
NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

A Refined Production Rule Model

for Aiding in Regulatory Compliance
Jeremy C. Maxwell and Annie I. Antón

{jcmaxwe3, aianton}@ncsu.edu

Abstract—Software engineers are being asked to develop software for increasingly regulated environments.
When systems are not dependably compliant, companies must pay the high cost of non-compliance, including
the cost of lost reputation and brand damage. Regulations represent the minimum level of security and
dependability with which systems must comply. We develop a methodology for creating production rule models
to aid developers in specifying legally compliant software requirements. By querying production rule models,
software engineers can gain valuable knowledge of the legal text. They can perform an initial compliance
analysis and obtain preliminary compliance requirements that can be further refined in consultation with a
lawyer. We model the law using the legal concepts of rights, obligations, privileges, no-rights, powers, liabilities,
immunities, and disabilities. Herein, we develop heuristics for specifying production rules that model legal texts.
We refined our methodology within the context of a case study in which we model the Privacy Rule, Part E, of
the Health Insurance Portability and Accountability Act (HIPAA).

Index Terms—Healthcare, Logic Programming, Regulatory Compliance, Requirements Engineering
—————————— � ——————————

1 INTRODUCTION

Company and brand reputation are increasingly driving infor-

mation privacy and security concerns, as companies are becom-

ing more mindful of the negative press that often results from

privacy and security breaches [9]. Eighty-five percent of the

respondents to the 2008 Ernst & Young Global Information

Survey reported that lost reputation and brand damage are key

drivers for information security in their companies [9]. Laws

and regulations represent the minimum level of privacy and

security with which companies must comply; regulatory com-

pliance is the starting point of protecting company and brand

reputation.

When software systems are not dependably compliant, com-

panies must pay the high cost of non-compliance, including the

cost of lost reputation and brand damage. For example, consider

the ChoicePoint data breach case [27]. Identity thieves fraudu-

lently accessed 163,000 accounts resulting in at least 800 ac-

counts of identity theft [27]. ChoicePoint paid over 27 million

dollars in penalties, including fines, legal fees, and victim resti-

tution, as well as complying with government audits for 20

years [27]. Recently, one of these audits uncovered additional

breaches compromising 13,750 records, for which ChoicePoint

paid an additional $275,000 in penalties [19].

Complying with laws and regulations is challenging, be-

cause legal texts contain ambiguities, cross-references to sec-

tions of the same or different legal texts, and possibly conflict-

ing definitions and domain-specific terminology [26]. In addi-

tion, laws and regulations undergo frequent updates and

amendments, requiring software engineers to manage and track

these changes [26]. Cross-references to external legal texts

should be explored to obtain additional software requirements.

Engineers unfamiliar with the laws governing a domain need

tools and techniques to help identify compliance requirements.

In this paper, we develop a methodology for creating pro-

duction rule models of legal texts. We model the law using the

legal concepts of rights, obligations, privileges, no-rights, pow-

ers, liabilities, immunities, and disabilities [16]. In addition, we

introduce heuristics to aid in specifying production rule models.

By querying our model, software engineers can gain valuable

knowledge of the legal text. They can perform an initial com-

pliance analysis and obtain preliminary compliance require-

ments that can be further refined in consultation with a lawyer.

We do not seek to replace lawyers; instead, we propose supple-

menting interactions with lawyers to make these interactions

more efficient and reduce the cost of complying with relevant

laws and regulations.

Production rules are stated using Horn clauses connected by

logical operators [3]. Each rule is an if-then statement. Many

such rules combine to create a knowledge base, also called a

rules base. To interact with this rules base, a query is presented

as a top-level goal. An inference engine then uses a reasoning

strategy, usually backwards chaining, to execute the rules in the

rules base. The result is an affirmation or a refutation of the

original query [28].

We developed the methodology and heuristics by modeling a

portion of the Health Insurance Portability and Accountability

Act
1
 (HIPAA). We modeled the Privacy Rule, which regulates

the use of protected health information (PHI) by certain organi-

zations called covered entities. Failure to comply with the HI-

PAA can result in civil penalties of $25,000 per individual per

violation per year and criminal penalties of a quarter million

dollars and 10 years imprisonment.

Regulatory compliance in the healthcare domain is timely; in

February 2009, President Obama signed the American Recov-

ery and Reinvestment Act of 2009
2
 (ARRA), a stimulus pack-

age which appropriates 17 billion dollars for developing elec-

tronic health record (EHR) systems [36]—systems that will be

regulated by HIPAA. The ARRA provides incentives to health-

care providers to adopt EHRs, with the goal of providing an

EHR for each U.S. citizen by 2014 [36]. This is a significant

1 45 CFR Parts 160, 162, and 164
2 Pub. L. No. 111-5. (2009)

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

challenge, given that 90% of hospitals in the U.S. currently lack

even basic EHR systems [17].

The remainder of this paper is outlined as follows: Section 2

reviews related work; Section 3 provides an introduction to

Prolog; Section 4 presents our methodology and heuristics for

developing production rule models; Section 5 discusses our

HIPAA case study; Section 6 considers threats to validity; and

Section 7 provides summary remarks and outlines future work.

2 RELATED WORK

In this section, we discuss related work in requirements engi-

neering, logic programming, and expert systems. We model the

law using Hohfeld’s eight legal concepts. A legal theorist,

Hohfeld developed the concepts to clarify the meaning of the

term “right” [16]. The eight Hohfeld concepts are:

right – A claim an actor makes that places obligations on other

actors [16]. For example, an individual has a right to be no-

tified of an organization’s privacy practices.

obligation – An action an actor is required, by law, to carry out.

Hohfeld calls these duties [16]. For example, a covered en-

tity is obligated to disclose PHI to the US Department of

Health and Human Services (HHS) so that HHS can verify

the covered entity’s compliance with HIPAA.

privilege – An actor is free from an obligation. A privilege is an

action an actor is allowed to perform but not required to

perform [16]. For example, a covered entity has the privi-

lege to include a patient in its directory of individual’s in

its facility.

no-right – Explicitly states that an actor does not have a right

[16]. For example, an inmate does not have the right to be

notified of a covered entity’s privacy practices.

power – The capability of an actor to change a legal relation

and imply liabilities on others [16]. For example, covered

entities have the power to enter into contracts with busi-

ness associates.

liability – A responsibility to perform some action [16]. For

example, business associate of a covered entity are liable to

safeguard PHI, but are not obligated to do so until they re-

ceive PHI from the covered entity.

immunity – Just as a privilege signifies that an actor is free from

an obligation, an immunity expresses that an actor is free

from a legal power [16]. In other words, an immunity is a

no-liability. For example, in the US, non-profit organiza-

tions are immune from the liability of paying taxes.

disability – Whereas a no-right express that another party does

not hold a right, a disability expresses that a party does not

hold a legal power [16]. For example, a covered entity does

not have the power to authorize a business associate to use

or disclose PHI beyond what HIPAA allows.

The concepts are paired through the opposite and correlative

relationships. A party cannot hold concepts that are opposites,

for example, individuals cannot have both a right to amend PHI

about them as well as a no-right to amend PHI about them. Cor-

relative concepts are concepts that imply each other. For exam-

ple, if an individual has a right to be notified of an organiza-

tion’s privacy practices, the organization is obligated to notify

the individual. We discuss Hohfeld’s concepts further in Section

4.1.

