Equivalence and Minimization of Conjunctive Queries
Under Combined Semantics

Rada Chirkova
Department of Computer Science

NC State University, Raleigh, NC 27695, USA
chirkova@csc.ncsu.edu

ABSTRACT

The problems of query containment, equivalence, and min-
imization are recognized as very important in the context
of query processing, specifically of query optimization. In
their classic work [2] published in 1977, Chandra and Mer-
lin solved the three problems for the language of conjunc-
tive queries (CQ queries) on relational data, under the “set-
semantics” assumption for query evaluation. (Under set
semantics, both database relations and query answers are
treated as sets.) While the results of [2] have been very
influential in database research, it was recognized long ago
that the set semantics does not correspond to the seman-
tics of the standard commercial query language SQL. Al-
ternative semantics, called bag and bag-set semantics, have
been studied since 1993; Chaudhuri and Vardi in [4] out-
lined necessary and sufficient conditions for equivalence of
CQ queries under these semantics. (The problems of con-
tainment of CQ bag and bag-set queries remain open to this
day.) More recently, Cohen [5, 6] introduced a formalism
for treating (generalizations of) CQ queries evaluated under
each of set, bag, and bag-set semantics uniformly as special
cases of the more general combined semantics. This for-
malism provides tools for studying broader classes of practi-
cal SQL queries, specifically important types of queries that
arise in on-line analytical processing (OLAP). Cohen in [6]
provides a sufficient condition for equivalence of (general-
izations of) combined-semantics CQ queries, as well as suffi-
cient and necessary equivalence conditions for several proper
sublanguages of the query language of [6]. To the best of our
knowledge, no results on minimization of CQ queries beyond
set-semantics queries have been reported in the literature.
Our goal in this paper is to continue the study of equiv-
alence and minimization of CQ queries. We consider the
problems of (i) finding minimized versions of combined-sem-
antics CQ queries, and of (ii) determining whether two CQ
queries are combined-semantics equivalent. We continue the
tradition of [2, 4, 6] of studying these problems using the
tool of containment between queries. We extend the contain-
ment, equivalence, and minimization results of [2] to general
combined-semantics CQ queries, and show the limitations of
each extension. We show that the minimization approach of
[2] can be extended to general CQ queries without limita-
tions. We also propose a necessary and sufficient condition
for equivalence of queries belonging to a large natural sub-
language of combined-semantics CQ queries; this sublan-

guage encompasses (but is not limited to) all set, bag, and
bag-set queries. Our equivalence and minimization results,
as well as our general sufficient condition for containment of
combined-semantics CQ queries, reduce correctly to the spe-
cial cases reported in [4] for bag and bag-set semantics. Our
containment and equivalence conditions also properly gen-
eralize the results of [6], provided the latter are restricted to
the language of (combined-semantics) CQ queries.

1. INTRODUCTION

Query containment and equivalence are recognized as fun-
damental problems in database query evaluation and opti-
mization. The reason is, for conjunctive queries (CQ queries)
— a broad class of frequently used queries, whose expressive
power is sufficient to express select-project-join queries in re-
lational algebra — query equivalence can be used as a tool
in query optimization. Specifically, to find a more efficient
and answer-preserving formulation of a given CQ query, it is
enough to “try all ways” of arriving at a “shorter” query for-
mulation, by removing query subgoals, in a process called
query minimization [2]. A subgoal-removal step succeeds
only if equivalence (via containment) of the “original” and
“shorter” query formulations can be ensured. The equiv-
alence test of [2] for CQ queries is NP complete, whereas
equivalence of general relational queries is undecidable.

The query-minimization algorithm of [2] works under the
assumption of set semantics for query evaluation, where
both the database (stored) relations and query answers are
treated as sets. Query answering and reformulation in the
set-semantics setting have been studied extensively in the
database-theory literature. As a basis, these studies have
all used the necessary and sufficient containment condition
of [2] for CQ queries. At the same time, the set semantics is
not the default query-evaluation semantics in database sys-
tems in practice. For instance, in the standard relational
query language SQL, duplicates are removed from the an-
swer to a SQL query only if the query uses the DISTINCT
keyword in its SELECT clause. This and other discrepancies
between the set semantics for query evaluation and the stan-
dard of the query language SQL have prompted researchers
[4, 9] to consider “bag semantics” and “bag-set semantics” for
query evaluation. Under bag semantics, both query answers
and stored relations are treated as bags (that is, multisets).
Under bag-set semantics, query answers are treated as bags,
whereas the database relations are assumed to be sets.

In an extended abstract [4] published in PODS in 1993,
Chaudhuri and Vardi focused on the hard problem of bag
containment for CQ queries. The paper [4] formulates con-
tainment and equivalence results, including equivalence tests,

for bag and bag-set queries. However, the full version of the
paper [4] has never appeared, and the problems of bag and
bag-set containment for CQ queries remain open to this day.

The seminal work by Cohen [5, 6] has provided a Datalog-
based formalism for treating queries evaluated under each of
set, bag, and bag-set semantics uniformly as special cases of
the more general combined semantics. To show the practical
value of the combined-semantics formalism, Cohen exhibited
in [6] a number of real-life SQL queries that can be expressed
as combined-semantics CQ queries, but cannot be expressed
using any of the set, bag, or bag-set semantics alone. In
the following example we show another realistic combined-
semantics query, and use it to illustrate issues in equivalence
and minimization of combined-semantics queries.

EXAMPLE 1.1. The application domain used here is based
on a data-warehousing example from [8]. Consider a re-
tailer that has multiple stores. The retailer carries many
items and has an elaborate relational database/warehouse
for analysis, marketing, and promotion purposes. One of
the tables in the database has the schema pos(transact-
ionID,itemID,storelD,date,amount); the table has one mil-
lion rows. This table represents point-of-sale transactions,
with one tuple for every item sold in a transaction. FEach
tuple has the transaction ID, the ID of the item sold, the ID
of the store selling it, the date, and the amount of the sale.

Suppose that the business-development division of this store
chain would like to study the impact, on the total sales, of
those transactions in the stores where the item prices are
the same as on some fized date.! We denote this fived date
of interest by the constant d1. Consider SQL query Q1 that
could be used for the purpose of this analysis.

(Q1) SELECT storeID, amount FROM pos P WHERE EXISTS
(SELECT * FROM pos WHERE itemID = P.itemID AND

storeID = P.storeID AND amount = P.amount AND date = ‘d1’)

For each store ID, query Q1 returns separately the amount
for each transaction that took place in that store on the date
d1l. Moreover, for each item that was sold in the store on
the date d1, Q1 returns all the same purchase amounts for
the same item in the same store, as many times as the pur-
chases have happened, regardless of the date. For instance,
suppose that the pos relation has the information that the
store with ID s1 (i) sold item i1 three times on the date d1
with the transaction amount amtl, (i1) sold no other items
on or before that date, and (i4i) has sold i1l with the same
transaction amount four times after the date d1. Then the
query Q1 on that relation would return the pair (s1, amtl)
seven times. If the analysts want to calculate correctly the
total per-store returns for all the transactions that have the
same item prices as the same-store transactions for the date
d1, then all they have to do to write the query is to (i) add
to the query Q1 the clause GROUP BY storeID, and to (%)
replace amount by sum(amount) in the SELECT clause of Q1.

Due to the large size of the relation pos, the self-join of
pos in the query Q1, via a correlated subquery, should be
avoided if at all possible. Let us see whether the following
query Q2 could be used instead of Q1.

'We assume that the transaction amount can be used to
determine the price of the item. This is true, for instance,
for sales of big-ticket items, where each transaction typically
records the sale of one such item. We also assume that item
prices do not change in the middle of a business day.

(Q2) SELECT DISTINCT storeID, amount FROM pos
WHERE date = ‘d1’

Suppose for the moment that we modify the query Q1 by
adding the DISTINCT keyword to its SELECT clause; we call
the resulting query Q3. We could then use the classic results
of [2] to prove that the queries Q2 and Q3 return the same
answers on all databases; we can use [2] because Q2 and
Q3 are set-semantics queries.®> Using the definitions of [5,
6/, we can say that the two queries are combined-semantics
equivalent. Because it can be shown formally [2] that the
equivalence of Q2 to Q3 holds, we can reduce significantly the
costs of evaluating the query Q3, by evaluating Q2 instead.

Unfortunately, the query Q3 does not work for the purposes
of the analysis that we covered earlier in this example. The
reason is, the query Q3 returns each (storelID, amount) pair
exactly once, due to the use of the DISTINCT keyword in the
query. As a result, the answer to Q3 (or Q2) cannot be used
in a correct computation of the total returns as discussed
above, in the way that Q1 can be used. Note that removing
the DISTINCT keyword from Q2 would not bring us any closer
to evaluating Q1 correctly, because the resulting bag-set query
would return the information only for those transactions that
took place on the date d1. Fven the following bag-set query
Q4, which avoids the problematic correlated subquery of Q1,
cannot be used for a correct evaluation of the query Q1.

(Q4) SELECT Pi.storeID, Pl.amount FROM pos P1, pos P2
WHERE P1.itemID = P2.itemID AND P1l.storeID = P2.storelD
AND P1.amount = P2.amount AND P2.date = ‘d1’

The problem with Q4 is that for each distinct row in pos
P1 such that the row produces a pair (storeID, amount)
qualifying for the answer to Q4, the query Q4 returns the pair
not once (which would be correct, see Q1), but as many times
as the item was sold on the date d1. Thus, we can show that
Q4 is not combined-semantics equivalent to Q1. Adding the
DISTINCT keyword to Q4 does not fix the problem, as it would
give us a set-semantics query, which is combined-semantics
equivalent to the queries Q2 and Q3, but not to Q1. O

We can use the results of [2, 6] to show that the queries Q2
and Q3 of Example 1.1 are combined-semantics equivalent.
Specifically, we can determine formally that the evaluation
costs of the query Q3 can be minimized by evaluating Q2 in-
stead, because Q2 is a minimized version of both Q2 and Q3.
As for the combined-semantics CQ queries illustrated here
by the query Q1 of Example 1.1, such queries (with grouping
and aggregation added) arise naturally in on-line analytical
processing (OLAP) applications [11, 12]. Such queries oc-
cur whenever a data-analysis task calls for a query structure
with nested subqueries. Such queries also arise due to joins
that go beyond “star-schema joins” [3], which are the only
well-understood joins in the literature on OLAP query op-
timization. See [11, 12, 13, 14] for more detailed discussions
of why queries with nested subqueries and with “non-star
joins” are natural and frequent in OLAP. (For an additional
extended illustration of such queries, see Example C.1 in
Appendix C.) We can use the results of [5, 6] to show that
the query Q1 of Example 1.1 cannot be represented equiva-
lently as a SQL query without subqueries, that is as a CQ
set, bag, or bag-set query. At the same time, to the best of

2See Appendix B for the Datalog syntax of [6] for all the
queries of this example.

our knowledge, past work cannot help us determine the most
efficient equivalent SQL representation of the query Q1. In-
terestingly, it follows from our results in this current paper
that the query Q1 cannot be simplified further by equivalent
reformulation, specifically by minimization.

Our contributions.

In this paper we study equivalence and minimization of
unaggregated SQL queries with equality comparisons and
possibly with subqueries. We follow the approach of [6],
where the study concentrates on Datalog translations of such
queries, that is on combined-semantics CQ queries. The reg-
uisite translations from SQL to Datalog are straightforward
(“as expected”).3 In the remainder of this paper, all queries
are expressed using the Datalog-based formalism of [6].

We focus on the problems of (i) finding minimized versions
of combined-semantics CQ queries, and of (ii) determining
whether two CQ queries are combined-semantics equivalent.
We continue the tradition of [2, 4, 6] of studying these prob-
lems using the tool of containment between queries. All the
results in this paper hold for queries that may have con-
stants. Our specific contributions are as follows:

e For combined-semantics containment of CQ queries, in
Section 3 we introduce two necessary conditions and a
sufficient condition. The latter result properly gen-
eralizes both (i) the sufficient condition outlined in
[4] for bag containment of CQ queries, and (ii) the
general sufficient containment condition that can be
obtained from [6] for CQ queries. To formulate our
sufficient condition, we introduce covering mappings
(CVMs) between CQ queries. We use CVMs in our
results throughout the remainder of the paper.

e In Section 4 we present a necessary condition for CQ-
query equivalence. To formulate this condition, we iso-
late a large class of CQ queries, which we call “explicit-
wave queries”.* We show that this class of queries
encompasses, but is not limited to, (i) all CQ set,
bag, and bag-set queries, and (ii) all CQ queries for
which [6] provides its sufficient and necessary equiv-
alence tests. We refer to all combined-semantics CQ
queries that are not explicit-wave queries as “implicit-
wave queries.” Our necessary condition for query equiv-
alence is asymmetric — it states that if for CQ queries
Q@ and Q' we have the combined-semantics equivalence
Q =c Q', and Q is an explicit-wave query, then there
exists a CVM from Q' to Q. We discuss why estab-
lishing this result is not trivial.

e In Section 5 we propose a sound and complete algo-
rithm for minimizing combined-semantics CQ queries.
We also show that for all CQ queries, including all
implicit-wave queries, the minimized version of the
query exists and is unique up to an isomorphism CVM.

e Finally, in Section 6 we study our proposed conditions
for equivalence of CQ queries. Our main focus is on
reformulating these conditions using minimized ver-
sions of the queries. The reformulations tie our equiv-
alence conditions together with the results of [2, 4].

3Section 1 in [6] provides some details of the translations.
4The term “explicit-wave query” is due to the structures
generated by the proof of the main result of Section 4.

Our sufficient and necessary condition for equivalence
of explicit-wave CQ queries is strictly more powerful
than each of the equivalence tests of [6], provided that
the latter are applied to CQ queries only.

We present in the main text (the first 12 pages) only an
extended abstract of our results. All the details are available
in the appendices.

The results of this paper can be used directly in query
optimizers for database-management systems, as well as for
developing minimization methods for queries in more expres-
sive languages than CQ queries and in presence of integrity
constraints. Our results can also be used for developing
algorithms for rewriting queries using views and for view
selection under combined semantics.

2. PRELIMINARIES

2.1 Combined semantics: The framework [6]
2.1.1 Syntax of queries

Predicate symbols are denoted as p, g, r. Databases con-
tain ground atoms for a given set of predicate symbols; we
consider finite-size databases only. A database may have
several copies of the same atom. To denote this fact, each
atom in the database is associated with a copy number N.
Formally, if p is an n-ary predicate, for an n € N1 (with
Ny the set of natural numbers), we write p(ci,...,cn; N),
with N € Ny, to denote that there are precisely N copies
of p(ci,...,cn) in the database. As a shorthand, if N = 1,
we often omit the copy number N. The active domain of
database D, denoted adom(D), is the set of all constants
mentioned in the ground atoms of D. We adopt a con-
vention by which, for each atom of the form p(ci,...,cn)
such that database D has N > 1 copies of that atom, N is
an element of adom(D) only if there exists in D an atom
r(ci,...,ch) (where r and p may or may not be the same
predicate) such that N is one of ¢}, ..., cp,.

For query syntax, we denote variables using X, Y, Z,
possibly with subscripts, and i, j, k. The former range over
constants in the database (i.e., over adom(D)), whereas the
latter range over copy numbers. For this reason, we call the
former regular variables (or simply variables for short) and
we call the latter copy variables. We use ¢, d to denote con-
stants. A term, denoted as S, T, is a variable or a constant.

A relational atom has the form p(S1,...,Sy), where p is a
predicate of arity n. We also use the notation p(S), where S
stands for a sequence of terms Si,...,S,. A copy-sensitive
atom has the form p(S;i), and is simply a relational atom
with copy variable 3. We call relational atom p(S) the re-
lational template of copy-sensitive atom p(S;i). For each
relational atom, its relational template is the atom itself. A
condition, denoted as L, is a conjunction of relational and
copy-sensitive atoms, with duplicate atoms allowed, such
that all copy variables in L are unique (i.e., appear in a sin-
gle copy-sensitive atom, and do not appear in other atoms).
Sometimes it will be convenient for us to view condition L
as a bag of all and only the elements in the conjunction L.

We distinguish between variables that appear in the head
of a query and those that only appear in the body. The
former are distinguished (head) variables, and the latter are
nondistinguished (nonhead) variables. Nondistinguished vari-
ables come in two flavors: set wvariables and multiset vari-
ables. The intuition for the difference between these two

types of variables is as follows. When evaluating a query,
different assignments for set variables do not contribute to
the multiplicity in which a particular answer is returned by
the query. On the other hand, different assignments for
multiset variables do contribute to the multiplicity of the
returned answers. Technically, in order to differentiate be-
tween set variables and multiset variables, we always specify
the set of multiset variables in each condition immediately
to the right of the condition. As a syntactic requirement, all
copy variables must be in the set of multiset variables.

DEFINITION 2.1. (Query syntax: CCQ query) A copy-
sensitive conjunctive query (CCQ query) is a nonrecursive
expression of the form

Q(X) « L, M,
where X contains at least one term, L is a nonempty con-
dition, and M is a set of variables, such that:

o L contains all the variables in X ; that is, Q is safe;

o M is a subset of the set of nondistinguished variables
of L and contains all copy variables of L. We denote
all the copy variables of Q collectively as Mcopy € M,
and all the remaining (“multiset noncopy”) variables in
M as Muoncopy := M — Mecopy- O

We call each element of the condition L a subgoal of Q.
The variables in M are the multiset variables of @Q. The
variables in L that are not in X or in M are the set variables
of Q. We use S(Q) to denote an arbitrary vector, without
repetitions, of the set variables of @, and S(Q) to denote
an arbitrary vector, without repetitions, of the remaining
variables of @ (i.e., the distinguished and multiset variables
of Q). By abuse of notation, we will often refer to a query
by its head Q(X) or simply by its head predicate Q. For a
vector of terms X with k > 1 elements, we say that a CCQ
query with head Q(X) is a CCQ k-ary query.

We will sometimes be interested in special types of queries.
A CCQ query Q is a set query if it has no multiset variables,
that is, if M = (). Query Q is a multiset query if Q has no
set variables. Further, a multiset query @ is (i) a bag query
if @Q has only copy-sensitive subgoals, and is (ii) a bag-set
query if () has only relational subgoals.

2.1.2 Combined semantics for queries

We define how CCQ query Q(X) + L, M yields a multiset
of tuples on database D. Intuitively, we start by considering
satisfying assignments of the condition L. We then restrict
these assignments to the monset variables of L, that is to
S(Q). Each of these restricted assignments yields a tuple in
the result. A formal description of the semantics follows.

Let v be a mapping of the terms in condition L to values.
We will also apply 7 to a sequence of terms to derive a
sequence of values, in the obvious way. We say that v is a
satisfying assignment of L with respect to database D if all
of the following conditions hold:

e 7 is the identity mapping on constants;

o for all relational atoms p(7) € L, there exists an N €
N4 such that we have p(yT; N) € D; and

e for all copy-sensitive atoms p(T;4) € L, the following
two conditions hold:

— vt € Ny (i.e, i is a positive natural number);

— there is an N > i such that p(yT; N) € D.

Remark (2.6 in [6]) Tt may be helpful to view a database
atom of the form p(S; N) as a shorthand for N copies of the

atom p(S). Then a query atom p(T;1) is satisfied by ~ if
~1T = S and 7i is one of the numbers 1,2,..., N.

Let T'(Q, D) denote the set of satisfying assignments of L
with respect to database D. Let v be an assignment of the
variables in S(Q) to constants. We say that v is satisfiably
extendible if there is an assignment ' € T'(Q, D) such that
~ and v’ coincide on all terms for which v is defined, that
is, 7/ (X) = y(X) for all X € S(Q). Intuitively, this means
that it is possible to extend to derive a satisfying assign-
ment of L. We use I'5(Q, D) to denote the set of satisfiably
extendible assignments of S(Q) with respect to D. For the
v € I'5(Q, D) and for the 7' € T'(Q, D) as specified in this
paragraph, we say that v’ contributes v to T'5(Q, D).

Sometimes it will be convenient to treat I'(Q, D) and I'5(Q, D)

as relations. That is, S is the sequence of attributes in the
schema of I'g(Q, D), and each assignment v in I'g(Q, D) is
the tuple v(S); similarly for I'(Q, D). (Recall that by defi-
nition, each v is the identity mapping on constants.)

We now define the result of applying a query @ to a

database D. (We use {{...} to denote a bag of values.)

DEFINITION 2.2. (Combined semantics) Let Q(T) <
L,M be a CCQ query and let D be a database. The re-
sult of applying @ to D under combined semantics, denoted
Resc(Q, D), is defined as

Resc(Q,D) = {v(T) | v€Ts(Q,D) } . D

Note that Resc(Q, D) is a bag of tuples, that is, Resc(Q, D)
may contain multiple occurrences of the same tuple.

Under certain circumstances, combined semantics coin-
cides with set, bag, or bag-set semantics. Please see Ap-
pendix D for the details on the three traditional query se-
mantics, specifically on how these semantics can be formu-
lated as special cases of combined semantics.

2.1.3 Query containment and equivalence

Query containment under combined, set, bag, and bag-set
semantics is defined in the standard manner. Formally, @ is
contained in Q' under a given semantics if, for all databases,
the bag of values returned by @ is a subbag of the bag of
values returned by Q’. We write Q Cc Q', Q Cs Q', Q Cp
Q', and Q Cps Q' if Q is contained in Q' under combined,
set, bag, and bag-set semantics, respectively. Similarly, we
e Q=c Q,Q=s5Q,Q=pQ, and Q =ps Q' to denote
the fact that Q is equivalent to @’ under each semantics.
Q =c Q' holds if and only if Q Cc Q" and Q' C¢ @ both
hold. The definitions of Q =s Q’, @ =5 Q’, and Q =ps Q’
parallel that of Q =¢ Q' in the obvious manner.

For CCQ queries @ and Q’, we have that (1) Q Es Q' iff
Q Cc Q', in case Q and Q' are set queries; (2) Q Cp Q'
iff Q Cc Q' in case Q and Q' are bag queries; and (3)
QCps Qif Q Cc @', in case Q and Q' are bag-set queries.
(See Proposition D.1 in Appendix D.)

For a class Q of queries: The Q-containment problem for
combined semantics is: Given queries Q and Q' in Q, de-
termine whether Q Co @Q'. The Q-equivalence problem is
defined similarly using =¢ instead of Cc. The two prob-
lems can be defined similarly for other semantics.

2.2 Equivalence and minimization results

Set queries. Given two conjunctions ¢(U) and (V)
of relational atoms, a homomorphism from ¢(U) to (V)
is a mapping h from the set of terms in U to the set of
terms in V such that (1) h(c) = c for each constant c,
and (2) for each atom r(Ui,...,U,) of ¢, we have that
r(h(U1), ..., h(Uyp)) is in 9. Given two CCQ k-ary set
queries Q1(X) + ¢(X,Y),{} and Q2(X’) + ¢(X', V"), {},
a containment mapping from Q1 to Q2 is a homomorphism

h from ¢(X,Y) to ¥(X’,Y’) such that h(X) = X'.

THEOREM 2.1. [2] Given two CCQ set queries Q1 and Q2
of the same arity, Q1 Cs Q2 holds if and only if there is a
containment mapping from Q2 to Q1. O

This classic result of [2] forms the basis for a sound and
complete test for set-equivalence of CCQ set queries () and
@', by definition of set-equivalence Q =s Q.

We now introduce the notion of a “reduced-condition query”

for CCQ query. Given a CCQ query Q(X) «+ L, M, a CCQ
query Q'(X) < L', M’ is a (proper) reduced-condition query
for Q if (i) L' is a (proper) subbag of L, (ii) the set M’ is
the set of all elements of M that occur in L', and (iii) Q' is
a safe query (i.e., L' contains all the variables in X).

DEFINITION 2.3. (Minimized CCQ query; minimized
version of CCQ query) A CCQ query @ 4s a minimized
CCQ query if for each subgoal s of Q, the removal of s from
the condition of Q results in a query Q' such that Q £¢ Q.
A CCQ query Q is a minimized version of CCQ query Q' if
(1) Q is a reduced-condition query for Q', (2) Q is a mini-
mized query, and (3) Q =c Q'. O

THEOREM 2.2. [2] Given two CCQ set queries Q1 and Q2
of the same arity:

(1) The minimized version of Q1 exists and is unique up
to isomorphism; and

(2) Q1 =s Q2 holds if and only if the minimized versions
of Q1 and of Q2 are isomorphic. O

Bag and bag-set queries. For bag and bag-set se-
mantics, the following conditions are known for CCQ query
equivalence. (Query Q. is a canonical representation of
query @ if Q. is the result of removing all duplicate atoms
from the condition of Q.)

THEOREM 2.3. [4] Let Q and Q" be CCQ queries. Then
(1) When Q and Q' are bag queries, Q =g Q' iff Q and
Q' are isomorphic. (2) When Q and Q' are bag-set queries,
Q =Bs Q" iff Q. and Q.. are isomorphic. O

Note 1. Assuming that the syntax of Section 2.1 is used
for queries, we can show that each isomorphism mapping in
the scope of Theorem 2.3 is a homomorphism (which also
maps copy variables to copy variables) that maps each head
(nonhead, respectively) variable of one query to a distinct
head (nonhead, respectively) variable of the other query.

Combined-semantics queries. The next result is a suf-
ficient condition of [6] for equivalence of two queries under
combined semantics. In [6], Cohen formulates each of Defi-
nition 2.4 and Theorem 2.4 for CCQ queries that may also
contain negation and inequality comparisons. (In condition
(3) of Definition 2.4 we treat the query conditions, which are

conjunctions of atoms, as bags of the same atoms. Given a
bag B, we call a set S the core-set of B if S is the result of
dropping all duplicates of all elements of B.)

DEFINITION 2.4. (Multiset-homomorphism [6]) Let
Q(X) « L,M and Q' (X') + L',M’' be two k-ary CCQ
queries, for k > 1. Let ¢ be a mapping from the terms
of Q' to the terms of Q.> We say that ¢ is a multiset-
homomorphism from Q" to Q if ¢ satisfies all of the follow-
ing conditions:

1. X' =X ;

2. ¢ 1s the identity mapping on constants;

3. the core-set of oL’ is a subset of the core-set of L ;
4. oM’ C M ; and

5. @Y # @Y’ for every two distinct variables Y,Y' € MI/Z\

For every mapping ¢ that satisfies conditions 1-3 of Def-
inition 2.4, we call ¢ a generalized containment mapping
(GCM).

We say that two CCQ queries Q and Q' are multiset homo-
morphic whenever there is a multiset-homomorphism from
Q to Q' and another from Q' to Q.

THEOREM 2.4. [6] Given CCQ queries Q and Q'. If Q
and Q' are multiset homomorphic then Q =¢ Q’. a

Note 2. Theorem 2.4 is proved in [6] via showing that for
two (generalized) CCQ queries Q and Q’, the existence of a
multiset-homomorphism from Q' to @ implies Q C¢ Q'.

The condition of Theorem 2.4 is not necessary for the
query classes considered in [6].

3. CONTAINMENT AND MAPPINGS

In this section, for combined-semantics containment of
CCQ queries, we introduce two necessary conditions, The-
orems 3.1 and 3.2, and a sufficient condition, Theorem 3.3.
The latter result properly generalizes both (i) the sufficient
condition outlined in [4] for bag containment of CQ queries,
and (ii) the general sufficient containment condition for CCQ
queries that can be obtained from [6]. To formulate Theo-
rem 3.3, we introduce covering mappings (CVMs) between
CCQ queries. We use CVMs in our results throughout the
remainder of this paper.

Throughout this paper, we use the notation Q(X) « L, M
and Q'(X’) < L', M’ for the definitions of CCQ queries @Q
and Q’. The conditions of @ and Q' may have constants.

3.1 Necessary conditions for containment

We introduce two necessary conditions for a CCQ query
Q being combined-semantics contained in CCQ query Q’,
Theorems 3.1 and 3.2.

THEOREM 3.1. Let Q and Q' be two k-ary CCQ queries.
Then Q Ce Q' implies both |Meopy| < |Mlopy| and | Mnoncopy|
S |M'rl1,0ncopy|' o

(For a set S we denote by |S| the cardinality of S.) The
proof of Theorem 3.1 can be found in Appendix E. The idea
of the proof is that we use the definition of the query Q to
construct a special database D. Some answer to Q on D has
a multiplicity (in the bag Resc(Q, D)) that is proportional

SWe also apply ¢ to atoms and conjunctions of atoms, in
the obvious way, e.g., p(p(S)) = p(p(S)).

to |adom(D)|'M!. Then we can use several versions of this
database D, to prove Theorem 3.1 by contradiction: We as-
sume either ‘MCOPZ/| > |Mclopy| or |Mnoncopy| > |M';Loncopy‘a
and obtain as a result that Q Cc Q' cannot hold. The chal-
lenge in the proof is in the combination of allowing constants
in the condition of @ and of arriving at “the right” multi-
plicity of the answer to @ on D when we are to show that
| Meopy| < |M¢opy,| must hold whenever Q Ce Q.

We call a pair (Q, Q') of CCQ queries a containment-
compatible CCQ pair if (i) The (positive) head arities of
Q and Q' are the same; (i) |Mecopy| < [Meopyl; and (iii)
| Mnoncopy| < | M oncopy|- (Note the asymmetry in the nota-
tion for the pair.) Further, we call a pair (Q, Q') of CCQ
queries an equivalence-compatible CCQ pair if each of (Q,
Q") and (Q’, Q) is a containment-compatible CCQ pair. By
Theorem 3.1 we have that, whenever Q Cc Q' (Q =c¢ Q’, re-
spectively) holds, then (Q, Q') is a containment-compatible
(an equivalence-compatible, respectively) CCQ pair.

We now generalize the “only-if” part of the classic result
of [2], see Theorem 2.1 in Section 2.2, to CCQ queries. For
the definition of generalized containment mapping, GCM,
see Section 2.2. We begin by introducing another definition
that we need to formulate our generalization, Theorem 3.2.

For a CCQ query Q, we say that CCQ query Q. is a copy-
enhanced version of @ if Q.. is the result of adding a distinct
copy variable to each relational subgoal of Q. (We can show
that for a query @, all copy-enhanced versions of @) are iden-
tical up to renaming of the copy variables introduced in the
construction of Q...) Further, for each CCQ query Q' that
is a reduced-condition query for CCQ query @, we obtain
the query Q.. by removing from Q.. those subgoals that do
not correspond to the subgoals of @Q’. (A formalization is
omitted due to lack of space; see Appendix F.)

We are now ready to formulate Theorem 3.2.

THEOREM 3.2. Given CCQ queries Q and Q' such that
Q Cc Q. Then there exists a GCM from Q.. to Qce. a

The proof of Theorem 3.2 is a straightforward generaliza-
tion of the proof, via canonical databases, of the result of
[2]. Appendix G has the proof and an illustration.

Neither Theorem 3.1 not Theorem 3.2 provides a sufficient
condition for combined-semantics containment of two CCQ
queries: The following Example 3.1 is a counterexample in
both cases.

EXAMPLE 3.1. Consider CCQ queries Q and Q':

Q(X) «+ p(X,Y),p(Y, Z),p(Z, X;1),{Y,i}.
Q'(X) « p(X,Y),p(Y, 2),p(Z, X;1),{Z,i}.

Apart from the choice of multiset variables, Q and Q' are
clearly isomorphic. However, Q =c¢ Q' does not hold, as
witnessed by database D = {p(1,2), p(2,3), p(3,1), p(1,4),
p(4,3)}. Our results in this paper permit us to determine
Q #c Q' syntactically, see Section 4. (To the best of our
knowledge, no previous work provides a formal procedure to
determine Q £c Q' for queries such as in this ezample.) O

Each of Theorem 3.1 and Theorem 3.2 yields a neces-
sary condition for combined-semantics equivalence of CCQ
queries in a natural way. For instance:

COROLLARY 3.1. Let Q and Q' be two k-ary CCQ queries
such that Q@ =¢ Q'. Then we have |Meopy| = |Mopy| and

‘Mnoncopyl |M7,Loncopy|

3.2 Covering mappings for CCQ queries

In this subsection, we define covering mappings (CVMs)
between CCQ queries, and study properties of CVMs. Ap-
pendix H has proofs of all the results of this subsection.

DEFINITION 3.1. (Covering mapping (CVM)) Given
CCQ queries Q and Q', a mapping, call it u, from the terms
of Q' to the terms of Q is called a covering mapping (CVM)
from Q' to Q whenever u satisfies all of the following con-
ditions:

(1) p maps each constant (if any) in Q' to itself;

(2) applying u to the vector X' yields the vector X ;

(3) the set of terms in pM.,,, is ezxactly Mcopy, and the
set of terms in My oncopy ncludes all of Mnoncopy;

(4) for each relational subgoal of Q', of the form s(_Y),
there exists in Q either a relational subgoal s(u(Y')),
or a copy-sensitive subgoal s(u(Y);1), with i € Meopy;

and
(5) for each copy-sensitive subgoal of Q" of the form s(Y;4),
there exists in Q a subgoal s(pu(Y); u(7)). O

By Definition 3.1, if there exists a CVM from CCQ query
Q' to CCQ query Q, then (Q, Q') is a containment-compatible
CCQ pair. It is immediate from Definition 3.1 that if a map-
ping p is a CVM from Q' to @, then u induces a surjection
from the set of copy-sensitive subgoals of Q' to the set of
copy-sensitive subgoals of (). Observe also that in case both
Q and Q' are set queries, Definition 3.1 becomes the defini-
tion of containment mapping [2] from Q' to Q.

For the special case where (Q, Q') is an equivalence-compat-
ible CCQ pair, we call each CVM from Q' to Q a same-scale
covering mapping (SCVM) from Q' to Q. By definition,
each SCVM from Q' to Q is a bijection from the set M’ to
the set M when restricted to the domain M’.

The intuition for Definition 3.1 comes from our use of
CVMs later in this paper (Section 5) as a tool for minimizing
CCQ queries. Consider the following illustration.

EXAMPLE 3.2. Let queries Q and Q' be as follows.

Q(X) + p(X, X, Y34),p(X, Z,Y),{Y,i}.
Q'(X) + p(X, X,Y;i),{V,i}.

By Definition 2.4, there does not exist a multiset homomor-
phism [6], or even a GCM, from Q to Q'. At the same time,
by our results of Section 5, Q' is a minimized version of Q.
We can ascertain this fact by using a CVM, u, from Q to
Q:p={X—-X, Y=Y, iwi Z—-X}. O

As illustrated by Example 3.2, CVMs are not GCMs. In-
deed, the definition of CVMs gives up explicitly on condition
(3) for GCMs (see Definition 2.4); by this condition, for each
subgoal s of @ in Example 3.2, we must have that u(s) is a
subgoal of Q’. While CVMs are not GCMs, a nice relation-
ship exists between CVMs and GCMs, see Proposition 3.2.
To formulate Proposition 3.2, we use the following definition,
in which we treat query conditions as bags of atoms.

Given CCQ query @Q, let T(Q) be the set of relational
templates of all (if any) copy-sensitive subgoals of Q. We
recall that CCQ query Q. is a canonical representation of
CCQ query @ if Q. is the result of removing all duplicate
atoms from the condition of Q.

DEFINITION 3.2. ((Un)regularizing CCQ query) Given

CCQ query Q, with canonical representation Q.. Then (1)
A regularized version of Q is a CCQ query Q, obtained by
dropping from the condition of Q. all elements of the set
T(Q); (2) A deregularized version of Q is a CCQ query Q4
obtained by adding to the condition of Q. all elements of the
set T(Q); (3) An unregularized version of @ is a CCQ query
Qu obtained by adding to the condition of Q one or more
duplicates of the existing relational subgoals, and/or one or
more elements (possibly with duplicates) of the set T(Q). O

The following result is straightforward.

PROPOSITION 3.1. Given a CCQ query Q. Then (1) Each
of Qr and Qg is a well-defined, unique and polynomial-time
computable CCQ query; (2) Qr =c Q and Qq =c Q both
hold; and (8) For each unregularized version Q. of Q, we
have that Q. =c Q holds. O

Appendix H.1 has an illustration and a discussion of the
query versions as specified in Definition 3.2.
We are now ready to formulate Proposition 3.2.

PROPOSITION 3.2. Given CCQ queries Q and Q'. Then
for each CVM, p, from Q to Q', we have that (1) p is a
GCM from Q to the deregularized version of Q', and (2) p
is a CVM from Q to the regularized version of Q’. a

In Example 3.2, we are given the regularized version Q.. of
the query @’. The deregularized version of Q’ is Q7 (X) +
(X, X,Y;4),p(X,X,Y),{Y,i}. The mapping u of Exam-
ple 3.2 (i) is a GCM from Q to QY, (ii) is a CVM from Q to
Q. and (iii) is not a GCM from Q to Q..

It turns out that CVMs furnish a rather general sufficient
condition for CCQ combined-semantics containment:

THEOREM 3.3. Given CCQ queries Q and Q', such that
there exists a CVM from Q' to Q. Then Q Cc Q' holds. O

Theorem 3.3 generalizes properly both (i) the sufficient
condition of [2] for containment between CCQ set queries,
see Theorem 2.1, and (ii) the well-known result of [4] stating
that a containment mapping® from CCQ bag query Q' onto
CCQ bag query Q ensures containment Q Cp Q. In fact,
to the best of our knowledge, the proof of our Theorem 3.3
is the first formal proof of the latter result from [4].

We can further relax Definition 3.1, by allowing a (gen-
eralization of) CVM to map the set My,,, into a superset
of Mcopy. This relaxation provides a sufficient condition for
combined-semantics containment of CCQ queries; that suf-
ficient condition properly generalizes the condition of Theo-
rem 3.3. Please see Appendix H.3.2 for all the details.

The condition of Theorem 3.3 does not appear to be a
necessary condition for containment of CCQ queries. In-
deed, a well-known example of [4] (see Appendix I), claims
containment Q C¢ @Q’, but no CVM exists from Q’ to Q.

Finally, we compare CVMs with multiset homomorphisms
[6], see Definition 2.4. For a fixed pair of CCQ queries Q
and @', with respective sets of multiset variables M and
M', each CVM from Q' to @ has range at least M when

5The “containment mapping” terminology of [4] results from
the use in that paper of a syntax for bag queries that does
not coincide with the syntax of [6] used in this current paper.
See Appendix H.4 for a detailed discussion.

restricted to the domain M’, and each multiset homomor-
phism from Q' to @ has range at most M when restricted
to the domain M’. Therefore, general CVMs and multi-
set homomorphisms are incomparable when applied to pairs
of CCQ queries. (See Example H.4 in Appendix H.5.) At
the same time, we have the following result for SCVMs and
multiset-homomorphisms. (The proof, which is immediate
from Proposition 3.2, can be found in Appendix H.5.)

