methodology steps are sequential, but 

the heuristics for a particular step need not be applied sequen-

tially. 

When specifying production rules, one should keep the 

wording as close to that of the original legal text as possible. 

For example, in different contexts in the Privacy Rule, the terms 

“notify”, “inform”, and “alert” are used. These terms are nearly 

synonymous, so analysts might be tempted to use a single 

Prolog predicate to model them. However, there may be some 

legal nuance that makes these terms different. Therefore, we 

create the Prolog predicates notify, inform, and alert to 

model these three Privacy Rule terms, respectively. Consulta-

TABLE 1 
HOHFELDIAN CONCEPTS, RULE PATTERNS, AND CLASSIFICATION PHRASES 

Concept Production Rule Pattern Implied 
Concept 

Opposite 
Concept 

Normative Phrases 

right right(Actor,Counterparty,Right,Source) obligation no-right 
has a/the right to 
retains the right to 

obligation obligation(Actor,Obligation,Source) right privilege 

must 
is required to 
shall 
may not 
is prohibited 
is subject to 

privilege privilege(Actor,Privilege,Source) no-right obligation 

may 
may elect not to 
is not required to 
requirement does not apply 
is permitted to 
at the election of 
is not subject to 

no-right noRight(Actor,NoRight,Source) privilege right does not have a right to 

power power(Actor,LegalRelation,Power,Source) liability disability 

authorize termination of 
must obtain an authorization 
may revoke 
may terminate 

liability liability(Actor,Liability,Source) power immunity 
provide that <actor> will/must 
obtain assurances that 

immunity immunity(Actor,Counterparty,Power,Source) disability liability (none found) 

disability disability(Actor,Power,Source) immunity power may not authorize 
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tion with legal domain experts can clarify nuances in meaning 

of these terms. 

Otto and Antón document the challenge of ambiguity in le-

gal texts [26]. When modeling the law, we do not attempt to 

resolve ambiguous terms such as “reasonable,” “sufficient,” or 

“adequate”. The law uses such language to allow legal domain 

experts to make determinations based on the context of a par-

ticular case. In our model, we introduce the predicates rea-

sonable, sufficient, and adequate to model these terms, 

respectively , and do not attempt to determine what actions are 

reasonable, sufficient, or adequate. Case law, industry best prac-

tices, and Federal agency clarification documents can be used to 

clarify these terms, but are outside the scope of our model. 

Throughout the remainder of this section, we will illustrate 

our heuristics using a concrete example from HIPAA, 

§§164.510(a)(1)(i)(A-D), displayed in Figure 2. 

Preparatory Heuristic 1 (PH1): Split continuations into sepa-

rate rules 

Oftentimes, a legal statement is broken across a list. For ex-

ample, the legal statements in Figure 2 are split across multiple 

sections of the legal text. This is called a continuation and re-

sults in multiple legal rules [5]. The text in sections (1) and (i) 

of the legal text are prepended to the text in subsections (A), 

(B), (C), and (D), resulting in four legal rules: 

1. “Except when an obligation is expressed in accordance 

with paragraphs (a)(2) or (a)(3) of this section, a covered 

healthcare provider may use the following PHI to maintain 

a directory of individuals in its facility: the individual’s 

name.” 

2. “Except when an obligation is expressed in accordance 

with paragraphs (a)(2) or (a)(3) of this section, a covered 

healthcare provider may use the following PHI to maintain 

a directory of individuals in its facility: the individual’s lo-

cation in the covered health care provider’s facility.” 

3.  “Except when an obligation is expressed in accordance 

with paragraphs (a)(2) or (a)(3) of this section, a covered 

healthcare provider may use the following PHI to maintain 

a directory of individuals in its facility: the individual’s 

condition described in general terms that does not commu-

nicate specific medical information about the individual.” 

4. “Except when an obligation is expressed in accordance 

with paragraphs (a)(2) or (a)(3) of this section, a covered 

healthcare provider may use the following PHI to maintain 

a directory of individuals in its facility: the individual’s re-

ligious affiliation.” 

4.2.1 Classify Rule Pattern Heuristics 

Classifying statements in the legal text as one of the rule pat-

terns (presented in Section 4.1) requires using two classification 

heuristics. 
 