2.1 Requirements Engineering and the Law

In our previous work, we presented a methodology for develop-

ing production rule models [23]. We used the legal concepts of

rights, obligations, and permissions (privileges) to model the

law, and developed the methodology based on a case study of

four HIPAA Privacy Rule sections [23]. Herein, we refine this

methodology to include the additional Hohfeldian concepts of

no-rights, powers, liabilities, immunities, and disabilities. As

discussed in Section 5, these additional concepts allow us to

capture important legal requirements that our previous analysis

missed. In addition, we specify heuristics to aid in the develop-

ment of legal texts. We base our refined methodology and heu-

ristics on fifteen sections of the HIPAA Privacy Rule. We have

used our four-section model for checking the iTrust Medical

Records Systems requirements for HIPAA compliance [24].

Breaux et al. use the Frame Based Requirements Analysis

Method (FBRAM) to extract rights and obligations from regula-

tory texts [5, 6, 8]. They applied their methodology to the HI-

PAA Privacy Rule, but focused on access control rules [6],

whereas we model both the access control rules as well as the

procedural rules placed on covered entities. Our ontology dif-

fers from Breaux et al.’s in that we incorporate all eight of the

Hohfeldian concepts in our model, whereas Breaux et al. solely

focus on rights and obligations [5, 8]. We previously used the

three concepts of rights, obligations, and permissions to model

the legal text [23]. We rename permissions to privileges to dis-

ambiguate from the use of the term “permission” as used in

prior work—Breaux et al. uses permissions to denote rights [5,

6, 8], whereas we denote privileges through our prior use of the

term “permission.” We modify two techniques from Breaux et

al’s methodology for use in our methodology presented in Sec-

tion 4. First, in normative phrase analysis, legal text statements

are classified based on the natural language phrases in the state-

ment [5, 8]. As discussed in Section 4.1.1, we expand normative

phrase analysis to include all eight of Hohfeld’s concepts, not

just rights and obligations. Second, we employ rights and obli-

gations balancing to identify implied rights and obligations [8],

that is, a right of one group imposes an obligation on others. In

this paper, we expand rights and obligation balancing to ac-

commodate additional legal concepts (see Section 4.1.1).

There have been two goal-oriented approaches to legal com-

pliance in the requirements literature. The Ghanavati et al. ap-

proach [11, 12] is based on the User Requirements Notation

(URN), which is composed of use cases and an i*-like goal

notation [43]. They use URN to model business practices and

legal texts, and compare the two models using traceability links

to identify potential areas of noncompliance [11, 12]. In con-

trast, we go beyond traceability between models by maintaining

traceability across all requirements artifacts back to the legal

text, and forwards to the software design and implementation.

Ghanavati et al. limit their examination to business practices

rather than software requirements, and do not explain how to

specify their goal model of the law. The Siena et al. framework,

called Nomos [34, 35], is similar to our approach in that they

model the law using Hohfeld’s eight legal concepts [35], for-

malizing the concepts using deontic logic. They then extract the

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

concepts from the law and model them using a goal-oriented

approach based on i*. However, Siena et al. do not analyze the

Hohfeldian concepts individually; instead, they combine each

of the correlative concepts into a single predicate [35]. As we

will discuss in Section 5, failing to analyze all the concepts can

overlook legal requirements. Additionally, Siena et al. do not

provide guidance to software engineers about how to extract the

concepts from the law, and only demonstrate their methodology

on a textbook example. In contrast, we provide prescriptive

guidance for extracting legal concepts from the law and have

successfully applied our preliminary approach to an existing

system [24].

Hassan and Logrippo extract compliance requirements from

law using an approach based on the Unified Modeling Lan-

guage (UML) [15]. Once extracted, they model these require-

ments in Alloy, a logic-based modeling language. They specify

categories of legal statements, such as declarative statements

(declaring a fact) and procedural statements (if-then statements)

[15]. Their only publication does not explain the extraction

process [15] or how to classify legal statements. Using formal

methods, like Alloy and description logic, is important for dem-

onstrating that legal compliance methods are automatable, but

they are inefficient and too rigid given how regulations evolve

[7].

May et al. formalize a section of HIPAA (§164.506) using

Privacy APIs and then use the Spin model checker to find loop

holes and perform other queries on the law [25]. They use pub-

lic comments from an earlier version of HIPAA to test their

model [25]. Like production rule models, model is queryable.

However, their model only covers one section of HIPAA,

whereas we have modeled the entire HIPAA Privacy Rule, Part

E. Additionally, they use simple flags to signify environmental

variables and externally cross-referenced texts [25]. Thus, the

software engineer is burdened with the task of manually follow-

ing and resolving external cross-references.

2.2 Logic Programming and the Law

Logic programming and the law was a popular area of research

in the eighties and nineties [1, 2, 31, 32, 33]. Among these ef-

forts, our work is most similar to the ESPLEX project [2] in

which the land leasing legislation used by Biagoli et al. is a

general regulation impacting multiple domains. Similarly, the

HIPAA impacts several domains: healthcare, law enforcement,

the correctional system, educational institutions, etc. Biagioli et

al. also outline a methodology, albeit by example only, for con-

verting legal texts to production rules and for identifying obli-

gations and permissions in the legal text. Research to date has

failed to provide a repeatable, systematic methodology for

translating legal texts into production rules, instead using a trial

and error methodology [32], whereas others only present their

methodology by example [1, 2, 31]. Finally, the methodologies

used in legal knowledge based systems have been criticized as

being too ad hoc to be reliable or maintainable [39].

Our work differs from prior work in logic programming in a

few specific ways. First, the nature of the HIPAA legislation is

inherently different from that of legislation used in prior work

in production rule modeling of legal texts [1, 31, 32, 33]. The

legal documents used in these efforts usually seek to answer a

single question. For example, in the British Nationality Act

effort [32], the query considered is whether or not an individual

is a British citizen. In contrast, the HIPAA Privacy Rule does

not have one query that unifies the document. Instead, its broad

nature allows many possible queries; for example, queries about

access control and the right of notice, the interactions between

organizations, etc. Moreover, there are 31 different types of

stakeholders mentioned in the HIPAA Privacy Rule alone. HI-

PAA’s broader scope makes it challenging to predict potential

queries. We employ Hohfeld’s concepts to capture a broader

range of potential queries on the model because all are required

in order to provide a holistic view of a compliant software sys-

tem [22]. Second, no prior work has used production rule mod-

els to create legally compliant software. Instead, they focused

on: improving the understanding of law using production rules

[2]; knowledge representation research rather than practical

uses of production rule models [1, 32]; aiding law makers in

drafting legislation [32]; and legal reasoning [2, 31, 33]. Third,

we consider all the Hohfeldian concepts that are expressed in

the regulations, not just obligations and privileges. Because

rights impose obligations on other parties [8], they are an im-

portant source of legal requirements.

Lam et al.’s proof of concept compliance checker determines

whether an email message complies with three HIPAA Privacy

Rule sections before it is transmitted [20]. To accomplish this,

they translated the three sections into a version of Prolog, fo-

cusing on paragraphs that address access to Protected Health

Information (PHI) [20]. Based on this analysis, they develop a

set of eight message characteristics, used to make compliance

decisions, but do not justify why these message characteristics

are sufficient to determine compliance [20]. In contrast, we

specify a variety of legal preconditions beyond Lam et al.’s

eight message characteristics [23, 24]. Additionally, they do not

provide a means to verify that their formalization provides a

correct interpretation of the law [20]. They claim that handling

cross-references is easy but fail to show how [20], and re-

searchers have repeatedly noted that cross-references are both

challenging and critical in determining legal compliance with

confidence [1, 6, 14, 25, 26].