PROPOSITION 3.3. Given an equivalence-compatible CCQ
pair (Q, Q'). Then each SCVM from Q' to Q is a multiset-
homomorphism from Q' to the deregularized version of Q,
and vice versa. a

For instance, consider the mapping p of Example 3.2 from
the terms of the query @ to the terms of the query Q' of the
example. This mapping is a CVM from Q to Q' and is
also a multiset-homomorphism from @ to the deregularized
version Q) of @', Q4(X) < p(X, X,Y:4),p(X, X,Y), {Y,i}.
(Observe that there is no GCM from query Q) to query Q’.)

As an immediate corollary of Propositions 3.2 and 3.3, we
have that for each equivalence-compatible CCQ pair (Q, Q'),
the existence of a multiset-homomorphism from Q' to Q im-
plies the existence of a CVM from Q' to Q. From this result
and from Example 3.2, we obtain that the restriction of The-
orem 2.4 (due to [6]) to CCQ queries does not have quite
the same power as the sufficient condition for equivalence
of CCQ queries that is immediate from Theorem 3.3. (See
Theorem 6.1 for an explicit formulation; by Theorem 6.1, we
have Q =¢ Q' for the queries of Example 3.2.) In fact, by
Example 3.2 we have that our Theorem 3.3 is a proper gen-
eralization of the (implicit) query-containment condition of
[6], provided that the latter is applied to CCQ queries only;
see Note 2 in Section 2.2. (By Definition 2.4 and by The-
orem 3.1, the existence of a multiset-homomorphism from
CCQ query Q' to CCQ query Q implies Q C¢ Q' only when
(Q, Q") is an equivalence-compatible CCQ pair.)

4. EQUIVALENCE: ASYMMETRIC
NECESSARY CONDITION

In this section we present a necessary condition for CCQ
query equivalence, Theorem 4.1. To formulate Theorem 4.1,
we isolate a large well-behaved class of combined-semantics
CQ queries, which we call “explicit-wave queries.” Theo-
rem 4.1 is asymmetric: It states that if for CCQ queries Q
and Q' the combined-semantics equivalence Q =¢ @’ holds,
and we have that @ is an explicit-wave query, then there
exists a CVM from Q' to Q. We discuss why establishing
this result is not trivial. (Appendix L has the full proof.)

We begin by introducing Definition 4.1. This technical
definition is required for the proof of Theorem 4.1 to go
through. Given a CCQ query @, with set Myoncopy # 0 of
multiset noncopy variables, we say that a GCM p from @ to
itself is a noncopy-permuting GCM if the mapping resulting
from restricting the domain of p to Muoncopy is a bijection
from Myoncopy to itself. For two noncopy-permuting GCMs,
w1 and po, from @ to itself, we say that p; and us agree
on Mponcopy if p1 and p2 induce the same mapping from
Mponcopy to itself. If for CCQ query @ we have Myoncopy
= (), we say that all GCMs from @ to itself are noncopy-
permuting GCMs, and that all pairs of such GCMs agree on
Mnoncopy-

In Definition 4.1, for a CCQ query @ and for its copy-
enhanced version Q.., we will call “the original copy-sensitive

subgoals of Q” those copy-sensitive atoms that are present
in the conditions of both @ and Q..

DEFINITION 4.1. (Explicit-wave CCQ query) A CCQ
query @ is an explicit-wave (CCQ) query if one of the fol-
lowing conditions holds:

(1) @ has at most one copy-sensitive subgoal; or

(2) For the set Mponcopy Of multiset noncopy variables of
Q, and for each pair (u1,u2) of noncopy-permuting
GCMs from Qce to itself, such that pi and uo agree
on Myoncopy, for each original copy-sensitive subgoal,
s, of Q we have that p1(s) and p2(s) have the same
relational template. O

The problem of determining whether a given CCQ query
is an explicit-wave query can easily be seen to be in co-NP.
It is open whether this upper complexity bound is tight.

As an example, any CCQ query @ that has a distinct
predicate name for each subgoal (i.e., is a query without
self-joins) can be shown to be an explicit-wave query.

For each CCQ query @ that is not explicit-wave, we call
Q an implicit-wave query. Consider an illustration.

EXAMPLE 4.1. Consider CCQ queries Q and Q'.
Q(Xl) %T(Xl,)/l,Y27X2;7:),7'(X1,Y1,Y27X3;j)7{Yl,)/é,i,j}.

Ql(Xl) <~ T(XhYlaY27X2;7;)7T(X17Y17Y27X2;j)7 {Y17Y25i7j}'

The only difference between the queries is that the two
subgoals of the query Q have different set variables, X2 and
X3, whereas the two subgoals of Q' have the same set variable
Xo. We can show (see Appendiz J) that the query Q is an
implicit-wave query.

There exist both a multiset homomorphism and a CVM
from the query Q to the query Q'. (Recall that each of the
two mappings provides a sufficient condition for Q' Cc Q.)
Observe that there is mo isomorphism between Q and @'.
The remarkable part is that no multiset homomorphism or
CVM ezists in the opposite direction, that is from Q' to Q.
Yet, Q =c Q' does hold (see Appendiz K). It does not help
much that there exists a GCM from Q' to Q. By Theo-
rem 3.2, the existence of a GCM is a necessary, rather than
sufficient, condition for the containment Q Cc Q'. (To ap-
ply Theorem 3.2, observe that Q and Q.. are identical, as
are Q' and Q...) O

Queries such as the query @ of Example 4.1 are of the
kind that does not seem to have been studied before. For
instance, implicit-wave CCQ queries cannot occur under set,
bag, or bag-set semantics.” By the main result of this sec-
tion, Theorem 4.1, under these three traditional semantics,
as well as in other cases of combined semantics, there exist
symmetric CVM mappings between equivalent CCQ queries.
That is, for each pair (Q, Q') of combined-semantics CCQ
queries such that each of @ and @Q’ is an explicit-wave query,
Q =c¢ Q' implies that a CVM exists from Q to Q'. What is
important is that in all such cases, a mapping of the same
type (i.e., also a CVM) always exists also from Q’ to Q. Ex-
ample 4.1 illustrates that such symmetry does not hold for
unrestricted pairs of CQ queries under combined semantics.

We now state Theorem 4.1.

"We prove this claim in Section 6.

THEOREM 4.1. Given CCQ queries Q and Q’, such that
(i) Q is an explicit-wave query, and (ii) Q =c Q'. Then
there exists a SCVM from Q' to Q. O

Theorems 3.3 and 4.1 yield immediately a necessary and
sufficient equivalence condition for CCQ explicit-wave queries.
We explore this equivalence condition in detail in Section 6.

Due to the well-known example of [4] (Appendix I), it
appears that condition (ii) of Theorem 4.1 cannot be re-
placed by condition @ E¢ Q' (while also replacing SCVMs
by CVMs), even when Q is an explicit-wave query. Alter-
natively, we cannot remove condition (i) of Theorem 4.1.
Indeed, in Example 4.1 there is a SCVM from query @ to
explicit-wave query @Q’, but there is no SCVM from Q' to Q,
even though Q =¢ Q' holds, see Appendix K. Thus, The-
orem 4.1 provides an asymmetric necessary condition for
CCQ-query equivalence. This asymmetry does not appear
to have been explored in previous work. One reason for this
is that, as we have mentioned, under the three traditional
semantics all CCQ queries are explicit-wave queries. In [6],
Cohen explores query classes that properly subsume the
class of CCQ queries. When restricted to CCQ queries, all
the necessary and sufficient conditions of [6] for combined-
semantics query equivalence require the queries to be explicit-
wave queries. (We note that none of the necessary and suf-
ficient conditions of [6] applies to our Examples 3.1 or 3.2,
even though all the queries in the two examples are explicit-
wave queries. Yet, by an equivalence test that is immediate
from our Theorems 3.3 and 4.1, Q £#c Q' for the queries of
Example 3.1, and Q =¢ Q' for the queries of Example 3.2.
See Appendix N for all the details.)

In the remainder of this section, we outline the idea of the
proof of Theorem 4.1. (The full proof can be found in Ap-
pendix L.) Intuitively, we generalize the proof, via canonical
databases, of the existence of a containment mapping from
CCQ set query Q' to CCQ set query Q whenever Q =5 Q’.
There is a major challenge in the generalization: We are now
looking not just for a containment mapping, but for a SCVM
from Q' to Q. That is, the desired mapping must map each
multiset variable of @’ into a distinct multiset variable of
Q. Showing that we have constructed a mapping with this
property is thus an essential part of the proof. (Note that in
Theorem 4.1, we have no information about the structural
relationship between the given queries @ and Q’.)

For a given CCQ query @, the proof of Theorem 4.1 con-
structs an infinite number of databases, where each database
D) (Q), i > 1, can be thought of as a union of “extended
canonical databases” for Q. (See Appendix G.1 for the
definition.) Similarly to canonical databases for CCQ set
queries, each ground atom in each database D g (Q) can
be associated, via a mapping that we denote 1/8), with a
unique subgoal of the query Q.

The role of each database D g (Q) in the proof of Theo-
rem 4.1 is that the database represents a particular combi-
nation of multiplicities of the values of (some of) the multi-
set variables Yi, Y2, ..., Y,, for some n > 1, of the query
Q. (We have that n > 1 for all CCQ queries and Q'
such that Q =¢ Q' and at least one of Q and Q' is not a
set query.) For each database D g()(Q), we represent the
n respective multiplicities as natural numbers Nl(l) through
fo), or equivalently via the n-ary vector N @,

By construction of the databases D i) (Q), we have that
some fixed tuple, t,, is an element of the bag Resc(Q, D) (Q))

for each ¢ > 1. Moreover, for all queries Q" such that (Q,
Q") is an equivalence-compatible CCQ pair, we have that the
multiplicity of the tuple t¢) in each bag Resc(Q", D g (Q))
(that is, for each ¢ > 1) can be expressed using the symbolic
representations, N; through N,,, of the respective elements
Nl(i), .., N of the vector N, That is, for each such
query @Q", we can obtain explicitly a function, }'((S)”), in
terms of the n variables N1, ..., Ny, such that whenever we
substitute N;Z) for Nj, for each j € {1,...,n}, the result-
ing expression in terms of Nl(i), ey N evaluates to the
multiplicity of the tuple tf, in the bag Resc(Q", Dy (Q))-
A key observation in the proof of Theorem 4.1 is that for
our fixed query @ and for each CCQ query Q' such that
Q' =c¢ Q, it must be that the functions F((g;) and .7-"((8))
output the same value on each database Dg)(Q), ¢ > 1.
Consider the simplest case, where our query Q has no self-
joins and has |[M| = n > 1. In this case, by construction of
the databases, we have that the function .7:((8)) for the query
Q is the monomial IT}_; V;. Consider an arbitrary assign-
ment, 7, from Q to a Dg)(Q). We have that each such ~
has contributed to the construction of the database; we call
v a generative assignment from Q to D) (Q). We can show
that the composition Vé;) o v is a SCVM from @ to itself.
(Note the presence in the product H;LZIN]- of the variables
for all the n multiset variables of Q.) Moreover, for each
query @’ such that Q' =c¢ Q, the function .7-"((8)/) is forced
(by Q' =c¢ Q and by .7-'((3)) being a multivariate polynomial)
to be exactly II7_; N;, regardless of the structural relation-

ship between @Q and Q’'. We show that whenever .7-'((3)/) =

II}_, N, an assignment from Q' to a database D g (Q) can
be composed with the mapping I/g) to yield a SCVM from

Q' to Q, precisely due to the presence in the function]—"((g)/)
of the “representative” N; of each multiset variable Y; of the
query @, for 1 < j <n.

We now use the discussion of this simplest special case to
provide a general high-level intuition of the proof of Theo-
rem 4.1: It turns out that for all CCQ queries @, there is
a monomial, in terms of all of N1, ..., Nn, that contributes
to the construction of the function]-'((g)) and that reflects

the multiplicity, in the set® FgQ)(Q,DN(,-) (@)), of all gen-
erative assignments from () to databases D g (Q). We call
this monomial, PiQ), the wave of the query Q. Suppose that,
for a query @’ such that Q' =¢ Q, we can show that the
function F(&))
assignments from Q' to the databases D) (Q). Then we
can use these assignments and the mapping Z/S) to construct
a SCVM from Q' to Q.

There are two significant challenges in extending this idea
to all CCQ queries. First, the term P may not be “visi-
ble” in the expression for .F((QQ)) As a result, P does not

necessarily contribute to the construction of the function

has, as a term, the wave of Q backed up by

FSSQ, even in case Q =¢ Q’. (See, e.g., queries Q and Q’

8For a CCQ k-ary query Q (k > 1), for a database D, and
for a fixed k-tuple t, we denote by F(S—t)(Q, D) the set of all

tuples ¢’ in I'5(Q, D) such that the projection of ¢’ on the
vector of the head arguments of the query @ is the tuple .

of Example 4.1, and Example L.1 in Appendix L.1 for the
details.) Second, in general, function]:((S)) may have terms

that are not backed up by assignments from Q' to databases
D) (Q). Both challenges arise from the fact that the func-

tion]-'ég)”), in terms of Ni, ..., Ny, is, in general, not a
multivariate polynomial on its entire domain.

To overcome the first challenge, we introduce the restric-
tion that @ be an explicit-wave query. (Hence Definition 4.1
is necessarily technical.) Even under this restriction, over-
coming the second challenge requires a nontrivial proof. See
Appendix L for all the details of the proof of Theorem 4.1.

Example L.1 in Appendix L.1 illustrates how the term

iQ) may not be “visible” in the formula]-'((g)) , and how, in

general, the function J-"((g)) is not a multivariate polynomial

on its entire domain. Example L.6 in Appendix L.9.6 is an
extended variant of Example L.1. In addition, Example L.6
illustrates how function]—"((g)) may have terms that are not
backed up by assignments from @ to databases D g) (Q).

S. MINIMIZING CCQ QUERIES

In this section we propose a sound and complete algo-
rithm for minimizing CCQ queries. We also show that for
all CCQ queries, including implicit-wave queries, the min-
imized version of the query exists and is unique up to an
isomorphism SCVM. (An isomorphism SCVM from CCQ
query @ to CCQ query Q' is a SCVM from Q to Q' that is
an isomorphism mapping from the terms of Q) to the terms
of Q'.) Tt turns out that minimizing arbitrary CCQ queries
is at most as hard as minimizing CQ set queries using the
approach of [2]. Besides being contributions of this paper
in their own right, the results of this section permit us to
formulate, in Section 6, equivalence tests for CCQ queries
that tie our results together with those of [2, 4].

By Definition 2.3, to find a minimized version of a CCQ
query @, one would remove subsets of subgoals of @ so as
to arrive at a minimized query @’ such that Q' =¢ Q. Our
approach is to generalize to the case of CCQ queries the
minimization approach that was applied in [2] to CQ set
queries: Given a CCQ query @, the search space of all can-
didate minimized versions of) can be restricted to the set
Qmin(Q). This set comprises all reduced-condition queries
Q' for @ such that (i) Q" has all the multiset variables of
the query @, and such that (ii) there exists a GCM from
Qce onto Q... By Theorems 3.1 and 3.2, the set Q,in(Q)
contains all minimized versions of the query Q.

It turns out that for every CCQ query @, the search space
Qmin(Q) can be found by generating all CCQ queries ob-
tainable by applying to @ all possible SCVMs of a certain
type from @ to itself. This result holds by Proposition 5.1.
For CCQ queries Q(X) < L, M and Q'(X) < L', M (note
the same head vector and the same set M) and for a SCVM
i from Q to Q’, we call u an M-identity SCVM whenever p
maps each multiset variable of @ to itself. SCVM p induces
a mapping from L onto some subbag L’ of L'. (Here we
treat the conjunctions L', L” as bags of atoms.) We define
1(Q) as a CCQ query that is identical to @ except that the
condition of u(Q) is L”.

ProOPOSITION 5.1. Given a CCQ query Q, with reduced-
condition query Q' that retains all the multiset variables of
Q. Then there exists a GCM from Qc. onto Q... if and only
if there exists an M-identity SCVM from Q onto Q'. |

The intuition for the only-if part of the proof is that each
GCM, v, from Q. onto Q.. induces an automorphism from
the condition of Q' as part of the condition of Q, to the
condition of Q' (in Q’). One can use this fact to take an
inverse of the mapping resulting from restricting the domain
of v to the range of v, and by composing that inverse with v
to obtain the desired M-identity SCVM from @ onto Q’. See
Appendix M.1 for the full proof. Consider an illustration.

EXAMPLE 5.1. Let queries Q and Q' be as follows.

Q(X) « p(X, Y, W;i),p(X,W,Y),p(X,Y, Z),{Y,i}.
Q'(X) « p(X, Y, W;i),p(X, WY, {V,i}.

Q' is a proper reduced-condition query for Q that preserves
the multiset variables of Q. Qce and Q- are as follows.

ch(X) «— p(X7 Y7 Wvl)ap(X7 W7Y;j)7p(X>Y7 27 k)a{xlmﬁk}

Qee(X) = p(X, Y, W3i), p(X, W, Y3), {Yi, j}.

There exists a GCM v from Qce onto Q- v={ X — X,
YW, Z->Y, W—=Y,i—j,j—i k—j}. Observe
that the mapping v1 resulting from restricting the domain of
v to the range of v, that is to the set X = { X, Y, W, 4, j
}, is a bijection. Thus, there exists an inverse mapping, 1/1_1
={X->X,Y->W,W-=Y,i—j,j—1i}. Further
the mapping v’ = yfl o v is well defined, because the range
of v is the domain of vi*. Finally, when the domain of '
is restricted to the set X, then the resulting mapping is an
identity mapping by definition. Hence, we obtain that ' is
a GCM from Qe onto Q..., and that the mapping resulting
from restricting the domain of V' to the set of variables of
the query Q is an M-identity SCVM from @Q onto Q’. a

We use the result of Proposition 5.1 to develop algorithm
MiniMIZE-CCQ-QUERIES. The pseudocode is as follows.

Algorithm MINIMIZE-CCQ-QUERIES:

Input: CCQ query Q.

Output: CCQ query Q™" such that Q™™ is a minimized

version of Q by Definition 2.3.

1. Set Q™™ to the regularized version of Q;

// Note that Q™™ € Qmin(Q)

2. While (there exists an M-identity SCVM p from
Q™™ to itself such that pu(Q™™) has fewer subgoals
than Q™) // Note that u(Q™™) € Qumin(Q)

3. Set Q™™ to u(Q™™);

4. Output Q™.

Algorithm MINIMIZE-CCQ-QUERIES is a straightforward
generalization to CCQ queries of the minimization algorithm
applied by [2] to CCQ set queries. That is, our algorithm ob-
tains recursively “shorter-condition” reduced-condition queries
Q' for the input query @, such that each Q' € Qmin(Q). The
algorithm terminates once no more M-identity SCVM can
“shorten” any further the condition of @’.

PROPOSITION 5.2. Given a CCQ query Q, algorithm MIN-
IMIZE-CCQ-QUERIES outputs a minimized version of Q. O

The proof of Proposition 5.2 (in Appendix M.2) is by
showing that for each input CCQ query @, the output of the
algorithm MINIMIZE-CCQ-QUERIES satisfies Definition 2.3
with respect to Q.

In addition to being sound, algorithm MINIMIZE-CCQ-
QUERIES is also complete, due to the following result:

10

THEOREM 5.1. Given a CCQ query @, the minimized ver-

sion of Q exists and is unique up to an isomorphism M-
identity SCVM. |

Note that Theorem 5.1 reduces correctly to the special
case of set queries, see Theorem 2.2 (1). (Recall that CCQ
set queries have zero multiset variables.)

8
O

THEOREM 5.2. Algorithm MINIMIZE-CCQ-QUERIES
sound and complete for CCQ queries.

The result of Theorem 5.2 is immediate from Proposi-
tion 5.2 and from Theorem 5.1.

The asymptotic worst-case time complexity of the algo-
rithm MINIMIZE-CCQ-QUERIES is the same as that for the
minimization algorithm of [2] (for CCQ set queries). Indeed,
by definition of M-identity SCVMs and from the fact that
CCQ set queries have zero multiset variables, finding a min-
imized version of a set query is at least as hard as finding a
minimized version of any CCQ query. This fact is due to the
absence, in case of set queries, of any “identity bindings” for
multiset variables of the query, in an M-identity SCVM from
a set query to itselt. As a result, we obtain the following.

PRrROPOSITION 5.3. Finding a minimized version of a CCQ
query is NP complete. a

We now establish the result of Theorem 5.1. In the proof,
we use the following result. (See Appendix M.3 for the proof
of Proposition 5.4.)

PROPOSITION 5.4. Given CCQ queries Q1 and Q2 such
that there exists a CVM pi1 from Q1 onto Q2, and another
CVM p2 from Q2 onto Q1. Then each of ui and p2 is an
isomorphism SCVM. a

The proof of Theorem 5.1 is provided in Appendix M.4.
The idea of the proof is as follows. First, the existence of a
minimized version of @ follows from Proposition 5.2. Sec-
ond, suppose there exist two distinct minimized versions of
Q, @1 and Q2, where each of Q1 and Q2 satisfies Defini-
tion 2.3 w.r.t. Q. The proof of Theorem 5.1 establishes
that there exists an M-identity SCVM from Q1 onto Q2,
and another from Q2 onto Q1. Then Proposition 5.4 is used
to conclude that each of the two M-identity SCVMs is an
isomorphism SCVM. Consider an illustration.

EXAMPLE 5.2. Consider CCQ query Q and two reduced-
condition queries for Q, Q1 and Q2.

Q(X) « p(X,Y54),p(Y, W), p(Y,T),{Y,}.
Ql(X) <~ p(X7 Y; ’i)7p(Y, W)v {Y7 'L}
Q2(X) < p(X,Y34),p(Y, T),{Y, i}.

By Definition 2.3 and by Theorem 3.3, each of Q1 and Q2
is a minimized version of the query Q.

Consider mapping p1 from Q to Qi: p1 = { X — X,
Y -Y, i— i W = W, T - W }. This mapping is
an M-identity SCVM from Q onto Q1. When restricted to
the domain that is the set of terms of the query Q2, call
this mapping vi, mapping pi furnishes an isomorphism M-
identity SCVM from Q2 onto Q1. The mapping ufl is an
isomorphism M-identity SCVM from Q1 onto Q2. m|

‘We now contrast these results with our Theorem 4.1. By
the results of this current section, a SCVM always exists
from an arbitrary CCQ query into its minimized version. In-
tuitively, this holds even for implicit-wave queries because a
minimized version Q™™ of a query Q is a reduced-condition
query for). Hence, in some sense we know the structure
of Q™. In contrast, for two general CCQ queries @ and
Q@' such that Q =¢ @', all we know is that on all databases
D, the bags Resc(Q, D) and Resc(Q’, D) are identical. In
general, no information is available about the relationship
between the structures of Q and @’. Thus, Theorem 4.1 does
not necessarily hold for the case of implicit-wave queries.

6. CCQ-QUERY EQUIVALENCE

In this section we study the conditions of combined-semant-
ics equivalence of CCQ queries that are immediate from the
results of Sections 3—4. Our focus is on reformulating these
conditions using minimized query versions. The reformula-
tions tie our equivalence conditions together with the results
of [2, 4]. Our necessary and sufficient query-equivalence con-
dition, Theorem 6.3, applies to the class of all explicit-wave
CCQ queries. We show that this class encompasses strictly
more queries than (i) all CCQ set, bag, and bag-set queries,
and than (ii) all CCQ queries for which [6] provides both
sufficient and necessary equivalence conditions.’

First, Theorem 3.3 (Section 3) gives us a sufficient condi-
tion for combined-semantics equivalence of CCQ queries:

THEOREM 6.1. Given CCQ queries Q1 and Q2. If there
exists a CVM from Q1 to Q2, and another from Q2 to Q1,
then we have Q1 =c¢ Q2. O

We reformulate this theorem using the results of Section 5:

THEOREM 6.2. Given CCQ queries Q1 and Q2, with re-
spective minimized versions Q""" and Q3"*". If there exists
an isomorphism SCVM from Q7" to Q3"", and another

from QY™ to Q" then we have Q1 =¢ Qa. a

It turns out that the sufficient query-equivalence condi-
tions of Theorems 6.1 and 6.2 have the same power. (The
proof of Theorem 6.2 is immediate from Theorem 6.1 and
Proposition 6.1.)

PROPOSITION 6.1. Given CCQ queries Q1 and Q2, with
respective minimized versions Q7" and Q5"*". Then:

o There exists a CVM from Q1 to Q2, and another from
Q2 to Q1, if and only if

e There exists an isomorphism SCVM from Q1
and another from Q3**" to Q™.

to Q5"
]

See Appendix O for the proof of Proposition 6.1. The
only-if part of the proof is based on Proposition 5.4.

Neither Theorem 6.1 nor Theorem 6.2 gives us a neces-
sary condition for combined-semantics equivalence of two
CCQ queries. (We have Example 4.1 as a counterexample.
Observe that both queries in Example 4.1 are represented
by their minimized versions.)

At the same time, we use Theorems 4.1 and 6.2, as well
as Proposition 6.1, to formulate a sufficient and necessary
condition for equivalence of explicit-wave CCQ queries.

9We already showed (ii) in Section 4; see Appendix N.

11

THEOREM 6.3. Given explicit-wave CCQ queries Q1 and
Q2, with respective minimized versions Q7" and Q3**"™. Then
Q1 =c Q2 if and only if there exists an isomorphism SCVM

from Q7™ to QF™", and another from Q5™ to Q7¥". O

Another sufficient and necessary condition for equivalence
of explicit-wave CCQ queries, in terms of CVMs, can be
obtained by using only Theorems 4.1 and 6.1. (See Theo-
rem N.1 in Appendix N.)

We now show that Theorem 6.3 generalizes Theorem 2.2
(2), due to [2], as well as Theorem 2.3, due to [4]. To do
this, we show that all CCQ set, bag, and bag-set queries
are explicit-wave queries, and then consider minimization of
CCQ bag and bag-set queries.

By Condition (1) of Definition 4.1, we have that all set
and bag-set CCQ queries are explicit-wave queries. Besides
that condition, one can formulate a number of easy syntac-
tic tests, each of which is a sufficient condition for a CCQ
query to be an explicit-wave query. (E.g., it is immediate
from Definition 4.1 that a CCQ query without self-joins is
an explicit-wave query.) One sufficient condition is that a
CCQ query @ is an explicit-wave query whenever each copy-
sensitive subgoal of @ has no set variables. (In this case, it
is easy to see that Condition (2) of Definition 4.1 is always
satisfied; see Appendix P.) By this condition, all CCQ bag
queries are explicit-wave queries. Other sufficient conditions
could generalize the case of the explicit-wave CCQ query
Q' of Example 4.1 (note that while being an explicit-wave
query, this query does not satisfy any of the above sufficient
conditions for a query to be explicit-wave), and so on. As a
result, we have the following;:

PROPOSITION 6.2. The set of all CCQ set, bag, and bag-
set queries is a proper subset of the set of all explicit-wave
CCQ queries. a

One can argue that CCQ queries that have set variables
in copy-sensitive subgoals, such as the implicit-wave query
Q@ of Example 4.1, would not tend to be popular — and may
not even be expressible — in practical applications. Hence,
we posit that implicit-wave queries may be unlikely to arise
in practice.

Now that we know that all CCQ set queries are explicit-
wave queries, it is easy to see that Theorem 6.3 generalizes
properly Theorem 2.2 (2). (Theorem 2.2 (2) does not gen-
eralize to the case of all CCQ queries because not all CCQ
queries are explicit wave, see discussion of Example 4.1 ear-
lier in this section.) For instance, by Theorem 6.3 we have
that for the queries of Example 3.2, Q =¢ Q' holds. The
reason is, both Q and Q' in that example are explicit-wave
queries and, in addition, @’ is the minimized version of Q.

Observe that Theorem 6.3 is not a trivial generalization
of Theorem 2.2 (2). Indeed, the two explicit-wave CCQ
queries of Example 3.1 are isomorphic but, by Theorem 6.3,
are not combined-semantics equivalent. (Both queries of
Example 3.1 are represented by their minimized versions.)

Finally, we consider minimization of CCQ bag and bag-
set queries. Recall that each subgoal of a CCQ bag query
has a copy variable. Hence, by Theorem 3.1, each CCQ bag
query is its unique minimized version. We conclude that the
result (due to [4]) of Theorem 2.3 (1) is a special case of
Theorem 6.3. (See Note 1 in Section 2.2.)

In case of CCQ bag-set queries, the only terms that can
appear in such a query are multiset noncopy variables, head

variables, and constants. We have from the results of Sec-
tion 5 that for each CCQ query, there exists an M-identity
SCVM from the regularized version of the query to its mini-
mized version. (See Proposition M.1 and algorithm MINIMIZE-
CCQ-QUERIES in Section 5.) Now the regularized version Q.
of a CCQ bag-set query @ is the canonical representation [4]
of @, that is, the result of dropping all duplicate subgoals
from the condition of Q). By definition of M-identity SCVM,
we have for all CCQ bag-set queries () that for each subgoal,
s, of Qr, each M-identity SCVM maps s into itself. It follows
that each M-identity SCVM maps Q. onto itself. Thus, for
each CCQ bag-set query @, its canonical representation @,
is its unique minimized version. Hence Theorem 2.3 (2) is a
special case of Theorem 6.3.

7. RELATED WORK

In their classic paper [2], Chandra and Merlin presented
an NP-complete containment test for CQ queries under set
semantics. This sound and complete test has been used in
optimization, via minimization, of CQ set-semantics queries,
as well as in developing algorithms for rewriting queries
(both equivalently and nonequivalently) using views. We
are not aware of past work that studies minimization of
queries beyond the language of CQ set-semantics queries.
In this current paper we extend the results of [2] to general
CQ combined-semantics queries, and show the limitations
of each extension. We show that the minimization approach
of [2] can be extended to general CQ queries without limi-
tations. Remarkably, minimizing arbitrary CQ queries is at
most as hard as minimizing CQ set-semantics queries.

Equivalence tests for CQ bag and bag-set queries were for-
mulated by Chaudhuri and Vardi in [4]; correctness of the
tests follows from the results of [6]. Our equivalence and
minimization results for CQ combined-semantics queries re-
duce correctly to the special cases of CQ bag and bag-set
queries, as given in [4]. Further, this current paper pro-
vides a nontrivial generalization and the first known proof
of the well-known sufficient containment condition for CQ
bag queries, as outlined in [4].

Definitive results on containment between CQ queries un-
der bag and bag-set semantics have not been obtained so
far. Please see Jayram, Kolaitis, and Vee [10] for original
undecidability results on containment of CQ queries with in-
equalities under bag semantics. The authors point out that
it is not known whether the problem of bag containment for
CQ queries is even decidable. For the case of bag-set seman-
tics, sufficient conditions for containment of two CQ queries
can be expressed via containment of (the suitable) aggre-
gate queries with aggregate function count(*). The latter
containment problem can be solved using the methods pro-
posed in [7]. Please see [4, 1] for other results on bag and
bag-set containment of CQ queries. The general problems
of containment for CQ bag and bag-set queries remain open.

In her papers [5, 6], Cohen provided an elegant and pow-
erful formalism for treating queries evaluated under each of
set, bag, and bag-set semantics uniformly as special cases of
the more general combined semantics. The papers also con-
tain a general sufficient condition for combined-semantics
equivalence of CQ queries with disjunction, negation, and
arithmetic comparisons, as well as necessary and sufficient
equivalence conditions for special cases. (Interestingly, when
we restrict the language of the queries in question to the lan-
guage of CQ queries, it turns out that all the necessary and

12

sufficient query-equivalence conditions of [6] hold for queries
belonging collectively to a proper subclass of the class of
explicit-wave CQ queries, which (class) we introduce in this
current paper.) The proof in [6] of its general sufficient con-
dition for equivalence of queries is in terms of containment
between the queries under combined semantics. That (im-
plicit) sufficient query-containment condition is proved in [6]
for the case where the two queries have the same number of
multiset variables. In this current paper we provide proper
generalizations of all the results of [6], including of its im-
plicit sufficient condition for query containment, provided
that the results of [6] are applied to CQ queries only.

A discussion of query equivalence and containment for
query languages that properly contain the language of CQ
queries is beyond the scope of this paper. The interested
reader is referred to [6], which contains an excellent overview
of the literature in this direction.

81 REFERENCES

[1] F. N. Afrati, M. Damigos, and M. Gergatsoulis. Query
containment under bag and bag-set semantics. Information
Processing Letters, 110(10):360-369, 2010.

A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, 1977.
S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record,
26(1):65-74, 1997.

S. Chaudhuri and M. Y. Vardi. Optimization of real
conjunctive queries (extended abstract). In PODS, 1993.

S. Cohen. Equivalence of queries combining set and bag-set
semantics. In PODS, pages 70-79, 2006.

S. Cohen. Equivalence of queries that are sensitive to
multiplicities. The VLDB Journal, 18:765-785, 2009.

S. Cohen, W. Nutt, and Y. Sagiv. Containment of
aggregate queries. In ICDT, pages 111-125, 2003.

A. Gupta and I. S. Mumick, editors. Materialized Views:
Techniques, Implementations, and Applications. The MIT
Press, 1999.

Y. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: beyond relations as sets. ACM TODS,
20(3):288-324, 1995.

T. Jayram, P. Kolaitis, and E. Vee. The containment
problem for real conjunctive queries with inequalities. In
PODS, pages 8089, 2006.

W. Lehner. Query processing in data warehouses. In
Encyclopedia of Database Systems, pages 2297-2301.
Springer, 2009.

N. Pendse and R. Creeth. The OLAP report. Business
Intelligence, 1995. The 2008 update available at http://
www.bi-verdict.com/fileadmin/FreeAnalyses/fasmi.htm.
A. Shukla, P. Deshpande, and J. F. Naughton. Materialized
view selection for multi-cube data models. In EDBT, 2000.
M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata. Answering complex SQL queries using automatic
summary tables. In SIGMOD, pages 105-116, 2000.

(10]

(11]

(12]

(13]

(14]

APPENDIX

A. EXAMPLE FROM BOOK BY GUPTA AND
MUMICK

Consider an example from the book “Materialized views:
Techniques, Implementations, and Applications” by Ashish
Gupta and Inderpal Singh Mumick [8]; the purpose of the
example in [8] is to explore how views can be used in query
answering. In this current paper, we use the application
domain of this Example A.1 in Example 1.1 in Section 1.

EXAMPLE A.1. [8] Consider a retailer that has multi-
ple stores across the United States, and the country is divided
into multiple regions for administrative and accounting pur-
poses. FEach retailer carries many items and has an elaborate
relational database/warehouse for analysis, marketing, and
promotion purposes. Consider some of the tables in such a
database and their cardinality:

pos(itemID, storeID, date, qty, price) - 1,000,000,000 rows
stores(storelID, city, region) - 100 rows
items(itemID, name, category, cost) - 50,000 rows

The pos table represents point-of-sale transactions, with
one tuple for every item sold in a transaction. The tuple has
the ID of the item sold, the ID of the store selling it, the date
of sale, the quantity of the item sold, and its selling price.
The stores table has location information about each store
- namely its ID, city, and geographical region. The items
table describes each item — namely its ID, name, product
category, and cost price per unit.

Suppose that the business-development division of this store
chain wants to know the total revenue generated for each
store by each category of items (query QA). Further, the di-
vision is also interested in monitoring the total sales for each
region (query QB). The two queries are as follows:

(QA) : SELECT storeID, category, SUM(qty*price)
FROM pos, items
WHERE pos.itemID = items.itemID
GROUP BY storeID, category
(QB) : SELECT region, SUM(qty*price) FROM pos, stores

WHERE pos.storelID = stores.storeID GROUP BY region

Consider a view totalSales that can be defined on the
relation pos:

DEFINE VIEW totalSales(itemID, storeID, total) AS
SELECT itemID, storeID, SUM(qty*price) FROM pos
GROUP BY itemID, storeID

The above view can be used in place of the table pos to
evaluate queries QA and QB, as follows:

(QA’): SELECT storelD, category, SUM(total)
FROM totalSales, items
WHERE totalSales.itemID = items.itemID
GROUP BY storelD, category
(QB’): SELECT region, SUM(total) FROM totalSales, stores

WHERE totalSales.storeID = stores.storelD
GROUP BY region

It can be shown formally that for each possible database,

QA and QA’ return the same answer on the database, and
similarly for QB and QB’. a

13

B. DATALOG REPRESENTATIONS OF THE
SQL QUERIES OF EXAMPLE 1.1

In this section we provide Datalog-based representations
as introduced in [5, 6], of the four SQL queries of Exam-
ple 1.1. We refer to the Datalog version of query Q1 as q1,
and so on.

ql(S,A) < pos(X,I,S,D,A),pos(Y,I,S,dl,A),{X,I,D}.
q2(S, A) + pos(X,I,S,dl, A), 0.

q3(S, A) < pos(X,I,S,D,A),pos(Y,1,S,d1,A),0.

q4(S, A) < pos(X,I,S,D,A),pos(Y,I,S,d1,A),{X,I,D,Y}.

All the four queries are combined-semantics CQ queries.
Further, each of ¢2 and ¢3 is a set-semantics query, and ¢4 is
a bag-set-semantics query. If we allow for databases that can
have duplicate tuples in stored relations, then we can write
a bag-semantics analog, ¢5, of the query ¢4, as follows.

q5(S, A) < pos(X,I,S,D, A;j),pos(Y,I,S,dl, A; k),
{X7 I’ D7 Y7j’ k}.

Unlike queries ¢2 through ¢5, query ¢l is a combined-
semantics CQ query that is not combined-semantics equiv-
alent to any set, bag, or bag-set query that can be posed on
the database schema of Example 1.1. This nonequivalence
is due to the following:

(i) The multiplicity of the domain values that some nondis-
tinguished variables of g1 (specifically X, I, and D)
can accept influences the multiplicity of answers to the
query.

(ii) At the same time, the multiplicity of the domain val-
ues that all the other nondistinguished variables of g1
(specifically Y) can accept does not influence the mul-
tiplicity of answers to the query.

Queries with these properties (such as gl) cannot be ex-
pressed equivalently as set, bag, or bag-set semantics queries.
The reason is, all nondistinguished variables in each set (bag,
bag-set) query are of the same kind: Either the kind de-
scribed in item (i) above (multiset variables), or the kind
described in item (ii) (set variables).

C. ADDITIONAL EXAMPLE OF A SQL
COMBINED-SEMANTICS QUERY

In this section we provide an extra illustration of how
combined-semantics queries arise naturally in SQL in data-
analysis applications. Several more examples of combined-
semantics CQ queries (and views) expressed in SQL can be
found in Section 1 of [6].