Classification Heuristic 1 (Cla1): Classify using normative 

phrase analysis 

We use normative phrase analysis to classify rules according 

to the natural language phrases used in the legal text [8]. Table 

1 in Section 4.1 displays the normative phrases we use to clas-

sify rule patterns. For example, we classify the legal statement 

in Figure 2 as a privilege because of the natural language phrase 

“may.” When multiple normative phrases are identified, we use 

the most inclusive normative phrase. For instance, §164.502(a) 

states that “a covered entity may not use or disclose PHI…” We 

classify this statement as an obligation (using the phrase “may 

not”) instead of a privilege (using only the phrase “may”). 

Cla2: Add obligations for “only” phrase 

When we encounter the term “only”, we add an obligation to 

the model. For example, §164.502(d)(2)(ii) states that if deiden-

tified information is somehow reidentified, a “covered entity 

may use or disclose such reidentified information only as per-

mitted or required” by HIPAA. This statement expresses a cov-

ered entity’s privilege to use or disclose reidentified information 

in the same way it uses or discloses other PHI. The statement 

also represents that a covered entity may only use the reidenti-

fied information in such a manner. Thus, we add the obligation 

“a covered entity must not use or disclose reidentified informa-

tion in violation of HIPAA” to the model. 

 

After the Classify Rule Pattern step, the production rule ex-

pressing section (A) in Figure 2 is privilege(_,_,_). 

4.2.2 Identify Rule Parameters Heuristics 

Identifying the parameters for the rule patterns classified in the 

previous step entails the use of four identification parameters 

heuristics. 
 

Identify Rule Parameters Heuristic 1 (Par1): Identify the actor 

who is subject to rule 

We identify the actor who is subject to a rule by identifying 

the subject of the statement. For example, the actor subject to 

the privilege in section (1)(i)(A) in Figure 2 is a covered health-

care provider. Where possible, we identify the most specific 

actor. For example, HIPAA defines both healthcare providers 

and covered healthcare providers. We identify the actor in sec-

tion (1)(i)(A) as a covered healthcare provider because it is the 

more specific than healthcare provider. 

Par2: Identify the legal relation affected by a power 

A power grants an actor the ability to change a legal relation. 

We identify the relation the actor is able to change in this heu-

ristic. For example, §164.504(e)(2)(iii) authorizes a covered 

entity to terminate a contract with a business associate if the 

associate has violated the agreed-upon contract. The legal rela-

tion the covered entity has the power to change is the legal con-

tract between the covered entity and the business associate. 

Par3: Identify the rule action 

The rule action is the action the actor has a right to perform, 

the action the actor is obligated to perform, etc. It is the portion 

of the legal statement immediately following the normative 

(1) Except when an objection is expressed in accordance 
with paragraphs (a)(2) or (3) of this section, a covered health 
care provider may: 
(i) Use the following protected health information to maintain 
a directory of individuals in its facility: 
(A) The individual's name; 
(B) The individual's location in the covered health care pro-
vider's facility; 
(C) The individual's condition described in general terms that 
does not communicate specific medical information about 
the individual; and 
(D) The individual's religious affiliation 

Fig. 2. §§164.510(a)(1)(i)(A-D) of the  
HIPAA Privacy Rule 
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phrase identified in the Classify Rule Pattern step (Section 

4.2.1). For example, in Figure 2, section (A), the action the 

covered healthcare provider is allowed to perform is “use the 

following PHI to maintain a directory of individuals in its facil-

ity: the individual’s name.” 

Par4: Identify the rule source 

The source of each rule is the full section reference. In the 

case of continuations, the source is the lowest subsection in the 

legal document hierarchy that is a part of the legal statement. 

For example, the source for section (A) in Figure 2 is 

‘164.510(a)(1)(i)(A)’. 

 

After step 2, Identify Rule Parameters, the production rule 

expressing section (A) in Figure 2 is: 
 

privilege(CHCP, 

for(uses(CHCP,name(Individual)), 

    maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) 

4.2.3 Identify Rule Preconditions Heuristics 

This step entails identifying the legal preconditions that cause a 

rule to be applicable, and uses four heuristics. 
 

Identify Rule Preconditions Heuristics (Pre1): Identify type-

checking preconditions 

Prolog is typeless; thus, we add preconditions to check the 

types of actors, objects, and relations used in the rule. For ex-

ample, for the privilege in section (A) in Figure 2, we express 

that an organization is a covered healthcare provider using the 

Prolog predicate isCHCP(CHCP). 