2.3 Expert Systems and Law

An expert system captures the knowledge of a human expert in

a particular domain and makes it accessible for non-experts [13,

21]. Like production rules, expert systems also have a knowl-

edge base and an inference engine to make use of that knowl-

edge [30]. Visser et al. provide a methodology, based on the

CommonKADS methodology [30], for constructing legal

knowledge-based systems that seek to replicate the legal rea-

soning performed by a lawyer [40, 41]. Bench-Capon describes

expert systems as: interactive; based on one narrow domain of

expertise; having the ability to reason under uncertain or in-

complete information; and capturing “rules of thumb” used by

domain experts. Popple defines a legal expert system as a “sys-

tem that provides answers to legal questions in a form that one

would expect from a lawyer” and that “the output from [a legal

expert system] should be usable without further legal analysis”

[29]. We do not seek to construct an expert system nor do we

seek to replace lawyers because legal interpretation is complex,

changes over time, and depends on factors beyond the text of a

legal document, such as case law, industry standards and cur-

rent practice, and administrative clarifications.

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

3 PROLOG PRIMER

We employ Prolog to encode production rules because of its

relatively straightforward design and its prior use in the area of

legal knowledge representation [1 2, 31, 32, 33]. The syntax of

a Prolog rule is:

<result> :-
 <condition1>,

 <condition2>, ...
 <conditionN>.

Where the symbol :- is interpreted as the if conditional, the

comma symbol is interpreted as logical-and, and the period

symbol is interpreted as a full stop (the end of a rule). The result

is evaluated to true only if {condition1, condition2,...,

conditionN} are evaluated to true. The Prolog rule fa-

ther(X,Y) :- male(X), child(Y,X) is read “X is the

father of Y if X is male and Y is the child of X.”

In Prolog, an atom is a quoted string, name, or a sequence of

special characters (:- is one example). A variable signifies a

single yet unspecified quantity and begins with a capital letter.

A predicate is a relationship between atoms [37]. The produc-

tion rule model makes use of two built-in Prolog predicates.

The assert(NewFact) procedure adds a new fact to the

knowledge base. Similarly, the retract(Fact) procedure

removes the first occurrence of the specified fact from the rules

base [37].

The strength of Prolog to answer queries comes from two

concepts: unification and backtracking [28]. Unification occurs

when the inference engine attempts to find a single value to

bind to multiple occurrences of a variable. For example, unifi-

cation would occur if a single value is found for the variable

Org in the predicates coveredEntity(Org) and health-

Plan(Org). The inference engine uses backtracking to deter-

mine the result of a query. The initial query is treated as a top-

level goal, then the engine searches the rules to determine the

goal’s value through trial and error.

The distinction between Prolog and production rules is the

use of working memory, a temporary storage area where inter-

mediate results are stored. With working memory, a result only

needs to be computed once, and can then be reused at many

stages of computation. Lacking working memory, Prolog re-

computes each intermediate result, even if it has been computed

before. We add temporary storage to Prolog, however, by add-

ing a working memory predicate, wm(X), where X is an element

in working memory. Once an intermediate result is computed,

we add it to the working memory. When an intermediate result

is required, this memory is checked before the result is com-

puted. At the completion of a query, the memory is erased.

4 METHODOLOGY WITH HEURISTICS

In this section, we describe our methodology for creating pro-

duction rule models of legal texts. Figure 1 displays the Produc-

tion Rule Modeling methodology. The inputs to the methodol-

ogy are a legal text and a legal ontology. The methodology con-

sists of a preparatory step, Create Rule Patterns of Ontological

Concepts, and two activities, Specify Production Rules and

Refactoring. In the preparatory step, the software engineer de-

fines rule patterns for each concept in the inputted legal ontol-

ogy (Section 4.1). The two activities are described below:

Activity 1: Specify Production Rules

Step 1. Classify the rule pattern based on the lan-

guage present in the legal text.

Step 2. Identify the rule parameters for the pattern

classified in step 1.

Step 3. Identify which preconditions cause a rule to

be applied.

Step 4. Remove disjunctions using case splitting

Step 5. Identify rules implied by the ontology.

Activity 2: Refactor – Identify patterns in the rules to reduce

rule and condition count.

The output of the methodology is a production rule model of

the legal text. In the remainder of this section, we describe the

legal ontology we use in our case study, heuristics for specify-

ing production rules, and heuristics for refactoring.

We define two terms that we use in this section. First, a

statement is an independent clause in the legal text. Second, an

actor is a person, organization, or other entity explicitly defined

or referenced in the legal text. Example actors include a cov-

ered entity, a doctor, and a health insurance issuer.

4.1 Legal Ontology & Rule Patterns

Fig. 1. Production Rule Modeling Methodology Overview

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

In this subsection, we present the legal ontology we used to

model the law and the Prolog pattern for each concept in the

ontology. In our case study, we used the Hohfeldian concepts to

model the law. We provide definitions for each of these con-

cepts in Section 2.

Table 1 displays the eight Hohfeldian concepts, the produc-

tion rule pattern that expresses that concept, the correlative con-

cept, the opposite concept, and the normative phrases used to

identify the concept in the Privacy Rule. For each of the

Hohfeldian concepts, we specify a production rule pattern dur-

ing the preparatory step Create Rule Patterns of Ontological

Concepts. For example, if a covered entity is obligated by

§164.512(f)(2)(ii) of the Privacy Rule to not disclose PHI to a

third party, we express this obligation as:

must(CE,

 not(discloses(CE,

 ThirdParty

 PHI

 ‘164.512(f)(2)(ii)’).

To maintain traceability from the legal text to the production

rules, we adopt Sherman’s solution [33]; we include an addi-

tional parameter, Source, with each pattern specifying the

source of the rule. For instance, the obligation listed above is

specified in §164.512(f)(2)(ii) of the HIPAA Privacy Rule.

Each of the Hohfeldian concepts has a correlative concept

[16]—one concept implies another concept. For example, if an

individual has a right to be notified of the uses and disclosures

of his PHI by a covered entity, the covered entity is obligated to

provide such a notice. Table 1 lists the concept implied by each

concept. We discuss implied rules further in Section 4.2.5. Also,

each concept has an opposite concept—an actor cannot hold
both a concept and its opposite. Table 1 lists each con-
cept’s opposite concept. We use opposite concepts to ex-
press exception cases in Section 4.2.3. To classify sections of

the legal text, we use normative phrase analysis [8]; we list the

normative phrases in Table 1. Immunities lack normative

phrases because we did not encounter either of these concepts

expressed in the Privacy Rule. We discuss this normative phrase

analysis further in Section 4.2.1.

4.2 Heuristics for Specifying Production Rules

In this section, we present heuristics for each of the five steps in

the Specify Production Rules activity. We illustrate our meth-

odology and heuristics using concrete examples from our HI-

PAA Privacy Rule case study. As done in related work [5], we

do not include document meta-information such as table of

contents, title pages, appendices, or paragraph and section head-

ings in our analysis. Our methodology steps are sequential, but

the heuristics for a particular step need not be applied sequen-

tially.

When specifying production rules, one should keep the

wording as close to that of the original legal text as possible.