EXAMPLE C.1. Recall the relations pos, stores, and
items that were all introduced in Example A.1. Consider
a database that has all these relations, as well as two extra
relations. First, it has relation distributors(distribID,
city, region), which stores address information about dis-
tributors/warehouses that supply items to stores. Second,
it has a relation suppliers (storeID, distribID, con-
tractType), which associates each store with the distrib-
utors that ship items to the store. Key attributes are under-
lined in the schemas. We make the realistic assumption of a

many-to-many relationship between store IDs and distribu-
tor IDs in the suppliers relation; this relationship will give
rise to a “non-star-schema join” in the query QC.

In addition to the queries QA and QB of Example A.1, con-
sider a query QC that asks for the total revenue generated by
stores in each city/region, but where the revenue is based on
only those stores that have at least one distributor from a
fized region: the state of Florida in the USA. Query QC can
be written in SQL as follows.

(QC) : SELECT city, region, SUM(qty*price) FROM pos, stores S

WHERE pos.storeID = S.storelD

AND EXISTS

(SELECT * FROM suppliers P, distributors D
WHERE P.storeID = S.storelD

AND P.distribID = D.distribID AND D.region =
GROUP BY city, region

To evaluate the query QC, the query processor will first
compute all the tuples (city, region, qty, price) that
satisfy the WHERE clause of QC. In other words, the query pro-
cessor will first evaluate the unaggregated query QC’ whose
definition follows. Then, to produce the answers to the query
QC, the query processor will apply the grouping and aggrega-
tion of QC to the relation that is the answer to the query QC’.
The query QC’ s obtained easily by removing the aggregation
function and the GROUP BY clause from the query QC:

(QC’) :SELECT city, region, qty, price FROM pos, stores S
WHERE pos.storelID = S.storelD
AND EXISTS
(SELECT * FROM suppliers P, distributors D
WHERE P.storeID = S.storelD
AND P.distribID = D.distribID AND D.region =

The query QC’ is a combined-semantics CQ query, which
cannot be represented equivalently (in the sense of combined-
semantics equivalence of [6]) by using a set query, or a bag
query, or a bag-set query. Indeed, consider the Datalog rep-
resentation of [6] of the query QC’:

qcl(07 R’ Q7 P) <_ pOS(I7 S7 D7 Q’ P)7 Stores(s7 C7 R)?
suppliers(S, F,T), distributors(F, G, fl_usa),
{I,S,D}.

The set, bag, and bag-set versions of qc’ follow, named
qs, gb, and gbs, respectively. Alongside each query we also
provide its SQL representation. It is easy to show via coun-
terezample databases that the query qc’ (and thus its SQL
version QC’) is not combined-semantics equivalent to any of
gs, qb, and gbs (and thus is not equivalent to their SQL
counterparts). Thus, the SQL aggregate query QC cannot be
evaluated by applying the grouping and aggregation of QC to
the answers to the SQL counterparts of any of the queries
qs, gb, and qbs. We list in this example (as QS, QB, and
QBS) all SQL queries without subqueries that could be can-
didates for replacing QC’ in the evaluation of QC. None of
these queries is combined-semantics equivalent to QC’. Re-
call that CQ bag, set, and bag-set queries express only SQL
queries without subqueries. We conclude that the SQL aggre-
gate query QC cannot be evaluated by applying the grouping
and aggregation of QC to (the SQL representation of) a CQ
bag, bag-set, or set query.

qS(C7 R? Q’ P) % pOS(I7 S7 D7 Q? P)7 StOT@S(S, C7 R),
suppliers(S, F,T), distributors(F, G, fl_usa), .

‘FL USA’)

‘FL USA’)

14

(QS) : SELECT DISTINCT S.city, S.region, qty, price
FROM pos, stores S, suppliers P, distributors D
WHERE pos.storeID = S.storeID
AND P.storeID = S.storelD
AND P.distribID = D.distribID AND D.region = ‘FL USA’

qb(C> R7 Q7 P) — pOS(I7 S7 D> Q: P)])7 StOT@S(S, C, R: k)7

suppliers(S, F,T;1), distributors(F, G, fl_usa;m),
{I,S,D,j,k,F,T1,G,m}.

(QB) : SELECT S.city, S.region, qty, price
FROM pos, stores S, suppliers P, distributors D
WHERE pos.storeID = S.storeID
AND P.storeID = S.storelD
AND P.distribID = D.distribID AND D.region = ‘FL USA’
gbs(C, R, Q, P) + pos(I, S, D, Q, P), stores(S,C, R),
suppliers(S, F,T), distributors(F, G, fl_usa),
{[,S,l)7lﬂffﬁ(?}.

(QBS) :SELECT S.city, S.region, qty, price

FROM pos, stores S, suppliers P, distributors D

WHERE pos.storeID = S.storelD

AND P.storeID = S.storelD

AND P.distribID = D.distribID AND D.region = ‘FL USA’

The only difference between the SQL queries QB and QBS

is that we require that QBS be posed only on databases whose
all relations are sets (i.e., have no duplicate tuples). We do
not impose this requirement onto the query QB. O

D. TRADITIONAL SEMANTICS FOR CQ
QUERIES

In this section we provide an overview, from [6], of the
three traditional query semantics — that is, of set semantics,
bag semantics, and bag-set semantics. The overview shows
how these semantics can be formulated as special cases of
combined semantics. This will make clear the relationship
between the semantics introduced in [6] and previously stud-
ied semantics. For more details about set, bag, and bag-set
semantics see [2, 4].

Combined-semantics queries differ from traditional
Datalog queries in that (1) they have a set of multiset vari-
ables, and (2) they may have copy-sensitive atoms (i.e., copy
variables). These two items are used to explicitly determine
which variables and atoms should be interpreted under a
multi-set semantics. Datalog queries with set, bag, and bag-
set semantics do not have these items, since all variables and
all atoms are interpreted in the same fashion, and thus these
items can be implicitly determined.

Given a query Q(T) + L, M and a database D, we use
Q—copy to denote the query derived from @ by removing
all copy variables from (). Similarly, we use Q+copy to de-
note the query derived from @ by adding a copy variable
to each relational atom in Q). We denote the result of ap-
plying @ to D under set, bag, and bag-set semantics as
Ress(Q, D), Resp(Q,D), and Resps(Q, D), respectively,
and define these as follows:

Ress(Q.D) = {2(T) | 7€T(Q.D) .
Resp(Q,D) = { 'V(T)_ | v € T(Qcopy, D) }.
Resps(Q, D) = { (1) | v € I (Q-copy, D) }-

Here, {...} and {...}} denote sets and bags, respectively.

Remark (2.11 in [6]) When evaluating a query under bag-
set semantics, one usually assumes that the database is a
set of ground atoms, i.e., does not contain duplication. In
the definition of Resps(@, D) in [6], this assumption is not
made, but the result is indifferent to the number of copies
of each ground atom in the database.

Under certain circumstances, combined semantics coin-
cides with set, bag, or bag-set semantics. The following
result is immediate from the definitions of the semantics.

PRrROPOSITION D.1. [6] For CCQ query Q and database
D:

e IfQ is a set query then Resc(Q, D) is Ress(Q, D).
e IfQ is a bag query then Resc(Q, D) is Resp(Q, D).

e If Q is a bag-set query then Resc(Q,D) 1is
Resps(Q, D). O

E. PROOF OF THEOREM 3.1

In this section we provide a proof of Theorem 3.1. The
proof uses counterexample databases, which are all con-
structed as discussed in Section E.1. Section E.2 formulates
and proves properties of the counterexample databases. The
proof of Theorem 3.1 can be found in Section E.3.

E.1 Constructing a Boxed Database

In this section we describe a procedure that, given a CCQ
query Q(X) « L, M with p > 0 distinct constants men-
tioned in @, and given a positive integer A, produces a
database D’ZQ’A such that one fixed tuple in Resc(Q, DCbQ’A)

has multiplicity ezactly (nuwv(A,p)ﬂM‘.10 The general pro-

cedure of producing (among other databases) a “boxed database”

DZ)’ 4 for Q and A as above is used in several proofs in this
paper. This construction has been inspired in part by a
proof of Lemma 4.1 of [6].

Procedure Template-Boxed-Database (Input: V.. €
Ni; V. € Ny; CCQ k-ary (k> 1) query Q(Y) + L, M with
set P of p > 0 distinct constants.) (Output: Constant
value ¢ and database DEQ,VanC, such that k-ary tuple d =
(¢, ¢, ..., c) has multiplicity ezactly (maz(Vne, p))/ Mroncorul x
VCIM”"’”“" in Resc(Q,DtQ’Vncyvc). Here, the value of c in d
(i) is the constant cg in case cg is the only term occurring in
the head vector Y in Q,'" (ii) is otherwise 1 in case where
either V. > p or 1 is a constant in @, and (iii) is other-
wise an arbitrary constant ¢i1 of Q.) Throughout the con-
struction, for the case M # () we assume w.l.o.g. that the
M| = n > 1 multiset variables of the query @ have names
X1,Xo,...,X,, and that the first m of the variables in the
sequence X1, X2, ..., Xy, with 0 < m < n, are all the copy
variables (forming the set Mcopy) of Q.

Step 1. In case p > Vi, let the set adom(DtQ,VanC) be
the set P of distinct constants in (); otherwise add to P
enough constants from the list [1,2,..., Vye] (starting from
the beginning of the list) to form a set adom(Dg v, v.) of
size Ve . Let Asize := |adom(Dg v, . v.)l; clearly, Asize =
max(Vae,p) - (In the special case n = 0, the effective active
domain of D§, v, _ v. is of size maz(1,p) and is (i) the set P

ONote that for the case M = @, i.e., Q is a set query, the
result is as expected by set semantics for query evaluation.

"'This is the case where the head Q(Y) of Q has no variables
and uses only one constant, cg.

15

if p> 0, or is (ii) the set {1} otherwise. The reason for this
restriction of the effective active domain of the database in
case n = 0 is that the values from {2,...,Vy.}, if they are
not used as constants of) but are used in the above con-
struction of adom(Dg v, v.), are used in this construction
to “create values” of only multiset variables of the query @,
and thus are not used in case M = (), that is n = 0.)

If some constant co is the only term in the head vector
Y of the query @, then set ¢ to co. Otherwise, if the set
adom(D} v, . v,) includes the constant 1, then set the value
of ¢ to 1. Otherwise set ¢ := c1, where ¢; is an arbitrary
constant in adom(D v, v.) -

In case n > m we use an auxiliary predicate symbol 7] of
arity (n—m), such that 7] is not used in the query @. In case
m > 0 we use an m-ary predicate symbol 75 (distinct from
r1), also not used in the query Q. Finally, in case n > 0 we
use an auxiliary n-ary predicate symbol r* (distinct from
r7 and r3) not used in . We assume an infinite domain
Attr of attribute names, and (i) label the attributes of 73
(in case m > 0) with m attribute names Bi, Ba,..., Bm,
(ii) label the attributes of ri (in case n > m) with n —m
attribute names B41, Bm+2, ..., Bn, as well as (iii) label
the attributes of r* (in case n > 0) with n attribute names
By, Bs, ..., By, (same as in (i), (ii)). Here, in case n > 0 we
have B; € Attr for each | € {1,...,n}, and the attribute
names B; and B, are distinct for each pair (¢,5), 1 < i #
j<n

In case n > 0, we build a relation R* with schema r* and
with Asize™ ™™ x V™ tuples, as follows:

e In case n > m, populate relation R}, with schema 77,
by taking all combinations of the values from the set
adom(Dg v, v.) as tuples of arity (n —m) in Rj. As
a result, R} will have Asize™ ™™ tuples.

e In case m > 0, populate relation Rj3, with schema 3,
by taking all combinations of the values from the set
{1,...,V.} as m-tuples of R3. As a result, R; will have
V™ tuples.

e (1) In case 0 < m < n, populate R* with all the tuples
from the Cartesian product R5 x RI;

(2) Otherwise in case m = 0, populate R* with all the
tuples from R7;

(3) Otherwise in case m = n, populate R* with all the
tuples from R3.

Finally, we associate each attribute B; of R*, 1 < i < n,
with the multiset variable X; of Q.

Step 2. We now construct the database DEQ,VM,VC . In

case n > 0 we interpret the T' = Asize™ ™ x V™ tuples
of the auxiliary relation R* as T substitutions for the head
and body variables of the query @, such that for each sub-
stitution 6;, j € {1,...,T} and 6; € T(Q,Db v, v.), b;
uses only the values from the set adom(Dé),Vm,vc) as values
for the multiset noncopy variables of), and uses only the
values between 1 and V. as values for the copy variables of
Q. We construct DtQ,Vnc,Vc using this interpretation. By
our construction, each 6; will result in a distinct copy of
the k-tuple d = (c,c,...,c) in Resc(Q, Dbv,..v.). In case
n = 0 we create DtQ,VnC,VC (with effective active domain of
size maz(1, p)) using a single substitution 61, which guaran-
tees that the tuple d = (c, c, ..., c) is in Resc(Q, DtQ’VanC).

We now assume that the database Dég,v,w,vc is initially
empty. For the case n = 0, set 7" := 1. We create the

T substitutions 0; as follows: For each j € {1,...,7} and
assuming n > 0, let 7*(¢;1, ¢j2, - - ., ¢jn) be the jth row of the
relation R*. (We assume an arbitrary fixed ordering on the
T tuples of R*) Let X = {)(17)(27 ey X'm Zl, Z27 ey Zl},
with n > 0 and [> 0, be the set of all variables of the query
Q. Recall that in case that Q has m > 0 copy variables,
Xi,..., X, in the set X are all the copy variables of Q.
We obtain 6; (for n > 0) by (1) assigning the constant ¢ to
each variable in the set {Z1,..., 2}, and by (2) assigning
(in case n > 0 only) the constant c¢;; to the variable Xj,
for ¢« € {1,...,n}. In addition, we set 0;(g) = g for each
constant g (g € P) used in query Q.

Now, for each j € {1,...,T}, for the 6; constructed as
above, and for each subgoal of the query @, we add to the
database DtQ’VM’VC at most one ground tuple (a new tuple
is added exactly when no identical tuple is already present
in DG v, .v,), as follows:

e Let p(Z) be a relational subgoal of the query Q. Then
add to Dg v, v, the ground tuple p(6;(Z); Ve) (if not
already present in the database). That is, we add to
Dg v, v, the ground atom p(0;(Z)) with multiplicity

c -

e Let p(Z; W) be a copy-sensitive subgoal of the query
@, with copy variable W. Then add to DtQ’Vm’VC the
ground tuple p(0;(Z); V.) (if not already present in the
database).

Step 3. Return the constant ¢ and database DtQ,vm,Vc .

Given a CCQ query @ with p > 0 distinct constants
and given a positive integer number A, we use the pro-
cedure Template-Boxed-Database to construct the “boxed
database” D%yA for @ and A, by setting V,. := A and
Ve := max(A,p) in the procedure inputs. By construction,
adom(DY 4) is of size max(A,p).

We also do a minor straightforward modification of the
procedure Template-Boxed-Database to construct a “boxed
copy-variable database”, denoted D"y, for an input CCQ
query @ that has p > 0 distinct constants and n > 1 copy
variables (@ can also have an arbitrary number of other
multiset variables), and for a positive integer A. The con-
struction is as above, except that Xi,...,X, are (w.lLo.g.)
the copy variables of the query @, and in the procedure
Template-Boxed-Database we (i) set m := n, (ii) set the
procedure input V. to value A, and (iii) set the procedure
input V. to 1. By construction, adom(Df;ny) is of size
mazx(1,p).

Consider an illustration of the construction of databases
D¢, 4 and DY

EXAMPLE E.1. Let CCQ queries Q and Q' be as fol-
lows.

Q(B) < p(B,C;i), p(B, D), {C, D,i}.
Q'(E) « p(E,F3j), p(E,G), p(E,c1;l),
{F7G7j,l}'

p(Ea 62)7

Here, c1 and c2 (in Q’) are constants. The rest of the terms
mentioned in Q and Q' are variables, with i, j, | being copy
variables.

Let Ay =3 and A = 1. Then:

e Do s = {p(1,1;3),p(1,2;3),p(1,3;3)}, and tuple (1)
has multiplicity 3° = 27 in Resc(Q, DZN).

16

o DY = {{p(1,1;3)}, and tuple (1) has multiplicity
31 =3 in Resc(Q, DG%5Y).

e DY, = = Dg% = {p(1, 1)} , and tuple (1) has multi-
plicity 1 in both Resc(Q, DY 1) and Resc(Q, DGtY).

° DQ,’3 ={p(1,1;3),p(1,c1;3),p(1,c2; 3) }, and tuple (1)
has multiplicity 3* = 81 in Resc(Q', D¢y 5)-

. Dcom {p(c1,c1;3),plcr,c2;3)}, and tuple (c1) has
multzplzczty 2% x 32 =36 in Resc(Q', D).

= DCOP?U = {{p(cl,ch 1)7p(01702; 1)}}7 and tuple

= 4 in both Resc(Q', DY ;)

o DbQ/7
(c1) has multzplzczty 22
and Resc(Q', Dcom’).

]

E.2 Properties of boxed databases

We now formulate some useful properties of our boxed
databases. First we make a straightforward observation
about multiplicities of tuples in answers to CCQ queries on
arbitrary databases.

ProrosITION E.1. Let Q(X) + L, M be a CCQ query
with set P of p > 0 distinct constants. Let D be a database,
with Ac € N1 being the mazimal copy number for the atoms
in D and with active domain adom(D) of size Anc € Ny.

Then (1) for each tuplet € Resc(Q, D), t occurs in Resc(Q, D)

with multiplicity at most AICM“””“" X AL%"""“"”k and (i) in

case P C adom(D) does not hold, we have that Resc(Q, D)
is empty. O

The proof follows immediately from the definition of com-
bined query semantics, specifically from the construction of
the set I's(Q, D).

We use Proposition E.1 in showing the following result
about boxed databases.

ProprosITION E.2. Let CCQ query Q(i:/) — L, M, with
p > 0 distinct constants, have head vector'Y of length k > 0,
and let A € Ny. Then there exists a value c in adom (D¢ »)
such that the k-tuple d = (c,
with multiplicity exactly (max(A,p))‘M‘ . O

PROOF. (Proposition E.2) First of all, by construction of
Dp 4, we have that |adom (D _4)| = max(A,p), and that
the maximal copy number for the atoms in Dé’g’ 4 is also
max(A,p). Let the value ¢ be determined as the ¢ in the
construction of the database DZ),A .

For the lower bound, observe that by construction of the
database DbQ,A, the set I'5(Q, DZ?,A) has at least (maa:(A,p))‘M‘
distinct tuples, each of which has the value c of each of the
head variables of the query Q. Indeed, recall the substitu-
tions 6;, j € {1,..., (maz(A,p))!™!}, used in the construc-
tion of the database Dé’g’A . Foreachi,j € {1,...,
such that ¢ # j, 6; and 0; differ on the value of at least
one multiset variable of the query @, and the values of all
the multiset variables of () are retained in the tuples in the
set I'g(Q, D 4). (The satisfaction by each 6; of the copy-
sensitive subgoals of @, if any, is ensured by the fact that
each ground atom in DbQ, 4 has multiplicity max (A, p); recall
that each 6; assigns to each copy variable a positive integer
value not exceeding maz(A,p). Observe also that in map-
ping each relational atom of @) to a ground atom by each 6;,

.., ¢) occurs in the bag Resc(Q, DbeA)

(maz(A,)™},

the multiplicity value of that ground atom is ignored, again
by the rules of the combined query semantics.)

For the upper bound, by Proposition E.1 it holds that the
multiplicity of the tuple d = (c, ..., c) in the bag Resc(Q, DZC’Q

is at most (maz(A,p))M . O

PROPOSITION E.3. Let CCQ query Q(Y) + L, M, with
m > 0 copy variables and with p > 0 constants, have head
vector Y of length k > 0, and let A € Ny.. Then there exists
a value c in adom(DG"') such that the k-tuple d = (c, ..., c)
occurs in the bag Resc(Q, DG"YY) with multiplicity at least

A™ and at most (maz(1,p))IMI=m) » A™, O

The proof of Proposition E.3 is a straightforward modifica-
tion of the proof of Proposition E.2, where we use the prop-
erties of the database D"} (rather than of D 4). Note
that in case p > 1 we cannot guarantee an exact numerical
multiplicity of tuple d = (c,...,c) in Resc(Q, DG"YY), be-
cause the construction of D"} includes all the constants
of the query @ in the active domain of the database. (This
inclusion is required, recall item (ii) in Proposition E.1.) As
an illustration, consider the databases D('jgo,{J ¥ and Dg;,’j Y in
Example E.1.

E.3 Proof of Theorem 3.1

We now prove Theorem 3.1. The query-equivalence corol-
lary of this result (see Corollary 3.1) extends Lemma 5.1 of
[6], for CCQ queries, from queries that may have only rela-
tional subgoals and may not have constants, to the case of
general CCQ queries.'?

LeEMMA E.1. (Lemma 5.1 of [6]: Number of multiset vari-
ables) Let Q(X) + L,M and Q'(X') + L', M’ be copy-
insensitive relational queries. If Q =c Q' then |M| = |M’|.
O

PROOF. Suppose, by way of contradiction, that @ and Q’
are copy-insensitive, relational and equivalent, but |M| #
|M’|. Suppose, without loss of generality, that |M| > |M’|.
Let G be a set of |M| constants. Let I' be the set of all
possible assignments of the variables in @) to the constants
in G. Let D be the database that contains all images of
the body of @ with respect to the assignments of I'; i.e.,
D = Uer y(L). (Note that we view L as a set of conditions,
in this notation.)

Now, consider a tuple d. Observe that Resc(Q, D) returns
d a total of |M|‘MI times, since every assignment of the mul-
tiset variables to constants in G is satisfiably extendible. On
the other hand, Resc(Q’, D) can contain at most |A’|M!
copies of d, since Q' has only M’ multiset variables. Since
|MME < | MMt follows that Q Ec Q. O

The proof of Theorem 3.1 is by contradiction and is con-
structive. That is, the proof shows noncontainment of @) in
@’ by producing a counterexample database, for (a) the case
where the number of copy variables in @ is greater than the
number of copy variables in Q’, and for (b) the case where
the number of multiset noncopy variables in @ is greater
than the number of multiset noncopy variables in Q’.

PRrROOF. (Theorem 3.1) Suppose that Q@ E¢ Q' and that
Q@ has p > 0 distinct constants, whereas Q' has p’ > 0

12The coverage of Lemma 5.1 of [6] is CQ queries under com-
bined semantics, with multiset variables, disjunction, and
negation, but without constants or copy variables.

A)

17

distinct constants. We first show that Q Cc Q' implies
[Meopy| < |Mlopy|- The implication clearly holds in case
Meopy = Now assume that |Mcopy| is a positive natu-
ral number m, |Mcopy| = m > 0. Further, assume toward a
contradiction that m = |Meopy| > [M¢opy|. We choose a nat-
ural number A > 1 in such a way that A is also greater than
(maz(1,p))™M 1=1Meopy| - Using this value of A, we construct
the boxed copy-variable database D"} for the query Q. By
Proposition E.3, there is a value ¢ in adom(D*}') such that
the k-tuple d = (c, ..., c) occurs in the bag Resc(Q, DGHY)
with multiplicity at least A™. Now by Proposition E.1, for
each tuple ¢ (if any) in Resc(Q’, DG"Y) (for the query Q' on

the same database), the multiplicity of ¢ in Resc(Q', Dg*Y)

cannot exceed AMeopyl x
(max(1, p))!M 1= 1Meopy| | (Recall that by construction of DYy,
it holds that |adom(Dg*)| = max(1,p).) Using our as-
sumptions that m = |[Mcopy| > |M{opy| and that A >
(max (1,p))‘M/‘7|Méopy|7 we conclude that no tuple in

Resc(Q', DG"Y) has the same multiplicity as the multiplic-
ity of the tuple d in Resc(Q, Dg"Y), and thus D"/ is a
counterexample database to Q Cc Q.

Finally, we show that Q Cc Q' implies |Myoncopy| <
| My oncopyl- Recall that we already know that |Meopy| <
|Méopy| whenever Q Cc Q. Recall that Myoncopy is defined
using set difference as Muoncopy = M — Mecopy - Similarly,
My oncopy = M' — Mg, . Now assume toward a contra-
diction that n = |Mnoncopy| > |Mioncopy|- We construct a
variation D%n on the boxed database for the query) and
for the fixed positive integer value n = |Mnoncopy|; in con-
structing D%,n, the only change from the construction of
DZNL is that D%n is the core-set of the bag D%,n . That is,
while each tuple in DY ,, has multiplicity maz(n, p) by con-
struction, Dl"Q’n has the same (distinct) tuples as Dg’n does,
but ﬁ%n has only one copy of each of its tuples. By fol-
lowing the proof of Proposition E.2 for the variation Dgn
on D%yn, we obtain that the k-tuple d = (c,...,c) occurs
in the bag Resc(Q,b%,n) with multiplicity (maxz(n,p))".
Now it is immediate from Proposition E.1 that no tuple in
Resc(Q', D, ,,), for the query @', may occur with multiplic-
ity greater than (mam(n,p))'M;f’"wr}yl . Using our assump-
tion that | M), oncopy| < 1, we arrive at the desired contradic-
tion by concluding that) is not contained in " under the
combined semantics. [

F. FORMALIZING THE NOTIONS OF Qcr
AND Q¢

In this section we formalize the notions of Q.. and Q.., for
CCQ queries @ and @’ such that Q' is a reduced-condition
query for Q. The definition of Q.. is the same as that of
Q+copy in [6]. We use the definitions of of Qe and Q.
instead of using Q4copy, because in some of the proofs in
this paper, specifically in those of Section 5, we use the con-
venient similarities (“overlaps”) between the syntax of the
query Q.. and the syntax of the query Q.., for queries Q
and Q' such that Q' is a reduced-condition query for Q.

For a CCQ query @, we call CCQ query Qc. a copy-
enhanced version of @ if Q.. is the result of adding a distinct
copy variable to each relational subgoal of Q. (We can show
that for a query @, all copy-enhanced versions of () are iden-

tical up to renaming of the copy variables introduced in the
construction of Q...) Further, for each CCQ query Q’ that
is a reduced-condition query for CCQ query), we obtain
the query Q.. by removing from Q.. those subgoals (if any)
that do not correspond to the subgoals of Q’. That is:

e For each copy-sensitive subgoal s of) such that s is
not a subgoal of Q’, we have that s is not a subgoal of
Qce;

e For each relational subgoal s of @): Let @ have exactly
n > 1 copies of atom s, and let Q' have exactly k copies
of atom s, with 0 < k < n. Let M be the set of n copy
variables that have been introduced to represent the
n copies of atom s in the query Q.. Let M, be an
arbitrary subset of M, of cardinality |M}| = k. Then:

— The condition L., of query Q.. has all those sub-
goals s” of the condition L. of query Q. such that
the copy variable of s’ is an element of M, and

— L., does not have any subgoals s’ of L., such that
the copy variable of s’ is an element of M, — M}
(as set difference).

e Finally, for each subgoal s of Q.. such that s is not
covered by the preceding conditions, s is also a subgoal
of Qre-

Consider an illustration.

EXAMPLE F.1. For the following queries Q and Q' we
have that Q" is a reduced-condition query for Q:

Q(X) « p(X,Y, Z;i), p(X,W,Y), p(W,Y, Z), {Y,i}.
Q'(X) < p(X,Y, Z;i), p(X,W,Y), {Y,i}.

Then the queries Qee and Q.. are defined as
Q(‘E(X) — p(Xa Y7 27 Z)7 p(X7 W7 Y7J)7 p(VV, Y7 Z7 k)7

{Y77:7j’ k}’
Qee(X) < p(X,Y, Z31), p(X,W,Y5j), {Y,i,5}

Note that the extra copy wvariable added to subgoal
p(X,W,Y) has the same name, 7, in both Qce and Q.. O

G. PROOF OF THEOREM 3.2

In this section we provide and illustrate a proof of Theo-
rem 3.2. In the proof we will use the notion of an “extended
canonical database” of a CCQ query.

G.1 Extended canonical database of CCQ query

Set queries. We first recall the notion of a “canonical
database” of a CCQ set query. Every CCQ set query @ can
be regarded as a symbolic database D@ D@ is defined as
the result of turning each subgoal p;(...) of @ into a tuple
in the relation P; that corresponds to predicate p;. The
procedure is to keep each constant in the body of @, and
to replace consistently each variable in the body of @ by
a distinct constant different from all constants in Q. The
tuples that correspond to the resulting ground atoms are
the only tuples in the canonical database D@ for Q, which
(database) is unique up to isomorphism.

General CCQ queries. We now extend the above no-
tion, to define an extended canonical database for a general
(i.e., not necessarily set) CCQ query Q. We first partition

all the subgoals of @ into equivalence classes CiQ), e C,(CQ),
k > 1, where two subgoals of @ belong to the same class

18

if and only if the subgoals have the same relational tem-
plate. We then choose one representative element, @

J ’
of each class CJ(-Q), jge{l, ..., k}; if CJ(-Q> has at least

one copy-sensitive atom then C;-Q) must be a copy-sensitive

atom. Finally, an extended canonical database for the query
Q is constructed from the subgoals CSQ), ceey c,(c@ of @ in
the same way as the “standard” canonical database is con-
structed from the condition of a CCQ set query. The only
difference is in that whenever C;Q) is a copy-sensitive atom,
the copy variable of the atom must be replaced by a natural
number that is distinct from all the other constants in the
database (both in the active domain of the database and
among the copy numbers of all ground atoms). The above
mapping of terms of @ to the constants in the database,
such that the mapping is used to generate the database, can
be used to define in a natural way an assignment mapping
from the query @ to the database. In defining that assign-
ment mapping, we accept the convention that the mapping
maps each copy variable of the query to the constant 1. We
call that assignment mapping the generative mapping for
the query and for the database; observe that, by definition,
the generative mapping is always a valid (i.e., satisfying) as-
signment mapping from all subgoals of the query @ to the
extended canonical database for . We can show that for
each CCQ query, its extended canonical database is unique
up to isomorphism.

For instance, an extended canonical database of the query
Q' of Example 4.1 is {r(a,b,c,d;2)}. The query generates
exactly one equivalence class C%Q,) , due to the fact that the
two subgoals of the query @’ have the same relational tem-

plate. We choose arbitrarily the atom ch,) to be the first
subgoal of the query Q’. The generative mapping in this
caseis { X1 =2 a, Y1 = b Y2 2 ¢, Xo >d, Y5 > 1,V —

1}.

G.2 Proof and illustration

We now prove and illustrate Theorem 3.2.

ProOF. (sketch) Assume that CCQ queries @) and Q' are
such that Q Cc Q' holds. We construct an extended canon-

ical database, call it D£Q>, for the query @Q; denote by c(lQ)7

ch), ey c,(cQ), with & > 1, the set of those subgoals of Q

that were used to construct the database DgQ). (See the
definition of extended canonical database for the details on
the subgoals ch), c;@, ey c,(CQ) of the query Q.) Further,
denote by p the generative mapping from @ to the database
D). Now obtain a database D, by setting each copy num-
ber in the database DEQ) to the constant 1. By definition, u
is a satisfying assignment from the query @ to the database
D. Thus, clearly, the bag of answers to the query @ on the
database D has the tuple t* = u(X), where X is the head
vector of the query Q.

Further, when we restrict the domain of p to all the terms
of the query) except its copy variables, call the resulting
mapping ', then y’ induces a bijection from the set of sub-
goals c§Q>, c<2Q) , c,(cQ> of the query @ onto the set of
atoms in the database D. (This holds by construction of
the database D.)

By Q Cc @', there must exist a satisfying assignment,
v, from the query @’ to the database D, such that the re-
striction of v to the head vector of @’ is the tuple t* as

g e

constructed above. Consider a mapping v/ = (u/)™" o v; it

is well defined by construction. Clearly, one can construct
easily an extension, v”, of v/ to all the terms of the query
Q.., such that v is a GCM from the query Q.. to the
query Qce. (The whole point of introducing copy-enhanced
versions of CCQ queries is to enable mapping any subgoal
of one query to any subgoal of the other query. That is, in
the copy-enhanced version we would never fail to construct a
GCM just because a subgoal, s, of the “source” query fails to
map to some subgoal, s, of the “target” query due to incom-
patibility at the level of copy variables. Such incompatibility
would be either s being a relational atom — that is, s not
having a copy variable — and s’ being a copy-sensitive atom,
or vice versa.) The extension v’ of v’ would induce the same
mapping as v’ at the subgoal level of the two queries, modulo
the copy variables added when transforming query Q (Q’,
respectively) into Qc. (into Q.., respectively). Q. E.D. [

Consider an illustration of the proof of Theorem 3.2.

EXAMPLE G.1. Let CCQ queries Q and Q' be as fol-
lows.

Q(X) <_p(X7KZ§i)7 p(X,T7Y), p(X,KW), {KZ}
Q'(X) + p(X.Y, Z;9), p(X,T,Y), {Y,i}.

Query Q' is a proper reduced-condition query for Q. By our
results in Section 5, we have that Q =¢ Q'. (In fact, Q'
is a minimized version of Q.) By definition of combined-
semantics equivalence, we have that Q' Tc Q. We show
that there exists a GCM from Qce to Q..

For the query Q', a database D as in this proof could be D
={p(1,2,3), p(1,4,2) }. (As the two subgoals of the query
Q' have different relational templates, both subgoals of Q'
would participate in creating atoms in the extended canoni-
cal database of Q' and hence in the above database D.) The
generative mapping p from Q onto D would then be { X
- 1,Y =2 7Z—-3T—=4,i—1}. We denote by t*
the tuple 1(X) = (1). The mapping 1, which is the result
of restricting the domain of p to all terms of Q' except its
copy variables, is ' = { X - 1,Y =2, Z =3, T — 4
}. Observe that 1/ induces a bijection from the subgoals of
the query Q' onto the database D: The first (second, respec-
tively) subgoal of Q' gets mapped by i’ into the first (second,
respectively) atom of D.

There does exist an assignment mapping v from the query
Q to the database D such that v(X) = t*. We have that v
={X—->1Y—>22-3T—-4W-—=>3,i—1}

Consider the mapping (/)™ o v, which we define on all
the terms of the query Q except its copy variables. It is easy
to see that v/ = (i)™ o v is a well defined mapping. We
have that v/ ={ X - X, Y - Y, Z - Z, T - T, W
— Z }. Observe that the mapping v’ associates subgoals of
the queries Q and Q' as follows: (p(X,Y, Z;1i), p(X,Y, Z;14))
(in each pair in this sentence, the first atom of the pair is
a subgoal of the query Q, and the second atom — a subgoal
of the query Q'), (p(X, T Y), p(X,T,Y)), and (p(X,Y, W),
p(X,Y, Z;1)).

Now the queries Qe and Q... are as follows.

QCC(X) —p(X,Y, Z; i)v p(X, T,Y;4), p(X, Y, W;k),
{Y,4,4,k}.
Qee(X) « p(X,Y, Z39), p(X,T,Y55), {Y,4,5}.

It is easy to see that the desired GCM v" is an extension
of V' to the copy variables of the query Qc., such that the

19

extension preserves the association induced by v’ between the
subgoals of the queries Q and Q', modulo the copy variables
added when transforming query Q (Q’, respectively) into Qc.
(into Q.., Tespectively). Specifically, v = { X - X, Y —
Y. Z 5 Z,T—->T,W—=>Z,i—>14,75—>35,k—1i}. m|

H. PROPERTIES OF CVM MAPPINGS

H.1 (Un)regularizing CCQ queries

In Definition 3.2 in Section 3.2 we defined the “regular-
ized,” “deregularized,” and “unregularized” formats for CCQ
queries. Given a CCQ query @, the three equivalent formats
for the definition of) can be obtained easily from one an-
other, and differ only in the amount of syntactic sugar that
they provide. Specifically, the regularized format has no
syntactic sugar, and the deregularized format has the most
syntactic sugar while having no duplicate subgoals. The
importance of these formats for query minimization is as
follows: Whenever, for a given CCQ query, one of these for-
mats is a minimized query, then only the regularized version
is the minimized query.

In Section 3.2 we introduce “covering mappings” (CVMs)
between CCQ queries, with the following property: If a
CVM exists from query @ to query @', then the CVM can
be discovered regardless of the amount of the syntactic sugar
present in the definitions of the two queries, and the CVM
is a generalized containment mapping from (any version of)
the source query to the deregularized version of the target
query. (See Proposition 3.2 in Section 3.2.)

For a CCQ query @, we have that the regularized version
of @, of @r, of Qq, and of each Q. (i) is Q-, and (ii) can be
obtained by dropping some subgoals of the query in question.
We say that Q, Qr, Qq4, and each Q. are all the same query
up to reqularization.

EXAMPLE H.1. Consider CCQ query Q.

Q(X) <_p(X7Y?Z;,I:)? p(X7 W7Y;j)’ p(W7Y7Z)7
p(VV7YaZ)7 p(X7Y7Z)7 {Y’i7j}'

This query is represented by one of an infinite number of
its unregularized versions. The set T(Q) for Q is T(Q) =
{p(X,)Y,2), p(X,W,Y) }. Thus, the queries Q., Qr, and
Qa are defined as

QC(X) <_p(X7Y7Z7,L)7 P(X,W,ij), p(W?KZ)’
Qa(X) « p(X,Y, Z54), p(X,W,Y;j), p(W,Y,Z),
p(X7Y7Z)7 p(X,W,Y), {Y7Z7J} O

H.2 Each CVM can be viewed as a GCM

In this subsection we prove Proposition 3.2. (We refor-
mulate the Proposition here by swapping the notation for @
and Q' that was used in Section 3.2.)

PROPOSITION 3.2. Given CCQ queries Q and Q'. Then
for each CVM, p, from Q' to Q, we have that (1) p is a
GCM from Q' to the deregularized version of Q, and (2) p
is a CVM from Q' to the regularized version of Q.

PROOF. Proof of (1): Let u be a CVM from CCQ query
Q' to CCQ query Q. We apply the mapping p to the head

and individually to each subgoal of the query Q’; we will
refer to the result as (query) p(Q’). In addition, we impose
a natural requirement that a variable Y in the query u(Q’)
is a multiset variable of 1(Q’) if and only if Y is a multiset
variable of the query . It is immediate from this require-
ment and from item (3) of Definition 3.1 that the multiset
variables of u(Q’) are exactly the multiset variables of the
query Q.

Now applying p to the head vector of the query Q' re-
sults in the head vector of @, by item (2) of Definition 3.1.
Further, for each copy-sensitive subgoal of the query @Q’, its
image in p(Q’) is a copy-sensitive subgoal of the query @, by
item (5) of Definition 3.1. We get a similar desired behavior,
by item (4) of Definition 3.1, for all relational subgoals of Q’
whose images under p are relational subgoals of the query

The only problem in the application of the mapping u to
the query Q' would arise when, for some relational subgoal
of Q' of the form s(Y), the relational atom s(u(Y)) is not a
subgoal of the query Q. For an illustration, consider queries
Q and Q' of Example 3.2: The mapping p = {X — X, Y —
Y,Z — X,i — i} is a CVM from query Q to query Q' of the
Example. Applying this mapping to subgoal p(X,Z,Y) of
the query @ results in a relational subgoal p(X, X,Y’) that
is not present in the query Q’.