Pre2: Identify preconditions expressing exceptions 

Exceptions are expressed using the natural language phrases 

“except”, “is not effective under”, “other than”, “does not apply 

to”, “notwithstanding”, and “unless.” For example, the privilege 

in section (A) of Figure 2 does not apply if the individual has 

expressed an objection according to (a)(2) or (a)(3). We per-

form two actions when we encounter an exception. First, a we 

add a precondition that is a negation of the exception condition 

to the production rule. For the example text, the precondition “if 

the individual did not express an objection according to (a)(2) 

or (a)(3)” is added to the privilege “a covered healthcare pro-

vider may use the following PHI to maintain a directory of in-

dividuals in its facility: the individual’s location in the covered 

health care provider’s facility.” Second, we create a new rule 

expressing the exception (opposite) case. For the example text, 

a new production rule is created expressing that a covered 

healthcare provider may not (is obligated to not) use an individ-

ual’s name for their directory if the individual has expressed an 

objection. Each concept’s opposite is listed in Table 1 in Section 

4.1. 

Pre3: Identify preconditions using precondition keywords 

We identify preconditions in the legal statement that follow 

the phrases “if,” “when,” “whenever,” “that”, “who”, “whose”, 

“to the extent that”, and “provided that”, as well as temporal 

phrases such as “after”, “prior”, and “for as long as”. For exam-

ple, in section (a)(3) of §164.510, a covered healthcare provider 

may use an individual’s name for their directory, “if the oppor-

tunity to object to uses or disclosures to uses or disclosures 

required by paragraph (a)(2) of this section cannot practicably 

be provided because of the individual’s incapacity”. We add this 

precondition to the production rule that expresses (a)(3). 

Pre4: Identify preconditions from cross-references 

Cross-references must be carefully followed to obtain addi-

tional preconditions. For example, in Figure 2, we add the pre-

condition “the objection is in accordance with (a)(2) or (a)(3)” 

to the rules for (A). The analyst must follow this cross-

reference and determine what preconditions are relevant—

which can introduce ambiguity, because cross-references may 

refer to only part of the referenced statement [5]. 

Preconditions may be added by a cross-referencing state-

ment in the legal text, that is, an entirely separate legal state-

ment may place preconditions on a legal statement. For exam-

ple, consider HIPAA §164.512(f)(6)(ii): 

If a covered health care provider believes that the medical 
emergency described in paragraph (f)(6)(i) of this section 
is the result of abuse, neglect, or domestic violence of the 
individual in need of emergency health care, paragraph 
(f)(6)(i) of this section does not apply and any disclosure to 
a law enforcement official for law enforcement purposes is 
subject to paragraph (c) of this section. 

This statement adds an exception precondition to paragraph 

(f)(6)(i). Thus, we must revisit the production rules associated 

with (f)(6)(i) and add an exception precondition to those rules 

using PrH2. 

We performed our analysis of the Privacy Rule sequentially, 

beginning with the first section. When we encountered a for-

ward cross-reference, for example, (a)(1)(i)(A) in Figure 2 con-

tains a forward reference to (a)(2) and (a)(3). We tabled these 

references until we modeled the referenced sections. 
 

After step 3, Identify Rule Preconditions Heuristic, the pro-

duction rules expressing section (A) in Figure 2 are: 
 

privilege(CHCP, 

for(uses(CHCP,name(Individual)), 

    maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 
not(s164_510a1_exception(CHCP,Individual)). 

obligation(CHCP, 

not(for(uses(CHCP,name(Individual)), 

    maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

s164_510a1_exception. 

4.2.4 Remove Disjunctions Heuristics 

This step entails identifying and removing disjunctions through 

case splitting. By convention, Prolog rules are expressed using 

only logical-and. 

Remove Disjunctions Heuristic 1 (Dis1): Split “or” 

We case split the natural language phrase “or” into multiple 

rules. For example, in section (A) of Figure 2, there two cases: 

(1) when an objection is expressed according to (a)(2), and (2) 

when an objection is expressed according to (a)(3). 