For example, in different contexts in the Privacy Rule, the terms

“notify”, “inform”, and “alert” are used. These terms are nearly

synonymous, so analysts might be tempted to use a single

Prolog predicate to model them. However, there may be some

legal nuance that makes these terms different. Therefore, we

create the Prolog predicates notify, inform, and alert to

model these three Privacy Rule terms, respectively. Consulta-

TABLE 1
HOHFELDIAN CONCEPTS, RULE PATTERNS, AND CLASSIFICATION PHRASES

Concept Production Rule Pattern Implied
Concept

Opposite
Concept

Normative Phrases

right right(Actor,Counterparty,Right,Source) obligation no-right
has a/the right to
retains the right to

obligation obligation(Actor,Obligation,Source) right privilege

must
is required to
shall
may not
is prohibited
is subject to

privilege privilege(Actor,Privilege,Source) no-right obligation

may
may elect not to
is not required to
requirement does not apply
is permitted to
at the election of
is not subject to

no-right noRight(Actor,NoRight,Source) privilege right does not have a right to

power power(Actor,LegalRelation,Power,Source) liability disability

authorize termination of
must obtain an authorization
may revoke
may terminate

liability liability(Actor,Liability,Source) power immunity
provide that <actor> will/must
obtain assurances that

immunity immunity(Actor,Counterparty,Power,Source) disability liability (none found)

disability disability(Actor,Power,Source) immunity power may not authorize

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

tion with legal domain experts can clarify nuances in meaning

of these terms.

Otto and Antón document the challenge of ambiguity in le-

gal texts [26]. When modeling the law, we do not attempt to

resolve ambiguous terms such as “reasonable,” “sufficient,” or

“adequate”. The law uses such language to allow legal domain

experts to make determinations based on the context of a par-

ticular case. In our model, we introduce the predicates rea-

sonable, sufficient, and adequate to model these terms,

respectively , and do not attempt to determine what actions are

reasonable, sufficient, or adequate. Case law, industry best prac-

tices, and Federal agency clarification documents can be used to

clarify these terms, but are outside the scope of our model.

Throughout the remainder of this section, we will illustrate

our heuristics using a concrete example from HIPAA,

§§164.510(a)(1)(i)(A-D), displayed in Figure 2.

Preparatory Heuristic 1 (PH1): Split continuations into sepa-

rate rules

Oftentimes, a legal statement is broken across a list. For ex-

ample, the legal statements in Figure 2 are split across multiple

sections of the legal text. This is called a continuation and re-

sults in multiple legal rules [5]. The text in sections (1) and (i)

of the legal text are prepended to the text in subsections (A),

(B), (C), and (D), resulting in four legal rules:

1. “Except when an obligation is expressed in accordance

with paragraphs (a)(2) or (a)(3) of this section, a covered

healthcare provider may use the following PHI to maintain

a directory of individuals in its facility: the individual’s

name.”

2. “Except when an obligation is expressed in accordance

with paragraphs (a)(2) or (a)(3) of this section, a covered

healthcare provider may use the following PHI to maintain

a directory of individuals in its facility: the individual’s lo-

cation in the covered health care provider’s facility.”

3. “Except when an obligation is expressed in accordance

with paragraphs (a)(2) or (a)(3) of this section, a covered

healthcare provider may use the following PHI to maintain

a directory of individuals in its facility: the individual’s

condition described in general terms that does not commu-

nicate specific medical information about the individual.”

4. “Except when an obligation is expressed in accordance

with paragraphs (a)(2) or (a)(3) of this section, a covered

healthcare provider may use the following PHI to maintain

a directory of individuals in its facility: the individual’s re-

ligious affiliation.”

4.2.1 Classify Rule Pattern Heuristics

Classifying statements in the legal text as one of the rule pat-

terns (presented in Section 4.1) requires using two classification

heuristics.

Classification Heuristic 1 (Cla1): Classify using normative

phrase analysis

We use normative phrase analysis to classify rules according

to the natural language phrases used in the legal text [8]. Table

1 in Section 4.1 displays the normative phrases we use to clas-

sify rule patterns. For example, we classify the legal statement

in Figure 2 as a privilege because of the natural language phrase

“may.” When multiple normative phrases are identified, we use

the most inclusive normative phrase. For instance, §164.502(a)

states that “a covered entity may not use or disclose PHI…” We

classify this statement as an obligation (using the phrase “may

not”) instead of a privilege (using only the phrase “may”).

Cla2: Add obligations for “only” phrase

When we encounter the term “only”, we add an obligation to

the model. For example, §164.502(d)(2)(ii) states that if deiden-

tified information is somehow reidentified, a “covered entity

may use or disclose such reidentified information only as per-

mitted or required” by HIPAA. This statement expresses a cov-

ered entity’s privilege to use or disclose reidentified information

in the same way it uses or discloses other PHI. The statement

also represents that a covered entity may only use the reidenti-

fied information in such a manner. Thus, we add the obligation

“a covered entity must not use or disclose reidentified informa-

tion in violation of HIPAA” to the model.

After the Classify Rule Pattern step, the production rule ex-

pressing section (A) in Figure 2 is privilege(_,_,_).

4.2.2 Identify Rule Parameters Heuristics

Identifying the parameters for the rule patterns classified in the

previous step entails the use of four identification parameters

heuristics.

Identify Rule Parameters Heuristic 1 (Par1): Identify the actor

who is subject to rule

We identify the actor who is subject to a rule by identifying

the subject of the statement. For example, the actor subject to

the privilege in section (1)(i)(A) in Figure 2 is a covered health-

care provider. Where possible, we identify the most specific

actor. For example, HIPAA defines both healthcare providers

and covered healthcare providers. We identify the actor in sec-

tion (1)(i)(A) as a covered healthcare provider because it is the

more specific than healthcare provider.

Par2: Identify the legal relation affected by a power

A power grants an actor the ability to change a legal relation.

We identify the relation the actor is able to change in this heu-

ristic. For example, §164.504(e)(2)(iii) authorizes a covered

entity to terminate a contract with a business associate if the

associate has violated the agreed-upon contract. The legal rela-

tion the covered entity has the power to change is the legal con-

tract between the covered entity and the business associate.

Par3: Identify the rule action

The rule action is the action the actor has a right to perform,

the action the actor is obligated to perform, etc. It is the portion

of the legal statement immediately following the normative

(1) Except when an objection is expressed in accordance
with paragraphs (a)(2) or (3) of this section, a covered health
care provider may:
(i) Use the following protected health information to maintain
a directory of individuals in its facility:
(A) The individual's name;
(B) The individual's location in the covered health care pro-
vider's facility;
(C) The individual's condition described in general terms that
does not communicate specific medical information about
the individual; and
(D) The individual's religious affiliation

Fig. 2. §§164.510(a)(1)(i)(A-D) of the
HIPAA Privacy Rule

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

phrase identified in the Classify Rule Pattern step (Section

4.2.1). For example, in Figure 2, section (A), the action the

covered healthcare provider is allowed to perform is “use the

following PHI to maintain a directory of individuals in its facil-

ity: the individual’s name.”

Par4: Identify the rule source

The source of each rule is the full section reference. In the

case of continuations, the source is the lowest subsection in the

legal document hierarchy that is a part of the legal statement.

For example, the source for section (A) in Figure 2 is

‘164.510(a)(1)(i)(A)’.

After step 2, Identify Rule Parameters, the production rule

expressing section (A) in Figure 2 is:

privilege(CHCP,

for(uses(CHCP,name(Individual)),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’)

4.2.3 Identify Rule Preconditions Heuristics

This step entails identifying the legal preconditions that cause a

rule to be applicable, and uses four heuristics.

Identify Rule Preconditions Heuristics (Pre1): Identify type-

checking preconditions

Prolog is typeless; thus, we add preconditions to check the

types of actors, objects, and relations used in the rule. For ex-

ample, for the privilege in section (A) in Figure 2, we express

that an organization is a covered healthcare provider using the

Prolog predicate isCHCP(CHCP).