However, items (3) through (5) of Definition 3.1 together
ensure that for each occurrence of the above problem, query
u(Q") has “the copy-sensitive version”, s(u(Y);4) (for some
copy variable i € M_opy), of the atom s(u(Y)) of the previous
paragraph. That subgoal s(u(Y);4) would be added to u(Q")
as the result of applying i to some copy-sensitive subgoal of
the query Q’. Thus, adding the relational atom s(u(Y)) to
1(Q"), as the result of applying p to the relational subgoal
5(Y) of the query Q’, does not “take us outside” the set of
subgoals of the deregularized version of the query @. (Recall
the definition of the set 7(Q) of Section ??.) As a result,
the condition of the query u(Q') is a subset of the condition
of the deregularized version of the query Q. Q.E.D.

Proof of (2): Immediate from (1) and from definition of
CVM. O

H.3 Sufficient conditions for combined-semantics

containment of CCQ queries

In this subsection we prove Theorem 3.3, see Section H.3.1.
We also formulate Theorem H.1, which is a proper general-
ization of Theorem 3.3; see Section H.3.2.

H.3.1 Proof of Theorem 3.3

In this section we prove Theorem 3.3. Remarkably, the
proof is almost verbatim the proof, in [6], of Theorem 2.4.

PrOOF. (Theorem 3.3) Consider the queries Q(X) < L, M
and Q' (X') < L', M’ . Let ¢ be a CVM from @’ to Q. Re-
call that by item (3) of Definition 3.1, when ¢ is restricted
to the domain M’ then we have that the range of ¢ includes
all of M.

By Proposition 3.2, ¢ is a generalized containment map-
ping from the query Q' to the deregularized version Qg of
Q, Qia(X) < L4, Ma. By Proposition 3.1, Qs =¢ Q. (In
particular, this means that the set M, is identical to M, and
that the set S(Qq) is identical to S(Q).)

Let D be a database with active domain adom(D), and
let d be a tuple of constants in adom (D). Suppose that
Resc(Qa, D) contains k > 0 occurrences of d. We show that

20

Resc(Q', D) contains at least k occurrences of d. This is
sufficient in order to prove combined-semantics containment
of Qq in Q. From this result, by Q4 =c¢ Q we obtain that
Q Cc Q' also holds.

Let T' be the set of satisfying assignments of Q4 into D
that map X to d. Let I's be the restriction of assignments in
I to the variables in S(Q4). There are exactly k assignments
Y1,...,7 € I's. We associate each assignment v; € I'g with
an assignment ; € T' such that ~; is the restriction of ~;
to the variables in S(Qg). If there are several candidates for
v, we choose one arbitrarily.

Recall that ¢ is a generalized containment mapping from
Q' to Q4. Thus, we have that for each subgoal I’ of Q’,
ol € Ly holds. Since v} is a satisfying assignment of Qg
into D, we have that +; (Lq) is satisfied by the database. (In
other words, all the ground atoms in 7; (Lq) appear in D.)
By composing the assignments we derive that ;" o o(L’) is
satisfied by D. Hence, ~; o ¢ is a satisfying assignment of
Q' into D. In addition, v} o ¢(X’) = d, since p(X’) = X.

Finally, we show that no two assignments ; oy and v} o
(¢ # j) agree on all the multiset variables of Q’. By the
definition of I'g, it holds that ~; and ~; differ on at least
one multiset variable of Q4. Hence ~; and ~; also differ on
at least one multiset variable of Q4. Since the image of M’
under ¢ includes all of M, we derive that v; o ¢ and v o ¢
differ on at least one multiset variable of QQ’. Therefore,
the restrictions of the assignments v o ¢ (for all j < k) to
S(Q') are all different satisfiably extendible assignments of
the nonset variables of @’ into the database. We conclude
that Resc(Q’, D) contains at least k occurrences of d.

Our arguments apply for all D and for all d. Therefore,
Qa4 Cc Q' and (by Q4 =c¢ Q) we have Q Cco Q', as re-
quired. [

H.3.2 Generalizing Theorem 3.3

We now formulate Theorem H.1, which is a proper gen-
eralization of Theorem 3.3. The statement of Theorem H.1
uses Definition H.1, which specifies a proper generalization
of CVMs of Definition 3.1. The proof of Theorem H.1 is
exactly the same (verbatim) as the proof of Theorem 3.3,
see Section H.3.1.

Theorem H.1 provides a rather general sufficient condi-
tion for combined-semantics containment of CCQ queries.
Consider an illustration.

EXAMPLE H.2. Consider CCQ queries Q and Q’.

Q(X) < p(X,Y, Z;i),p(X, W, Z),{Z,W,i}.
Q'(X) + p(X, X, 2),{Z}.

The containment-compatible CCQ pair (Q’, Q) satisfies both
necessary conditions of Section 3.1 for containment Q' Cc
Q. (That is, the pair (Q', Q) satisfies Theorems 3.1 and 3.2).

Consider a mapping p from the terms of the query Q to
the terms of the query Q': n ={ X - X, Y - X, Z — Z,
W — X, i — 1}. Observe that (i) p maps a multiset
noncopy variable W of Q into a head variable X of Q’', and
that (it) p maps the copy variable i of @ into a constant, 1.
It follows that:

o 1 maps the set { Z, W } of multiset noncopy variables
of the query @ into a proper superset, { Z, X }, of the
set { Z } of multiset noncopy variables of the query Q';
and

e 1 maps the set { i } of (multiset) copy variables of the
query Q into a proper superset, { 1 }, of the set 0 of
(multiset) copy variables of the query Q'.

We will see later in this subsection that (by Definition H.1),
1 is a “relazed-CVM?” from Q to Q'. From the existence of
the relazed-CVM p from Q to Q', by Theorem H.1 we have
that Q' Co Q holds. m]

To be able to generalize the result of Theorem 3.3, we
extend slightly the syntax of [6], which is described in Sec-
tion 2.1.1. Our extension is to allow for a relational atom
p(S) the equivalent notation p(S;1). This convention does
not alter the semantics defined in [6] and parallels the nota-
tion of [6] for ground atoms, see Section 2.1.1. Throughout
this subsection, we assume that all relational atoms in all
query definitions are rendered using this alternative nota-
tion.

DEerINITION H.1. (Relaxed covering mapping (relaxed-

CVM)) Given CCQ queries Q and Q', a mapping, call it
1, from the terms of Q' to the terms of Q is called a relaxed
covering mapping (relaxed-CVM) from Q' to Q whenever p
satisfies all of the following conditions:

(1) p maps each constant (if any) in Q' to itself;
(2) applying u to the vector X' yields the vector X ;

(3) the set of terms in pM;,p, is either Mcopy o1 Meopy U
{1}, and the set of terms in puM oncopy includes all of
Mnoncopy;

(4) for each relational subgoal of Q', of the form s(}?; 1),
there exists in Q either a relational subgoal s(u(Y); 1),
or a copy-sensitive subgoal s(u(Y);1) where i € Meopy;
and

(5) for each copy-sensitive subgoal of Q' of the form s(s

where i € M(,,,, there exists in Q a subgoal s(p(Y');

(Z))

Condition (3) of Definition H.1 properly generalizes con-
dition (3) of Definition 3.1, in the part concerning the copy
variables of the queries Q and Q’.

Clearly, for each pair (Q, Q') of CCQ queries, each CVM
(satisfying Definition 3.1) from Q' to @ is a relaxed-CVM
(satisfying Definition H.1) from Q' to Q. Further, whenever
there exists a relaxed-CVM from @’ to @ then (Q, Q) is a
containment-compatible CCQ pair.

Note that for relaxed-CVMs, a generalization of Proposi-
tion 3.2 still holds:

ProPosITION H.1. Given CCQ queries Q and Q'. Then
for each relazed-CVM, p, from Q' to Q, we have that (1) i
is a GCM from Q' to the deregularized version of Q, and that
(2) p is a relaxed-CVM from Q' to the regularized version

of Q.]

The proof of Proposition H.1 is exactly the same as the
proof of Proposition 3.2, provided we use our alternative
notation for relational atoms. Example H.3 provides an il-
lustration.

EXAMPLE H.3. Consider CCQ queries Q and Q’.

Q(X) + p(X,X,Y;4),p(X,Z2,Y;1),{Y,i}.
Q'(X) + p(X. X.Y3i), {¥.i}.

21

Query Q (Q', respectively) is exactly the query Q (Q’, re-
spectively) of Example 3.2. Note our use, in the definitions
of the two queries, of our proposed alternative notation for
relational atoms.

Consider the following mapping p from the terms of the
query Q to the terms of the query Q': p = { X — X,
Y =Y, Z— X,i—1i}. By Definition H.1, i1 is a relazed-
CVM from Q to Q'. (By Definition 3.1, p is also a CVM
from Q to Q'.) Observe that the result of applying u to
the query @ is exactly the deregularized version, Q'(X) «
p(X, X, Y54),p(X, X, Y;1),{Y, i}, of the query Q". O

We now state and prove a general sufficient condition
for combined-semantics containment of CCQ queries, The-
orem H.1. The proof of Theorem H.1 is verbatim the proof
of Theorem 3.3, see Section H.3.1, provided we use our al-
ternative notation for relational atoms.

THEOREM H.1. Given CCQ queries Q and Q’', such that
there exists a relaxed-CVM from Q' to Q. Then Q Cc Q
holds.

Theorem H.1 properly generalizes the result of Theorem 3.3:
By Theorem H.1 — but not by Theorem 3.3 — we have that
Q' Cc Q for the queries Q and Q' of Example H.2.

The condition of Theorem H.1 does not appear to be a nec-
essary condition for containment of CCQ queries. Indeed,
the well-known example of [4] (see Appendix I), claims con-
tainment Q Cc @', but no relaxed-CVM exists from Q’ to
Q.

H.4 Sufficient condition for bag containment

In this subsection we provide a detailed discussion of the
relationship of Theorem 3.3 with the following result of [4].

THEOREM H.2. [/] Given two CCQ bag queries Q and Q'
such that there exists a CVM from Q' to Q. Then we have
that Q Cp Q'. O

It is easy to see that Theorem H.2 is an immediate corol-
lary of Theorem 3.3.

Note that Theorem H.2 is formulated here using the syn-
tax of [6] that we adopt in this current paper. Recall that in
[4], definitions of bag queries are written using the implicit
bag syntax. That is, suppose that we know that a query Q
is a bag query. This means that we know that (i) for all the
nondistinguished variables of @) that are not copy variables,
each such variable is a multiset (noncopy) variable of @, and
that (ii) all subgoals of @ are copy-sensitive subgoals. In this
case, we can drop altogether from the (explicit, i.e., in the
style of [6]) definition of @ (a) the set M, and (b) all copy
variables in all subgoals of @) — just because we know how
to interpret all subgoals and all explicit variables of a bag
query.

The resulting implicit notation makes a CVM from Q'
to @ “look like” a containment mapping. That is, suppose
there exists an “onto-style containment mapping” i from bag
query @’ to bag query Q when the definitions of both queries
use the implicit bag syntax of [4]. By the definition of u, we
have that

(1) Each subgoal I’ of Q' is associated by p with a subgoal
I of @, such that u(l’) and I have identical relational
templates; and that

(2) For each subgoal [of @Q, there exists at least one subgoal
" of Q' such that u associates I’ with .

When we change this definition of p in such a way that
1 still applies to Q' and @ using the (explicit) syntax of
[6], it is easy to see that p is exactly a CVM from the (ex-
plicitly defined) @’ to the (explicitly defined) Q. Hence the
formulation of Theorem H.2 reflects correctly the result of
[4].

H.S CVMs vs multiset homomorphisms

In this subsection we provide Example H.4 showing that
general CVMs and multiset homomorphisms are incompa-
rable when applied to pairs of CCQ queries. We also prove
Proposition 3.3.

EXAMPLE H.A4. Let CCQ queries Q and Q' be as fol-
lows.

Q(A) < p(A, B),
Q'(D) « p(D, E),

p(A,C), {B,C}.
p(D, F), {E}.

Consider mapping p from the terms of query Q to the
terms of query Q', and mappings ' and p” from the terms
of Q" to the terms of Q: p={A - D,B - E,C — E};
w={D— AE— BF— B}, and ' ={D - A FE —
B,F — C}. Mapping u is a CVM but not a multiset-
homomorphism (because p maps B and C into the same
multiset variable E of Q'). Further, each of p' and ' is a
multiset-homomorphism but not a CVM. (For each of ' and
u”, the image of {E} under the mapping is not a superset
of {B,C}.) O

PROOF. (Proposition 3.3) The proof is immediate from
Proposition 3.2. Indeed, suppose that for an equivalence-
compatible CCQ pair (@, Q’), there exists a SCVM p from
Q' to Q. By Proposition 3.2, u is a generalized contain-
ment mapping from @’ to the deregularized version of Q.
Thus, using Definition 3.2, we obtain that condition (4) of
Definition 3.1, when applied to u, to Q’, and to the deregu-
larized version of @, guarantees that condition (3) of Defini-
tion 2.4 is satisfied by u. Observe that by (Q, Q') being an
equivalence-compatible CCQ pair, we have that condition
(3) of Definition 3.1 for u guarantees conditions (4) and (5)
of Definition 2.4 for u. Finally, the satisfaction by p (when
applied to Q" and Q) of conditions (1) and (2) of Defini-
tion 3.1 guarantees the satisfaction by p (when applied to
Q' and to the deregularized version of Q) of conditions (1)
and (2) of Definition 2.4. The opposite direction (that is, a
multiset homomorphism ¢ from Q’ to the deregularized ver-
sion of Q is always a SCVM from Q' to Q) is proved using
the above proof “in the opposite direction.” []

I. THE NONSURJECTIVE CONTAINMENT
EXAMPLE

In this section we recall an example from [4].

EXAMPLE 1.1. Let CCQ queries Q and Q' be as fol-
lows.

Q(X, Z) « p(X3i),s(U, X3 4), s(V, Z: k), r(Z;1),
{U, Vi, g, k, 1.

Q'(X,Z) « p(X34),s(U,Y;4),s(V,Y; k), 7(Z;1),
{U V.Y, i, 5, k, 1.

For bag queries Q and Q', the authors of [4] claim Q Cp
Q’, that is Q Cc Q' in the context of this present paper. O

Observe that for the queries Q and Q' of Example 1.1,
(Q, Q') is a containment-compatible CCQ pair. (That is,
Q@ and Q' satisfy the necessary containment condition of
Theorem 3.1.) At the same time, it is easy to check that no
CVM exists from the query Q' to the query Q.

J. QUERY @ OF EXAMPLE 4.1 IS AN
IMPLICIT-WAVE QUERY

We show that query @ of Example 4.1 is an implicit-wave
query. We observe first that the query @ has two copy-
sensitive subgoals. Now the copy-enhanced version (.. of
Q is exactly Q. (Recall that to construct the copy-enhanced
version Q.. of query @, all one needs to do is add distinct
copy variables to all relational subgoals of). The query
Q@ of Example 4.1 does not have any relational subgoals.)
Consider two GCMs from Q.. to itself. (We use here the
formulation, specifically the variable naming, for the query
Q as given in the beginning of Appendix K.)

ulz{X1—>X1,Yi —)Yi,)@—)YQ,XQ—)XQ,XP,%XQ,
Y3 — Y3, Y4 — Y3 }; and

pe={X1 - X1,Y1 - ¥1,Y> - Y2, Xo — X3, X3 = X3,
Y3—>Y4, Yi— Yy }

The set Mponcopy for the query @, as well as for the query
Qce, is {Y1,Y2}. Each of pu; and peo is a noncopy-permuting
GCM from Q.. to itself, because each of p1 and p2 maps
each element of Myoncopy to itself. For the same reason, the
mappings p1 and po agree on Myoncopy-

Mappings p1 and pe map the first subgoal of @ (which is
an original copy-sensitive subgoal of Q) into atoms with dif-
ferent relational templates. Indeed,
/.L1(T(X1, Y1, YQ, XQ; Yg)) 15 atom T(Xl, Y1, Yé, XQ; Yg), and
MQ('I"(Xl, Y1, Yo, Xo; Yg)) is atom T(Xl, Y1, Yo, Xs; Y4). We
conclude that @ is not an explicit-wave query.

K. QUERIES OF EXAMPLE 4.1

In this section we show that, for queries of Example 4.1,

Q =c¢ Q' holds.

PRrOPOSITION K.1. For the queries Q and Q' of Exam-
ple 4.1, we have that Q =c Q. a

For the convenience of the exposition in the proof, we
use a version of the query Q' where all variables have been
renamed into “same-name” primed variables: That is, we use

Q(X1) + (X1, Y1, Y2, Xo;¥3), (X1, Y1, Y2, X35 Vi),
{Y17Y2,Y37)/4}-

Q/(X{) <~ T(X{7Y1/7Y2/7Xé; Y3l)7r(X:ll7Y1/7Y2/aXé;Y4/)a
Y, Y3, Y3, Yy}

Proor. We will prove the claim of Proposition K.1 if we
show that for an arbitrary database D and for an arbitrary
constant a € adom(D), the sets I‘gl)(Q, D) and F(ga)(Q’, D)
are of the same cardinality. (Recall the definition of query
answer under combined semantics.) To prove this, it is
sufficient to show that (for the fixed database D and) for
an arbitrary 3-tuple t of constants from adom(D), the sets
I's(Q,D)[t] and T5(Q’, D)[t] are of the same cardinality.
Here, by the set I'5(Q, D)[t] we denote the set of all tu-
ples in I'5(Q, D) such that the projection of each tuple on

the variables X1, Y1, Ys, in this order, is exactly the fixed
tuple t. Similarly, by the set I'g(Q’, D)[t] we denote the set
of all tuples in I'g(Q’, D) such that the projection of each
tuple on the variables X1, Y7, Y5, in this order, is exactly the
fixed tuple t.

We now prove the latter claim. For the fixed database D,
for the remainder of this proof fix a tuple ¢ = (a,b,c), for
some a, b, ¢ € adom(D), as described above.

(1) We first show that whenever the set I'5(Q, D)[t] is not
empty, the sets T'5(Q, D)[t] and T'5(Q’, D)[t] are of the same
cardinality k2, for some constant k € Ny where k is a copy
number of some ground atom of the database D.

Suppose that the set I'5(Q, D)[t] is not empty. Then there
must exist in D ground atoms (perhaps identical to each
other) g1 = r(a,b,c,d;e) and g2 = r(a,b,c, f; h), for some
d, f € adom(D) and for some e,h € N4. These atoms g1
and g2 must intuitively be the images of the first and of the
second subgoal of the query @, respectively, under a valid
assignment mapping from @ to D. That is, formally, for the
set I'5(Q, D)[t] to be a nonempty set, it must be that the
mapping { X1 — a, Y1 = b, Yo = ¢, Xo = d, X5 — e,
Ys —» 1, Y4 — 1 } is a valid assignment mapping from all
the terms of the query @ to the elements of adom(D) |J N4.
The validity of this assignment mapping is justified by the
presence of the ground atoms g1 and g2 in the database D.

We now consider all those ground atoms in relation R in
the database D, such that each of the atoms has a,b, ¢, in
this order, as the values of the first three attributes of the
relation R, from left to right. We know that the set, call
it S[Q], of all such atoms is not empty, as g1 and g2 of the
previous paragraph will be elements of this set. Now let the
constant k € Ny be the maximal value of the copy number
among all the ground atoms in the set S[Q]. From the set
S[Q], choose an arbitrary atom, call it g, whose copy number
is k. Let g be r(a, b, c,l; k), for some | € adom(D).

We now argue that for each ni,ne € {1,...,k} and for
the constant ! in the ground atom g, the mapping fi(n;,ns,1)
I{X1—)a,Y1—)b,Y2—>C,X2—>l,X3—>l,Y3—>’rL1,
Ys — no } is a valid assignment mapping from all the terms
of the query @ to the elements of adom(D) |J N4. Indeed,
the required fact comes straight from the definition of the set
I'(Q, D) and from the presence of the atom g in the database
D.

Further, we argue that for each natural number n; that
is strictly greater than the constant k, for each no € Ny,
and for each constant [€ adom(D), the mapping fi(n, n,.1)
as defined above is not a valid assignment mapping from all
the terms of the query @ to the elements of adom(D) |J N.
Indeed, it is sufficient to observe that the set S[Q] does not
have atoms whose copy number is greater than k. (Recall
that fi(n,,n,, fixes the images of the variables X1, Y1, and
Y5 to the respective elements of the tuple ¢ = (a,b,c).) We
show in a similar way that for each natural number ny that
is strictly greater than the constant k, for each n1 € Ny,
and for each constant | € adom(D), the mapping fi(n, ny.1)
is not a valid assignment mapping from all the terms of the
query @ to the elements of adom(D) |J Ny.

From the facts established about the mappings fi(n, n,) We
conclude that the set T's(Q, D)[t] has exactly k? elements.
Now consider the set T'g(Q’, D)[t]. It is easy to show (in
fact, easier than for I'g(Q, D)[t] as we did above) that the
set T'5(Q’, D)[t] also has exactly k? elements. (For each valid
assignment mapping u from all the terms of the query Q’

23

to the elements of adom(D) |J Ny, such that p maps X7
to a, Y{ to b and Y3 to ¢, p induces a mapping from both
subgoals of the query @’ into the same ground atom of the
database D. Specifically, for the ground atom g € S[Q] as
defined above, there exists a valid assignment mapping of
this form p, such that the mapping induces a mapping from
both subgoals of the query @’ into the atom g.)

(2) Now suppose that for the above fixed D and ¢, the set
I's(Q', D)[t] is not empty. We show that in this case, the sets
I's(Q, D)[t] and T'5(Q’, D)[t] are of the same cardinality p°,
for some constant p € Ny where p is a copy number of some
ground atom of the database D. The proof is symmetric to
the proof of the claim (1) above. Q. E.D. [J

L. PROOF OF THEOREM 4.1

L.1 Intuition for the Proof and Extended
Example

L.1.1 Intuition for the Proof

In this subsection we outline the idea of the proof of The-
orem 4.1. Intuitively, we generalize the proof, via canonical
databases, of the existence of a containment mapping from
CCQ set query @’ to CCQ set query Q whenever Q =5 Q’.
The challenge in the generalization is that we are looking
for a SCVM from Q' to @, that is, the desired mapping
must map each multiset variable of Q' into a distinct mul-
tiset variable of (). Showing that we have constructed a
mapping with this property is thus an essential part of the
proof. (Recall that, unlike in our minimization problem of
Section 5, here we have no information about the structural
relationship between the two queries.)

For a given CCQ query @, the proof of Theorem 4.1 con-
structs an infinite number of databases, where each database
Dy (Q), i > 1, can be thought of as a union of “extended
canonical databases” for Q. (See Appendix G.1 for the
definition.) Similarly to canonical databases for CCQ set
queries, each ground atom in each database
D5 (Q) can be associated, via a mapping that we denote

z/“), with a unique subgoal of the query Q. See Section L.3
for the details.

The role of each database Dg)(Q) in the proof is that
the database represents a particular combination of multi-
plicities of the values of (some of) the multiset variables Y7,
Y2, ..., Yy, for some n > 1, of the query Q. (We have that
n > 1 for all CCQ queries @ and Q’ such that Q =¢ Q’
and at least one of Q and @’ is not a set query.) For each
database D () (Q), we represent the n respective multiplic-
ities as natural numbers Nl(i) through N7(f>, or equivalently
via the n-ary vector N@.

By construction of the databases, we have that some fixed
tuple, t5, is an element of the bag Resc(Q, Dy (Q)) for
each i > 1. Moreover, for all queries Q" such that (Q, Q") is
an equivalence-compatible CCQ pair, we have that the mul-
tiplicity of the tuple tf, in each bag Resc(Q", Dy (Q))
(that is, for each ¢ > 1) can be expressed using the symbolic
representations, N1 through N,,, of the respective elements

Nl(i), ey N of the vector N. That is, for each such
query @Q", we can obtain explicitly a function,]—"((3)) in

terms of the n variables N1, ..., Ny, such that whenever we
substitute N;Z) for Nj, for each j € {1,...,n}, the resulting

expression in terms of Nl(i), cee N,si) evaluates to the multi-
plicity of the tuple ¢5, in the bag Resc(Q", Dg) (Q)). See
Sections L.4 through L.6 and Section L.9 for the construc-
tion of the function. Sections L.8 and L.9 contain extended
illustrations of the constructions.

Observe that for each CCQ query @’ such that Q" =¢ Q,

it must be that the functions .7-'53;) and J-"((g))

same value on each database D g (Q), ¢ > 1.
Consider the simplest case, where our query Q) has no self-
joins and has |[M| = n > 1. In this case, by construction

.7:((8)) for the
query Q is the monomial II7_; N;. Consider an arbitrary
assignment, v, from @ to a D g (Q). Note that each such
~ has contributed to the construction of the database; we call
v a generative assignment from Q to D) (Q). We can show
that the composition 1/8) o« is a SCVM from @ to itself.
(Note the presence in the product IIj_; N; of the variables
for all the n multiset variables of @Q.) Moreover, for each
query Q' such that Q' =¢ @Q, the function }'((8)> is forced
(by Q" =c¢ Q and by]—"((8)) being a multivariate polynomial)
to be exactly ITj_; IV}, regardless of the relationship between
the structures of Q and Q’. We show that whenever]—"((g))
= II}_; N;, an assignment from Q' to a database D g (Q)

output the

of the databases, we have that the function

can be composed with the mapping 1/8) to yield a SCVM
from Q' to Q, precisely due to the presence in the function
F fg? of the “representative” N; of each multiset variable Y}
of the query @Q, for each j < n.

The above exposition conveys the general intuition of the
proof of Theorem 4.1: For all CCQ queries @, there is a
monomial, in terms of all of N1, ..., N,, that contributes to

the construction of the function]:((8)) and that reflects the

multiplicity, in the set FgQ)(Q, D) (Q)), of all generative
assignments from @ to databases Dy)(Q). We call this
monomial, PiQ), the wave of the query Q w.r.t. {D g (Q)}.
(See Section L.7 for the definition.) Suppose that, for a
query @’ such that Q' =¢ @, we can show that the function

73 (D Q).

backed up by assignments from Q' to the databases D g i) (Q).

has, as a term, the wave of Q@ w.r.t.

Then we can use these assignments and the mapping I/QZ to
construct a SCVM from Q' to Q.

There are two challenges in implementing this idea for
general CCQ queries. First, the term ’PEQ)
ible” in the expression for .7-'((8)) . As a result, the term PpL@
does not necessarily contribute to the construction of the

; Q")
function]-'(Q) ,

case of queries Q and Q' of Example 4.1, see Example L.1 in
Appendix L.1 for the details.) Second, in general, function

may not be “vis-
even in case Q =¢ Q. (This is exactly the

.7-—((3)/) may have terms that are not backed up by assignments
from Q' to databases D) (Q). Both challenges arise from
the fact that the function]—"((g)”), in terms of Ny, ..., Ny,
is, in general, not a multivariate polynomial on its entire
domain.

To overcome the first challenge, we introduce the restric-
tion that @ be an explicit-wave query. (Hence Definition 4.1
is necessarily technical.) Even under this restriction, over-
coming the second challenge requires a nontrivial proof. (See
Section L.10, with its main result Proposition L.47.)

24

In a little more detail, the proof of Theorem 4.1 is im-
mediate from the following three results. (Monomial classes
and their multiplicity monomials are constructs that we in-
troduce to build functions]—"((g)) and]:((S)l). All the details
on these constructs can be found in Section L.6. Section L.8
contains an extended illustration of these constructs.)

e Proposition L.33 of Section L.7 states the following:
Given a CCQ query Q, there exists a nonempty mono-
mial class, call it CﬁQ), for the query @ w.r.t. the fam-
ily of databases {D () (@)}, such that the multiplicity
monomial of C{?) is the wave of the query @ w.r.t.
{Dro (@)}

e Proposition L.34 of Section L.7 states the following:
Given CCQ queries Q(X) «+ L, M and Q'(X’) «+ L', M’,
such that (i) Q and Q' have the same (positive-integer)
head arities, (i) [Meopy| = |Meopy |, and (iil) |Mnoncopy|
= | M} oncopyl- Suppose that there exists a nonempty
monomial class C{? for the query Q" w.r.t. the fam-
ily of databases {D g () (Q)}, such that the multiplicity
monomial of C{“" is the wave of the query @ w.r.t.
{Dgu (Q)}. Then there exists a SCVM from the query
Q' to the query Q.

e Proposition L.47 of Section L.10 states the following:
Whenever

a =c¢ Q' for CCQ queries @ and Q’, and
(a) Q=cQ

(b) Q is an explicit-wave CCQ query (as specified by
Definition 4.1),

then there exists a (nonempty) monomial class CLQ/) for
the query Q' and for the family of databases {D ;) (@)},

such that the multiplicity monomial of CiQ) is the wave
of the query @ w.r.t. {Dzwu (Q)}.

L.1.2 An Illustration

We now provide an extended illustration of how the term

P*(Q) may not be “visible” in the expression for .7-'58;, and of
Q)

how, in general, the function F (Q is not a multivariate poly-
nomial on its entire domain. Example L.6 in Appendix L..9.6
is an extended variant of this Example L.1. In addition, Ex-
ample L.6 illustrates how function .7-"58)) may have terms

that are not backed up by assignments from @ to databases

Dy (Q).

EXAMPLE L.1. For the query Q of Example 4.1, we
associate a variable Nj with each of the n = 4 multiset vari-
ables Y; of the query, 1 < j < 4. Consider assignments
Ny := N2 := 1, N3 := 2, and Ny := 3. For some fixed
i and for 1 < j < 4, each of these assignments associates
the “value” N;” with the variable N;. For the resulting vec-

tor N = [112 3], we construct the database D g (Q)
={r(a,b,c,d;2), r(a,b,c,e;3) }, as specified in the proof of
Theorem 4.1. We will refer to the ground atom r(a,b, ¢, d; 2)
as di, and to r(a,b,c,e;3) as da.

Each generative assignment from @ to D gy (Q) maps X1
—a, Y1 = b, Yo = ¢, Xo = d, and X3 — e. By definition
of combined-semantics query evaluation, these generative as-

signments together contribute to the set I‘gQ)(Q, D5 (Q)),
for t§y = (a), ezactly H§:1 N;i) = 6 distinct tuples. As

shown in the proof of Theorem 4.1, the number of tuples con-

tributed to the set FgQ) (Q, D) (Q)) by the set of generative
assignments from Q to D) (Q), for an arbitrary ¢ > 1, can
be obtained by substituting, into the formula 1‘[;1,:1 Nj, the
values N;l) of the variables N;. The values N;') come from
the specific vector N representing the database Dxi (Q).

Recall that H?Zl Nj is the wave Pl of the query Q.

The variety of possible assignments from the query Q to
the above database D g (i) (Q) (for the fized vector N“)) stems
from the ability of the first subgoal, g1, of Q to map to each
of the ground atoms di and da, and from the ability of the
second subgoal, g2, of Q to independently also map to each
of di and da. (All the above generative assignments map gi
to di, and map g2 to da2.) It is easy to see that for those
assignments from @Q to Dy (Q) that map each of g1 and
g2 to d*l, the set of all such assignments contributes to the
set ng)(Q,DN(i)(Q)) ezxactly (Né”)2 = 4 distinct tuples.
Similarly, mapping g1 to da and g2 to di contributes to the

set TV Q)(Q Dy (Q)) exactly N(i) X N(i) = 6 distinct tu-
ples, and mapping each of g1 and g2 to dg contributes to the
set F Q) (Q, D (Q)) ezxactly (N(Z)2 = 9 distinct tuples.
(Recall that for our fized database Dy (Q), NV = NV =
1.) Similarly to the previous paragraph, the contribution of
each such class of assignments from Q to Dz (Q) for an
arbitrary ¢ > 1 can be expressed symbolically using mono-
mials in terms of some of the variables N1, ..., N4. For
instance, for the class of all assignments that map each of
g1 and g2 to da, the nunzber of distinct tuples contributed by
these assignments to F(S-tQ)(Q, D5y (Q)), for eachi > 1, can
be obtained using the monomial T,y = N1 x Na X (N4)2
and each specific vector N®.

In constructing the function .7:((3;
mials in terms of N1 through N4, the problem is that we can-

using all the above mono-

not simply set -7:((3)) to the sum of the monomial P with
the monomial T(q,) and with the monomials that can be built
from the other classes of assignments from Q to D) (Q)
using the above reasoning. The reason is, for our fixed vec-
tor N =[11 23], the total number of tuples in the set

(tQ)(Q Dy (Q)) — and thus the total number of copies of
the tuple t§y = (a) in the bag Resc(Q, Dg) (Q)) — is the
result of substituting the values from the vector N into the
single monomial T(q,). The problem stems from these dif-
ferent classes of assignments possibly contributing the same

tuples into the set F(Q)(Q Dy (Q)).

constructing the function .7-"((3))
senting different classes of assignments has to be done in a
way that takes into account these overlapping contributions.

For our specific query @, we show in Example L.6 in Ap-

pendiz L.9.6 that (1) .7:((3)) = N; x No x (N4)? for all vec-

tors N where Néi) < Nf), and that (2) .7-"((8; = N; X Ny
x (N3)? for all vectors N where Néi) > Nf A compact
representation of]-—((g)) that works for alli > 1 is -7:((3)) =N

x No x (max(Ns, Ny))?. Clearly, this expression cannot be
rewritten equivalently as a multivariate polynomial on the
entire domain { N, i > 1} of the vector N.

Consider an illustration of the problem with the term PiQ)
not being “visible” in any of the above expressions for the

Thus, in general,

from the monomials repre-

25

F&)-

we have that Q =c Q'. It turns out that, even though pL@
has (techmcally) contributed to the construction of the func-

tion]:(Q>

of assignments from the query Q' to database D) (Q),
such that the total number of tuples contributed to the set

(tQ)(Q Dy (Q)) by the assignments in this class can be

expressed by the monomial P£Q>. It is easy to verify that
for the queries of Example 4.1, there does not exist a SCVM
from Q' to Q. O

L.2 Assumptions, Conventions, Basic Results

To streamline the exposition in the proof of Theorem 4.1,
we reserve a number of uppercase and lowercase Latin let-
ters, in a variety of fonts and some with sub- and super-
scripts, to each have “the standard meaning” throughout
the proof. Every effort has been made to introduce all of
the notation in subsections that are separate from sections
for (portions of) the proof of Theorem 4.1.

L.2.1 The Queries

function Indeed, recall the query Q' of Example 4.1;

for the query Q, there still does not exist a class

The basics.

For the fixed (input) CCQ queries Q and Q’, as well as
for the CCQ query Q" in this proof, we use the notation
Q(X) « L,M; Q'(X') « L',M’; and Q"(X") « L", M".
Denote by [> 1 the head arity of Q. Denote by P (by P,
respectively) the (possibly empty) set of all constants in the
query @ (in the query Q’, respectively).

PROPOSITION L.1. Let Q =¢c Q'. Then P = P’. O

ProOOF. The proof is by contradiction: Assume that P
and P’ are not the same sets. Pick a constant ¢ in P — P’.
(If P— P’ = (then pick a constant ¢ € P'— P and modify the
rest of this proof by swapping @ with Q' in all the statements
of the proof.) Construct the canonical database D@ of
in such a way that adom(D(Q/)) does not have the value c.

(It is always possible to construct a D@ that would satisfy
this restriction.) Then it is easy to see that (i) the bag
Resc(Q', D(Q/)) must be nonempty by construction of the
database, and (ii) the bag Resc(Q, D(Q/>) must be empty
due to the absence of the constant c in adom(D(Q/>). Hence
we arrive at a contradiction with the assumption that Q =¢
Q. O

We use the notation Mcopy (Méopy, Moy, Tespectively)
for the set of copy variables of query @ (of Q’, of Q", respec-
tively). We use the notation Mnoncopy (Mroncopys Mroncopys
respectively) for the set of multiset noncopy variables of
query @ (of Q', of Q" respectively).

We denote by m the number |Myoncopy| of multiset non-
copy variables in the query @, and by r the number |Mcopy|
of copy variables in the query Q. For the CCQ query Q" in
this proof, we assume that (i) Queries @ and Q" have the
same head arity (1); (ii) |Mnoncopy| = |Myloncopy|; and (iii)
|Meopy| = |Mé/opy|-

The following observation is immediate from the assump-
tion @ =¢ Q' (of Theorem 4.1) and from Theorem 3.1.

ProprosITION L.2. (i) Queries Q and Q' have the same
head arity (1); (ii) |Mnoncopy| = |Mnoncopy|; and (i) | Mcopy|
= |Méopy|~ o

The following result is immediate from the containment-
mapping theorem of [2]. Thus, for the remainder of the
proof of Theorem 4.1, we assume that the set M of multiset
variables of Q is not empty (that is, m+r >1).

PROPOSITION L.3. Let M = (). Then Theorem 4.1 holds.
O

Throughout the proof of Theorem 4.1 we assume that we
are given the regularized version of the query Q.

Equivalence classes of subgoals of query Q.

We now introduce the notation that will help us to deal
cleanly with the case where query @) has more than one copy-
sensitive subgoal for a particular relational template. (See,
e.g., query @ in Example 77.

We first partition all the copy-sensitive subgoals (in case
r > 1) of the query @ into equivalence classes: Place two
copy-sensitive subgoals of @) into the same equivalence class
if and only if the two subgoals agree on the predicate name
and on all the arguments except the copy variable. That
is, two distinct copy-sensitive subgoals g1 and g2 of @ are
in the same equivalence class if and only if the relational
templates of g1 and g2 are the same. Denote by C1,...,C.,,
w > 1, the resulting equivalence classes for all the copy-
sensitive subgoals of Q. (We have w > 1 only in case where
r = |Mcopy| > 0. Otherwise we set w :=0.)

Further, we assume that each (if any) relational subgoal,
g, of the query @ is in its own equivalence class {g}. Let
Ci,...,Cy, v >0, be the resulting equivalence classes of the
relational subgoals of the query Q. (The case v = 0 holds
if and only if all subgoals of the query @ are copy-sensitive,
rather than relational, atoms.)

Denote by Cg = {C4,...,Cy,C1,...,Cy}, withv+w > 1,
the set of all equivalence classes of the subgoals of the query
Q, as defined in the preceding paragraphs. (By Defini-
tion 2.1, the condition of the query @ contains at least one
atom, thus v +w > 1 must hold.) Further, for each class
C € Cq, choose one arbitrary element of C, call this element
s(C), and fix s(C) as the representative element of the class
C. Denote by Sc(q) = {s(C1),...,5(Cv),s(C1),...,s(Cw)},
with v4+w > 1, the set of the representative-element subgoals
of the query). The following observation is immediate from
the definitions and from the fact that we use the regularized
version of the query Q. (Recall that L is the condition of
the query @, and that r = |Mcopy|. Item (v) is immediate
from item (iv) and from our assumption m +r = |M| > 1.)