Dis2: Split logical-or’s masquerading as “and” 

As identified by Breaux, legal texts contain logical ambigu-

ity [5], where the legal text will use the word “and,” but in con-

text, it is a logical-or. For example, HIPAA 

§164.504(e)(2)(i)(A) states: 
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The contract [between the covered entity and business 
associate] may permit the business associate to use and 
disclose PHI for the proper management and administra-
tion of the business associate 

This statement allows the business associate to “use and dis-

close PHI” for their administrative tasks. If we interpret this to 

mean a logical-and, then the business associate has no option to 

use the PHI without disclosing it as well. However, if we inter-

pret this to be a logical-or, then the business associate may use 

the information for their own internal processes without disclos-

ing it to a third party. In this heuristic we split this “and” using 

case splitting, just as we would an “or.” 

 

After step 4, Remove Disjunctions, the production rules ex-

pressing section (A) in Figure 2 are: 
 

privilege(CHCP, 

for(uses(CHCP,name(Individual)), 
    maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

not(s164_510a2_objection). 

privilege(CHCP, 

for(uses(CHCP,name(Individual)), 

    maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

not(s164_510a3_objection). 

obligation(CHCP, 

not(for(uses(CHCP,name(Individual))), 

    maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

s164_510a2_objection. 

obligation(CHCP, 

not(for(uses(CHCP,name(Individual))), 

    maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

s164_510a3_objection. 

4.2.5 Identify Ontological Implications 

Depending on the ontology used to model the production rules, 

the software engineer may infer additional facts to add to the 

database. Using the Hohfeldian concepts, each concept implies 

its correlative concept. The implied concepts are listed in Table 

1 in Section 4.1. Implied rules are important to obtain, because 

codifying them increases requirements coverage and provides 

important traceability information to aid in establishing due 

diligence [8]. Breaux et al. introduced rights and obligations 

balancing identify implied rights and obligations in HIPAA. We 

expand rights and obligations balancing to balancing all implied 

rules and add them during this step. For example, the privilege 

in section (A) of implies a no-right on the individual, whereas 

the obligation expressed in section (A) implies a right on the 

individual. 
 

The production rules after we complete the Specify Produc-

tion Rules activity that express section (A) are displayed the 

Appendix. 

4.3 Refactoring Heuristics 

After translating each legal statement, we check the entire rule 

base for refactoring opportunities. Refactoring is an optional 

supplemental activity; the rules generated during the Specify 

Production Rules are a complete production rule model. Fowler 

identifies advantages of refactoring, including improving soft-

ware design, making software easier to understand, aiding in 

debugging, and improving software engineer productivity [10]. 

When refactoring, we seek to identify common patterns to re-

duce rule and condition count. Fewer rules and conditions can 

lead to a more readable rules base. Additionally, we refactor 

some rules to increase performance. In this section, we review 

the refactoring techniques we employed in our case study. 

Refactoring Heuristic 1(Ref1): Group common cases 

This heuristic reduces the rule count by grouping common 

cases that were split during the Remove Disjunctions step (Sec-

tion 4.2.4). For example, in section (A) of Figure 2, the two 

exception cases, (a)(2) and (a)(3) can be grouped using one 

predicate, for example, s164_510a2_or_a3_objection, and 

the preconditions modified accordingly. We discuss this heuris-

tic in our prior work [23]. 

Ref2: List conditions with many alternatives last 

To improve Prolog search efficiency, Bratko suggests to stop 

processing pointless alternatives and avoid needless backtrack-

ing [4]. Conditions with many alternatives can cause both point-

less alternatives and needless backtracking; in this refactoring 

technique, we move conditions with many alternatives to the 

end of the conditions list to improve efficiency. 

Ref3: Reduce logic load for common cases 

In this heuristic, we add additional rules to reduce the logic 

load for common cases, using transitivity. For example, con-

sider a production rule model that contains the rules A :- B 

and B :- C. If C is a precondition that is used in many produc-

tion rules, we reduce the number of subgoals the inference en-

gine must prove by asserting the rule A :- C. 

Ref4: Group common preconditions 

In our previous study, many rules shared a set of common 

preconditions [23]. To reduce precondition count, we group 

these preconditions into a single predicate that is true when the 

preconditions are true. We then replace the common precondi-

tions with the new predicate. 