Pre2: Identify preconditions expressing exceptions

Exceptions are expressed using the natural language phrases

“except”, “is not effective under”, “other than”, “does not apply

to”, “notwithstanding”, and “unless.” For example, the privilege

in section (A) of Figure 2 does not apply if the individual has

expressed an objection according to (a)(2) or (a)(3). We per-

form two actions when we encounter an exception. First, a we

add a precondition that is a negation of the exception condition

to the production rule. For the example text, the precondition “if

the individual did not express an objection according to (a)(2)

or (a)(3)” is added to the privilege “a covered healthcare pro-

vider may use the following PHI to maintain a directory of in-

dividuals in its facility: the individual’s location in the covered

health care provider’s facility.” Second, we create a new rule

expressing the exception (opposite) case. For the example text,

a new production rule is created expressing that a covered

healthcare provider may not (is obligated to not) use an individ-

ual’s name for their directory if the individual has expressed an

objection. Each concept’s opposite is listed in Table 1 in Section

4.1.

Pre3: Identify preconditions using precondition keywords

We identify preconditions in the legal statement that follow

the phrases “if,” “when,” “whenever,” “that”, “who”, “whose”,

“to the extent that”, and “provided that”, as well as temporal

phrases such as “after”, “prior”, and “for as long as”. For exam-

ple, in section (a)(3) of §164.510, a covered healthcare provider

may use an individual’s name for their directory, “if the oppor-

tunity to object to uses or disclosures to uses or disclosures

required by paragraph (a)(2) of this section cannot practicably

be provided because of the individual’s incapacity”. We add this

precondition to the production rule that expresses (a)(3).

Pre4: Identify preconditions from cross-references

Cross-references must be carefully followed to obtain addi-

tional preconditions. For example, in Figure 2, we add the pre-

condition “the objection is in accordance with (a)(2) or (a)(3)”

to the rules for (A). The analyst must follow this cross-

reference and determine what preconditions are relevant—

which can introduce ambiguity, because cross-references may

refer to only part of the referenced statement [5].

Preconditions may be added by a cross-referencing state-

ment in the legal text, that is, an entirely separate legal state-

ment may place preconditions on a legal statement. For exam-

ple, consider HIPAA §164.512(f)(6)(ii):

If a covered health care provider believes that the medical
emergency described in paragraph (f)(6)(i) of this section
is the result of abuse, neglect, or domestic violence of the
individual in need of emergency health care, paragraph
(f)(6)(i) of this section does not apply and any disclosure to
a law enforcement official for law enforcement purposes is
subject to paragraph (c) of this section.

This statement adds an exception precondition to paragraph

(f)(6)(i). Thus, we must revisit the production rules associated

with (f)(6)(i) and add an exception precondition to those rules

using PrH2.

We performed our analysis of the Privacy Rule sequentially,

beginning with the first section. When we encountered a for-

ward cross-reference, for example, (a)(1)(i)(A) in Figure 2 con-

tains a forward reference to (a)(2) and (a)(3). We tabled these

references until we modeled the referenced sections.

After step 3, Identify Rule Preconditions Heuristic, the pro-

duction rules expressing section (A) in Figure 2 are:

privilege(CHCP,

for(uses(CHCP,name(Individual)),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),
not(s164_510a1_exception(CHCP,Individual)).

obligation(CHCP,

not(for(uses(CHCP,name(Individual)),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

s164_510a1_exception.

4.2.4 Remove Disjunctions Heuristics

This step entails identifying and removing disjunctions through

case splitting. By convention, Prolog rules are expressed using

only logical-and.

Remove Disjunctions Heuristic 1 (Dis1): Split “or”

We case split the natural language phrase “or” into multiple

rules. For example, in section (A) of Figure 2, there two cases:

(1) when an objection is expressed according to (a)(2), and (2)

when an objection is expressed according to (a)(3).

Dis2: Split logical-or’s masquerading as “and”

As identified by Breaux, legal texts contain logical ambigu-

ity [5], where the legal text will use the word “and,” but in con-

text, it is a logical-or. For example, HIPAA

§164.504(e)(2)(i)(A) states:

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

The contract [between the covered entity and business
associate] may permit the business associate to use and
disclose PHI for the proper management and administra-
tion of the business associate

This statement allows the business associate to “use and dis-

close PHI” for their administrative tasks. If we interpret this to

mean a logical-and, then the business associate has no option to

use the PHI without disclosing it as well. However, if we inter-

pret this to be a logical-or, then the business associate may use

the information for their own internal processes without disclos-

ing it to a third party. In this heuristic we split this “and” using

case splitting, just as we would an “or.”

After step 4, Remove Disjunctions, the production rules ex-

pressing section (A) in Figure 2 are:

privilege(CHCP,

for(uses(CHCP,name(Individual)),
 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

not(s164_510a2_objection).

privilege(CHCP,

for(uses(CHCP,name(Individual)),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

not(s164_510a3_objection).

obligation(CHCP,

not(for(uses(CHCP,name(Individual))),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

s164_510a2_objection.

obligation(CHCP,

not(for(uses(CHCP,name(Individual))),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

s164_510a3_objection.

4.2.5 Identify Ontological Implications

Depending on the ontology used to model the production rules,

the software engineer may infer additional facts to add to the

database. Using the Hohfeldian concepts, each concept implies

its correlative concept. The implied concepts are listed in Table

1 in Section 4.1. Implied rules are important to obtain, because

codifying them increases requirements coverage and provides

important traceability information to aid in establishing due

diligence [8]. Breaux et al. introduced rights and obligations

balancing identify implied rights and obligations in HIPAA. We

expand rights and obligations balancing to balancing all implied

rules and add them during this step. For example, the privilege

in section (A) of implies a no-right on the individual, whereas

the obligation expressed in section (A) implies a right on the

individual.

The production rules after we complete the Specify Produc-

tion Rules activity that express section (A) are displayed the

Appendix.

4.3 Refactoring Heuristics

After translating each legal statement, we check the entire rule

base for refactoring opportunities. Refactoring is an optional

supplemental activity; the rules generated during the Specify

Production Rules are a complete production rule model. Fowler

identifies advantages of refactoring, including improving soft-

ware design, making software easier to understand, aiding in

debugging, and improving software engineer productivity [10].

When refactoring, we seek to identify common patterns to re-

duce rule and condition count. Fewer rules and conditions can

lead to a more readable rules base. Additionally, we refactor

some rules to increase performance. In this section, we review

the refactoring techniques we employed in our case study.

Refactoring Heuristic 1(Ref1): Group common cases

This heuristic reduces the rule count by grouping common

cases that were split during the Remove Disjunctions step (Sec-

tion 4.2.4). For example, in section (A) of Figure 2, the two

exception cases, (a)(2) and (a)(3) can be grouped using one

predicate, for example, s164_510a2_or_a3_objection, and

the preconditions modified accordingly. We discuss this heuris-

tic in our prior work [23].

Ref2: List conditions with many alternatives last

To improve Prolog search efficiency, Bratko suggests to stop

processing pointless alternatives and avoid needless backtrack-

ing [4]. Conditions with many alternatives can cause both point-

less alternatives and needless backtracking; in this refactoring

technique, we move conditions with many alternatives to the

end of the conditions list to improve efficiency.

Ref3: Reduce logic load for common cases

In this heuristic, we add additional rules to reduce the logic

load for common cases, using transitivity. For example, con-

sider a production rule model that contains the rules A :- B

and B :- C. If C is a precondition that is used in many produc-

tion rules, we reduce the number of subgoals the inference en-

gine must prove by asserting the rule A :- C.