PROPOSITION L.4. (i) Scq) € L. (it) For an arbitrary
(relational or copy-sensitive) atom g, the set Sc(o) has at
most one element whose relational template is the same as
the relational template of g. (i) r > w always holds. (iv)
Ifr >0 thenw > 0. (v) m+w>1. O

Notation for query variables.

For ease of exposition, we assume that each of @, Q’, and
Q" has [distinct head variables. (Recall that [> 1 denotes
the head arity of the query @. Handling the cases where
Q, @', or Q" has either repeated occurrences of the same
variable in the head, or has constants in the head, would
be straightforward extensions of this proof but would make
the exposition considerably harder to follow.) Suppose that
@ has u > 0 nonhead set variables. W..o.g. denote by

26

Xi,...,X; all the head variables of @ (from left to right in
the head vector X of @), and (in case u > 0) denote by
Xit1,. .., X4 all the u nonhead set variables of Q.

In case m = |Muoncopy| > 1, let Y1,...,Y,, be w.lo.g.
all the multiset noncopy variables of the query @. Further,
in case w > 1 let Yi+1,..., Ym+w be the copy variables of
the elements s(C1), ..., s(C,) of the set S¢(g). By Proposi-
tion L.4 (v), the set of variables {Y1, ..., Ym, Ym+1, ..., Ymtw}
is not empty.

Further, consider the set of all r copy-sensitive subgoals of
Q. Whenever r > w — that is, in case there exists a copy-
sensitive subgoal of) that is not the representative element
of any of the classes C1,...,C., — let Yitwi1, ..., Ymir be
(w.l.o.g.) the copy variables of all the copy-sensitive sub-
goals of @@ that are not the representative elements of any of
the classes C1,...,CL,.

In case m > 1 we denote by Y/, ..., Y, (by Y{, ...,
Y., respectively) the multiset noncopy variables of query
Q' (of query Q", respectively). In case r > 1 we denote by

il ooy Yo (by Yo .. Y., respectively) the copy
variables of query Q' (of query Q", respectively). Finally,
we denote by X1, ..., X] (by X7, ..., X/', respectively) the
(distinct) head variables of query @’ from left to right in the
vector X’ (of query Q" from left to right in the vector X"/,
respectively). All of this notation is w.l.o.g. by the basic
results and assumptions about Q" and Q" in the beginning
of this section.

L.2.2 Convention for Ground Atoms in Databases

We use the following convention for ground atoms in databases

in this proof. Let g = p(Y), for some choice of p and Y, be
a ground atom in database D, and let n > 1 be the total
number of copies of g in D. Then we treat the n copies of
g in D as a single ground atom p(Y) with associated copy
number n, and represent it as p(Y;n), as defined in Sec-
tion 2.1.1. As a result, every database is a set when using

this representation.

L.3 Constructing Family of Databases D (Q)

This section describes the construction of an infinite fam-
ily of databases based on the input query Q. Each database
in the family is constructed as a union of extended canonical
databases for the query @. In the exposition in this section
we use the notation introduced in Section L.2.

Throughout the proof of Theorem 4.1, whenever we dis-
cuss or use “the family of databases as constructed in Sec-
tion L.3”, we always refer to the family of databases built
based on the fixed input query @ (see Section L.2.1), re-
gardless of the context. (This convention is lifted in part of
Example L.5.)

L.3.1 Mappings vy and ug), vector N and its domain
N, sets So and S, ..., S5, tuple t%

We begin by defining a bijective mapping called vy. The
domain of v is the set of all terms of the query @ that are
not multiset variables of the query. The range of vy is a
subset of the active domain of each database in the family
D (Q). The assignment vo is fixed to be the same across all
the databases in the family Dy (Q).

‘We define v as follows: To each head variable and each set
variable of @, that is to each of the variables X1,..., Xty
(I+u > 1), vy assigns a distinct constant value that is also
distinct from all the values in the set P of constants used in

the query Q. Denote by Sy the set of [+ u constant values
in the range of vy, So()P = 0. Further, to each (if any)
constant ¢ used in Q, ¢ € P, vy(c) := c¢. The mapping vyp is
bijective by construction.

We define tuple t§, as t5 = 15[X]. (Recall that X is the
vector of head terms of the query Q.) By definition, tuple
to is fixed to be the same across all the databases in the

family Dy (Q).

Define N as a vector of variables N1, Na, ..., Numtw, m+
w > 1. (For m and w, see Section L.2.) The vector N is
defined on the Cartesian product of m 4+ w copies of the
set Ny of natural numbers; we denote by N this domain of
N. Fix an arbitrary enumeration (starting with 1) of the
set V. By the vector N® ¢ N, i € Ny, we denote the
ith element of N in this enumeration. We use the notation
Nl(i),NQ(”,...,Nr(,z_w for the natural-number values, from
left to right, in the vector N”. That is, the natural number
N;i), 1 < j < m+ w, in the jth position of vector N(i), is
the value, w.r.t. the fixed 4, of the variable IV; in the vector
N.

Suppose that the query @ is such that we have m =
|Mponcopy| > 1. Fix an ¢ € Ny and consider the vector
N® | For each value N;i) such that 1 < j < m, define S](-i)
as a set of N ;i) distinct constants such that all the sets S;i)
(1 < j < m) are pairwise disjoint and such that S;i) AP=0
and S{) So =0 for all j € {1,...,m}.

We define the set S as the empty set in case m = 0, and
as the union U;"Zl S](-i) in case m > 1.

Finally, for the vector N, for each i € N, we define
mapping ug), to be used in Section L.3.3 and in other parts
of the proof of Theorem 4.1. Define the domain of the map-
ping I/S) as the union PJSoJ S Define mapping 1/8) as
follows:

e For each ¢ € Sy |J P, let VS)(C) =5 (e).
e In case m > 1: For each j € {1,...
c€E S](-”, let Vg)(c) =Y].

,m} and for each

L.3.2 Main Construction Cycle for D) (Q) € Dx(Q)

The family of databases Dy (Q) that we are about to con-
struct is the infinite set {D 1) (Q), Dx2) (Q), - - ., Dx) (Q),
...}, where each database Dy@)(Q), ¢ € N4, is associated
with the vector N e A, We will refer to the family Dy (@)
either as {D) (Q) | ¢ € Ny } or simply as {Dx (Q)}-

Fix an i € N, and consider the vector N9, We first define
the set 8@, to be used in the main construction cycle for
creating the database D gy (Q) for the vector N® _ 1In case
that we have m = 0, define the set S as a singleton set
consisting of a single empty tuple. With that (only) element
of the set S, we associate an empty assignment, v]"*"°PY,
Now consider the case where the query @ is such that we
have m > 1. Let S be the cross product Sii) X S;i) X ... X
S For each tuple ¢t in S in this case m > 1, we treat ¢
as an assignment v, *"“PY of values to the multiset noncopy
variables (from left to right) Yi,...,Ys of Q.

In case r > 1 we define a mapping v°°?Y on the set
Yim+1, ..., Ym+r of copy variables of the query Q. (I) For
each copy variable from among Yim+1,..., Ymt+w of @, de-
fine v°°PY(Y;) := NJ@ for each j € {m+1,...,m + w}.
(IT) Whenever r > w, for each j €e {m+w+1,...,m+r}

27

we define v°PY(Y}) := v°PY(Y)(;)). Here, by Yi(;), k(j) €
{m+1,...,m+w}, we denote the copy variable of the rep-
resentative element of the class Cy ;) € {C1,...,Cy} C Cq,
such that the subgoal of @ having copy variable Y; belongs
to that class Cy ;).

It is convenient to also define here the mapping v5™"", to
be used in Section L.4 and beyond, again for the case where
r > 1. The mapping vy"? uses “the same logic” as the
mapping v°°"Y, except that v maps each copy variable
of @ into the variable name from among Ny,41,..., Nmtw
in the vector N, whereas v°°?Y maps each copy variable
of Q into the variable value from among Nf,i)ﬂ, ..., N
in the vector N for a fixed i € Ni. That is, (I) For

each copy variable from among Yi4+1,..., Ymtw of @, de-
fine v?Y(Yj) := Nj for each j € {m +1,...,m +w}. (II)

Whenever » > w, for each 5 € {m +w+1,...,m + r}
we define v)""(Y;) 1= v (Yi(;)). Here, by Yy, k(j) €
{m+1,...,m+w}, we denote the copy variable of the rep-
resentative element of the class Cy ;) € {C1,...,Cy} C Cq,
such that the subgoal of) having copy variable Y; belongs
to that class Cj ;).

We now associate with each tuple ¢ € SO exactly one
assignment v, of constants to all the variables and constants
of the query @, such that (i) v+[X;] coincides with vy[X;] for
all j € {1,...,l1+u}; (ii) £[Y;] (in case m > 1 only) coincides
with v “PY[Y;] for all j € {1,...,m}; (iii) for each copy
variable (in case r > 1 only) from among Y41, ..., Ym+r of
Q, define v (Y;) := v°°PY(Y;) for each j € {m+1,...,m+r};
and (iv) for each constant ¢ used in @, v¢(c) := vo(c).

We now construct all the ground atoms in the database
Dy (Q). In the construction, we use only the elements of
the subset S¢ () of the condition of the query Q.

Main construction cycle: For each tuple t in S@, we add
to the database D @) (Q) the following ground atoms:

e For each relational subgoal of @ of the form b(R), where
b is a predicate name and R is a vector of variables
from among Xi,..., X+, and (in case m > 1) from
among Yi,...,Yn,, and of constants from P. Add to
the database D (i) (Q) the ground atom b(v:(R); 1) (if
not already there). Note that the copy number of this

ground atom equals one.

e In case w > 1: For each copy-sensitive atom from
among s(C1),...,s(Cy,): Suppose the copy-sensitive
atom in question is of the form b(R;z), where b is a
predicate name, R is a vector of variables from among
Xi,..., Xi+y and (in case m > 1) from among Y1, ...,Y,,,
and of constants from P, and z is a copy variable from
among Y41, . .., Ym4w. Add to the database D g (Q)
the ground atom b(v:(R); v+(2)) (if not already there).

Finally, D) (Q) has no other ground atoms than those
added for the tuples t in S () as described above.

L.3.3 Properties of Databases D) (Q)

We now state some properties of the databases in the
set {Dyx) (Q)} and of the answer to the query @ on each
database. The first four results are immediate from the con-
structions and definitions in this section and in Section L.2.

PROPOSITION L.5. Leti € Ni. (i) The set adom(D 5) (Q))
is the union PJSo USSL). (i) The mapping ué;) is defined
on all elements of adom(Dxu)(Q)). (i) For each sub-
set T # 0 of adom(Dgu)(Q)) such that (in case m > 1)

the cardinality of TﬂSJ(-i> does not exceed 1 for each j €
{1,...,m}, the mapping VS) is a bijection on the domain
T. O
PROPOSITION L.6. Leti € N. For the database D i) (Q),

we have that:

(i) Dg»(Q) # 0.

(ii) For each ground atom h € D g (Q), of the form p(W;n),
for some predicate p and with copy number n > 1, there
exists exactly one element, call it g, of the set Sc(q) of
(representative-element) subgoals of query Q, where the
relational template of g is p(Z), and such that (a) the
result of applying the mapping 1/8) to the vector W in
h is the vector Z in g, and (b) 1/8) s a bijection from
W to Z. O

For the next result, we introduce some terminology. Let
¢ € Ny. For a ground atom in h € Dy (Q) and for the
corresponding atom g € S¢ (@) as defined by Proposition L.6
(ii), we call g the Vg)—image of h. Further, by adom(h) we
denote all those terms of ground atom h € Dg@)(Q) that
are elements of adom(D ;) (Q)). (That is, for atom h of the
form p(W;n), for some predicate p and with copy number
n > 1, adom(h) is the set of all elements of the vector W.)
Finally, in case m > 1, for a j € {1,...,m}, we denote by
S,(f)j the intersection of the set adom(h) with the set S](-Z).

The following result holds by construction of the family
of databases {Dg)(Q)}.

PropPOSITION L.7. Suppose m > 1. Leti € Ni. Let
e an arbitrary ground atom in D g (Q), of the form
h b arbit d at in D g th
h = p(W;n), for some predicate p and with copy number
n > 1. Then we have that:

(i) Foreachj € {1,...,m}, the set S;LZ)J is either the empty
set or a singleton set.

(i) In case the ground atom h is such that for at least one
j€{l,...,m}, the set S}(;)] is not the empty set: Let p
be an arbitrary mapping from all elements of the vector
W to adom(D iy (Q)), such that (a) u is the identity
mapping on each element of W that does not belong to
the set S,El), and such that (b) for each element e of W
such that e belongs to a S;L”] for some j € {1,...,m},
we have that p(e) is an element of S](-i) for the same j.
Then it holds that:

(ii-a) The ground atom h' = p(u(W);n) is an element of
the set Dy (Q); and
(#-b) The Vg)—z'mage of h and the Vg)—image of ' are
the same element of the set Sc(q)-
O

PROPOSITION L.8. Leti € Ni. For the database D gy (Q),
we have that:

(i) In the construction of database Dg)(Q), each main
construction cycle (for some fized tuple t in S(i)) gen-
erates in the database Dy (Q) an extended canonical
database for query Q, call this database Di. For each
te 3(1')’ the mapping l/é induces an isomorphism from
Dy to the set Sc(qy of (representative-element) subgoals
of the query Q.

28

(ii) There exists in D gy (Q) at least one extended canoni-
cal database for query Q.
(#i1) For each pair (D1, D2) of extended canonical databases
for query Q within database D () (Q), such that each of
D1 and D2 was generated using the main construction
cycle (using some t1 € 8W to construct D1, and using
some ta € S to construct Ds), the only difference (if
any) between the values of variables of Q, in D1 and
D2, is in the values of multiset noncopy variables of Q.

Let T # (0 be an arbitrary subset of adom(Dga)(Q))
such that (a) P\JSo is a subset of T, and (b) in case
m > 1, the cardinality of T S](-l) is exactly 1 for each
j €{1,...,m}. Then there exists in Dy (Q) an ex-
tended canonical database of the query Q such that the
active domain of that extended canonical database is
exactly T'. a

()

For an ¢ € Ny, let 7 be a nonempty set of ground atoms
of database D i) (Q). We denote by adom(T") the set of all
values of adom(D g¢)(Q)) that are used in the atoms of 7.

PROPOSITION L.9. Leti € Ny. Let T be a nonempty set
of ground atoms of database D) (Q). Suppose the set T
s such that (in case m | Mnoncopy| > 1) for each j €
{1,...,m}, the cardinality of the intersection of adom(T)
with SJ(-l> is at most one.'® Then there exists in Dy (Q) an
extended canonical database for Q, call this database D, such
that T C D (as set of ground atoms with copy numbers). O

PrOOF. For each ground atom h in 7, we label h with
the subgoal s of @ such that s “has generated” h in the
construction of database Dg)(Q). (See Proposition L.6
(i) for the details.) We then partition all the atoms of T
into equivalence classes, call them &1,...,&,, n > 1, using
the labels. (That is, two atoms of 7 belong in the same
equivalence class if and only if they have the same label.)
Now we show that for each possible label (w.r.t. query @),
the equivalence class for 7 and for this label has at most
one element. Indeed, recall that for each 7 € {1,...,m},

the cardinality of the intersection of adom(7) with SJ(.i) is
at most one. By construction of the database D) (Q) and
of the equivalence classes for 7, we obtain the desired result.

Now we use the classes &1,...,&, to construct from 7T
some of the subgoals of Q. By the properties of adom(T)

and of the mapping 1/8), as well as from the fact that each of
(%)

&1,...,En is a singleton set, we obtain that the mapping v,
induces an isomorphism from the set 7 to a nonempty sub-
set, call it S, of the set S¢(gy of (representative-element)
subgoals of the query Q. Denote by adom(S) the set of
all terms of the query) that are not copy variables of @,
such that these terms are used in the atoms of S. By con-
struction, the mapping (1/8>)_1 is a bijection from adom(S)
to adom(T). By definition of the main construction cy-
cle in constructing the database Dg)(Q), at least one it-
eration of the main construction cycle in the construction
has used (some extension of) the mapping (1/8))_17 to gen-
erate in Dy)(Q) an extended canonical database for Q.
(See Proposition L.8 for the justifications.) As that itera-
tion of the main construction cycle mapped the set S¢(g)
of (representative-element) subgoals of the query @ to a su-
perset of the set 7, Q.E.D. [

131n case m = 0, we require only that 7 # ().

_ We now establish that the fixed tuple ¢, = vo[X] (where
X is the vector of head terms of the query Q) is present in
Resc(Q, Dy (Q)), for each ¢ > 1.

PROPOSITION L.10. Let i € Ny. Then the bag Resc (Q,
Dy (Q)) has at least one copy of the tuple t5).

PROOF. (sketch) This result holds by construction of the
databases in the family {D) (Q)}. Indeed, recall that the
assignment mapping vp is fixed to be the same across all
the databases in {Dg) (Q)}. Choose an arbitrary tuple ¢
in the set S for Dy (Q); consider the mapping v; as-
sociated with ¢. It is easy to verify that 14 is an assign-
ment mapping from the query @ to the database D g (Q),
such that v; contributes the tuple t;, = 1o[X] to the bag
Resc(Q, Dg»(Q)). U

L.4 t;-Valid Assignment Mappings for Query

Q" and Databases in {D) (Q)}

Consider the family {D g) (Q)} of databases constructed
as described in Section L.3. Let Q" be an arbitrary CCQ
query that satisfies all the requirements (for Q" specifically)
of Section L.2.1. In this section, for the query Q" and for
an arbitrary ¢ € N4, we provide an algorithm for generating
the set of all assignment mappings from Q" to the database
D) (Q) such that each of the assignments “generates”?
the fixed tuple t7, (as defined in Section L.3) in the bag
Resc(Q", Dy (Q)). We call these assignment mappings
“t-valid assignment mappings”. We also formulate some
useful properties of the tf)-valid assignment mappings, for
Q" and for each i € N.

L.4.1 Definitions and Construction

The basics.

Denote by G > 0 the number of subgoals, call them
g1,---,9aG, of the query Q”. For convenience, we choose
the ordering g1, ..., gc of the subgoals of Q" in such a way
that all the copy-sensitive atoms, if any, in the ordering pre-
cede all the relational atoms, if any, in the ordering, and
such that, in case » > 1, each jth atom g; in the ordering
has copy variable Y, ; of the query Q”, 1 < j < r. (See
Section L.2.1 for the notation Y;’.) Fix an arbitrary ¢ € Ny,
and denote by F' > 0 the number of ground atoms in the
database Dy (Q).

We find all the ¢3,-valid assignment mappings for Q" and
D5 (Q) (i.e., those satisfying assignments, in the terminol-
ogy of Section 2.1.2, that are in the set T*@) (Q", Dxo(Q)))
by enumerating all associations between the G subgoals of
Q" and the F ground atoms in Dg)(Q). The definition
of “valid assignment mapping” is “as expected”. However,
since we use associations between atoms to determine which
assignment mappings are valid, we provide here the required
formal definitions.

DEeFINITION L.1. (Association for Q and D) Given a
CCQ query Q with G > 0 subgoals and a nonempty database
D; a set OfG pairs {(gladj1)7 (927d12)7 BERE) (gGade)} be-
tween all the G subgoals of Q and some (not necessarily dis-
tinct) G ground atoms of D is called an association for @
and D. m|

MThat is, each of these assignments generates a separate
element of the set T'@)(Q", Dy (Q)).

29

DEFINITION L.2. (Candidate assignment mapping)
Given a CCQ query Q with G > 0 subgoals, a nonempty
database D, and an association A = {(g1,d;1), (92,d;2),
..., (9a,d;c)} for Q and D. Define a candidate assignment
mapping 6 for Q and D w.r.t. A as follows:

(a) 6 is the empty mapping in case there exists an integer
k, 1 < k < G, such that gr and djr have different
predicate names, and

(b) 6 is the union of the G associations of the terms of each
gk, 1 <k < G, to the terms of its respective dj;i, where
each association is a set of assignments of the values
in W from left to right, to the terms in Z*) in the
same (from left to right) positions. Here, Z®) s the
vector of all terms including the copy variable (if any)
in gr, and W® is the vector of all arguments of djk.

We do not include the copy number of dj, per se as an

element of W . Instead, we do the following. In case

gk is a relational atom, the copy number of d;i is not
used in the construction of 6 for gi. If gr is a copy-
sensitive atom, then we consider the copy variable of

g to be the last element of vector Z® | and add to the

vector W““), as its rightmost element, a natural-number

value between (inclusively) 1 and the copy number of

djk. o

Note that whenever query Q has copy variables and database
D has ground atoms with nonunity copy numbers, for a sin-
gle association A for) and D there could be more than one
(but always a finite number, on finite databases) candidate
assignment mappings for Q and D w.r.t. A. Definition L.2
provides a straightforward algorithm to generate all can-
didate assignment mappings for any CCQ query @, finite
database D, and association A for @ and D.

DEeFINITION L.3. ((t5-)Valid assignment mapping) Given

a CCQ query Q, a nonempty database D, an association A
for Q and D, and a candidate assignment mapping 0 for
Q and D w.r.t. A. Then 6 is a valid assignment map-
ping from the variables and constants of @ to the values in
adom(D)UN4 war.t. A if: (i) 6 is not an empty mapping;
(i) 0 associates all occurrences of each constant of Q with
the same constant; and (iii) for each variable of Q, 0 asso-
ciates all occurrences of the variable with the same value in
adom(D)UN,.. A valid assignment mapping 6 is a t5-valid
assignment mapping for Q, D, and A if the restriction of 0
to the head vector of the query Q results in the tuple tg,. O

For brevity, we will refer to each valid assignment map-
ping from the variables and constants of @ to the values in
adom(D) UN4 w.r.t. A, for some Q, D, and A, as a “valid
assignment mapping for Q, D, and A”. In addition, we say
that 0 is a “valid assignment mapping for Q) and D” if there
exists an association, A, for @ and D, such that 6 is a valid
assignment mapping for @, D, and A.

By definition, each valid assignment mapping for @ and
D is an element of the set I'(Q, D), and each t5,-valid as-
signment mapping for Q and D is an element of the set
F(ta)(Q,D). If 0 is a valid assignment mapping for query
Q, database D, and association A (for @Q and D), then we
say that A generates the mapping 0, or that A contributes
the mapping 6 to the set I'(Q, D).

DEFINITION L.4. (Unity (t5-)valid assignment map-
ping) Given a CCQ query Q, a nonempty database D, an

association A for Q and D, and a (t,-)valid assignment
mapping 0 for Q, D, and A. Then 6 is a unity (t5-)valid
assignment mapping for Q, D, and A if 6 maps each (zf
any) copy variable of the query Q into value 1.

EXAMPLE L.2. Let CCQ query Q" be defined as
Q"(X) « p(X,Y),

Let g1 be the rightmost subgoal of Q" (that is, p(X, X;1));
and let g2 be the leftmost subgoal of Q" (that is, p(X,Y));
then G for Q" equals 2.

For ease of exposition, assume that the database, call it
D, is D = {p(1,1;3),p(1,2;5),p(3,3;7)}. We refer to the
ground atom p(1,1;3) of D as da, to the ground atom p(1,2;5)
of D as d2, and to the ground atom p(3,3;7) of D as ds.

Consider three (from the total of nine possible) associa-
tions between the subgoals of the query Q" and the ground
atoms of the database D:

o Ay : {(q1,d2),(92,d1)};
o A {(gladl)v (gQ,dl)}; and
o As:{(g1,ds), (g92,ds)}.

It is easy to see that each candidate assignment mapping
associated with Ai is not a wvalid assignment mapping, as
each such candidate mapping maps the two occurrences of
X in g1 into distinct values (1 and 2) in adom(D).

At the same time:

p(X, X;14), {Y,i}.

o Given Az, 021 = {X — 1Y — 1,9 — 1} is a unity
valid assignment mapping from the terms of Q" to the
elements of adom(D) UN_.

e Given As, 03 = {X = 3,Y — 3,1 — 7} is a valid as-
signment mapping from the terms of Q" to the elements
of adom(D) UNL; it is not a unity valid assignment
mapping.

Now observe that in addition to 021, two more candidate
mappings w.r.t. Az would also be valid assignment mappings
from the terms of Q" to the elements of adom(D) U Ny.
These mappings are 622 = {X — 1,Y — 1,i — 2} and
023 = {X — 1,Y — 1,i — 3}. The only difference between
021, 022, and 023 is in the value assigned to the copy variable
i of the query Q"'. Unlike 021, neither 022 nor 023 is a unity
valid assignment mapping for Q”, D, and A2. No other
candidate mappings are possible for Q", D, and Aa, because
the copy number of di in D is three.

Finally, suppose we are given tuple ty; = (1). Then 621 is
a (unity) t5-valid assignment mapping for Q", D, and As,
because 621[X] coincides with tg,. At the same time, while
being a valid assignment mapping from Q" to D, 05 is not
a to-valid assignment mapping for Q", D, and As, because
03[X] = 3 does not coincide with tg,. O

Signatures of associations.

Fix an ¢ € N;. Recall Proposition L.6 (ii), which says
that by construction of the database D g:) (@), each ground
atom in the database can be “mapped into” a unique subgoal
of the subset S¢ () of the condition of the fixed input query

@, using the mapping ug) defined in Section L.3.1. We

gen(Q)
denote by ¥’ e

1/8, from the ground atoms of D gy (Q) to the elements of
the set Sc(q)-

this mapping, induced by the mapping

30

DEFINITION L.5. (Atom-signature of association) Let
i1 € Ny, and let A ={(g1,d;1),...,(9a,djc)} be an associa-
tion for query Q" , with G > 1 subgoals, and for the database

Dy (Q). Then the G-ary vector Wo[A] = [w]ggg)@)[djl],
1’:(71)(@) [djo], -, wf_]eg;@ [d;jc]] is the atom-signature of A
for Q" and Dz (Q). O

Please see Example 1.3 for an extended illustration of
atom-signatures of associations.

Recall the notation Y{’,..., mH of Section L.2.1 for the
multiset variables of the query Q”. Here, Y{’,... Y, are all
the multiset noncopy variables of Q" (in case m > 1), and
Yii1,..., Y., are all the copy variables of Q" (in case
r>1).

Suppose that the query @ is such that r = [Mcopy| > 1.
Recall the mapping v™ defined in Section L.3.2: v
maps each copy variable of the query @ into one of the vari-
ables Ny+1, ..., Nm+w in the vector N.

We now define the following mapping v°°PY=%% on all
atoms in the set Sc(q) for the query @:

e TFor each (if any) relational atom h in S¢(q), v°°*Y ™" (h)
= 1.

o For each (if any) copy-sensitive atom h in S¢(g), where

h has copy variable of the name Z € Meopy, v°°PY ™9 (h) :

v (Z),

Recall (see beginning of Section L.4.1) that we have fixed
an ordering of the subgoals g1,...,9c of the query Q" in
such a way that:

e all the copy-sensitive atoms in the ordering precede all
the relational atoms, if any, in the ordering, and

e cach jth atom 95 in the ordering has copy variable Y,
of the query Q”, 1 < j <r (in case r > 1).

+J

DEFINITION L.6. (Copy-signature of association) Let
1 €Ny, and let A = {(g91,d;1), --., (9a,d;a)} be an associ-

ation for query Q" and for the database Dgi)(Q). Then
vector ®.[A], called the copy-signature of A for Q" and
Dy (Q), is defined as follows:
e In case r =0, ®.[A] is the empty vector; and
o In case r > 1, ®[A] is the r-ary vector [v°oPY~—54
WU Ddn)), ..., veervie (2T Dd;])).
O

DEFINITION L.7. (Noncopy-signature of association)
Let i € N4, and let A = {(91,d1), ---, (9a,djc)} be an
association for query Q" and for the database Dg)(Q),
such that there exists a wvalid assignment mapping, 0, for
Q", Dy (Q), and A. Then vector ®,[A], called noncopy-
signature of A for Q" and D g (Q), is defined as follows:

e In case m =0, ®,[A] is the empty vector; and

o In casem > 1, ®,[A] is the m-ary vector | 1/8) oY),
vy (O 1.

O

In Section L.6 we will find a very practical use for copy-
signatures and for noncopy-signatures of associations, in that
these signatures of association A will help us compute the

number of distinct entries, in the set r¢ Q)(Q”, Dx(Q)),

that (entries) are contributed by the (valid) mappings of
A for Q" and D) (Q). Please see Example L.3 for an ex-

tended illustration of copy-signatures and of noncopy-signatures

of associations.

The intuition for copy-signature is that a copy variable,
Z, of the query Q" gets mapped into constant 1 in case the
subgoal (of Q") that has Z gets mapped by the association
A into a ground atom of the database that (ground atom)
has been generated from a relational subgoal of the query Q.
Conversely, a copy variable, Z, of the query Q" gets mapped
into variable Nj, for some j € {m+1,...,m+w}, of vector
N, in case the subgoal (of Q") that has Z gets mapped
by the association A into a ground atom of the database
that (ground atom) has been generated from a copy-sensitive
subgoal h of the query @ such that the copy variable of h
corresponds to the variable N; (via mapping v5™"").

The intuition for noncopy-signature is that it shows, for a
given valid assignment 6, the correspondences that 6 induces
from the multiset noncopy variables of the query Q" to the
terms (represented in the database by rigidly delineated sets
of values) of the query @ used to construct the database.

The following result is immediate from the definitions.

ProprosITION L.11. Let i € N4, and let A be an associa-
tion for query Q" and for the database D5 (Q), such that
there ezists a valid assignment mapping for Q", Dx)(Q),
and A. Then the noncopy-signature of A for Q" and D 5 (Q)
exists and is unique. a

Proposition L.11 lets us refer to the noncopy-signature of
a given association, for some query and database, provided
that the association generates at least one valid assignment

mapping.

L.4.2 Properties of Associations for Q" and D) (Q)

The results of Propositions L.12 through L.17 are imme-
diate from the definitions (unless discussed further in this
subsection).

ProposITION L.12. Leti € Ny, and let A1 and Az be two
associations for query Q" and for the database D g (Q),
such that A1 and Az have the same atom-signature. Then:

(i) A1 and Az have the same copy-signature.

(i3) Suppose that, in addition, there exists a valid assign-
ment mapping, call it 61, for Q", Dz (Q), and A;.
Let to,) be the tuple resulting from restricting 01 to the
head vector of the query Q"'. Then we have that:

(ii-a) There exists a valid assignment mapping, call it 02,
fOT Qlla D]_](i) (Q)7 and A2}.
(i-b) A1 and Az have the same noncopy-signature; and
(ii-c) If teg,) is the tuple t), then restricting 02 to the
head vector of the query Q" results in the same
tuple to,y (which is t5)).
O

The following result holds due to our convention for ground
atoms in databases, see Section L.2.2. Note that the asso-
ciations A; and As, in the statement of Proposition L.13,
are not restricted to have either the same atom-signature or
different atom-signatures.

PrROPOSITION L.13. Let ¢ € N, and let Ay and Az be
two distinct associations for query Q" and for the database

31

Dygi)(Q). Let (01,62) be an arbitrary pair (if any exists),
such that 01 is a valid assignment mapping for Q" , Dz (Q),

and A1, and 02 is a valid assignment mapping for Q" , Dy (Q),

and As. Then there exists a variable X of Q" such that (1)
X is not a copy variable of Q", and (ii) 61(X) # 62(X). O

PROPOSITION L.14. Let i € N4, and let A be an asso-
ciation for query Q" and for the database D g (Q), such
that there exists a wvalid assignment mapping, 0, for Q",
Dy (Q), and A. Let tuple tg be the result of restricting 0 to
the head vector of the query Q”. Then there exists a unity
valid assignment mapping, call it 0™, for Q", Dy (Q),
and A, such that the restriction of 0™ to the head vector of
the query Q" results in the same tuple ty. a

PROPOSITION L.15. Leti € Ny, and let A be an associa-
tion for query Q" and for the database D g (Q), such that
there exists a unity valid assignment mapping, 0, for Q”,
Dy (Q), and A. Then there does not exist any unity valid
assignment mapping for Q", Dxu) (Q), and A, that (unity
valid assignment mapping) would be distinct from 6. a

PrROPOSITION L.16. Let i € N4, and let A be an associ-
ation for query Q" and for the database D g (Q). Suppose
A is such that there exists a unity valid assignment map-
ping, 0, for Q", Dyw (Q), and A. Let tuple t,.) be the
restriction of 0 to the head vector of the query Q". Then
we have that for each candidate assignment mapping, call it
0, for Q", Dy (Q), and A, 0’ is a valid assignment map-
ping for Q", Dx) (Q), and A, and the restriction of §' to
the head vector of the query Q" is the tuple tou) . O

For the next result we introduce some notation. Let ¢ €
N;, and let A be an association for query Q”and for the
database Dgy(Q). In case r > 1, denote the entries in
the copy-signature ®.[A] as ®.[A] = [Vj1,...,Vjr]. Here,
for each k € {1,...,7r} we have that Vji € {1, Npy1, ...,
Nintw}, where the N-values are variables in the vector N.
(In case r = 0, ®.[A] is the empty vector by definition.)
Further, again for each k € {1,...,r}, by ngz) we denote the
value of Vjy, in the vector N whenever Vji € {Nmy1,. ..
we set V]%) :=1 for the case Vji = 1.

We also use the notation I'**) (for all cases r > 0 of the
value 7 = |Mcopy|): For an 4 € Ny and an association A

for Q" and D g (Q), T stands for the set of all tuples

t
contributed to the set F;Q(”))(Q”, Dz (Q)), for some tu-

ple tycu), by the valid assignment mappings (if any) for the
association A. (By Proposition L.16, all the valid assign-
ment mappings (if any) for an association A for Q" and
D i)(Q), agree on their restriction to the head vector of
the query Q”.) Finally, in case r > 1, we denote by)
the set projection of the set T on the columns Y1, ...,
Y, .., for all the copy variables of the query Q".

ProposSITION L.17. Let ¢ € N4, and let A be an associ-
ation for query Q" and for the database Dy (Q). Suppose
A is such that there exists a unity valid assignment map-
ping,), for Q", Dy (Q), and A. Let tuple ty., be the
restriction of 0 to the head vector of the query Q". Then
the following holds:

(i) The set 'Y s not empty;

>Nm+7'};

(i) In case r = 0, the association A has ezactly one valid
assignment mapping and contributes exactly one tuple

to the set Fge(u))(Q”,DNm @));

(i) In case v > 1, the set 'Y has the tuple (n1, na, ...,
ny) for each 1 < ny < Vj(,z) for each k € {1,...,r}, and

1"<CA) does not have any other tuples;

(iv) The total number of distinct valid assignment mappings
for Q", Dy (Q), and A, call it T, is 1 in case
r =0, and is szle(lz) in caser > 1; and

(v) The cardinality of the set T is equal to TV,

L.5 Sets of Associations for @” and D) (Q)

Consider each of the F'¢ associations, A1, ..., Apc, of the
form A as defined in Section L.4, between the G > 1 subgoals
g1, ..., gc of the fixed query Q" and the F' > 1 ground atoms
of the database Dy (Q), for an arbitrary fixed ¢ € Nj.
Clearly, enumerating all the F'¢ associations is a way to
find all satisfiable assignments for Q" and Dy (Q). In

this section we construct a set, A@,, which includes some
of the above associations, and “captures”, in a very precise
sense (see Proposition L.18), all of the t3,-valid assignment
mappings for Q" and Dy (Q). In Section L.6 we will use
1"
e F& s
in terms of the variables in the vector N. For each i € Ny,

the set Ag?, in our undertaking to define a function,

the function f((g)n) uses the values (in N) of the variables

in the vector N to return the multiplicity of the tuple 7, in
the bag Resc(Q", Dy (Q)).

DEFINITION L.8. (Set AY of t5-valid assignment map-
pings for Q" and Dyg)(Q)) Let i € N4. The set Ag), of

t5-valid assignment mappings for CCQ query Q" and for the
database D) (Q), is the set of all of the associations for

Q" and Dy (Q), such that for each A € Ag% there exists

at least one t§-valid assignment mapping for Q", Dz (Q),
and A. |

For each i € Ny, we denote the cardinality of the set

3
A%, _ :
individual elements of the set Ag?, as A;i), for 1 < j <
Ry, :
“refers to”, by always using the notation Ay) in the context
of exactly one query.)

Consider an arbitrary set Ag. of associations for query
Q" and for database D g (Q). Let A be an association for
Q" and D) (Q) such that there exists a valid assignment
mapping, 0, for Q”, for Dy (@), and for A. Then we
say that the set AZ?,/ captures the valid assignment mapping
6 if we have that A € Af,. (See Proposition L.13 for a
justification of this definition.)

by RS?,. Further, whenever Rg% = 1, we refer to the

(We will avoid the confusion as to which query Ay)

PROPOSITION L.18. Let i € Ny. Then (i) The set A}),
of t§-valid assignment mappings for CCQ query Q" and for
the database D) (Q) captures all the tg)-valid assignment
mappings for Q" and D g (Q); and (ii) For each valid as-
signment mapping 0 for Q" and Dz (Q) such that Ag?,
captures 0, 0 is a t5-valid assignment mapping for Q" and

Dy (Q). o

32

PROPOSITION L.19. Suppose that there exists an i* € Ny
such that for some association A;i) e Ag,,), a valid assign-

ment mapping for .Ag-i:) induces a mapping from all the sub-
goals of Q" to a single extended canonical database for query
Q.'5 Then for each i € Ny, there exists a j, 1 < j < Rg),,
such that a valid assignment mapping for the association
Ag” (exists and) induces a mapping from all the subgoals
of the query Q" to a single extended canonical database for
query @Q (within database D giy(Q)). Moreover, .A;-” and

.AS-Z:) have the same atom-signature. O

PROOF. We are given that there exists a pair (¢, j*), with
1" € Nj and with 1 < j* < Rg,,), such that the associa-

tion A;Z:) generates a valid assignment mapping from query
Q" to a single extended canonical database, call it D*, for
query @ (within database D g@+)(Q)). By Proposition L.14
in Section L.4.2, there exists a unity valid assignment map-
ping, call it 6’, for Q" and D i) (Q), such that 8" uses only
the atoms of the database D" to generate the tuple ¢, in
the answer to Q" on database D g+)(Q).