5 DISCUSSION 

This section discusses our experiences in modeling the HI-

PAA Privacy Rule. The Privacy Rule comprises 45 CFR Part 

160 and Part 164, Subparts A and E [38]. Our analysis focuses 

on Subpart E, which describes privacy requirements for covered 

entities. The only portion of Part 160 that we model is 

§160.103, which contains defines key terms used throughout 

the Privacy Rule. We do not model the remainder of Part 160, 

which describes enforcement, penalties, and other requirements 

for governmental agencies, or Part 164, Subpart A, which de-

scribes applicability and covered entities’ legal options under 

HIPAA. 

The HIPAA Privacy Rule, Part E comprises §§164.500-

164.534, a total of 37 printed pages. Our model contains 2,258 

rules and is written using the SWI-Prolog
3
 implementation. 

Section 164.534 contains the compliance dates for various cov-

ered entities. Because all the compliance dates have passed, we 
 

3 http://www.swi-prolog.org/ 
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did not model this section. It took approximately 294 man-

hours to construct a production rule model of the Privacy Rule. 

To the best of our knowledge, based on a survey of over 150 

publications [26], we are the first to model an entire Federal 

regulation. As mentioned in Section 2, Breaux and Antón ana-

lyzed the Privacy Rule, but focused solely on access control 

rules [6]. 

Table 2 displays the number of production rules expressed 

using each of the concept patterns. Disjunction splitting and 

refactoring impacts the number of production rules that express 

each of the concepts. The majority of the concepts identified in 

our case study were privileges and obligations. In the Privacy 

Rule, the majority of these privileges and obligations are placed 

upon covered entities, whereas, individuals hold rights and the 

majority of the implied no-rights. We did not encounter any 

immunities expressed directly in the Privacy Rule; instead, they 

are implied by disabilities. 

The Hohfeldian concepts allow us to identify legal require-

ments that we failed to identify in our previous study [23]. For 

example, section 164.520 of the HIPAA Privacy Rule regulates 

a covered entity’s notice of privacy practices. Section 

164.520(a)(3) contains two legal statements: 1) “An inmate 

does not have a right to notice under this section”, and 2) “the 

requirements of this section do not apply to a correctional insti-

tution that is a covered entity.” Statement one is a no-right, in-

dicated by the phrase “does not have a right to.” The second 

statement is a privilege, indicated by the phrase “require-

ments…do not apply.” In our previous study, we failed to clas-

sify the first statement as a no-right, instead classifying all of 

§164.520(a)(3) as a privilege, because our methodology did not 

include all the Hohfeldian concepts. 

We classify and model all of the Hohfeldian concepts indi-

vidually. Identifying the Hohfeldian concepts individually is 

important for software engineers to capture for three reasons. 

First, they establish exceptions and priorities between legal 

requirements, which Breaux and Antón found to add additional 

constraints and requirements to legal rules [6]. Second, captur-

ing the concepts implied by the additional Hohfeldian concepts 

is important for legal compliance. For example, no-rights imply 

privileges on the counterparty. In the no-right from 

§164.520(a)(3), the implied privilege is “a correctional institu-

tion is not required to provide a notice of privacy practices to 

inmates.” Identifying this privilege could save a correctional 

institution the expense of notifying their inmates and allow 

software developers to not have to build this functionality into 

their systems. On the other hand, software developers may have 

to build this functionality into their EHRs, if they are develop-

ing systems that will be deployed in other covered entities in 

addition to correctional institutions. Third, engineers can iden-

tify inconsistencies in the law using the opposite concepts. For 

example, the law is inconsistent if an individual can hold both a 

no-right and the opposite right. 

In the Privacy Rule, liabilities are placed on third parties, 

e.g., business associates of covered entities. Business associates 

can include IT, legal, and accounting firms [18]. For instance, 

§164.504(e)(2)(ii)(B) states that business associates is liable to 

safeguard the information entrusted to them. It is important to 

model these liabilities, because the ARRA expanded the re-

quirements of HIPAA for business associates, requiring them to 

comply with the Privacy Rule [18]. 

Breaux identifies various kinds of ambiguity in legal texts, 

such as logical ambiguity, attributive ambiguity, referential 

ambiguity, and under-specification. During our case study, we 

identified an addition kind of ambiguity: structural ambiguity. 

Structural ambiguity occurs when different levels of a hierar-

chical document use the same symbols to denote headings. For 

example, Figure 3 displays an example of structural ambiguity. 

There are two top-level sections in Figure 3, labeled (a) and (b). 