Ref4: Group common preconditions

In our previous study, many rules shared a set of common

preconditions [23]. To reduce precondition count, we group

these preconditions into a single predicate that is true when the

preconditions are true. We then replace the common precondi-

tions with the new predicate.

5 DISCUSSION

This section discusses our experiences in modeling the HI-

PAA Privacy Rule. The Privacy Rule comprises 45 CFR Part

160 and Part 164, Subparts A and E [38]. Our analysis focuses

on Subpart E, which describes privacy requirements for covered

entities. The only portion of Part 160 that we model is

§160.103, which contains defines key terms used throughout

the Privacy Rule. We do not model the remainder of Part 160,

which describes enforcement, penalties, and other requirements

for governmental agencies, or Part 164, Subpart A, which de-

scribes applicability and covered entities’ legal options under

HIPAA.

The HIPAA Privacy Rule, Part E comprises §§164.500-

164.534, a total of 37 printed pages. Our model contains 2,258

rules and is written using the SWI-Prolog
3
 implementation.

Section 164.534 contains the compliance dates for various cov-

ered entities. Because all the compliance dates have passed, we

3 http://www.swi-prolog.org/

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

did not model this section. It took approximately 294 man-

hours to construct a production rule model of the Privacy Rule.

To the best of our knowledge, based on a survey of over 150

publications [26], we are the first to model an entire Federal

regulation. As mentioned in Section 2, Breaux and Antón ana-

lyzed the Privacy Rule, but focused solely on access control

rules [6].

Table 2 displays the number of production rules expressed

using each of the concept patterns. Disjunction splitting and

refactoring impacts the number of production rules that express

each of the concepts. The majority of the concepts identified in

our case study were privileges and obligations. In the Privacy

Rule, the majority of these privileges and obligations are placed

upon covered entities, whereas, individuals hold rights and the

majority of the implied no-rights. We did not encounter any

immunities expressed directly in the Privacy Rule; instead, they

are implied by disabilities.

The Hohfeldian concepts allow us to identify legal require-

ments that we failed to identify in our previous study [23]. For

example, section 164.520 of the HIPAA Privacy Rule regulates

a covered entity’s notice of privacy practices. Section

164.520(a)(3) contains two legal statements: 1) “An inmate

does not have a right to notice under this section”, and 2) “the

requirements of this section do not apply to a correctional insti-

tution that is a covered entity.” Statement one is a no-right, in-

dicated by the phrase “does not have a right to.” The second

statement is a privilege, indicated by the phrase “require-

ments…do not apply.” In our previous study, we failed to clas-

sify the first statement as a no-right, instead classifying all of

§164.520(a)(3) as a privilege, because our methodology did not

include all the Hohfeldian concepts.

We classify and model all of the Hohfeldian concepts indi-

vidually. Identifying the Hohfeldian concepts individually is

important for software engineers to capture for three reasons.

First, they establish exceptions and priorities between legal

requirements, which Breaux and Antón found to add additional

constraints and requirements to legal rules [6]. Second, captur-

ing the concepts implied by the additional Hohfeldian concepts

is important for legal compliance. For example, no-rights imply

privileges on the counterparty. In the no-right from

§164.520(a)(3), the implied privilege is “a correctional institu-

tion is not required to provide a notice of privacy practices to

inmates.” Identifying this privilege could save a correctional

institution the expense of notifying their inmates and allow

software developers to not have to build this functionality into

their systems. On the other hand, software developers may have

to build this functionality into their EHRs, if they are develop-

ing systems that will be deployed in other covered entities in

addition to correctional institutions. Third, engineers can iden-

tify inconsistencies in the law using the opposite concepts. For

example, the law is inconsistent if an individual can hold both a

no-right and the opposite right.

In the Privacy Rule, liabilities are placed on third parties,

e.g., business associates of covered entities. Business associates

can include IT, legal, and accounting firms [18]. For instance,

§164.504(e)(2)(ii)(B) states that business associates is liable to

safeguard the information entrusted to them. It is important to

model these liabilities, because the ARRA expanded the re-

quirements of HIPAA for business associates, requiring them to

comply with the Privacy Rule [18].

Breaux identifies various kinds of ambiguity in legal texts,

such as logical ambiguity, attributive ambiguity, referential

ambiguity, and under-specification. During our case study, we

identified an addition kind of ambiguity: structural ambiguity.

Structural ambiguity occurs when different levels of a hierar-

chical document use the same symbols to denote headings. For

example, Figure 3 displays an example of structural ambiguity.

There are two top-level sections in Figure 3, labeled (a) and (b).

There are two subsections in (b), labeled (1) and (2). Section (2)

also has subsections, labeled (a) and (b). The ambiguity is sec-

tion (c), which has been bolded in the figure. Heading (c) could

be interpreted as a top-level section or as a subsection of (b)(2).

This ambiguity exists in the Privacy Rule because the Privacy

TABLE 2
CONCEPT AND RULE COUNTS

Concept Explicit Implied

Rights 9 258

Obligations 258 9

Privileges 177 2

No-Rights 2 177

Powers 7 29

Liabilities 29 7

Immunities 0 2

Disabilities 2 0

TABLE 3
MOST FREQUENT NORMATIVE PHRASES

must 215

may 154

may not 26

provide that <actor> will 25

has a/the right to 11

is permitted to 7

may revoke 6

is not required to 4

 TABLE 4
HEURISTIC USE

Concept Cla1 Cla2 Par1 Par2 Par3 Par4 Pre1 Pre2 Pre3 Pre4 Dis1 Dis2

right 12 0 12 0 12 12 20 12 4 10 5 1

obligation 249 4 249 0 249 249 356 35 100 154 88 6

privilege 175 13 175 0 175 175 358 25 165 129 120 7

no-right 1 0 1 0 1 1 5 0 4 4 0 0

power 5 0 5 5 5 5 7 3 5 0 2 0

liability 27 0 27 0 27 27 53 3 8 6 11 1

immunity 0 0 0 0 0 0 0 0 0 0 0 0

disability 2 0 2 0 2 2 5 0 1 1 3 0

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

Rule reuses numerals at different levels of the hierarchy, as well

as the symbol i (the lower case letter) and i (the first Roman

numeral). For example, §164.514(e)(4)(ii)(C) of the Privacy

Rule contains subsections labeled (1)-(4). The next section is

labeled (5) and could be interpreted as §164.514(e)(4)(ii)(C)(5)

or §164.514(e)(5). To resolve this ambiguity, software engi-

neers must use other context clues, such as continuations or

surrounding section headings, to determine the correct interpre-

tation. In the Privacy Rule example, section (5) is a level 5

heading, because the next section is (iii). If section (5) was a

level 2 heading, the next section would be (i).

Recall we introduced thirteen heuristics for the Specify Pro-

duction Rules activity. We applied the heuristics to the HIPAA

Privacy Rule as follows. When we applied the preparatory heu-

ristic, PH1 Split Continuations into Separate Rules, we identi-

fied 157 continuations. The remaining heuristics are applied

after we resolve these continuations. Table 3 displays the most

frequent normative phrases in the Privacy Rule. The normative

phrases not listed in Table 3 occurred only two times or less in

the Privacy Rule. Table 4 lists the number of times we applied

our heuristics, and the concept to which the heuristic was ap-

plied.

As a result of our analysis of the HIPAA Privacy Rule, we

discovered that privileges are more complex than obligations.