Now fix an abitrary ¢ € Ny. By Proposition L.8 in Sec-
tion L.3.3, database Dg)(Q) has at least one extended
canonical database for query Q. Choose and fix in D 5 (Q)
one arbitrary such extended canonical database for @, call
this database D. By definition of extended canonical database,
there is an isomorphism from all the ground atoms of the
database D* (within D g (Q), see first paragraph of this
proof), to all the ground atoms of database D (within D g (Q)).
Moreover, there exists at least one isomorphism from D* to
D, call this isomorphism ¢*, such that for each atom d* in
D*, it holds that wjg\;g)(Q) [d*] is the same (atom in set Sc(qg))
as wj’;g)(Q)[L* (d*)]. Then the composition, call it ¢, of 8" (of
the first paragraph of this proof) with ¢* gives us a valid as-
signment mapping from query Q" to the extended canonical
database D for query @ in database D g)(Q), such that the
restriction of ¢ to the head variables of Q" is the tuple 5.
By Proposition L.18, the association represented by ¢ must

be in the set Ag;, for database D gi)(Q). By construction,

this association and .A;i:) have the same atom-signature. By
the fact that ¢ has been chosen arbitrarily, Q.E.D. []

ProposiTION L.20. Suppose that, for some i € Ny, there
exists an assoctation A;i) in the set AS% such that the unity
valid assignment mapping, 0;, for A§i> induces a mapping
from the subgoals of Q" into elements of two or more ex-
tended canonical databases of Q in database D gy (Q). Then
there exists an association .A;.i) mn Ag, , and there exists

in Dyu (Q) an extended canonical database of Q, call this
database D_*, such that the unity valid assignment mapping,
6;s, for A;l,) induces a mapping from all the subgoals of Q"

into ground atoms belonging to D* only. Moreover, Ay) and
Agf) have the same atom-signature. O
PROOF. We observe first that if Myoncopy = @ then database

D 5y (Q) comprises exactly one extended canonical database
for @. This observation is immediate from the construction

of Dy (Q)-

15That extended canonical database for @ is within database
D+ (Q), see Proposition L.8 in Section L.3.3.

Thus we assume for the remainder of this proof that m =
| Mponcopy| > 1. For the association Agi) as in the statement
of this Observation, denote by (set of ground atoms) 7 the
image of the condition of query Q" under the mapping 6;.
By Proposition L.9, the only way the valid assignment map-
ping 6; for A§i) can map the subgoals of Q” into elements of
two or more extended canonical databases of @) in database
Dyy(Q) is when the result of intersecting adom(7") with
Sl(i), for at least one I € {1,...,m}, has size two or more.
(For the notation adom(T), see note before Proposition L.9.)

We show an algorithm for producing the association A
and the (extended canonical) database D, of the statement
of this Proposition, from the association A;i). First, for each
1 €{1,...,m} such that the result of intersecting adom(T)
with Sl(i) is not empty, fix a single value in that intersection.
Let the result be values U;f): . ,vl(z), where: 1 < k <m, all
the values l1,...,l; are distinct, each [,, (for all 1 <n < k)
satisfies 1 < [, < m, and each vl(:;’) (for all 1 <1, < m, for
all 1 <n < k) satisfies ”z(f,,) S Sz(:;,)- Call all values in the set
E = (Ur, S)Nadom(T)) — {v”,..., 0"} the “extra
multiset noncopy” values in adom(7). By the assumptions
in the statement of this Proposition, the set F is not empty.

The next step of the algorithm is to modify the mapping
0; for the association Ay), by replacing in 6; each value v
belonging to i NE, 1 <n <m, by the value v that we
fixed as described in the previous paragraph. (The intuition
is that for each mapping in 6; of a variable of Q" to an
“extra multiset noncopy” value, we “redirect” the mapping to
a mapping of the same variable into an “appropriate” value
from among the values vff),.4.7vl(i) fixed in the previous
paragraph.) As we modify 6; this way, we also modify the
association .A;-i), by replacing in it all occurrences of each
v E Sy(f) NE, 1 <n<m, by the value Uff). Denote by 6;/
the result of this modification of 6;, and by .A;’;) the result

of this modification of Ay). By construction, we have that:
(a)
(b)

0;/ is a mapping;

for all the terms of Q" that are not copy variables, 6,/
maps all these terms of Q" into the values in adom(7)—
E;

all ground atoms mentioned in Aéf) belong to D g (Q)
(by construction of the database);

6, is a candidate assignment mapping for Q", D) (Q),
and AV,

i and

.A;i) and Ag.f) have the same atom-signature.

We now show that the association Agf) belongs to the set

A,
on the images for all the head variables of Q" and from
items (a) and (c) of the previous paragraph. Finally, let
T’ be the set of all ground atoms mentioned in the associ-

ation A;’}). From item (b) of the previous paragraph and

This is immediate from the fact that ; and 6;, agree

from Proposition L.9, we have that there exists in D g5 (Q)
a (single) extended canonical database for query @, call
that database D*, such that 7' C D*. We conclude that
the unity valid assignment mapping 6,/ for Q", Dx«)(Q),
and Ay,) maps query Q" into a single extended canonical
database (in D) (Q)) for the query Q. [

33

PROPOSITION L.21. Suppose there exists an i € Ny such

that the set Ag?,

the set Ag}, is not empty for each i € N. a

for database D gy (Q) is not empty. Then

PrOOF. The proof is immediate from Propositions L.19
and L.20. That is:
A, for

e Case 1: Suppose that, for some ¢ € N, the set o
database D g (Q) has an association corresponding to
a valid assignment mapping from query Q" to a single
extended canonical database for @ in Dgw)(Q). Then,

by Proposition L.19, for all i € N4, the set AS;, for
database D g (Q) has an association corresponding to
a valid assignment mapping from query Q" to a single
extended canonical database for @ in D g (Q). Q.E.D.
e Case 2: Suppose that, for some i € N4, the set Ag?, for
database D) (Q) has an association corresponding to
a valid assignment mapping from query Q" to (ground
atoms in) two or more extended canonical databases for

Q in D) (Q). Then, by Proposition L.20, the set Ag?,
for the same value of i has an association correspond-
ing to a valid assignment mapping from query Q" to a
single extended canonical database for Q in Dy (Q).

Thus we have reduced this case to Case 1. Q.E.D.

O

PROPOSITION L.22. Suppose there exists ani* € N1 such
that the query Q" has no answer tg, on database D g+ (Q).

Then the multiplicity of the tuple t§ in the bag Resc(Q", Dy (Q))

equals zero on the database D g (Q) for each i € Ny. O

PrROOF. It is immediate from Proposition L.21 that if
there exists an ¢* € N4 such that the set A(l,,) for database
Dgi+)(Q) is empty, then the set Agz/ is empty for each
ie Ny, [

L.6 Monomials for the Multiplicity of Tuple
ty in Bag Resc(Q”, Dy (Q))

In this section we provide an algorithm for constructing

monomials for a function, call it .F((g)”), defined in terms of
the variables in the vector N. F @ computes the multi-

(@)
plicity of the tuple ¢, in the bag Resc(Q", Dy (Q)) for
each i € N, by using the values in the vector N as values
of the variables in the vector N. .

We observe first that, by Proposition L.22, }'((g)) either

equals zero for all input vectors N9, or returns a positive-
integer value for each N®@ i e N,. In the remainder of the
F@n
o (%))

returns a positive-integer value for each N @, By the results
of Section L.5, we infer from this assumption that the car-

proof of Theorem 4.1, we assume that the function

dinality Rg?, of the set Ag?, is a positive integer for each
i€ N+.

L.6.1 Defining the Monomial Classes C?")

Fix an ¢ € Ny. We partition all the elements of the set
Ag?, # () into equivalence classes: T'wo distinct elements (in
case RS}, > 2) Ag” and A,(c“ of the set ASZ/

same monomial class if and only if .A;i) and Afj) have the

belong to the

same atom-signature. Call all the resulting nonempty mono-
mial classes {9 ¢c{@D® CT(L%))(Z), n® < Rg?,.
From the definition of the monomial classes, we have that
n® > 1, and that n(is exactly the number of all the atom-

A%),. In addition, by

Proposition L.12 and from the definition of the set Ag), we
have that for each j, 1 < j < n?, all the elements of the

set CJ(-Q)@ (by having the same atom-signature) have the
same noncopy-signature and have the same copy-signature.

signatures of the elements of the set

Hence, for each monomial class CéQ @) we can refer to
the atom-signature of C](-Q)(i), to the noncopy-signature of

CJ(-Q”)(Z)7 and to the copy-signature of CJ(-Q”)(U.

By Proposition L.18, we have that for each ¢ € N4 and
for each monomial class for Q" and Dg)(Q), all the valid
assignment mappings of all *the elements of the class con-
tribute tuples to the set FgQ>(Q”,DN(i)(Q)). That is, for
all the valid assignment mappings in each monomial class,
the restriction of each valid assignment mapping to the head
vector of the query Q" is the tuple t5).

This result follows from the results of Sections L.4.2 and
L.5:

PROPOSITION L.23. Let Z be a G-ary vector of (not nec-
essarily distinct) elements of the set Sc(qy. Suppose there
exists an i* € Ny such that the monomial class c(@Em)
with atom-signature Z is not empty. Then for all i € Ny it
holds that the monomial class C(?")® with atom-signature
= is not empty. a

From Proposition L.23 it follows that for a fixed query
Q", we can drop the (i)-superscript from the notation for
monomial classes. (That is, the set of nonempty monomial
classes for Q”, w.r.t. the family {Dg)(Q)}, does not de-
pend on the specific database D g (Q) in the family.) From
now on, when referring to the set of all nonempty monomial
classes for query Q" on database D) (Q), we will use the
notation C§Q), CgQ)., Cflg). for a constant (wr.t. 4)
positive-integer value n* > 1. We will abuse the notation
somewhat, by using, in the context of a fixed ¢ € N4, the
expression “the set C(®")” (where c(Q") is one of the C§Q),
CéQ)7 e 07(1?)) to refer to the contents of the set (@)
w.r.t. the set Ag?, for the fixed 3.

L.6.2 Monomials Corresponding to the Monomial
Classes for Q" and D) (Q):
Useful Properties

In this subsection we set the stage for the introduction, in
Section L.6.3, of “multiplicity monomials” for the monomial
classes C£Q)7 ey CT(L?).

Assuming a fixed ¢ € N, we recall the mapping vy and the
sets Sj(-l), which (sets) were introduced (for 1 < j < m) for
the case m > 1, see Section L.3.1. We use these constructs
to define the domain, on the database D g@) (@), of each
term of the query @ that (term) is not a copy variable of Q.

DEFINITION L.9. (Domain of term of Q in Dy (Q))
Let i € Ny. For each term s of query Q such that s is not

a copy variable of Q, the domain Domg)(s) of the term in
the database D gy (Q) is defined as follows:

34

e If s is a constant, or a head variable of Q, or a set
variable of Q, then Domg>(s) = {wo(s)}.
e In case m > 1, for each variable Y; of the query Q, for
1<j<m, Domg)(Yj) = S;i).
O

PRrROPOSITION L.24. Let i € Ny. (i) For each (if any)
pair (s,t) of terms of query Q such that s # t and such

that neither s nor t is a copy variable of Q, Domg)(s) N
Domg) (t) = 0. (ii) For each term s of query Q such that s
is not a multiset variable of Q, |Domg>(s)| =1. (ui) In case
m > 1, for each j € {1,...,m} we have that \Domg)(Yjﬂ
= N]@ (in the vector N). O

For the next results, we introduce some notation. Given a
query Q”, an i € Ny, and a nonempty monomial class C @9
of associations in the set Aga, for the query Q" and for the
database D g (Q), denote by r® [C<Q”>] the set of all tuples
contributed to the set FgQ)(Q”, Dy (Q)) by all the valid

assignment mappings for all the elements of the class c@”,
The following result is immediate from the definitions.

ProrosiTION L.25. Leti € Ny. Then
(i) For each j € {1,...,n*}, T [C;-Q”)] £ 0.

(it) The set FgQ) (Q", Dy (Q)) is the union U;L; F(i)[CJ(Q")],
O

We introduce some further notation: In case m > 1, for a
"
monomial class C(®") and for some j € {1,...,m}, we de-

note by FEQ//) [C(9)] the set projection of the set I [C(@")]
J

on the multiset noncopy variable Y}’ of the query Q".

ProrosiTION L.26. Suppose m > 1. Let Z be a G-ary
vector of (not necessarily distinct) elements of the set Sc(q),
such that the monomial class C'®") with atom-signature =
is not empty. Then for each i € Ny the following holds:

(i) For each j € {1,...,m}: Suppose Z is the jth compo-
nent of the noncopy-signature vector of the monomial
class C'9). Then the set FEQ,,>[C(Q]

J

(i-a) has all the elements of Domg)(Z), and

(i-b) has no values from the set (adom(D g:) (Q)) — Domg)(Z)).

(i) The set projection of the set F(i)[C(Q//)] on all the mul-
tiset noncopy variables Y{', Ys', ..., Y, of the query

Q" is the Cartesian product of the sets FEQ,/) [C(Q’/)]’
1
(%) Q") (1) Q"
F<Yé,) c<, ..., Ly [C'<].
O
Now suppose r > 1. In this case, we denote by ' [C(Q”)}

/)
the set projection of the set r® [C(Q“)] on the copy variable
Y, of the query Q", for some j € {m+1,...,m+r}.

PropoOsSITION L.27. Suppose r > 1. Let = be a G-ary
vector of (not necessarily distinct) elements of the set Sc (),

such that the monomial class C'@") with atom-signature =
is not empty. Then for each i € Ny the following holds:

(i) For each j € {1,...,r}: Suppose Z is the jth com-
ponent of the copy-signature vector of the monomial
class C\Q) . Then the set FEQ,,)[C(Q)] is the set
{1,...,ZD}, where (a) ZW is1 in case Z = 1, and (b)
ZD is N\ in case Z = Ny, for some k € {m+1,...

(ii) The set projection of the set T [C<Q”>] on all the copy
variables Y1, Yooy -y Youir of the query Q" is the

; (2) @ O]
Cartesian product of the sets F<Y,,) C5], F(Y, -
FEY),, let@™y.

O

(The proof is immediate from Proposition L.17, once we
recall that all associations in a monomial class share the
same copy-signature.)

For each i € N4, we now characterize the set T'(¥ [C<Q“>]
for each nonempty monomial class @) for the query Q"
and family of databases {D) (Q)}, for all combinations of
values of m > 0 and of r > 0.

PROPOSITION L.28. Let Z be a G-ary vector of (not nec-
essarily distinct) elements of the set Sc(qy, such that the

monomial class C'?") with atom-signature =
Then for each i € N4 the following holds:

e In case m > 1 and r > 1, the set F(i)[C(Q”)] is the
Cartesian product of two sets:

is not empty.

— the set projection of TV [C(Q”)] on all the multiset
noncopy variables Y{', ..., Y, of the query Q" , and

— the set projection of TV [C(QN)] on all the copy vari-
ables Y1, -, Youir of the query Q".

o In case r = 0, TD[C@] is its own set projection on
all the multiset noncopy variables of the query Q.

o In case m = 0, IV [C<Q”>] is its own set projection on
all the copy variables of the query Q" .

O

(Recall from Section L.2.1 that we assume m +r > 1,
thus in case »r = 0 we have m > 1, and in case m = 0 we
have r > 1. For a characterization of the set projection of

r® [C@”)] on all the multiset noncopy variables Y7’, ..., Y,
of the query Q”, in case m > 1, see Proposition L.26. For
a characterization of the set projection of ' [C(Q”)] on all
the copy variables Y,i .1, ..., Yy o, of the query Q”, in case
r > 1, see Proposition L.27.)

L.6.3 Multiplicity Monomials for the Monomial
Classes c\?), ..., c¢"

In this subsection, for each nonempty monomial class C @)
for the query Q" we construct an expression, such that for
each i € Ny, this expression will return the number of dis-
tinct tuples contributed by the associations in C(?) to the
set I‘gQ)(Q",Dmi) (Q)). That is, we construct an expres-
sion that, for each ¢ € N, will provide the cardinality
of the set TV[C(?)]. (See Section L.6.2 for the notation
r® [C@/l)].) For each monomial class C(?") € {CfQ),
Cffg)}, we call the respective expression “the multiplicity
monomial of the monomial class C?”).” Each multiplicity

35

monomial is a product of (some powers of) the elements of
the noncopy singature and of the copy signature of the corre-
sponding monomial class. These multiplicity monomials, to-
gether with the copy-signatures and the noncopy-signatures
of the monomial classes, are all that will be needed in Sec-

ym+ w}‘tion L.9 to construct the function .7-"((8)”).

We begin by introducing the necessary notation. For each
term s of the query @ such that s is not a copy variable

[C(Q”>] of @, by DomLabelg(s) we denote (i) variable N; in case

where m > 1 and where s is the variable Y; of Q for some
1 < j < m; and (ii) constant value 1 in case s is either a
constant used in @ or is one of the variables Xi,..., X4,
of Q.

Further, for Propositions L.29 and L.30, we use the fol-
lowing notation, for ease of reference to the elements of the
noncopy signatures and of the copy signatures of the mono-
mial classes. Let Z be a G-ary vector of (not necessarily
distinct) elements of the set S¢(), such that the monomial

class C(9") with atom-signature = is not empty.

(1) Let <I>SL(Q ’ be the noncopy-signature of the class C(?").
Then:

e In case m > 1, denote the elements of CDS(Q), from left
to right, as Z1,Z2,...,Zm. For all j € {1,...,m}, we
have that Z; € {Y1, ..., Yn, Xl, e Xipu b U P

e For an i € N, denote by H the value 1 in case

(Q”)
= 0, and the product II}Z 1|DomQ (Z;)| in case m >
1.

e Finally, denote by I e the value 1 in case m = 0,

and the product IT7L 1D0mLabelQ(;) in case m > 1.

(2) Let ®“" be the copy-signature of the class C(Q").
Then:

e In case r > 1, denote the elements of @S(Q”), from left
to right, as Wy, Wa,...,W,. For all j € {1,...,7}, we
have that W; € {1, Npy1, ...

e For an i € Ny and for each j € {1,...,r} (still assum-
ing r > 1), denote by Wj(i) the value of the variable
W; in the vector N in case W; # 1. (That is, when-

,w}, then Wj(i) =

; Nm+w}

ever W; = Ny,qy, for some [€ {1,...

NO,,.) I W; =1 then let W =1
1)

(Q”

Wj(9 in case r > 1.

e For an i € N, denote by II the value 1 in case

r =0, and the product II}_;
e Finally, denote by Hq)c(Qw) the value 1 in case r = 0,
and the product II7_;Wj in case r > 1.

PROPOSITION L.29. Let Z be a G-ary vector of (not nec-
essarily distinct) elements of the set Sc(qy, such that the

monomial class C'?") with atom-signature = is not empty.
Let i € Ni. Then the cardinality of the set I'V [C(Q”)]
(that is, the number of distinct tuples contributed, to the set
F(SfQ)(Q",DNu) (Q)) for the query Q" and for the database
Dy (Q), by all the valid assignment mappmgs for all the
elements of the class c@”)) is exactly H 9 x 110
]

(Q” c(Q”)

Please see Example L.3 for an illustration. he proof of
Proposition 1..29 is immediate from Proposition L.28. (See

Proposition L.17 for the details on the H(il(Q,,) part of the
éc

)

C(Q//

from the construction of the database D 5 (Q), specifically
from the definition of the main construction cycle as de-
scribed in Section L.3.2.)

‘We note that the expression HZZ(Q,,) X H;ii(Q,,

computation. The s , part of the computation follows
@

) in Propo-

sition L.29 is in terms of only the elements of the vector N,
and is uniform across all i € Ny. Thus, we obtain the fol-
lowing result as an easy corollary of Proposition L.29.

PROPOSITION L.30. Let E be a G-ary vector of (not nec-
essarily distinct) elements of the set Sc(qy, such that the
monomial class C'®") with atom-signature Z is not empty.
Then, for all i € N, the cardinality of the set T'¥ [C<Q”>]
(that is, the number of distinct tuples contributed, to the set
Fg*Q>(Q//,D1\‘](i) (Q)) for the query Q" and for the database
D) (Q), by all the valid assignment mappings for all the
elements of the class C(QN)) can be computed by substituting
the values in the vector N (specifically value N]@ as value
of variable Nj, for each j € {1,...,m+w}) into the formula
pe@n X My - 0

. . . Q"
For a monomial class C(®") with noncopy signature &

and with copy signature <I>§(Q), such that C(?") is not
empty, we call the expression (of Proposition 1.30) Hq>c(Q”)

X I @y, in terms of the variables in the vector N, the

multiplicity monomial of the monomial class @,

L.7 The Wave Monomial of the Query @

In this section we obtain results that are instrumental in
proving Theorem 4.1. Namely, we show that:

(1) There exists a (nonempty) monomial class C(?) for the
query Q, such that the multiplicity monomial of C(? is
“the wave of the query Q.” (See Proposition L.33.) The
wave of the query @ is defined in this section (see Defi-
nition L.10) based on the vector N and on the mapping
vg"? defined in Section L.3.2.

monomial class C<Q”>, such that the multiplicity mono-
mial of C(®") is “the wave of the query @.” Then there
exists a SCVM from the query Q" to the query Q. (See
Proposition L.34.)

In Section 1..10 we will see that whenever (a) Q' =¢ Q for
a CCQ query Q' and (b) @ is an explicit-wave CCQ query,

then there exists a (nonempty) monomial class C£Q/) for the

query @', such that the multiplicity monomial of CﬁQ/) is
“the wave of the query @.” The proof of Theorem 4.1 is
immediate from that result and from Propositions L..33 and
L.34 of this section. (We remind the reader that throughout
the proof of Theorem 4.1, all monomial classes of all queries
are defined w.r.t. the family of databases {Dg)(Q)} for
the fixed input query Q.)

We begin the exposition by defining “the wave of the query
Q.” We introduce some notation to make the definition con-
cise:

Suppose that for a CCQ query Q" there exists a (nonempty)

36

(A) Denote by Pfg%copy (i) the constant 1 in case m = 0,
and (ii) the product IIjL; N; in case m > 1.

(B) Denote by Pc(g’gp)y (i) the constant 1 in case r = 0, and
(ii) the product ITj_; v (Yim+;) in case r > 1. (For
the notation v"?, see Section L.3.2.)

DEFINITION L.10. (The wave of CCQ query @) For
a CCQ query Q, the wave P of Q w.r.t. the family of
databases {D) (Q)} is the product PiQ) = Pﬁg}wopy X
Péon)y. O

The intuition for the wave P{? of a CCQ query @ is
that PL?) reflects (i) the association of each multiset non-
copy variable of @ (in case m > 1) with a separate variable
among Ni, ..., N, and (ii) the association, in case r > 1,
of each copy-sensitive subgoal, call it s, of @ (via the copy
variable of the subgoal) with the unique element, call it s',
of the set S¢(g) (see Section L.2.1) such that the subgoal s
and the element s’ have the same relational template. The
provenance of each association will become explicit in the
proof of Proposition 1..33. As an illustration of the defini-
tion, in Example L.5, he wave of query @ w.r.t. the family
of databases {D) (Q)} is the product P = IIj_, N;. In
the same example, the wave of query Q" w.r.t. the family of

databases {Dg:)(Q’)} is the product PR = Ny x Ny x

(N3)?. The component (N3)? of the expression P2 comes
from the fact that the set Sc(gr), for the query Q' of Ex-
ample 1.5, s a singleton set, and both subgoals of the query
Q' agree on the relational template with the only element of
the set SC(Q/)-

ProposITION L.31. Given a CCQ query Q and the vector
N = [N1 N2 ... Npyw| that is used to construct the family
of databases {D g) (Q)} for the query Q. Then each element
of the vector N occurs in the wave of the query @ w.r.t.

{Dxw (@)} 0

The proof of Proposition L.31 is immediate from the def-
inition of the products p*r(zga?Lcopy and Pc(?p)y used in Defini-
tion L.10. (In case where r > 1, the less obvious part of the
proof, that is the presence of each of Nyy1, Nem+2, - -+ s Nyntw
in the product Pc(ﬁ.?y, is immediate from the definition of the
mapping vg,"Y, see Section L.3.2.)

Our next result is immediate from the definition of the
wave of the query Q. (For each expression of the form N]’-“,
such that N; € {N1, N2, ..., N4y } and k > 1, we say that
the expression NJ'-“ has k occurrences of the variable Nj.)

PROPOSITION L.32. Given a CCQ query QQ and the vector
N = [N1 N2 ... Nmtw] that is used to construct the family
of databases {D gy (Q)} for the query Q. Then the wave of
the query Q w.r.t. {Dju) (Q)} has exactly m + r occur-
rences of the variables from the set {N1, N2, ..., Nm4r }.
O

ProrosiTION L.33. Given a CCQ query Q, there exists

a nonempty monomial class, call it C,EQ), for the query Q
w.r.t. the family of databases {D) (Q)}, such that the

multiplicity monomial of c@

w.r.t. {Dyw(Q)}

PrOOF. The proof has three parts:

is the wave of the query Q
O

(1) We first show that for each ¢ € N, there exists an asso-
ciation for the query @ and for the database D) (Q),

call this association Agj), such that:

(i) The association A" hasa t5)-valid assignment map-

ping for the query @ and for the database D g) (Q);

(ii) Incasem > 1, we have that the noncopy-signature'®

D, [Agf)] of the association Aff) is the vector [Y7 ...
Y:»]; and, finally,

(iii) In case r > 1, we have that the copy-signature

®.[AY] of the association AL is the vector vyt

(Ym+1) vy (Yingr))

We then show that the query @, w.r.t. the family
of databases {Dy)(Q)}, has a nonempty monomial
class whose noncopy-signature (whose copy-signature,

respectively) is the noncopy-signature (the copy-signature,

respectively) of the associations Agf), for all ¢ € N, of
item (1) of this proof. We denote this monomial class

by C{9.

(3) Finally, we show that the multiplicity monomial of the
monomial class CiQ)

Q.

In fact, items (2) and (3) are straightforward: Item (2) is
immediate from the definition of monomial classes and from
item (1), and item (3) is immediate from item (2) and from
Proposition L.30. Hence, in the remainder of this proof we
prove parts (i) through (iii) of item (1) above.

Recall that we assume m +r > 1. Hence the set S¢(q)
(see Section L.2.1) for the query @ is not empty.

Fix an i € N4. Recall the set 8% # () introduced in
Section L.3.2 to construct the database D g (Q). Fix an
arbitrary tuple t € S . For the tuple t € S, Section L.3.2
defined a mapping, v, from all the terms of the query @
to constants in the set adom(Dgu)(Q)) U Ny. By defi-
nition, for the t € S® we have that the restriction of Vs
to all the terms of the query @ occurring in the elements
of the set S¢(g) induces a bijection from the subset S¢ ()
of the condition of @ to a set, call it D;, of ground atoms
of the database Dg)(Q). By construction of the database
Dy (Q), the set Dy (i) was generated from S¢ () using the
mapping v¢, and (ii) is an extended canonical database for
the query Q.

We now construct the association A{". We begin by as-
sociating each atom s € S¢(g) with its image (in the set of
ground atoms Dy C D) (Q)) under v¢. Now there are two
cases: (a) In case all the subgoals of the (regularized ver-
sion of the) query @ are elements of the set S¢(qg), we are

of item (2) is the wave of the query

done with the construction of the association A{”. We now
consider the remaining case (b), where there exist subgoals
of the (regularized version of the) query @ that are not ele-
ments of the set S¢(g). Consider an arbitrary subgoal s of
Q such that s € (L — S¢(@)), where L is the condition of
the regularized version of the query Q). By definition of the
set S¢(q), s is a copy-sensitive atom, such that there exists
a unique element, call it s, of the set S¢ (), such that s and
s’ have the same relational template.

18Observe that the noncopy-signature of the association AW

is well defined, by AW having a valid assignment mapping
for the query @ and for the database D) (Q).

37

Then in our construction of the association Aﬁz), for each
such subgoal s of the query Q, s € (L — S¢(q)), we associate
(in A{") the atom s with the atom vy (s') € D 5 (Q), for the
s’ as determined in the previous paragraph. This completes
the construction of the association Agf). Observe that by
construction, in both cases (a) and (b) as in the preceding
paragraphs, the association .A5f> associates all the elements
of the condition of the query @) with exactly the set of ground
atoms Dy C Dy (Q).

We now prove claim (1)(i) of the beginning of this proof.
We first show that the association Aii) has a valid assign-
ment mapping for the query @ and for the database D g) (Q).
Indeed, by definition of v, it holds that v; assigns values to
all terms of the query Q, consustently across all the pairs
in the association A*). Denote by 6, (@ the resulting valid
assignment mapping for the query @ and for the database
Dy (Q). Now, it is immediate from the definition of v
that the restriction of the mapping 0'? to the head vec-
tor [X1 ... Xi] of the query Q is the tuple tg,. Thus, 0\
is a tg-valid assignment mapping for the query @ and for
the database D g (Q), which completes our proof of claim
M @A).

We now prove claim (1)(ii) of the beginning of this proof.
This claim requires the assumption that m > 1. Under
this assumption, by definition of v, we have that v, maps
the variable Yj, for each j € {1,...,m}, into an element
of the set S](.i). (See Section L.3.1 for the definition of

S](i).) Hence, by definition of the vector @n[A@] (see Sec-

tion L.4.1), the jth element of ®,[A{"] is the variable Y;,
for each 5 € {1,...,m}. Q.E.D.

To complete the proof of Proposition L.33, it remains to
prove claim (1)(iii) of the beginning of this proof. This claim
requires the assumption that » > 1. Under this assumption,
the claim is immediate from the construction of the associa-
tion .Aff) and from the definition of the vector <I>C[A5f)] (see
Section L.4.1). Q.E.D. [J

PROPOSITION L.34. Given CCQ queries QX) «+ LM
and Q"(X") + L",M", such that (i) Q and Q" have the
same (positive-integer) head arities, (ii) |Mecopy| = |[Miopy!,
and (41) |Mnoncopy| = |Mponcopy|- Suppose that there exists
a nonempty monomial class c@” for the query Q" w.r.t.
the family of databases {D) (Q)}, such that the multiplic-
ity monomial of C@") s the wave of the query @Q w.r.t.
{Dxu)(Q)}. Then there exists a SCVM from the query Q”
to the query Q.

The proof of Proposition L.34 is constructive: That is, the
proof generates a SCVM from the query Q" to the query Q
of the statement of Proposition L.34.

PRrROOF. We are given that there exists a nonempty mono-
mial class C(?") for the query Q” w.r.t. the family of databases
{Dx) (Q)}, such that the multiplicity monomial of c@ is
the wave of the query Q w.r.t. {D g (Q)}. Then, by defini-
tion of multiplicity monomials (Section L.6.3) and of copy-
/noncopy-sigature vectors (Section L.4.1), we have that:

e In case m > 1, the vector @n[C(Q“>] must be a permu-
tation of the vector [Y1 ... Yy]; and

e In case r > 1, the vector <I>C[C(Q”)} must be a permu-
tation of the vector (V""" (Yim+1) vg " (Yimgr)]-

By definition of monomial classes and from the fact that
the monomial class C(?”) for the query Q" w.r.t. the family
of databases {D ;) (Q)} is not empty (see Section L.5 for
the relevant results), we have that for each i € N, the
monomial class C‘?”) has an association with at least one to)-
valid assignment mapping for Q" and {D g (Q)}. Fix an
arbitrary ¢ € N4 and consider an arbitrary such association
in C‘9"). Denote the association by Aimit), and denote by
00™") its unity t5-valid assignment mapping for Q" and
{D gz (Q)}; the mapping 08" oxists by Proposition L.14.

nit)

By Proposition L.20, in case the association AU s such

that the mapping 08" induces a mapping from the sub-
goals of the query Q" into two or more extended canonical
databases (in Dgy)(Q)) for the query @, there must exist
an association, call it A, that has the same atom-signature
as AU and such that the unity valid assignment mapping
for A., call this mapping 6., induces a mapping from the
subgoals of the query @' into a single extended canonical
database (in Dy (Q)) for the query @, call this database

D.. Observe that from the fact that Aﬁimt) and A, have the
same atom-signature, we have that A. belongs to the mono-
mial class C<Q”>, just as AU does. In addition, ALt
and A, have the same copy-signature (which is @C[C(Q”)D,
as well as the same noncopy-signature (which is ®,,[C(?")]).

If, on the other hand, the association AU g such that
the mapping 08" induces a mapping from the subgoals of
the query Q" into a single extended canonical database (in

D5 (Q)) for the query @, call this database D, then for
the remainder of the proof we refer to AU ag A, and
refer to 04" as 0,.

Now denote by vg~ the mapping (i) whose domain in the
set of all the terms of the query Q" that are not copy vari-
ables of Q”, and (ii) such that on the entire domain of vg,
the mapping vq coincides with the mapping 6.. Further,
define ubn as the composition VC(Q” ovg of the mapping v
with the mapping VS) defined in Section L.3.1. By defini-
tion, fig is a mapping from all the terms of the query Q"
that are not copy variables of Q" to terms of the query Q.
Finally, define p1 as the mapping (i) whose domain is the
set of all terms of the query Q" (that is, including all the
copy variables of Q"), and (ii) such that on the entire do-
rriain of M’QN, the mapping g~ coincides with the mapping
figy-

Finally, (iii) in case r > 1, for each 7 € {1,...,r}, we
define pgr (Y,m1;) as follows: Suppose the jth element of
the vector ®.[C(?")], being the variable (in the vector N)
Npqk for some 1 < k < w,'” ocecurs in the vector <I>C[C<Q”>]
a total of n times, where 1 < n < r. Suppose further that
out of these n positions in which variable N,,,x occurs in the
vector @C[C(Q”)}, our fixed position j is the Ith such position
from the left, 1 < I < n. Then, by definition of the wave
of the query @, it must be that for the equivalence class,
call it C(Yim+x), for the same value k as above (i.e., the k
in Yy, 4 is the same as in the Ny,4x), of the copy-sensitive
subgoal s of Q where the copy variable of s is Yy, 4%, the
class C(Ym+r) has exactly n copy-sensitive subgoals of the

"By definition of the wave of the query @, the vector
®.[C?")] may not contain the constant 1.

38

query Q. All these n subgoals of the query @ have the
same relational template, but have distinct copy variables,
call the assortment of these copy variables Y;1, Yio, ..., Yin,
with i1 < 42 < ... < in. (Naturally, the variable Y,
is one of these n copy variables Yi1, Yi2, ..., Yin.) Then
define pgr (Yo, 4;) to be the copy variable Yy of the query
Q, where Y;; is the Ith variable in the list (Vi1, Yi2, ..., Yin).
Note that this assignment algorithm terminates and results
in the same assignments, in pg~, for all copy variables of the
query Q" independently of the order in which we choose the
positions j out of the set {1,...,7}. Observe also that pg is
still a mapping once we are done with all the assignments in
(iii). (Indeed, each copy variable of the query Q", in case r >
1, is assigned by ug~ to a distinct copy variable of the query
Q.) Finally, observe that in case r = w > 1, the mapping
por (Yimy ;) is defined by (iil), for each j € {1,...,7}, as the
copy variable Y, 1 of query @, where k is such that N, 4k
is the jth element of the vector <I>C[C(Q”)].

We now show that properties (1) through (6) of same-
scale coverings mappings in Definition 3.1 are satisfied by
the mapping pgr. (Hence, we conclude that the mapping
Hor is a same-scale coverings mapping from the query Q"
to the query Q.)

(1) This property in Definition 3.1 is satisfied by the map-
ping pgr due to the fact that the association A« has a
(unity) valid assignment mapping, by definition of valid
assignment mappings, and by definition of the mapping
yg> used in the construction of the mapping pgr.
This property in Definition 3.1 is satisfied by the map-
ping g due to the fact that the association A. has a
(unity) tg-valid assignment mapping, by definition of
t¢)-valid assignment mappings, and by definition of the
mapping Vg>
/I,Q// .

This property in Definition 3.1 is satisfied by the map-
ping pg due to the facts that:

used in the construction of the mapping

— The noncopy-signature of the association A, is (in
case m > 1) a permutation of the list [Y1 ... Yi],
and by definition of the mapping u'Qu (and hence
also of the mapping pg~) on the set of multiset
noncopy variables of the query Q.

— The copy-signature of the association A, is (in case
r > 1) a permutation of the list [v5™""(Yyt1)

vy " (Yintr)], and by definition of the mapping
por on the set of copy variables of the query Q”.

This property in Definition 3.1 is satisfied by the map-
ping pgr due to the fact that, by its definition, map-
ping ug maps each relational subgoal of the query Q"
into a unique element of the set S¢(g) of subgoals of
the query Q.

This property in Definition 3.1 is satisfied by the map-
ping pg due to the facts that:

— by its definition, mapping pg~ maps each copy-
sensitive subgoal of the query Q" into a subgoal of
the query @Q; and

— the copy-signature of the association A, does not
have occurrences of the constant 1, hence mapping
1or maps each copy-sensitive subgoal of the query
Q" into a copy-sensitive subgoal of the query Q.

(6) Finally, this property in Definition 3.1 is satisfied by
the mapping g due to the definition of ug~ on the
set of copy variables of the query Q", see item (iii) in
the definition of the mapping.

O

L.8 Extended Example: Basic Notation and
Constructs

In this section we provide an extended example that il-
lustrates the notions and constructions introduced in Sec-
tions L.2 through L.7 of the proof of Theorem 4.1. The
example uses three CCQ queries,), @', and Q"; each of
the queries is an explicit-wave query by part (1) of Defini-
tion 4.1. y the results in this paper, for the queries @) and
Q' of Example L.3 we have that Q =¢ Q’. In the beginning
of the example, we exhibit a SCVM from Q' to Q. (The
existence of the mapping is stipulated by Theorem 4.1.) At
the same time, it is easy to ascertain that there does not
exist a SCVM from the query Q" to the query @Q of Exam-
ple L.3. Thus, by Theorem 4.1, Q =¢ Q" cannot hold for
the queries Q" and @ of Example L.3. We build on this
example a little later (see Example L.4 in Section 1.9.3), to
show how to use the proof of Theorem 4.1 to construct a
counterexample database to Q =¢ Q”. At the end of Ex-
ample L.3, we also illustrate the constructs of Section L.7,
by discussing “the wave” of the query @ (see Definition L.10
in Section L.7) and the monomial classes of the queries Q
and Q' that “have the wave” of Q. We also show that query
Q" does not “have the wave” of the query @Q, and discuss the
implications of this fact.

EXAMPLE L.3. Let CCQ queries Q, Q', and Q" be as
follows.

Q(Xl) (*p(Xl,Yl),p(X1,X2;Y2),{Yh}/z}.
Q'(X1) + p(X1, YY), p(X1, X5;Y3), p(X1, X3), {Y{, Y3 }.
Q"(XY) + p(X1, X3), p(X1, V1", Y3'), {¥1", Y5}

Observe that by each of the three queries having exactly one
copy-sensitive subgoal, each of Q, Q', and Q" is an explicit-
wave query. (See part (1) of Definition 4.1.)

By the results in this paper, e have that Q =c Q'. A
SCVM p from Q' to Q, as stipulated by Theorem 4.1, is
o= {X{ — Xl,Yll — Yl,Xé — X27}/v2l — YQ,Xé — Xg}.