There are two subsections in (b), labeled (1) and (2). Section (2) 

also has subsections, labeled (a) and (b). The ambiguity is sec-

tion (c), which has been bolded in the figure. Heading (c) could 

be interpreted as a top-level section or as a subsection of (b)(2). 

This ambiguity exists in the Privacy Rule because the Privacy 

TABLE 2 
CONCEPT AND RULE COUNTS 

Concept Explicit Implied 

Rights 9 258 

Obligations 258 9 

Privileges 177 2 

No-Rights 2 177 

Powers 7 29 

Liabilities 29 7 

Immunities 0 2 

Disabilities 2 0 

 

TABLE 3 
MOST FREQUENT NORMATIVE PHRASES 

must 215 

may 154 

may not 26 

provide that <actor> will 25 

has a/the right to 11 

is permitted to 7 

may revoke 6 

is not required to 4 

 TABLE 4 
HEURISTIC USE 

Concept Cla1 Cla2 Par1 Par2 Par3 Par4 Pre1 Pre2 Pre3 Pre4 Dis1 Dis2 

right 12 0 12 0 12 12 20 12 4 10 5 1 

obligation 249 4 249 0 249 249 356 35 100 154 88 6 

privilege 175 13 175 0 175 175 358 25 165 129 120 7 

no-right 1 0 1 0 1 1 5 0 4 4 0 0 

power 5 0 5 5 5 5 7 3 5 0 2 0 

liability 27 0 27 0 27 27 53 3 8 6 11 1 

immunity 0 0 0 0 0 0 0 0 0 0 0 0 

disability 2 0 2 0 2 2 5 0 1 1 3 0 
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Rule reuses numerals at different levels of the hierarchy, as well 

as the symbol i (the lower case letter) and i (the first Roman 

numeral). For example, §164.514(e)(4)(ii)(C) of the Privacy 

Rule contains subsections labeled (1)-(4). The next section is 

labeled (5) and could be interpreted as §164.514(e)(4)(ii)(C)(5) 

or §164.514(e)(5). To resolve this ambiguity, software engi-

neers must use other context clues, such as continuations or 

surrounding section headings, to determine the correct interpre-

tation. In the Privacy Rule example, section (5) is a level 5 

heading, because the next section is (iii). If section (5) was a 

level 2 heading, the next section would be (i). 

Recall we introduced thirteen heuristics for the Specify Pro-

duction Rules activity. We applied the heuristics to the HIPAA 

Privacy Rule as follows. When we applied the preparatory heu-

ristic, PH1 Split Continuations into Separate Rules, we identi-

fied 157 continuations. The remaining heuristics are applied 

after we resolve these continuations. Table 3 displays the most 

frequent normative phrases in the Privacy Rule. The normative 

phrases not listed in Table 3 occurred only two times or less in 

the Privacy Rule. Table 4 lists the number of times we applied 

our heuristics, and the concept to which the heuristic was ap-

plied. 

As a result of our analysis of the HIPAA Privacy Rule, we 

discovered that privileges are more complex than obligations. 

In Table 4, we see that we classify 74 fewer privileges than 

obligations. Despite of this, privileges have the same number of 

type-checking preconditions as obligations, 65 more precondi-

tions identified using precondition keywords, only 25 fewer 

cross-reference preconditions, 32 more disjunctions, and one 

more disjunction masquerading as a logical-and. This suggests 

that the question “what must an organization do to comply with 

the law?” is less complex, though still challenging, than the 

question “what is an organization allowed to do under the law?” 

6 THREATS TO VALIDITY 

For any case study, it is important to consider any threats to 

validity. Thus far, we have only examined one regulation. This 

threatens the external validity of our study; external validity 

addresses the ability of a case study’s findings to be generalized 

to other studies [42]. Future studies examining legal texts in 

different domains will further validate the methodology pre-

sented herein. We make no causal inferences, there are no 

threats to the internal validity of our study [42]. 

The case study was performed by researchers who have 

prior knowledge of the HIPAA regulation. Allowing that previ-

ous knowledge of the regulation guide the modeling process is a 

threat to our study’s reliability—the ability to repeat the case 

study and produce similar results [42]. To mitigate this threat to 

reliability, we carefully followed the methodology presented in 

Section 4. 

Construct validity addresses the degree to which a case 

study is in accordance with the theoretical concepts used [42]. 