In Table 4, we see that we classify 74 fewer privileges than

obligations. Despite of this, privileges have the same number of

type-checking preconditions as obligations, 65 more precondi-

tions identified using precondition keywords, only 25 fewer

cross-reference preconditions, 32 more disjunctions, and one

more disjunction masquerading as a logical-and. This suggests

that the question “what must an organization do to comply with

the law?” is less complex, though still challenging, than the

question “what is an organization allowed to do under the law?”

6 THREATS TO VALIDITY

For any case study, it is important to consider any threats to

validity. Thus far, we have only examined one regulation. This

threatens the external validity of our study; external validity

addresses the ability of a case study’s findings to be generalized

to other studies [42]. Future studies examining legal texts in

different domains will further validate the methodology pre-

sented herein. We make no causal inferences, there are no

threats to the internal validity of our study [42].

The case study was performed by researchers who have

prior knowledge of the HIPAA regulation. Allowing that previ-

ous knowledge of the regulation guide the modeling process is a

threat to our study’s reliability—the ability to repeat the case

study and produce similar results [42]. To mitigate this threat to

reliability, we carefully followed the methodology presented in

Section 4.

Construct validity addresses the degree to which a case

study is in accordance with the theoretical concepts used [42].

Three ways to reinforce construct validity are: use multiple

sources of evidence, establish a chain of evidence, and have key

informants review draft case study reports [42]. While we only

used one source of evidence for this case study, the HIPAA

Privacy Rule, future studies will validate and refine the heuris-

tics presented herein. To establish a chain of evidence, we care-

fully documented the techniques we used when modeling the

Privacy Rule; these techniques became the heuristics presented

in Section 4. Finally, our draft case study report was reviewed

by several ThePrivacyPlace
4
 members.

7 SUMMARY AND FUTURE WORK

In this paper, we presented a methodology for developing pro-

duction rule models, and a set of heuristics for specifying the

models. We developed the methodology and heuristics through

a case study modeling the HIPAA Privacy Rule.

Prior researchers have identified cross-referencing as a chal-

lenging problem for software engineering [1, 8, 26], because

engineers must carefully follow cross-references to obtain addi-

tional legal requirements, exceptions, conditions, and priorities.

A simple classification of cross-references is internal and exter-

nal cross-references. An internal cross-reference is a citation

from one portion of a legal text to another portion of the same

text. An external cross-reference is a citation from one legal text

to separate legal text. During the course of our study, we found

594 internal cross-references and 88 external cross-references

to 46 distinct legal texts. Determining external cross-references’

impact on legal compliance and developing methods to resolve

these references is a major area of future work.

In addition to examining cross-references, we are planning a

study to develop metrics and measure the accuracy of our mod-

els. We are eliciting EHR usage scenarios. Using these scenar-

ios, we are going to perform two analyses. First, we will query

our model for a covered entity’s rights, obligations, privileges,

etc. Second, legal domain experts will analyze the scenarios and

provide us with the same analysis. Comparing these two analy-

ses, we will be able to measure the accuracy of our production

rule model.

Currently, we are using SWI-Prolog’s command line inter-

face. Future work includes development of a tool with a graphi-

cal user interface. Using this tool, we plan to measure the abil-

ity of engineers, who are unfamiliar with the law, to model legal

texts using our methodology.

APPENDIX

privilege(CHCP,

for(uses(CHCP,name(Individual)),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

not(s164_510a2_objection).

implied(noRight(Individual,

right(Individual,

 CHCP
 not(for(uses(CHCP,

 name(Individual)),

4 www.theprivacyplace.org

(a) Li Europan lingues es members del sam familie. Lor
separate existentie es un
(b) Myth por sciente
(1) Musica, sport,
(2) Etc, litot Europa usa li sam vocabulary. Li lingues differe
solemn in
(a) Li grammatical
(b) Li Pronunciation e li plu common vocabules.
(c) Omnicos directe al desirabilite

Fig. 3. Example of Structural Ambiguity

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

 maintains(CHCP,directory))),

 _),

‘164.510(a)(1)(i)(A)’)) :-

isCHCP(CHCP),

not(s164_510a2_objection).

privilege(CHCP,

for(uses(CHCP,name(Individual)),

 maintains(CHCP,directory),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

not(s164_510a3_objection).
implied(noRight(Individual,

right(Individual,

 CHCP

 not(for(uses(CHCP,

 name(Individual)),

 maintains(CHCP,directory))),

 _),

‘164.510(a)(1)(i)(A)’)) :-

isCHCP(CHCP),

not(s164_510a3_objection).

obligation(CHCP,

not(for(uses(CHCP,

 name(Individual))),

 maintains(CHCP,directory)),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

s164_510a2_objection.

implied(right(Individual,

CHCP

not(for(uses(CHCP,

 name(Individual)),

 maintains(CHCP,directory))),

‘164.510(a)(1)(i)(A)’)) :-

isCHCP(CHCP),

s164_510a2_objection.

obligation(CHCP,
not(for(uses(CHCP,

 name(Individual))),

 maintains(CHCP,directory))),

‘164.510(a)(1)(i)(A)’) :-

isCHCP(CHCP),

s164_510a3_objection.

implied(right(Individual,

CHCP

not(for(uses(CHCP,

 name(Individual)),

 maintains(CHCP,directory))),

‘164.510(a)(1)(i)(A)’)) :-

isCHCP(CHCP),

s164_510a3_objection.

ACKNOWLEDGMENT

This work was partially funded by NSF ITR grant #0325269

and NSF Cyber Trust grant #0430166. We thank H. Gu, G.

Kaur, A. Massey, M. Singh, A. Villanes, and J. Young for their

comments and feedback.

REFERENCES

[1] T.J.M. Bench-Capon, G.O. Robinson, T.W. Routen, M.J. Sergot, “Logic
Programming for Large Scale Applications in Law: A Formalisation of
Supplementary Benefit Legislation”, Proc. of the 1st ACM Intl. Conf. on
Artificial Intelligence and Law, Boston, 1987, pp. 190-198.

[2] C. Biagioli, P. Mariani, D. Tiscornia, “Esplex: A Rule and Conceptual
Model for Representing Statutes”, Proc. of the 1st ACM Intl. Conf. on
Artificial Intelligence and Law, Boston, 1987, pp. 240-251.

[3] R.J. Brachman, and Levesque, H.J., Knowledge Representation and
Reasoning, Elsevier, 2004.

[4] I. Bratko, Prolog: Programming for Artificial Intelligence, Addison-
Wesley, 2001, 3rd ed.

[5] T.D. Breaux, “Legal Requirements Acquisition for the Specification of
Legally Compliant Information Systems”, Ph.D. Dissertation, North
Carolina State University, 2009.

[6] T.D. Breaux, A.I. Antón, “Analyzing Regulatory Rules for Privacy and
Security Requirements”, IEEE Trans. on Software Engineering, 34(1),
Jan.-Feb. 2008, pp. 5-20.

[7] T.D. Breaux, A.I. Antón, J. Doyle, “Semantic Parameterization: A Proc-
ess for Modeling Domain Descriptions”, ACM Trans. on Software. En-
gineering Methodologies, (In Press) 2009.

[8] T.D. Breaux, M.W. Vail, A.I. Antón, “Towards Regulatory Compliance:
Extracting Rights and Obligations to Align Requirements with Regula-
tions”, Proc. of the 14th IEEE Intl. Requirements Engineering Conf.,
Minneapolis, 2006, pp. 46-55.