It is easy to see that there does not exist a SCVM from Q"
to Q. (Indeed, for each mapping from the terms of Q" to the
terms of Q, the mapping violates at least one of conditions
(3) through (5) of Definition 3.1.) Thus, by Theorem 4.1,
Q =c Q" cannot hold. Later, we build on this example (see
Ezample L.4 in Section L.9.3) to show how to use the proof
of Theorem 4.1 to construct a counterexample database to

Q=cQ".

We now use queries Q and Q" to illustrate the notation
and constructions of the proof of Theorem 4.1, sequentially
by subsections of the proof.

Constructing Database D g (Q) for N = [2 3].

We first use the notation introduced in Section L.2 of the
proof of Theorem 4.1. We have that m = |Mnoncopy| =
{Y1}| = 1, and that v = |Mcopy| = |{Y2}| = 1. The set
Sc(q) of the representative-element subgoals of the query Q
is Sco) = {p(X1, Y1), p(X1, X2;Y2)}, with w = 1. The rea-
son is, the only relational subgoal of Q, call this subgoal h1,

39

is the representative element of the equivalence class {h1},
and the only copy-sensitive subgoal of Q, call this subgoal ha,
is the representative element of the equivalence class {h2}.
We now follow Section L.3 of the proof of Theorem 4.1,
to illustrate the construction of a database in the family
{Djw (@)} for the query Q. We define mapping vo =
{X1 = a, X2 — b}, for distinct constants a and b. Then we
have that So = {a,b}, and that t§, = (a). Asm+w =2 for
the query Q, the vector N for QQ comprises two variables,
N1 (intuitively for the multiset noncopy variable Y1 of Q)
and Ny (intuitively for the copy variable Ya of Q). Let i be
a fized natural number (i.e., we treat i as the same constant
throughout this example), and let the vector N = [2 3].
That is, Nl(i) = 2, and NQ(i) = 3. For two distinct con-
stants ¢ and d, such that ¢ and d are also distinct from
the constants a and b used above to form the set So, let
S;i) = {c,d}; this set, of cardinality Nl(i), provides the do-
main (in the database) of the multiset noncopy variable Y1
of Q. Then we have, by the definitions in Section L.3, that:

o 89 =S Us;

. ,,8') ={a— X1,b—= Xo,c = Yi,d = Y1};
o UOPY(Y,) = NQ(i) =3; and

o Vg (Y2) = Na,

For the set S = {(c),(d)}, we have that v, = {X1 —
CL,Xz — b, Yl — c, Yo — 3} and that V() = {X1 — a, X9 —
b, Y1 — d,Y> — 3}. We use mappings vy and v(qy each in
one iteration of the main construction cycle for the database
Dy (Q). The mapping vy applied to the two atoms in the
set Scq) results in ground atoms p(a,c;1) and p(a,b;3),
and the mapping v(q) applied to the set Sc(q) results in
ground atoms p(a,d; 1) and (again) p(a,b;3). Therefore, by
construction we have the database D gy (Q) = { p(a,c; 1),
p(a,b;3), pla,d;1) }. We will refer to the ground atom
p(a, c; 1) in the database D (i) (Q) as d1, to the atom p(a, b; 3)
as dz, and to the atom p(a,d;1) as ds.

Construction of the Terms for ngp-

We now follow Sections L.4 through L.7 of the proof of
Theorem 4.1, to illustrate the construction of the terms for
the function]—"((S)N), for the query Q" and for the database
D i) (Q) as constructed above in this example.

The number G of subgoals of the query Q" is G = 2. De-
note by g1 the copy-sensitive subgoal p(X1{,Y{";Y3') of Q",
and by g> the relational subgoal p(X{', X3) of the query. In
query @, denote by h1 the subgoal p(X1,Y1) and by ho the
subgoal p(X1, X2;Y2).

There are nine associations between the G = 2 subgoals of
the query Q" and the three ground atoms (di, dz, ds) of the
database D gy (Q). We list all the associations in this table:

o
ID DB W4 @0 ¢ Te?(Q" Dy (@)
Av di,di] [hsha] Y@ 1 (a6 1)

Az [di,do] [ha,he] Y2 1 (a,c1)

As [di,ds] [hi,hi] Y@ 1 (a,c,1)

A [d27d1} [h27h1} X2 N2 (a7b71)a(a’7 ba 2)5(0’7 ba 3)
.As [d2,d2} [hz,hz} X2 N2 (a,b7 1), (a, b7 2), (a, b7 3)
As [d27d3} [h27h1} X2 N2 (avba 1)7 (a7b7 2)7 (avba 3)
./47 [d3, dﬂ [h1, hﬂ Yi 1 (a, d7 1)

.As [d3, dg} [hl, hg} }/1 1 (a, d7 1)

Ag [d3,ds3] [hi,hi] Y1 1 (a,d, 1)

The columns of the table, from left to right, refer to:

1. Association ID, Aj, for each of the associations Ai
through Ag between query Q" and database D gy (Q);

2. List of those ground atoms of the database that are as-
sociated by A; with the subgoals of Q"; this list is to
be read as “the first item in the list is assocmted by Aj;
with subgoal g1 of Q",” and “the second item in the list
is associated by A; with subgoal g2 of Q"';”

3. Atom-signature U, [A;] of the association Aj; this list
is to be read as “the first item in the list is associated
by A; with subgoal g1 of Q",” and “the second item in
the list is associated by A; with subgoal g2 of Q";”

4. Noncopy-signature ®,[A;] of the association Aj;

5. Copy-signature ®.[A;] of the association Aj; and

6. All the tuples contributed by the association Aj; to the
set F(—tb)(Q" Dy (Q)). (We assume that the columns

of the relation r¢ Q>(Q//,D1\7(i) (Q)) are, from left to
right, X1, Y/, and Yy'.)

For instance, the next-to-last row of the table is to be read
as follows: Association As for the query Q" and for the
database D gy (Q) as defined above, associates subgoal g1 of
Q" with atom ds of Dg) (Q), and associates subgoal g2 of
Q" with atom d2 of Dx i) (Q). Therefore, the atom-signature
U, [As] associates g1 with subgoal h1 of the query Q, and
associates ga with subgoal ha of Q. The noncopy-signature
of As maps the multiset noncopy variable Y{" of the query
Q" to the multiset noncopy variable Y1 of the query Q, and
the copy-signature of As maps the copy variable Y3' of the
query Q" to the “copy value” 1 of the relational subgoal hy
of the query Q. Finally, association As contributes tuple

(a,d, 1) to the set FgQ)(Q”, Dy (Q)).
The construction of the table uses the notation and defi-
nitions of Section L 4.1: The mapping 1/}96"@), as induced

N (@)
by the mapping l/)| is defined as 1/)97:)(@ ={di = hi,d2 —

ha,ds — hi}. Then the atom-signature of, say, association
gen(Q) [dg} _

As is computed as the vector with first element ¢N('i>

h1 and with second element wgeg)(Q)[dz] = ho.
The computation of the noncopy-signature ®,[A;] for each
association A; uses an arbitrary valid assignment mapping,

call it 6, for Q", Dz (Q), and A;, as well as the map-

ping l/é?) defined earlier in this example. Then the noncopy-

signature of, say, association As is computed as the unary
(because m = 1) vector ®,[As] = [VQ Bs(Y{")] = [I/é;)(d)] =
Y1. The reason is, Ag generates a unique valid assignment
mapping 0z = { X! — a, Y — d, Yy — 1, X5 — b} for Q"
and D gy (Q). (By definition, 0s is a unity tg-valid assign-
ment mapping for Q", Dy (Q), and As.) Then we obtain
for ®n[As] that [v5) (0s(Y"))] = [v5) (d)] = Y.

The computation of the copy-signature ®.[A;] for each as-
sociation A; uses the mapping v°°PY~ 59 which maps sub-
goal hi of the query @ to constant 1 (because hy is a re-
lational atom), and maps copy-sensitive subgoal ha of Q,
with copy variable Yz, to variable VZ?Opy(Yg) = Ny in the
vector N. Then the copy-signature of, say, association As
is computed as the unary (because r = 1) vector ®.[As] =

[eery=si9 (9 D [dg])] = [V=oPv==19 (hy)] = 1.

Finally, we use all the t5-valid assignment mappings for
Q", Dxw(Q), and each Aj, to determine the contributions

40

of each association A; to the set FgQ)(Q”, Dy (Q)). For
instance, for the association As we use the mapping s (which
is the only tg)-valid assignment mapping for Ag) to construct
the tuple (a,d, 1) for the set r Q)(Q” Dxi(Q)).

We now illustrate the construction of the set A(for the
query Q" and database D g (Q), as defined in Sectwn L.5.
The set comprises all the mine associations above: Ag}, =
{A1, Az, ..., Ao}. We use Proposition L.18 to conclude that
the tuples shown in the last column of the table in this exam-

ple are all and the only tuples in the set FgQ)(Q", Djo(Q))
for the query and for the database.

Now we illustrate the construction of all the monomial
classes, as equivalence classes of elements of the set Ag?,
for the query Q" and database D gy (Q), as defined in Sec-
tion L.6. The classes are:

. CiQ”) = {A1, A3, A7, A9} (for the atom-signature
[P1, h1] of A1, A3, A7, and Ag). We have that @fb;Q”) =
i) and 64 = 1),

o Cl ") _ = {As, As} (for the atom-signature [h1, hs]

e co”
Az and Ag). We have that <I>n2 = [V1] and <I>62
[1].
. C(Q D= = {A4, Ag} (for the atom-signature [ha, hi]

e c@”
A4 and Ag). We have that @, s = [X3] and <I>C3 =
[Na].

C(Q D= = {As} (for the atom- szgnature [h2, ha] of As).
(Q " Q "
We have that <I>n = [X2] and ®. G = [N2].

Each of the four monomial classes has the noncopy-signature
and the copy-signature of all its constituent associations.

"

That is, for CfQ”), we have above that 5! = [V1] and
Q"
P = [1], and so on.

For those terms of the query @Q that are not copy variables,
we use the mapping vo and the set S(l) to determine that
Dom{)(X1) = {a}, Dom$) (X2) = {b}, and Dom$) (Y1) =
{c, d} Further, DomLabelQ(X1) DomLabelQ(Xg) =1,
and DomLabelg (Y1) = Ni.

We now compute the multiplicity monomial for each of
the four monomial classes for Q" and for Dy (Q). For

each ofC(Q) and C<Q), we have that H (@ = H (@)

is the product I1j_, DomLabelg (Y;) = N1 Further, we have

that 1L gy = 1L (v is the product Ij_,1. Thus, the
1 P2

multiplicity monomial for each of CiQ//) and CéQN) is the
monomial N1 X1 = Ny. Observe that Nl(i) = 2 in our vector
N =12 3], and that the value N\" = 2 of the monomial Ny
for each of CiQ”) and C;Q”) is the correct count of the two
tuples, (a,c,1) and (a,d,1), contrzbuted by each of the two

classes individually to the set T’ Q(Q” Dy (Q)) Note that

' (in r Q(Qﬁv Dz (Q)))

is exactly all the elements of the set Dom (Yl) recall that
Y1 is the only element of the vector H <Qn> and of the vec-

the projection of all these tuples on Y,

tor IT . (See Proposition L.26 for the details.)

Q')
.

n

For each of CP()Q) and CA(IQ”, we have that 11

(QII) =
€3

Hq)CiQ”) is the product 11j_; DomLabelg(X2) = 1. Further,
we have that I gy =11 (qn) is the product Ij_ N =
3 q,cél

Ns. Thus, the multiplicity monomial for each of CéQN) and
Cle) is the monomial 1 x Ny = Ny. Observe that NQ(i) =3
in our vector N = [2 3], and that the value NQ(Z) =3 of
the monomial Na for each of CéQ) and Cz(lQ) is the cor-
rect count of the three tuples, (a,b,1), (a,b,2), and (a,b,3),
contributed by each of the two classes individually to the set

F;Q (Q",Dxw (Q)). Note that the only element in the pro-
jection of all these tuples on Y{" (in F;Q (Q", Dyt (Q))) is

exactly the only element of the set Dom(i)(Xg); recall that
Xo is the only element of the wvector H e{@" and of the

vector Il o). (See Proposition L.26 for “the details.)
o 4

n

For the construction of the function -7:((8)) from the above

multiplicity monomials, please see Example L.4 (Section L.9.3).

Construction of the Terms for]-‘((g;.

We now follow Sections L.4 through L.7 of the proof of
Theorem 4.1, to illustrate the construction of the terms for
.F((g)), for the query Q and for the database
D) (Q) as constructed above in this example. We follow
steps similar to those used in the construction of the terms
for the function J:Q " for the query Q", see preceding sec-
tion of this example. As a result of the steps, we obtain four
monomial classes for the query Q:

the function

e Monomial class C(Q) has noncopy-signature [Y1] and

copy- szgnature [1]; it contributes tuples (a,c,1) and (a,d, 1)

to the set T’ Q(Q Dy (Q)).
mial for C%Q) is the term Ni.

The multiplicity mono-

e Monomial class C(Q) has moncopy-signature [Yi] and
copy-signature [Ng] it contributes tuples (a, c, 1), (a ¢ 2),

extra subgoal p(X1, X3) in Q', and this subgoal does not in-
troduce any multiset variables (of Q'). Thus, we obtain the
same monomial classes for Q' and for Q (modulo renaming
all the variables of @ into “same-name” variables of Q’, for
instance variable X1 of Q corresponds to variable X1 of Q').
Please see Example L.4 (Section L.9.8) for the construction

of the function]-"((Q)) from the above multiplicity monomials.

The Wave of Query Q w.r.t. {D 5w (Q)}-

We now use the monomial classes of the queries Q, Q’,
and Q" to illustrate the notion of the “wave of CCQ query,”
which was introduced in Section L.7. By Definition L.10,
the wave of the query Q of this example, w.r.t. the family of
databases {D 5y (Q)}, is the product Ny X N2. By Proposi-
tion L.33, the query Q has a nonempty monomial class w.r.t.
{Dxw)(Q)}, specifically the monomial class CéQ), such that

the multiplicity monomial of the class CéQ) is exactly the
wave of the query Q w.r.t. {Dgwu (Q)}.

Now the query Q' of this example also has a nonempty
monomial class w.r.t. {Dx)(Q)}, such that the multiplicity
monomial of that monomial class is the wave of the query Q.
(Recall that in this example we obtained the same monomial
classes for Q' and for Q, modulo renaming all the variables
of Q into “same-name” variables of Q'.) Thus, by Proposi-
tion L.34, there must exist a SCVM from the query Q' to
the query Q. Indeed, the same-scale covering mapping p of
the beginning of this example is built as specified in the proof
of Proposition L.3j.

Finally, observe that for the query Q" of this example and
for each nonempty monomial class of Q" w.r.t. {Dxju (Q)},
the multiplicity monomial of the monomial class is not the
wave of the query Q. Thus, Proposition L.34 does not ap-
ply. Indeed, as we showed in the beginning of this example,
there does not exist a SCVM from Q" to Q. Then from
Theorem 4.1 we conclude that Q =c Q" does not hold for
the queries Q and Q" of this example. Please see Exam-
ple L.4 (Section L.9.3) for a discussion of how the database
Dy (Q) constructed earlier here (in Ezample L.3) is a
counterexample database for Q =c Q". In addition, for the

wave PP = Ny x N of the query Q w.r.t. {Dgju(Q)},

(a,¢,3), (a,d,1), (a,d,2), and (a,d, 3) to the setT’ Q(Q Dy f@ymple L.4 points out the presence of the monomial A

The multiplicity monomial for C;Q is the term N1 X Na.

e Monomial class CéQ) has noncopy-signature [Xs] and
copy- szgnature [1]; it contributes tuple (a,b,1) to the

set T2 (Q, Dy (Q)):

CéQ) is the term 1 (i.e., constant 1).

The multiplicity monomial for

e Monomial class C(Q) has nmoncopy-signature [X2| and
copy-signature [Ng] it contmbutes tuples (a, b, 1), (a,b,2),

and (a,b,3) to the set F Q(Q D) (Q)). The multi-

plicity monomsial for C4 is the term Na.

For the construction of the function]—"((g)) from the above

multiplicity monomials, please see Example L.4 (Section L.9.3).

Construction of the Terms for J-'(S>>

The construction of the terms for the function]—"((3)) 18

almost identical to that for the function f((Q>, because the
only difference between Q and Q' is in the presence of an

41

in the functions f(Q) and f((g) , for the queries Q and Q" of

this example, and also pomts out the absence of the mono-

PP in the function]-'(Q) , for the query Q" of this

example. a

L.9 Putting Together the Function]—'((Q))

In this section we define the function F Q") outlined in
the beginning of Section L.6. The only entities that we use

mial

to specify the function .7-'((3)”) are (a) the multiplicity mono-
mials defined in Section L.6, and (b) the noncopy-signatures
and the copy-signatures of the monomial classes introduced
in Section L.6. Recall that each of the multiplicity mono-
mials, as well as each of the copy-signatures, is in terms of
the variables in the vector N; we will show in this section
how to “convert” the noncopy-signatures into collections of
variables in the vector N. .

In this section we specify the function }'fg)) for an arbi-
trary CCQ query @, for the family {D g (Q)} of databases
defined using @ (as outlined in Section L.3), and for an ar-
bitrary CCQ query Q" that satisfies the restrictions (w.r.t.

the query @) of Section L.2.

L.9.1 Notation, Definitions, Basic Results

For CCQ queries Q and Q" satisfying the requirements
of Section L.2, suppose that Q and Q" are also such that
(as discussed in the beginning of Section L.6) the set of all
nonempty monomial classes for Q" and for the family of
databases {D) (Q)} is not empty. That is, suppose that

{C;Q”), ce Cfl?”)} is the set of all nonempty monomial
classes for Q" and for {D g (Q)}, with n* > 1.

We begin the exposition by making a few straightforward
observations. Recall the notation I'” [C(Q”)] of Section L.6.
Then the following proposition is immediate from Proposi-
tion L.26, for the cases where n* > 2.

PRrROPOSITION L.35. Given CCQ queries Q and Q", sup-

pose that the set C[Q"'] = {C£Q”), e, Cfl?”)} of all nonempty
monomial classes for Q" and for the family of databases

,n"}, be two monomial classes
C”(lQ”)

p° , for somen,p € {1,...
in the set C[Q"], such that the noncopy-signatures of
and ofCI(,Q”) are not identical vectors. Then for eachi € N,
we have that T [CéQ”)] N r® [CéQH)] = 0. O

For the other observations in this subsection, we will need
the following notation. For an arbitrary monomial class
CT(LQN) #0,ne{l,...,n"}, in case r > 1, we denote the ele-
ments of the copy-signature vector <I>C[C7(1Q”)} as [Vii[n], - - -
Recall that, by definition of copy-signature, for each k €
{1,...,7} we have that Vjg,) € {1, Nms1, ...y Nomjwl,

where the N-values are variables in the vector N. (In case
r=0, <I>c[C,(LQ >] is the empty vector by definition.)

s Virm]-

DEFINITION L.11. (Unconditional dominance for mono-

mial classes) Let c?" and CéQ”) be two (not necessarily
distinct) monomial classes in the set {C§Q“>, R C,(L?N)}.
(That is, n,p € {1,...,n"}.) Further, let Cy(LQ”) and CI(,Q”)
have the same noncopy-signature. Then we say that mono-
mial class CT(LQ”) unconditionally dominates monomial class
s if:
o We have the case r = 0; or
o We have the case r > 1, and for the pair (Vjip), Vikin))
for each k € {1,...,7}, we have that either V) = 1,
or Viklp) = Vikin)-
O

We observe that the unconditional-dominance relation is
reflexive by definition.

The following important property of unconditional-dominance

holds by the results of Section L.6.

ProrosiTiION L.36. Let CSLQ”) and Cz(,Q”) be two mono-
mial classes in the set {CfQ), e, C;?)}. (That is, n,p €
{1,...,n"}.) Suppose that clen unconditionally dominates
ci?). Then for each i € Ny, we have that TP[CS?] C
r®e@”), O

The following result is immediate from Definition L.11.

42

ProrosiTiON L.37. Let C,(LQ”) and CZE,Q”) be two mono-
mial classes in the set {C§Q”>, R C,(L?”)}. (That is, n,p €
{1,...,n"}.) Further, let c®" and CZ(,Q”) have the same
noncopy-signature. Then we have that (i) CﬁLQ“) uncondi-
tionally dominates C,(,Q”) and C;(,Q”) unconditionally domi-
nates CfLQ”), if and only if (ii) C,(LQ”) and C;E,Q”) have the
same copy-signature. a

From reflexivity of unconditional-dominance and from Propo-
sitions L.36 and L.37, we obtain the following result.

ProrosiTION L.38. Let C,(LQ”) and CZ(,Q”) be two mono-
mial classes in the set {C§Q >, R Cfg)}. (That is, n,p €
{1,...,n"}.) Further, let C?) and ¢\?) have the same

noncopy-signature and the same copy-signature. Then for
each i € Ny, we have that TV[CS?)] = TW[c{@). O

In Example L.3 in Section L.8, monomial class C{Q”) un-

conditionally dominates a nonidentical ** (to C§Q”)) mono-
mial class C;Q)
CéQ)

, and vice versa (that is, monomial class
unconditionally dominates monomial class CiQ”)). Sim-
ilarly, monomial class CéQ”) of the same Example uncondi-
tionally dominates a nonidentical (to C?(,QH)) monomial class

CiQ”), and vice versa.

We now outline an algorithm template that we call RE-
MOVAL OF DUPLICATE MONOMIAL CLASSES. The input is
the set {C%Q”), ey CT(L?”)}, n* > 1, for CCQ query Q" and
for family of databases {D g« (Q)}; the output is a subset
(denoted by C(Q")) of the input. The algorithm template
involves three steps:

(1) Partition all elements of the set {C§Q”>, ce Cfffﬂ)}
into equivalence classes, where two distinct (in case

n* > 2) monomial classes c?" and C;(,Q”), for n #
p € {1,...,n"}, belong to the same equivalence class

if and only if C,(LQ”) and c,@QH) have identical noncopy-
signatures and identical copy-signatures.

Use an arbitrary algorithm, call it CHOOSE-REPRES-
ENTATIVE-ELEMENT, to choose one element of each of
the equivalence classes as the representative element of
the equivalence class.

(3) Return the set C(Q") of representative elements (only)

of all of the equivalence classes of the set {ch'”, .

cl@My.

A specific algorithm instantiating the algorithm template
REMOVAL OF DUPLICATE MONOMIAL CLASSES is obtained
by specifying the algorithm CHOOSE-REPRES- ENTATIVE-
ELEMENT. Observe that C(Q”) # @ for all nonempty in-
puts to REMOVAL OF DUPLICATE MONOMIAL CLASSES and
for all choices of the algorithm CHOOSE-REPRESENTATIVE-
ELEMENT.

Clearly, in general, the contents of the set C(Q") depend
on the algorithm, CHOOSE-REPRESENTATIVE-ELEMENT, for
choosing the representative element of each equivalence class,
within the algorithm template REMOVAL OF DUPLICATE MONO-
MIAL CLASSES. (For instance, given as input the four mono-
mial classes of Example L.3 in Section L.8, the algorithm

ey

!8Recall (see Section L.6) that the identity of a monomial

class is determined by its atom-signature.

template could produce four different outputs.) At the same
time, the following two results, Proposition L..39 and Propo-
sition L.40, hold regardless of the choice of the algorithm
CHOOSE-REPRESENTATIVE-ELEMENT when instantiating the

algorithm template REMOVAL OF DUPLICATE MONOMIAL CLASSES.

ProPOSITION L.39. Given the set C[Q"] of all nonempty

monomial classes for CCQ query Q" and for family of databases
{Dxw (@)}, and given an algorithm CHOOSE-REPRESENTATIVE-

ELEMENT to instantiate the algorithm template REMOVAL OF
DUPLICATE MONOMIAL CLASSES. Then for the output C(Q")
of the resulting algorithm given the input C[Q"'], the follow-
ing two facts hold:

(i) For each pair (e1,es) of distinct (i.e., ex # ez) ele-
ments of the set C(Q"), e1 and ez either have different
noncopy-signatures or have different copy-signatures;
and

(i) For all i € Ny, we have that:

U %=

ceclQ’]

U e

c'eCc(Q’)

O

Proposition L.39 is immediate from Proposition L.38 and
from the construction of the algorithm template REMOVAL
OF DUPLICATE MONOMIAL CLASSES.

In the next result, Proposition L.40, we denote by |S| the
cardinality of set S. Proposition L.40 holds by construction
of the algorithm template REMOVAL OF DUPLICATE MONO-
MIAL CLASSES.

ProrosITION L.40. Let C[Q"] be the set of all nonempty

monomial classes for CCQ query Q" and for family of databases

{Dyx)(Q)}. Let ar and a2 be two instantiations of the algo-
rithm template REMOVAL OF DUPLICATE MONOMIAL CLASSES,
where a1 and a2 may use different ways of choosing the rep-
resentative element of each equivalence class generated by
the algorithm. Let C;(Q") be the output of algorithm a; on
the input C[Q"], for j € {1,2}. Then we have that:

(1) |C1(Q")| = |C2(Q")|; and

(2) There exists an isomorphism, call it p, from the set
C1(Q") to the set C2(Q"), such that for each element
e of the set C1(Q"), e and u(e) have the same copy-
stgnature as well as the same noncopy-signature.

O

For our purpose of constructing a function that would
return the multiplicity of the tuple t7, in the bag Resc
(Q", Dy (Q)), for all ¢ € Ny, Propositions L.39 and L.40
let us refer to the output of an arbitrary instantiation of
the algorithm template REMOVAL OF DUPLICATE MONOMIAL
CLASSES as the output, C(Q"), of the algorithm (template).
We can show that the unconditional-dominance relation of
Definition L.11 is reflexive, antisymmetric, and transitive on
the set C(Q"). As such, the unconditional-dominance rela-
tion is a partial order on that set.

We now use any standard algorithm'® for removal of all
those monomial classes from the set C(Q") that (monomial

19We use the observation that the unconditional-dominance
relation of Definition L.11 is a partial order on the set C(Q").

43

classes) are unconditionally dominated by some other mono-
mial class in the set C(Q"). Clearly, the output of that al-
gorithm is a unique subset, call it C™°"*°™(Q"), of the set
C(Q"). We say that the set C™°"°™(Q") is the result of
dropping unconditionally-dominated monomial classes from
the set C(Q").

Using Propositions 1..39 and L.40, it is straightforward to
show the following.

ProPOSITION L.41. Let C[Q"] be the set of all nonempty
monomial classes for CCQ query Q" and for family of databases
{Dxw)(Q)}. Let a1 and a2 be two instantiations of the algo-
rithm template REMOVAL OF DUPLICATE MONOMIAL CLASSES,
where a1 and a2 may use different ways of choosing the rep-
resentative element of each equivalence class generated by
the algorithm. Let C;(Q") be the output of algorithm a; on
the input C[Q"], for j € {1,2}. Further, let (C;-‘O"dom(Q”) be
the result of dropping unconditionally-dominated monomial
classes from the set C;(Q"), for j € {1,2}. Then for all
i € Ny, we have that:

U

U 0=
c’ e@{wndom Q")

cecl]
= U

cr Ecg,ondom Q")

o

F(z’) [C//]]
O

As a result of Proposition L.41, for our purpose (of con-
structing a function that would return the multiplicity of
the tuple ¢, in the bag Resc(Q", Dy (Q))) we can refer
to each set C™°"®°™(Q") as the set C™"4°™(Q") for the set
of all nonempty monomial classes for CCQ query Q" and for
family of databases {D g (Q)}, regardless of the identity of
the exact set C(Q") as discussed above.

L.9.2 The Easy Case of Constructing]—'fgl)

The following observation lets us finalize the construction

of the function]-"((3)”) for the case where all elements of the

set C™°"®°™(Q") have different noncopy-signatures. In this

case, we have that the function .7:((8)”) is always a multi-

variate polynomial in terms of the variables in the vector
N and with integer coefficients, on the entire domain A of
the function. The result of Proposition L.42 is immediate
from Propositions L.35, L..39, and L.40. For the definition of
multiplicity monomial for monomial class, see Section L.6.3.

PROPOSITION L.42. Given the set C"°"%°™(Q"") for a CCQ
query Q" and for a family of databases {D g (Q)}, such
that the elements of the set C™"™%°™(Q"") have |C™™%°™(Q")|
distinct noncopy-signazures. Then, for each i € Ny, the car-
dinality of the set FgQ) (Q",Dx(Q)), can be computed
exactly, by substituting the values in the vector N® (specifi-

cally value N;i) as value of variable N;, for eachj € {1,...,m+
w}) into the formula

ECGCnondom (Q//)M [C}

where M(C] is the multiplicity monomial of monomial class

C. a

That is, under the conditions of Proposition L.42, the

function F(Q)

@ is given by the formula

Ececnondom (Q//)M [C}

in the Proposition.
For instance, if we choose the set {C1(Q"),C5(Q")} as
the set C"°"9°™(Q") for Example L.3 in Section L.8, then,

for query Q" of the Example, the function]-'((g;/) is the
following multivariate polynomial in terms of the variables
in the vector N:]—'((g)) = N1 + N>. For the vector N@ of

Example L.3,]-'ég)“) returns the correct multiplicity, 5, of

the tuple t§, = (a) in the bag Resc(Q", Dy (Q)). (For the
details, see Example L.4 in Section L.9.3.)

COROLLARY L.1. In case r < 1, given a CCQ query Q"
and a family of databases {Dx)(Q)}. Then, for each i €

N, the cardinality of the set F(S-tQ) (Q",Dxy(Q)), can be
computed ezxactly, by substituting the values in the vector
N® (specifically value N;i) as value of variable Nj, for each
je{l,...,m+w}) into the formula

ECGCnDndovn (Q//)M [C}

where M(C] is the multiplicity monomial of monomial class
C. m|

PROOF. (sketch) The reason that Corollary L.1 of Propo-
sition L..42 holds is that in case r < 1, either » = 0 holds and
then the copy-signature of each monomial class for Q" is an
empty vector, or r = 1 holds and then the copy-signature
of each monomial class for Q" is either the vector [1] or
the vector [N], for exactly one variable name N across all
the copy-signatures. Then the unconditional-dominance re-
lation of Definition L.11 holds for each pair of the monomial
classes for the query Q" such that the classes in the pair
have the same noncopy-signature, and hence all elements of
the set C"°™4°™(Q") have different noncopy-signatures. []

Observe that it is not obvious how to generalize the state-
ment of Corollary L.1 to the case r > 2. Indeed, even
when w < 1 (and hence we still have exactly one vari-
able name N as the only possible variable across all the
noncopy-signatures)720 the case r = 2 already presents us
with the (theoretical) possibility where two monomial classes
for Q", with the same noncopy-signature, might have respec-
tive copy-signatures [1 N] and [N 1], for which unconditional-
dominance does not hold in either direction.

L.9.3 Illustration
In this subsection we build on Example L.3 (of Section L.8),

to show the construction of the functions }'((g)) ,]-'((g)l >, and
F@"

(@) » for the three queries of Example L.3 and for the
database constructed in Example L.3. We also show how
that database is a counterexample to Q =¢ Q"”, for the
queries @ and Q" of Example L.3. Finally, we continue
our discussion (started in Example L.3) of “the wave of”
the query @, and explore the relationship between that en-

FQ @) g

tity and the multivariate polynomials for @) Fo) >

@)
Fo

20By Proposition L.4, r > 1 implies w > 1, hence from r > 2
and w < 1 we have the exact equality w = 1.

44

EXAMPLE L.4. Recall the queries Q, Q', and Q" of Ex-
ample L.3 (of Section L.8). Recall also the database D g5y (Q)
that we constructed in Example L.3 for the query Q. In this

ezample we build functions ffg;,]—"((g)/), and]—"((g)”), for the

three queries Q, @', and Q" and for the database D g (Q).
We also show how the database Dyiy(Q) is a counterez-
ample to Q =c¢ Q". Finally, we continue our discussion
(started in Example L.3) of “the wave of” the query Q, and
explore the relationship between that entity and the multi-

variate polynomials for]—"((g)), F((g;), and]—"fgl).

Construction of Function]—'((g;.

For the query Q and database D) (Q), we came up in
Ezxample L.3 with four monomial classes CgQ)7 CéQ), CéQ),
and CiQ)

C{Q) and

dominates monomial class CiQ). The reason is,
CZSQ) have identical noncopy-signatures, the copy-signature of
the monomial class CfQ) is [1], and the copy-signature of the
monomial class Cs° is [Na]. (See Section L.9.1 for further
details on unconditional-dominance.) Similarly, monomial
class Cle) unconditionally-dominates monomial class CéQ).
Thus, the set {C£Q>,CQQ)} is the set C™™%°™(Q) as defined
in Section L.9.1.

Then, by Proposition L.42, the function F((S)) is the follow-
ing multivariate polynomial in terms of the variables in the

vector N : .7:((8; = Ny X No+ Na. For the vector N = [2 3]

that we fized in Example L.3,]-'ég)) returns the correct multi-
plicity, 9, of the tuple ty; = (a) in the bag Resc(Q, Dy (Q))-

Construction of Function]-‘éS;),
For the query Q" and database D gy (Q) of Example L.3,
we use the reasoning similar to that for constructing the

function]-'((g)) earlier in this ezample, to obtain the function

]—'((g;) = N1 X N2 + Na. As the multivariate polynomials
.7-'((3; and .F((g),) are identical to each other, they output the

same answer for each N® e N.

Construction of Function F, ((S)l D,

For the query Q" and database D) (Q), we came up
in FExample L.3 with four monomial classes C{Q”), CSQN),
C;Q”>, and CiQ”>. By Definition L.11, monomial classes
C§Q”> and CéQN) unconditionally-dominate each other. (The

Teason is, C%Q) and CSQ) have identical noncopy-signatures,
and have identical copy-signatures.) Similarly, monomial
Q") gnd c@”)
3 4

classes and unconditionally-dominate each other.

Suppose that we choose the set {CﬁQ”),CéQ”)} as the set
C™on®™(Q"Y as defined in Section L.9.1. (See Section L.9.1
for the discussion of possible choices for the set (C"O”d"m(Q”).)

Then, by Proposition L.42, the function .7-'58)”) is the fol-

lowing multivariate polynomial in terms of the variables in

the vector N :]-';g)“) = N1+ Na. For the vector N = [2 3]

that we fixed in Example L.3, f((g;/) returns the correct mul-
tiplicity, 5, of the tuple t5 = (a) in the bag Resc(Q", Dy (Q))-

. By Definition L.11, monomial class CéQ) unconditionally-

Database D) (Q) Is a Counterexample to Q =c Q".
From the different sizes of the sets F;Q (Q,Dg)(Q)) and

F;Q (Q",Dxw)(Q)) on the database Dy (Q), as discussed
earlier in this example, we have that the database D 5 (Q)
is a counterexample to Q =c Q.

; ; (Q) £(Q")
The Wave of Q in the Functions F 5, F 5, -

Recall from Example L.3 (Section L.8) our discussion of
“the wave of” the query Q of that example. By Defini-
tion L.10, the wave of that query @ w.r.t. the family of
databases {D) (Q)} is the monomial N1 X Na.

For the queries Q, Q' and Q" as given in this exam-
ple (and, with respectively identical definitions, in Ezam-

ple L.8), we now contrast the functions F9 and F(Q)

(Q) (Q) 7
the one hand, with the function]-'((Q) , on the other hand.
Recall that]—"(Q) F — = N1 X N2 + Na. Observe that

Q) — 7 (Q)
each of F, (Q) and .7-'((3)) has a term that is exactly the wave
of the query Q (w.r.t. {Dgw()}) that is the term N1 X

Na. In contrast, the function]—'ég)) — = Ni + N2 clearly does

not have a term that is the wave N1 X Nz of the query Q
w.rt {Dgw(Q)}

L.9.4 Beyond the Easy Case: Example

In this subsection we exhibit a CCQ query @, such that
the function .7-"((8))7 w.r.t. the family of databases {Dg) (Q)},
cannot be computed using the results of Section L.9.2, specif-
ically using Proposition L.42. This example motivates the
development, in Section L.9.5, of a more general (as com-
pared to that of Section L.9.2) approach toward constructing
the function F; (Q> for CCQ query Q" and family of databases

{Dyo (@)}
EXAMPLE L.5. Let CCQ query Q be as follows.

Q(Xl) — T(Xlﬂ)/l7Y21X2§Y3)a
{)/17Y27Y37n}'

T(leyla)/%X:i;Y‘l)a

Toward Constructing Function]—‘((g)) for the Databases
{Dyw (Q) }

We show how to develop a database in the family of databases
{Dxw (Q)} for the query Q, and start constructing function
]—"fg)) w.r.t. the databases in the family. (See Example L.6
for the completion of the construction.)

We begin by following Section L.3 of the proof of Theo-
rem 4.1. Fiz ani € Ny. Let the vector N9 | for this fized i,
of values of the variables in the vector N = [N1 No N3 N4,
be N = [1 2 3 5]. Here, each N; in N is generated for
the variable Y; of Q, for j € {1,2,3,4}. We use vo(X1) =
a (hence t = (a)), vo(Xz2) = b, and vo(X3) = c. Let
S@ = {e}, and let Sgi) = {f,g9}. These setting generate,
for the fized i, the database Dy (Q) = { r(a,e, f,b;3),
r(a,e,g,b;3), r(a,e, f,¢5), r(a,e,g,¢;5) }. We will refer
to the ground atoms in the set Dy (Q), from left to right,
as di through ds. Denote by hi the first subgoal of the
query Q, and by hs its second subgoal. By construction of

Dy (Q), we have that 3479 [d1] = 91V [da] = ha, and

that %\ lds] = v37H D [da] = ha.

45

We now follow Sections L.4 through L.9.1 of the proof of
Theorem 4 1, to construct the monomial classes for the func-

tion .7-"Q), for the query Q and for the database D g5 (Q)
as generated above in this example. As a result of the con-
struction steps,?' we obtain four monomial classes for the

query Q:
o Monomial class C(Q) has noncopy-signature [Y1 Ys] and

copy-signature [N3 Ns]; it contributes to the set T'g i
(Q, Dg)(Q)), with columns (from left to right) X1 Y1
Y> Ys Y, nine tuples (a,e, f,1,1) through (a,e, f,3,3)
(tha’t iS, tuples (a7 €, f7 17 1)7 (a, €, f: 17 2)5 (Cl, €, f7 17 3)’
(a7e’f72’ 1)) et (a’e7f7372)7 (a’e7f’3’3))7 as well as
nine tuples (a,e, g,1,1) through (a,e,g,3,3).

o Monomial class C{?) has noncopy-signature [Y1 Ya] and

copy-signature [N3 Ni|; it contributes to the set FEQ
(Q: DJ_f(i) (Q)) ﬁf‘teen tuples (a7 €, f7 17 1) throth (CL, €, f7
as well as fifteen tuples (a, e, g,1,1) through (a, e, g,3,5).
o Monomial class C(Q) has noncopy-signature [Y1 Ya] and

copy-signature [Na Ns|; it contributes to the set FSQ

(Q. Dy (Q)) fifteen tuples (a,e, f,1,1) through (a, e, f,5

as well as fifteen tuples (a, e, g,1,1) through (a, e, g,5,3).
o Monomial class C(Q) has noncopy-signature [Y1 Y] and

copy-signature [Ny Ni); it contributes to the set FSQ
(Q, Dy (Q)) twenty five tuples (a,e, f,1,1) through
(a,e, f,5,5), as well as twenty five tuples (a,e,g,1,1)
through (a, e, g,5,5).