Three ways to reinforce construct validity are: use multiple 

sources of evidence, establish a chain of evidence, and have key 

informants review draft case study reports [42]. While we only 

used one source of evidence for this case study, the HIPAA 

Privacy Rule, future studies will validate and refine the heuris-

tics presented herein. To establish a chain of evidence, we care-

fully documented the techniques we used when modeling the 

Privacy Rule; these techniques became the heuristics presented 

in Section 4. Finally, our draft case study report was reviewed 

by several ThePrivacyPlace
4
 members. 

7 SUMMARY AND FUTURE WORK 

In this paper, we presented a methodology for developing pro-

duction rule models, and a set of heuristics for specifying the 

models. We developed the methodology and heuristics through 

a case study modeling the HIPAA Privacy Rule.  

Prior researchers have identified cross-referencing as a chal-

lenging problem for software engineering [1, 8, 26], because 

engineers must carefully follow cross-references to obtain addi-

tional legal requirements, exceptions, conditions, and priorities. 

A simple classification of cross-references is internal and exter-

nal cross-references. An internal cross-reference is a citation 

from one portion of a legal text to another portion of the same 

text. An external cross-reference is a citation from one legal text 

to separate legal text. During the course of our study, we found 

594 internal cross-references and 88 external cross-references 

to 46 distinct legal texts. Determining external cross-references’ 

impact on legal compliance and developing methods to resolve 

these references is a major area of future work. 

In addition to examining cross-references, we are planning a 

study to develop metrics and measure the accuracy of our mod-

els. We are eliciting EHR usage scenarios. Using these scenar-

ios, we are going to perform two analyses. First, we will query 

our model for a covered entity’s rights, obligations, privileges, 

etc. Second, legal domain experts will analyze the scenarios and 

provide us with the same analysis. Comparing these two analy-

ses, we will be able to measure the accuracy of our production 

rule model. 

Currently, we are using SWI-Prolog’s command line inter-

face. Future work includes development of a tool with a graphi-

cal user interface. Using this tool, we plan to measure the abil-

ity of engineers, who are unfamiliar with the law, to model legal 

texts using our methodology. 

APPENDIX 

privilege(CHCP, 

for(uses(CHCP,name(Individual)), 

 maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

not(s164_510a2_objection). 

implied(noRight(Individual, 

right(Individual, 

 CHCP 
 not(for(uses(CHCP, 

  name(Individual)), 
 

4 www.theprivacyplace.org 

(a) Li Europan lingues es members del sam familie. Lor 
separate existentie es un 
(b) Myth por sciente 
(1) Musica, sport, 
(2) Etc, litot Europa usa li sam vocabulary. Li lingues differe 
solemn in 
(a) Li grammatical 
(b) Li Pronunciation e li plu common vocabules. 
(c) Omnicos directe al desirabilite 

Fig. 3. Example of Structural Ambiguity 
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 maintains(CHCP,directory))), 

 _), 

‘164.510(a)(1)(i)(A)’)) :- 

isCHCP(CHCP), 

not(s164_510a2_objection). 

privilege(CHCP, 

for(uses(CHCP,name(Individual)), 

 maintains(CHCP,directory), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

not(s164_510a3_objection). 
implied(noRight(Individual, 

right(Individual, 

 CHCP 

 not(for(uses(CHCP, 

  name(Individual)), 

 maintains(CHCP,directory))), 

 _), 

‘164.510(a)(1)(i)(A)’)) :- 

isCHCP(CHCP), 

not(s164_510a3_objection). 

obligation(CHCP, 

not(for(uses(CHCP, 

 name(Individual))), 

 maintains(CHCP,directory)), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

s164_510a2_objection. 

implied(right(Individual, 

CHCP 

not(for(uses(CHCP, 

 name(Individual)), 

 maintains(CHCP,directory))), 

‘164.510(a)(1)(i)(A)’)) :- 

isCHCP(CHCP), 

s164_510a2_objection. 

obligation(CHCP, 
not(for(uses(CHCP, 

 name(Individual))), 

 maintains(CHCP,directory))), 

‘164.510(a)(1)(i)(A)’) :- 

isCHCP(CHCP), 

s164_510a3_objection. 

implied(right(Individual, 

CHCP 

not(for(uses(CHCP, 

 name(Individual)), 

 maintains(CHCP,directory))), 

‘164.510(a)(1)(i)(A)’)) :- 

isCHCP(CHCP), 

s164_510a3_objection. 
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