[9] 2008 Global Information Survey, Ernst & Young, 2008.
[10] M. Fowler, Refactoring: Improving the Design of Existing Code, Addi-

son-Wesley, 2000.
[11] S. Ghanavati, D. Amyot, L. Peyton, “Towards a Framework for Track-

ing Legal Compliance in Healthcare”, Proc. of the 19th Intl. Conf. on
Advanced Information Systems Engineering, Trondheim, Norway, pp.
218-232.

[12] S. Ghanavati, D. Amyot, L. Peyton, “Compliance Analysis Based on a
Goal-Oriented Requirement Language Evaluation Methodology”, Proc.
of the 17th IEEE Intl. Conf. on Requirements Engineering, Atlanta,
2009, pp. 133-142.

[13] G. Greenleaf, A. Mowbray, A.A. Tyree, “Expert Systems in Law: The
Datalex Project”, Proc. of the 1st ACM Intl. Conf. on Artificial Intelli-
gence and Law, Boston, May 1987, pp. 9-17.

[14] M. Hamdaqa, A. Hamou-Lhadj, “Citation Analysis: An Approach for
Facilitating the Understanding and the Analysis of Regulatory Compli-
ance Documents,” Proc. of the 6th Intl. Conf. on Information Technol-
ogy: New Generations, Las Vegas, 2009, pp. 278-283.

[15] W. Hassan, L. Logrippo, “A Governance Requirements Extraction
Model for Legal Compliance Validation”, Proc. of the 2nd Intl. Work-
shop on Requirements Engineering and Law, Atlanta, 2009.

[16] W.N. Hohfeld, "Some Fundamental Legal Conceptions as Applied in
Judicial Reasoning", The Yale Law Journal, 23(1), Nov. 1913, pp. 16-
59.

[17] A.K. Jha et al, “Use of Electronic Health Records in U.S. Hospitals”,
The New England Journal of Medicine, 360(16), Apr. 16, 2009.

[18] G.M. Kastel, “ARRA Changes to HIPAA Include Requirements Re-
strictions for Business Associates”, Feb. 20, 2009,
<http://www.faegre.com/showarticle.aspx?Show=8969 >.

[19] B. Krebs, “ChoicePoint Breach, Exposed 13,750 Consumer Records”,
The Washington Post, Oct. 19, 2009,
<http://voices.washingtonpost.com/securityfix/2009/10/choicepoint_bre
ach_exposed_137.html>.

[20] P.E. Lam, J.C. Mitchell, S. Sundaram, “A Formalization of HIPAA for
a Medical Messaging System”, Proc. of the 6th International Confer-
ence on Trust, Privacy & Security in Digital Business, Linz, 2009.

[21] J. Liebowitz, “Expert Systems in Law: A Survey and Case Study”,
Telematics and Informatics, 3(4), 1986, pp. 263-271.

[22] A.K. Massey, P.N. Otto, L.J. Hayward, A.I. Antón, “Evaluating Exist-
ing Security and Privacy Requirements for Legal Compliance”, In
Press: Requirements Engineering Journal, Springer-Verlag, 2009.

[23] Maxwell, J.C., Antón, A.I., “Developing Production Rule Models to
Aid in Acquiring Requirements from Legal Texts”, Proc. of the 17th
Intl. IEEE Requirements Engineering Conf., Atlanta, 2009, pp. 101-110.

[24] Maxwell, J.C., Antón, A.I., "Validating Existing Requirements for
Compliance with Law Using a Production Rule Model" Proc. of the 2nd
Intl. IEEE Workshop on Requirements Engineering and the Law, At-
lanta, 2009, pp. 1-6.

[25] M.J. May, C.A. Gunter, I. Lee, “Privacy APIs: Access Control Tech-
niques to Analyze and Verify Legal Privacy Policies”, 19th IEEE Com-
puter Security Foundations Workshop, pp. 85-97, 2006.

[26] P.N. Otto, A.I. Antón, “Addressing Legal Requirements in Require-
ments Engineering”, Proc. of the 15th IEEE International Requirements
Engineering Conference, New Dehli, 2007, pp. 5-14.

[27] P.N. Otto, A.I. Antón, D.L. Baumer, “The Choicepoint Dilemma: How
Data Brokers Should Handle the Privacy of Personal Information”,
IEEE Security and Privacy, 5(5), Sep.-Oct. 2007, pp. 15-23.

NORTH CAROLINA STATE UNIVERSITY CSC TECHNICAL REPORT #TR-2010-3

[28] N.P. Padhy, Artificial Intelligence and Intelligent Systems, Oxford
University Press, 2005.

[29] J. Popple, “Legal Expert Systems: The Inadequacy of a Rule-Based
Approach”, The Australian Computer Journal, 23(1), Feb. 1991, pp. 11-
16.

[30] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shad-
bolt, W. Van de Velde, and B. Wielinga, Knowledge Engineering and
Management: The CommonKADS Methodology, MIT Press, 2000.

[31] M.J. Sergot, A.S. Kamble, K.K. Bajaj, “Indian Central Civil Service
Pension Rules: A Case Study in Logic Programming Applied to Regula-
tions”, Proc. of the 3rd ACM Intl. Conf. on Artificial Intelligence and
Law, Oxford, 1991, pp. 118-127.

[32] M.J. Sergot, F. Sadri, A. Kowalski, F. Kriwaczek, P. Hammond, H.T.
Cory, “The British Nationality Act as a Logic Program”, Comm. of the
ACM, 29(5), May 1986, pp. 370-386.

[33] D.M. Sherman, “A Prolog Model of the Income Tax Act of Canada”,
Proc. of the 1st ACM Intl. Conf. on Artificial Intelligence and Law, Bos-
ton, 1987, pp. 127-136.

[34] A. Siena, J. Mylopoulos, A. Perini, A. Susi, “The Nomos Framework:
Modelling Requirements Compliant with Laws”, Technical Report, TR-
0209-SMSP, 2009.

[35] A. Siena, A. Perini, A. Susi, J. J. Mylopoulos, “A Meta-Model for
Modelling Law-Compliant Requirements”, Proc. of the 2nd Intl. Work-
shop on Requirements and Law, Atlanta, 2009.

[36] E. Singer, “A Big Stimulus Boost for Electronic Health Records”,
Technology Review, Feb. 20, 2009.

[37] L. Sterling, and E. Shapiro, The Art of Prolog: Advanced Program-
ming Techniques, MIT Press, 1994, 2nd ed.

[38] U.S. Dept. of Health and Human Services, “Standards for Privacy of
Individually Identifiable Health Information—Part 164, Subpart E,”
Federal Register, 68(34), Feb. 2003, pp. 8334-8381.

[39] A. Valente, Legal Knowledge Engineering: A Modeling Approach, in
Frontiers in Artificial Intelligence and Applications, Vol. 30, IOS Press,
1995.

[40] P.R.S. Visser, T.J.M. Bench-Capon, and J. van den Herik, “A Method
for Conceptualising Legal Domains: An Example from the Dutch Un-
employment Benefits Act”, Artificial Intelligence and Law, 5(3), Sep.
1997, pp. 207-242.

[41] P.R.S. Visser, R.W. van Kralingen, T.J.M. Bench-Capon, “A Method
for the Development of Legal Knowledge Systems”, Proc. of the 6th
ACM Intl. Conf. on AI and Law, Melbourne, Australia, 1997, pp. 151-
160.

[42] R.K. Yin, Case Study Research: Design and Methods, in Applied
Social Research Methods Series, Vol. 5, 2003, 3rd ed.

[43] E. Yu, “Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering”, Proc. of the 3rd IEEE Intl. Symposium on
Requirements Engineering, Annapolis, Jan. 1997, pp. 6-10.