While all four of the above monomial classes have the
same noncopy-signature, none of the classes unconditionally
dominates (see Definition L.11) any other monomial class

in the set {C{?), CéQ)7 C§Q>, (1. -

L.9.5 The General Case of Constructing]—'((g))

In this subsection we address the construction of the func-
tion }'((S)) for the general case, as opposed to the case con-
sidered in Section L.9.2. That is, we introduce an approach
to computing, for a query Q" and database Dy (Q), the
cardinality of the set F(té)(Q",Dmi) (Q)) — and therefore
the multiplicity of the tuple ¢, in the bag Resc(Q", Dz (Q))
— for those cases where at least two distinct elements of the
set Co™do™ (") could have the same noncopy-signature.
The approach introduced in this subsection is applicable to

constructing the function F, (Q " for all cases, including the
special case of Section L.9.2.
Consider Example L.5 of Section L.9.4: For the CCQ

query @ and for the family of databases {D) (Q)} of the

example, the set C(Q) = {C{?,c{? cl? c{?} has four
monomial classes with the same noncopy-signature [Y1 Y2]
and with the respective copy-signatures [N3 N3], [N3 N4,
[N4 N3], and [Ny Ny4]. Clearly, no unconditional-dominance
of Definition L.11 holds for any pair of monomial classes in
the set C(Q). Hence the set C"°"°™(Q) (see Section 1..9.1)
is the set C(Q). Further, as the set C™*"“°™(Q) does not sat-

isfy the conditions of Proposition L..42, the function F, ((g)) for
the example cannot be constructed using Proposition L.42.

2IThese steps are outlined in significant detail in Exam-
ple L.3, albeit using queries that are different from the
queries of the current example.

3,5),

73)7

Indeed, it is easy to see that .7:((3; for Example L.5 is not
the sum of the multiplicity monomials for the elements of
the above set C"°"4°™(QQ). Specifically, Example L.5 shows
that w.r.t. the fixed database D ;) (Q) used in the exam-
ple, each element of the set C"°"9°™(Q) contributes to the
set F(tf*;’)(Q, Dy (Q)) the same tuple (a,e, f,1,1).

We summarize that the problem with the general case con-
sidered in this subsection is that the multiplicity of the tu-
ples contributed, to the set I‘(t*Q)(, ..), by distinct monomial
classes for the query in question, cannot always be added up
to obtain the correct total contribution of the classes to that
set. At the same time, we know from Proposition L.25 that
for each ¢ € N4, the size of the set F“a)(Q”,DNu) (Q)) is
the size of the union U;L; r® [CJ(-Q”)}, over all the nonempty

monomial classes C§QH), ey Cfﬁ”)”) for the query Q" w.r.t.
the family of databases {Dg) (Q)}. We also know, from
Proposition L.35, that for each pair (CSLQN) , C},QN)) of distinct
monomial classes among C%Q”, ceey Cff‘f”, such that C,(LQ”)
and Cz()Q”) have distinct noncopy signatures, it holds that the
intersection of the sets F(i)[CleN)] and ' [CéQN)] is empty
for each ¢ € N1. Thus, to obtain the function }'58;/) for the
general case, it remains to consider the (perhaps nonempty)
intersections of the sets F(i)[CﬁQ”)] and ' [CéQ”)] only for
those pairs (CﬁQ”),CéQ“)) where CﬁLQN) and C,(,Q”) have the

same noncopy signature.

Thus, the two last missing links in (finally) constructing
the function F, ((3)) for the general case, are based on the fol-

lowing two results, Propositions L..43 and L.44. Example L.6
in Section L.9.6 provides an illustration of the construction

of the function]—"((g)) for the query @ and for the database
of Example L.5 in Section L.9.4.

ProposITION L.43. Suppose the monomial classes in the
set C[Q"] = {CﬁQ)L, C,(fg)} are indezed (by 1, 2, ...,
n*) in such a way that for all triples (Cj(f)) C](2Q), C,Z(g)),
with 1 < j1 < j2 < j3 < n™, it cannot be that (a) Cj(?) and
c! ') and

CJ(-;Q”) have different noncopy signatures. Further, let n €
{1,...,n"} be such that n is the number of distinct noncopy
signatures of all the elements of the set C[Q"]. Finally, let

ko = 0 and, for this value of n, let 1 < k1 < ke < ... < kyp

f) have the same noncopy signature, and (b)

= n" be such that for each j € {1, 2, ..., n}, all monomial
classes C,(c?_l)ﬂ, C,(C?_l)JrQ, e C,(C?) have the same noncopy

signature.®?
Let i € Ny. Then the cardinality of the set T*@)(Q",

2ZAll of the above conditions together just say that the ele-
ments of the set C[Q"] are indexed in such a way that, in

1" 1"
the sequence CgQ), ceey Cfl?), we first have all the mono-
mial classes with some noncopy-signature N.S1, then all the
monomial classes with a different noncopy-signature NSs,
and so on. That is, for each noncopy-signature, NS, of at
least one element of the set C[Q"], all monomial classes in

C[Q"] that have the noncopy-signature NS are “grouped to-
gether” in the sequence C§Q), e C’,(f;2).

46

D5 (Q)) is given exactly as the sum

n—1 (kj41)—(kj)
@@
U e
j=0 1=1
(Here, each C((,?/),i_l referenced in the formula is an element
J
of the set C[Q"] = {C\9), ...,Cfg)}.) O

(As usual, we denote by |S| the cardinality of the set S.
The result of Proposition L.43 is immediate from Proposi-
tions L.25 and L.35.)

Now we will be able to compute correctly the function
]:((g;/) for each ¢ € Ny, as soon as we are able to evaluate
the formulas of the form

(kj+1)—(kj)

U

=1

(@) 1(Q")
r [C(kj)-H] |7

1)
as introduced in Proposition L.43. We compute the value of
such formulas using the basic inclusion-exclusion principle
for computing the cardinality of the union of several sets.
All that the inclusion-exclusion principle requires as inputs
is the cardinalities of the intersections of the relevant (groups
of) sets. (We handle the case of determining the size of each
individual set, S, in the input to the cardinality-of-union
formula, as the special case of “intersection of S with itself.”
As will be clear from the statement of Proposition L.44,
this special case is captured correctly — as expected — by
Proposition L.30.)

Thus, our next result, Proposition L..44, is the final miss-
ing link in the construction of the function .7:<g>”), as Propo-
sition L.44 tells us how to compute correctly the cardinali-
ties of the intersections of sets of the form I'(*) [C(Q”)], using
only the elements of the vector N, that is only variables Ny
through Ny,+. and nothing else. (More precisely, Proposi-
tion L.44 gives us a formula where, for each specific i € N,
we can compute the cardinalities of all the requisite inter-
sections by using the specific values, in N for this value
i, of the respective variables in N. The formula itself is in
terms of N only, and does not use N(i).)

For the formulation of Proposition L.44, assume that in
the set C[Q"] = {C%Q”)7 ey C,(f;?“)} there exist (at least) k
monomial classes, for some k € {1,...,n*}, whose noncopy
signature is a given vector = of length m. Suppose that
for some fixed ¢ € N4, we want to compute the cardinality
of the intersection of the sets I'¥ (using the notation of
Proposition L.43) for exactly these k elements of the set
C[Q"]. To make easier the notation in the formal results to
follow, assume w.l.o.g. that the elements of the set C[Q"] are
indexed in such a way that for all these chosen k elements
of C[Q"] that have noncopy-signature =, these k& monomial
classes are the first k elements of the set C[Q"]. (That is,
these kK monomial classes are the elements C%Q”), RN C,EQH)
of the set C[Q"].)

Now let us refer to the vector Z as ®w! . (By our index-
ing of the elements of the set C[Q"] , as introduced in the
previous paragraph, the noncopy-signature of the monomial

class C%Q) is exactly E.) The reason that we want to refer

Q"

to the vector = as @ﬁl is that we want, in the formal
results to follow, to use the notation I () introduced in
3,1

Section L.6.3.

We also use the following notation of Section 1.9.1: For
an arbitrary monomial class C;QN) € {CiQ”), ey C,(CQ”)}7 for
the k € {1,...,n"} fixed as explained above, in case where
r > 1 we denote the elements of the copy-signature vector
V) s Vi, Viai, - -
the copy-signature vector of each of CiQ”), RN C,(CQN) is the

empty vector by definition.) Further, in case r > 1, for
Cl(Q”)

,Virm]. (In case where r = 0,

the element V) of the vector ®.]
s € {1,...,r}) and for an i € N}, we denote by Vj(si[)l] (a)
the constant 1 in case Vj,; = 1, and (b) the value Néi)

from the vector N in case Vjsp is the element N, for an
uwe {m+1,...,m+ w}, of the vector N.
We are finally ready to phrase the final formal result needed

| (for an arbitrary

in the construction of the function]-'((g)”). As has been noted
earlier in this subsection, Example L.6 in Section 1..9.6 pro-
vides an illustration of the construction of the function F, fg))
for the query @ and for the database of Example L.5 in Sec-

tion L.9.4.

PROPOSITION L.44. In the setC[Q"] = {CfQ”), ...,Cff”)},

let (at least) the first k elements, for some k € {1,...,n"},

have the same noncopy-signature <I>$f
bitrary © € Ny, the cardinality of the set

. Then, for an ar-

k
ﬂ r® [CgQN)]

s=1

is provided by substituting the constants in N as the values
of the respective variables in N, into the formula:

o II o, in case where r = 0; and
@1
o II o x 1z min(Viup), Viapa), - -
é’ﬂl
where r > 1.

Viug]), in case

O

ProOOF. For the case where r = 0, observe that for each

pair of monomial classes among C{Q”), e C,(CQ”), the mono-
mial classes in the pair unconditionally dominate each other,
by Definition L.11. Therefore, the result of Proposition L.44
is immediate from Proposition L.36.

For the case where r > 1, the result of Proposition L.44
is immediate from Lemma L.1. [

To formulate Lemma L.1, we use the following terminol-
ogy. For an element C‘®") of the set C[Q"] = {C%QN)7 .
Cfl?”)}, and for an i € Ny, consider the set I'(*) [C(Q”)]. In
case where m > 1, let an m-tuple t?*) be an arbitrary tuple
in the projection of the set T([C(®™)] on all the multiset
noncopy variables of the query Q" (in some arbitrary fixed
order of these variables). Then we say that z > 1 tuples ¢1,
to, ..., ts in the set T [C(Q”)] agree on the multiset-noncopy
projection t(M), if we have that the set projection of the sub-
set {t1,t2,...,t.} of the set I'¥ [C(Q”)] on all the multiset
noncopy variables of the query Q" (in the same fixed order)
is a singleton set {t(*)}. In case where m = 0, we say that
(by default) all the tuples in the set T'® [C(Q”)] agree on the
multiset-noncopy projection that is the empty tuple.

LEMMA L.1. Suppose r > 1. In the set C[Q"] = {C§Q”),

e C,(L?N)}, let (at least) the first k elements, for some k €

Q"
{1,...,n"}, have the same noncopy-signature @il . Let
i€ Np. Let t™) be an arbitrary tuple in the projection of
the set

k
s=Tr20c®"
s=1
on all the multiset noncopy variables of the query Q”, in
case m > 1, and let t*) be the empty tuple in case m = 0.
Then, for the number K of all those tuples in the set S =

ﬂlzzl F(i>[C§Q,/)} that agree on the multiset-noncopy projec-
tion t(M), we have that the value of K is provided by sub-
stituting the constants in N as the values of the respective

variables in N, into the formula
K =11 min(Viuu), Vi) -« - Viale)-
O

PROOF. (sketch) Assume a fixed ¢ € Ny. The proof of
Lemma L.1 is immediate from Proposition L.27, which ex-

hibits the structure of the projection of the set T'(*) [C(Q”)]

(for an arbitrary monomial class c(Q") in the set {C§Q”),

e Cfl?//)}) on the set of all copy variables of the query
Q", and from Proposition L.28, which explores the “symme-
tries” of the set I'(*) [C<Q”)] on the databases in the family
{Dxu (Q)}. Specifically, we have that:

e The values in the projection of the set I [C(Q”)} on
the set of all copy variables of the query Q" are natural
numbers in a specified range according to the copy sig-
nature of the monomial class C(?"). More precisely, let
the copy signature for the monomial class c(@") be Vi1
Vj2 ... Vjr]. Then for each uw € {1,...,r}, each value
in the projection of T'(*) [C(Q”)] onto the copy variable

miw of Q" is a natural number belonging to the set

{1,..., Vj(i)}. Moreover, for each u € {1, ...

" ,7} and for

each value v, € {1,..., Vj(i)}, the tuple (v1,v2,...,0,)
is in the projection of I'” [C(Q”)} onto all the copy vari-

ables Y 1, Yo io, ..., Yo . of Q" in this order.
: : Q" Q"
e Consider now the monomial classes C;* 7, ..., C;,

in the statement of Lemma L.1. For the fixed i € N4
and for each u € {1,...,r}, denote by Z, the value
min(Vj:)[l]7 VJ'(:)D]’ e, Vf:)[k]) Then we can show that:
— For each w € {1,...,r} and for each value v, €
{1,...,Z.}, the tuple (v1,v2,...,v,) is in the pro-
jection of the set ﬂle r® [CEQ)] onto all the copy

variables Y, 1, Yol 1o, ..., Yoo of Q”, in this or-
der; and

— Whenever, for at least one u € {1,...,r}, the value
vy 18 not an element of the set {1,...,Z,}, then

we have that the tuple (v1,v2,...,v,) is not in the
projection of the set (*_, r@(c{?"] onto all the
copy variables Y 1, Yo o, ..., Yo, . of Q", in
this order.

O

At the conclusion of this subsection, we observe that by
the inclusion-exclusion principle for unions of sets, the value

: Q")
of the function f(Q>

of the set @) (Q", Dz (Q)), can also be computed exactly
using the set C™"™%°™(Q") of Section 1..9.1. That is, we can

use the set C"°"4°™(Q"), rather than the set {CiQH>, e

Cfﬁz”)} of all nonempty monomial classes for query Q" and
database D gy (Q) (cf. Proposition L.43):

for each i € N4, that is the cardinality

PROPOSITION L.45. Suppose the monomial classes in the
set Cendem(Q"y = {CﬁQ”), ceey C;SQN)} are indezed (by 1,
2, ..., p) in such a way that for all triples (C;?,/), C;.f”)
CJ(?I/)), with 1 < j1 < j2 < j3 < p, it cannot be that (a)
o@"

J1

CJ(IQH) and CJ(SH) have different noncopy signatures. Further,
let n € {1,...,p} be such that n is the number of distinct
noncopy signatures of all the elements of the set C[Q"]. Fi-
nally, let ko = 0 and, for this value of n, let 1 < k1 < k2
< ... < kn = p be such that for each j € {1, 2, ..., n},

Q") Q") @
j—1+17 ij71+2! sy ij have the
same noncopy signature.?®

Let i € Ny. Then the cardinality of the set T*@)(Q",

D5 (Q)) is given exactly as the sum

I

and CJ(?”) have the same noncopy signature, and (b)

all monomial classes C,i

1 (kj+1)—(kj5)

U

=1

n

RIRICHS!
F(>[c(kj)+l] | .

<.
Il
o

(Here, each C((,%)l_l

of the set Cromdom (@) = {¢@) ... ¢@Y.) O

referenced in the formula is an element

Observe that Proposition L.42, which constructs the func-
tion .7:((3)”) for a special “easy” case as considered in Sec-
tion L.9.2, is an immediate corollary of Proposition L.45
and of the definition of the set C"°"4°™(Q").

For an illustration, consider again the function fég)) of
Example L.4 in Section L[.9.3. When we construct func-
tion .7:((3))
the inclusion-exclusion formulae of this current subsection
correctly account for the fact that the I'”)() for the mono-

using all four monomial classes of the example,

mial class CgQ) is a subset of the I'”() for the monomial
class C§Q> on all the databases in question. We observe the
similar effect when considering how the inclusion-exclusion
formulae account for the relationship between the mono-
mial classes CéQ) and CiQ) of the example. Hence, by the
inclusion-exclusion principle for unions of sets, the construc-
tion of the function }'((g)) using all four monomial classes of
the example results in the same function as the construction
using the set C"°"%°™((), as shown in the example.

23Gimilarly to the condition of Proposition L.43, all of the
above conditions together just say that the elements of the

set C™°™°™(Q") are indexed in such a way that, in the

sequence C§Q”>, RN CéQ”>7 we first have all the mono-
mial classes with some noncopy-signature N.S;, then all the
monomial classes with a different noncopy-signature NS,
and so on. That is, for each noncopy-signature, NS, of
at least one element of the set C™°"°™(Q"), all monomial
classes in C"°"%°™(Q") that have the noncopy-signature NS

are “grouped together” in the sequence CfQ”), ey C;(,Q”).

48

L.9.6 lllustration of the general construction

In this subsection, we provide an illustration of the results
of Section L..9.5, by following the construction of the function
.7-"((8; for the query @ and for the database of Example L.5 in
Section L..9.4. As discussed in the beginning of Section L.9.5,
the construction cannot be carried out correctly when using
just the results of the “easy-case” Section L.9.2.

EXAMPLE L.6. We refer to the query Q and database
D) (Q) of Example L.5 in Section L.9.4. In this example
we construct the function]—"((g)) for that query @Q and for the
entire family of databases {D gy (Q)}, ¢ > 1. In addition,
we illustrate the correctness of the construction, by using the
multiplicity of the tuple t¢, of Example L.5 in the combined-
semantics answer to the query @ on the specific database
Dy (Q) of Example L.5.

Recall that the query Q has four nonempty monomial classes,
C§Q), C§Q>, CéQ), and CiQ), w.r.t. the family of databases
{Dgxw)(Q)}. (Refer to Example L.5 for the details.) Fach
of the monomial classes has noncopy-signature [Y1 Yz2]; the
copy-signatures of the four monomial classes are [N3 Ns],
[N3 Ni], [Na N3], and [Na Ny, in this order.

To construct function .7-"((8)) for the query Q and for the
family of databases {Dg)(Q)}, we use Proposition L.43,
to establish that for each i € N4, the cardinality of the set
F(tr’»’)(Q,Dmi)(Q)) is given exactly as the sum

4
L UJr?e 1
1=1

For greater succinctness of the formulae to follow, we label
more compactly each of the sets TV [C\D)] through T [C{?]
used in the above formula, as follows: Denote T [C§Q)] by
A, TOECSD] by B, T[] by C, and TP[C?D] by D.
Then, by the inclusion-exclusion principle for unions of sets,
we have that the above union formula can be rewritten as
follows:

|[AU B UC U D|=|A|+|B|+|C|+|D|—]ANB|—|ANC|
—|AND|—|BNC|—|BND|—|CND|+|ANBNC|+|ANBND|

+/AnCND|+|BNCND|-|AnNnBNCND].

We now use Proposition L.44 to obtain the cardinality
of each of the set intersections in the right-hand side of
this formula. First, observe that the multipliers 11 (@ for

Pl

1 €{1,2,3,4}, are all equal to each other, and are each the
product N1 X Na. (This is due to the fact that all the four
monomial classes have the same noncopy signature.)

Thus, what remains to be done, in the construction of the

formula]:((g)), is to compute the products

05—y min(Viung, Viugals - - > Viuk))
of Proposition L.4/4 for all the above set intersections, for all
k between 2 (for |ANB|, |ANC|, ..., |CND|) and 4 (for |AN

BNCNDJ). (For convenience in the statement of Proposi-
tion L.44, the indexing in the product TI%_, min(Viup, Vul2)s
.-y Vjupw)) assumes that each time we look at the cardinality
of the intersection of the sets Fm() for the first k consecutive

elements of the set {C§Q), ce C£Q>}. That is, the statement
of the Proposition assumes reindering of the elements of the
set {C\9, ..., C\VY “as needed.” This assumption needs to
be kept in mind when understanding the consecutive indez-
ing by u in the formula TI%_, man(Viun), Viugls - - - Viulk))
wn this example.) Then, by multiplying each of these prod-
ucts by N1 X Nz and by “putting the multiplication results
back correctly” into our inclusion-exclusion formula for the
cardinality of the union of Proposition L.43, we will obtain
the expression for the function]-—((g)).

We make the basic observation that each min() expression
for this example will result in N3 (when the only value in the
min expression is N3 — that is, when all arguments of the
min expression are the same variable N3), in Ny (when the
only value in the min expression is Nu), or in min(Ns, Ny)
(in all the remaining cases, regardless of the number of times
each of N3 and Ny is an argument of the min expression).
To make the writeup more concise, we refer to the latter
minimum expression as Z. (That is, we denote by Z the
expression min(Ns, N4).) In addition, we denote by T the
term N1 X Na3. As the union expressions of Proposition L.43
are uniform (as expressed using the elements of the vector
N®) across all values of i € Ny, in the remainder of this
example we switch to the elements of the vector N as basic
blocks in the construction of the formula]-'ég)) , and refrain
from clarifying all the time that the values for specific i can
be obtained by substituting the elements of the vector N®
for the respective elements of N in the expressions that we
are to obtain.

By the formula of Proposition L.4/4, we obtain that:

|A] = T x (N3)%; |B| = |C| = T x N3 x Nu;
|ID| =T x (N4)?; |ANB| = |ANC| =T x N3 x Z;
|IBND|=|CND|=TxNsxZ .

Further, it is easy to check that each of the remaining cardi-
nalities, in the inclusion-exclusion formula for |AUBUC U
D, equals T x Z*.

Thus, we obtain that

(JAUBUCUD|)/T = (N3)*>4+2N3Ny+(N4)*—2ZN3—2Z Ny+Z°.

That is, we obtain that, by Propositions L.43 and L.44,

@ _
Fo) =

Recall that Z here denotes the expression min(Ns, Ny).

NiNox[(N3)>4+2N3Ny+(Ny)*—2ZN3—2ZNy+Z7).

Observe that in this formula for]—"((3)), for each of the terms

—2N1 X N2 X min(N37N4) X Ng,
—2N1 X N2 X min(Ng,N4) X N4, and

+N; X Na X (min(Ng,N4))2,

we have that none of the three terms corresponds to mono-
mial classes for the query Q. Thus, none of these terms is
“backed up” by assignments from the query Q to any database
Dy (Q)-

Due to the presence of the term min(Ns, Ny) in the above
expression for the function .7:((8;, the function is not a mul-
tivariate polynomial (in terms of the elements of the vector

49

N) on the entire domain N of the function. At the same
time:

o Foralli € Ny such that Néi) < Nii) in the vector NV,
we have that (after we substitute Z = min(N3, Na) =
N3 and then cancel out in the resulting formula) the

: (Q)
function]:(Q>

multivariate polynomial in terms of the elements of the
vector N:

on this subdomain of N is the following

F9 = Ny x Na x (N4)2

@ =

o Similarly, for all i € Ny such that N3(i) > Nf) n

the vector N, we have that (after we substitute Z =

min(Ns, Ni) = Ny and then cancel out in the resulting

formula) the function .F((g)) on this subdomain of N is

the following multivariate polynomial in terms of the

elements of the vector N:

‘7‘—53)) = N1 X N2 X (N3)2.

Specifically, for the vector N = [1 2 3 5] of Ezample L.5,

we have that N3 = 3 < N4 = 5. Hence, for this i we have

that .7:((8)) (N = Nl(z) X NQ(Z) X (Nil))Q. Observe that the
result of evaluating this expression]:((3)) (N(i)) for this i is
1 x 2 x (5)% = 50. This value 50 is the correct multiplicity of
the tuple t, = (a) of Example L.5 in the combined-semantics
answer to the query Q on the specific database D g (Q) of
Ezxample L.5. (Please refer to Example L.5 for the specific
50 tuples in the set I's(Q, Dg) (Q)) that generate the tuple
to in the answer to the query on the database.) a

L.10 For the @ and @’ such that ©Q =- @', When
Does @’ Have the Wave of Q?

In Section L.9 we learned how to construct, for CCQ
queries @ and Q" as specified in Section L.2.1, a function
.7:((8)//). For each i € N4, the function .7:((8;/) returns the
multiplicity of the tuple ¢, in the bag Resc(Q", Dy (Q))-
The main result of this current section, Proposition .47,
shows that, whenever

(2) Q=c Q' for CCQ queries Q and @', and

(b) @ is an explicit-wave CCQ query (as specified by Defi-
nition 4.1),

then there exists a (nonempty) monomial class 9 for the
query Q' and for the family of databases {D) (Q)}, such

that the multiplicity monomial of CﬁQ/) is “the wave of the
query Q7 (as specified in Definition L.10). We show the re-
sult of Proposition L.47 using the properties of the functions

.7-"58)) and .7:((3)/). The proof of Theorem 4.1 is immediate
from Proposition L.47 and from Propositions L.33 and L.34
of Section L.7.

As shown in Example L.5, hen the above condition (b) (of
Q@ being an explicit-wave query) is not satisfied, then such
a monomial class CiQ,) does not have to exist, and hence
a SCVM from the query @’ to the query @ does not have
to exist (as demonstrated by Example L.5 even in case
Q=cQ.

We begin the exposition by stating a useful auxiliary result
in Section L.10.1.

L.10.1 Egquivalence of Multivariate Polynomials

PrOPOSITION L.46. For a positive integer n, let X1, X2,
..., Xn be n distinct variables, where each variable accepts
values from (at least) an infinite-cardinality subset of the
set 7 of all integers.* Let each of P1 and P2 be a finite-
degree multivariate polynomial in terms of the variables X1,
..., Xn and with integer coefficients. Further, assume that
(w.l.o.g.) P1 # 0. Then P1— P2 = 0 if and only if for each
term H?:le'i, where 1; € {0} UNy for al?® i € {1,...,n},
the term has the same integer coefficient in P1 and Py. O

ProoOF. If: Immediate from the definitions.

Only-1If: The proof is by contradiction: Assume that for
the finite-degree multivariate polynomial P; — Ps, call it P,
we have that P = 0. Assume further that there exists a term,
call it T, of the form H?:lei, such that the polynomial
P has a nonzero integer coefficient for 7. We will show
that in this case, P = 0 cannot hold, hence we arrive at a
contradiction with the assumption P = 0.

Case 1: T is the only term with nonzero coefficient in the
polynomial P, and I; = 0 for all 4 € {1,...,n} in 7. Then
P is equivalent to a nonzero-valued constant function, and
the contradiction with the assumption P = 0 is immediate;
Q.E.D.

Case 2: There exists a nonzero-coefficient term in P, call
this term 77, such that there exists a j € {1,...,n}, where
the power [; of variable X; in 7" is a positive integer. Then
for each X; such that [€ {1,...,n} — {j}, fix one arbitrary
integer value z; # 0 in the domain of X;. (Clearly, it is
possible to find a nonzero integer domain value for each X;.)
The result of substituting all the values x;, I € {1,...,n}
— {Jj}, into the polynomial P is a finite-degree univariate
polynomial with integer coeflicients, call it P(x,), in terms
of the variable X; and with at least one term with a nonzero
(integer) coefficient. (One term with a nonzero coefficient in
P(x;) results from T'.) By our assumption that P = 0,
the value of P¢ X;) equals zero on the entire infinite integer-
valued domain of the variable X;. This is impossible, hence
we have arrived at a contradiction with the assumption that
P=0;QED. O

L.10.2 Query Q' Has the Wave of Q

We now state and prove the main result of Section L.10.
PROPOSITION L.47. Let Q and Q' be two CCQ queries,
such that
(a) we have that Q =c Q’', and
(b) Q is an explicit-wave CCQ query.

Then for the query Q" and for the family of databases {D 5 (Q)},

’
there exists a nonempty monomial class C,EQ), such that the

multiplicity monomial of Cin) is the wave of the query Q.
O

The proof of Proposition L..47, to be given in Section L.10.8,
hinges on several results, which we now proceed to introduce.

24For different variables X;, Xj, i # j, in the set {X1, ...,
Xn}, the domains of X; and of X; may include nonidentical
(infinite-cardinality) subsets of the set Z.

When I; = 0 for all s € {1,...,n} in the term H?lefi, we
set H?Zlei to the constant 1.

50

For the entire exposition, please keep in mind that through-
out the proof of Theorem 4.1, all monomial classes of all

queries, as well as each of the functions F, fg)) and]-'((g),), are

defined w.r.t. the family of databases {Dyg)(Q)} for the
fixed input query Q.

L.10.3 Multivariate polynomials on total orders

Recall that in general, for CCQ query @' and for the fam-
ily of databases {D g (Q)} (for CCQ query @), the func-

tion _F((g)”) for Q" and for {D g (Q)} is not a multivariate
polynomial on its entire domain N. (See Example L.6 for
an illustration.) At the same time, it turns out that the set

N can be represented as a union of infinite-cardinality sets,

such that for each set S in the union, the function .7-"((8)”),

for all the elements of the set S, can be rewritten equiva-
lently as a multivariate polynomial in terms of the elements
of the vector N and with integer coefficients. (That is, for

each N € S, the value of]-'((S)”)(]_fm) can be obtained by

substituting the values in N () into the relevant multivari-
ate polynomial in terms of the elements of the vector N and
with integer coefficients.)

In fact, as we know already for the case » < 1 (that is,
for the input CCQ query @ that has r = [Mcopy| < 1), the

function]-'ég)) for this case is a multivariate polynomial

in terms of the elements of the vector N and with integer
coefficients, on the entire domain N of the function. (See
Section L.9.2.) Hence we proceed to prove the above claim
for the case r > 2. Recall from Proposition L.4(iv) that for
all » > 0 we have that w > 0. We conclude that whenever
r > 2, the vector N has at least one element in the sequence
Nmt1 Npgo Noptw. Of these cases, we first consider
the special case w = 1, and then the general case w > 1.

The special case: r > 2 and w = 1.

We first consider all those cases (for the input CCQ query
Q) where r > 2 and w = 1. In all such cases, the copy
signatures of all relevant monomial classes (for both @ and
Q") are composed, by their definition, of the elements of
the set {1, Nj41}. Clearly, then, each min expression of
Proposition L.44 in terms of elements of all the relevant copy
signatures (in each case where w = 1) evaluates to either
1 or Np41, independently of the value N,(QH of Npypy1 in
each vector NV e N. (Recall that 1 < Nf,fl_l holds for all

vectors NV by definition of the set N.) Using the results
of Section 1..9.5, we conclude that in all cases of query @ for
which 7 > 2 and w = 1, the function .7-"((8)”) for each such
case is a multivariate polynomial in terms of the elements
of the vector N and with integer coefficients, on the entire
domain N of the function.

The general case: r > 2 (and w > 1).

Now consider all those cases (for the input CCQ query Q)
where r > 2, and therefore, by Proposition L.4(iv), w > 1.
We will define the sets S suggested above (such that A is
a union of such infinite-cardinality sets) using total orders
on the elements of the vector N, = [1 Nmt1 Nmgo
Nptw |- By w > 1, we have that the vector N, has at least
two elements. (Note: We will see that in the above special
case of r > 2 and w = 1, the set A is a union of only one
such set S.)

Let vector K, = [1 K1 K2 ... Ky] bean arbitrary fixed
permutation of the vector N, that satisfies the condition
that the first element of K, is always the constant 1. (That
is, in each vector K, we have that the sequence K; K>

. K, is a permutation of the sequence Ny,+1 Np42
Np+w in the vector Nw.) We refer to each such vector Ky,
as a copy-variable-ordering vector for the vector N.

Let a total order O on the set {1, Nm+1, Nm+2, ...,
Nptw} be defined as the reflexive transitive closure on the
relation { (1, K1), (K1, K2), (K2, K3)L' e (K5, K1), .o
(Kw-1,Kw) }, using the fixed vector K,,. (We interpret the
pair (1, K1) in O as 1 < K;. Further, whenever w > 2, for
1 <j < w-—1, we interpret the pair (K;, K;+1) in O as
K; < Kj+1. That is, O is the < relation.) Then we say that
the vector Ky, determine§ the total-order relation © on]_fw,
and use the notation @») for that total-order relation O.

Now for a vector K, as above and for an arbitrary vector
N® e N, we define the interpretation of each element of
K. w.r.t. N(i>, as follows:

(1) We define the interpretation of the first element of K,
(that is, of the constant 1) to be the constant 1; and

(2) Foreach j € {2, ..., w+1}, let the jth element of the
vector K, (that is, K;_1 19 our notation for the vector
K,,) be a variable Ni, of N, for some k € {m+1, ...,
m + w}. Then the interpretation of K;_1 w.r.t. N®
is the value ngi) in N of the variable Ny in N. We
denote this interpretation of K;_1 w.r.t. N as K.

EXAMPLE L.7. For m = 1 and for w = 3, the vector
Nw ZSNw:[l N2 N3 N4} Letf(w ::[1 N3 N4
Ny]. Let N be [5 3 7 6]. Then the interpretation of
the elements o_f the vector K, w.r.t. the vector N@ js as
follows: 1 in K., is interpreted as 1, the element K1 = N3
in Ky is interpreted as Kii) = 7, the element K3 = Ny in
K., is interpreted as Kéi) = 6, and, finally, the element K3
= Ny in Ky is interpreted as Kéi) = 3. O

Now suppose that we are given a vector K, as defined
above, and are given a vector N € V. Then we say that
the vector N agrees with the total order Ow) if and only
if the interpretation of the elements of the vector K,, w.r.t.
the vector N results in all (i.e., in only) true inequalities,
on the set of natural numbers, in the reflexive transitive
closure of the relation { (1, K\"), (K", k"), (K{?, K",
e (KJ(.”,K](QI), o (KW KDY Y. (We interpret the
pair (1,K£i)) as 1 < K{i). Further, in case w > 2, for each
je{l,...,w—1}, the pair (K;Z),K](Ql
K](21 .) The latter relation is obtained
by replacing each K; with KJ@, for j € {1,...,w}, in the

relation that defines the total order (9([_(1”), that is in the
relation { (1,K1), (Kl,KQ), (K27K3), ey (Kw—lwa) }

) in this relation is

interpreted as K J(-i) <

EXAMPLE L.8. For the vectors K., and N® of Exam-
ple L.7, we have that the reflezive transitive closure of the
relation { (1,K§i))7 (Kfi),Kz(i)), (Ké”,Kéi)) }, that is of
the relation { (1,7), (7,6), (6,3) }, has elements violating
true inequalities on natural numbers. For instance, one of
the violations comes from the pair (Kii),Kéi)) in this rela-
tion, that is from the pair (7,6). (Recall that we interpret

51

(:K;-i), K;Ql) as KJ(-i) < K;Ql .) We conclude that the vector
N does not agree with the total order OFw) .

Now consider a different vector K, := [1 N, Ny N3].
The interpretation of the elements of the vector K., w.r.t.

the vector N® (which is the same as before) is as follows:
1 in K, is interpreted as 1, the element Ki = Ny in K,
is interpreted as K,) = 3, the element Ky = Ny in K/,

is interpreted as K;) = 6, and, finally, the element K} =
N3 in I?{U 1s interpreted as K, @ — 7. Then we have that
the reflezive transitive closure of the relation { (1, K,),
(K, <i),K2 (i)), (K, <i),K3 (i)) }, that is of the relation {
(1,3), (3,6), (6,7) }, does not have elements violating true
inequalities on natural numbers. Thus, we conclude that the
vector N agrees with the total order Ow). a

We now define the sets S as suggested in the beginning
of this subsection. For a CCQ query @ for which » > 2
(and thus w > 1), and for the vector N for the query Q
(as defined in Section L.3.1), let K,, be an arbitrary copy-
variable-ordering vector for the vector N. Then we define a
subset N 5w of the set N as

NE) = (N e N | N agrees with the total order
O(Rw>}.

(Note that in the case w = 1, there is only one possible
vector Ky = [1 Npt1]. Therefore, it is not hard to see
that in the case w = 1, we have that the only possible set
NEw) coincides with the entire set N.)

The following result captures straightforward observations
about the sets N w),

PROPOSITION L.48. Given a CCQ query Q for which r >
2, with vector N for the query @ constructed as defined in
Section L.3.1. Then we have that:

e For each element N of the set N, there exists at least
one copy-variable-ordering vector, K., for the vector

N, such that N belongs to the set N Ew)

e For each copy-variable-ordering vector, K., for the vec-
tor N, the set N &) is an infinite-cardinality subset of
the set N.

O

We conclude from Proposition L.48 that the set N is a
union of the infinite-cardinality sets N (Kw),

ProrosITION L.49. Given a CCQ query Q for which r >
2, with vector N for the query Q constructed as defined in
Section L.3.1; and given a CCQ query Q" satisfying the
restrictions of Section L.2.1 w.r.t. the query Q. Then for
each copy-variable-ordering vector, K., for the vector N,

there exists a multivariate polynomial f((g)”)[l?w} in terms

of the elements of the vector N and with integer coefficients,
such that:

e The polynomial fég)”)[l?w} is defined on (at least) the
set NUEv) C N and
o For each element N of the set N(k“’), we have that
1) IKl(N®) = FGP(N©) .
g

The proof of Proposition L.49 is constructive and gener- arbitrary K., as defined earlier in Section L.10. Consider

alizes the intuition that we gained by considering (earlier in a monomial (excluding the nonzero integer coefficient of the
this subsection) the special case r = 2 and w = 1. Indeed, term) 7 in]-'(Q”)[K']. We say that:
: . o (@ LHwl Y :
for each copy-variable-ordering vector, K., for the vector Lo
N, each min expression of Proposition L.44 in terms of el- e T isa solid term of]-'((g) >[Kw] if there exists a nonempty
gmeélts of all tthe relevanf1 Ci(t)py mgnatu;“es evalu;ltes ‘cof (gﬁe monomial class, C(Q”)7 for the query Q" and for the
Xed argument among all 18 arguments, regardiess ol the family of databases {D ;) (Q)}, such that T is the mul-

identity of specific elements N of the set N (Kw) " Hence

” tiplicity monomial for the class C(@").
the result of replacing all the min expressions in .7:((3)) with pHeY

these fixed elements of the set {1, Npt1, ..., Njtw} is the o Conversely, we say that 7T is a phantomferm Of}-ég))[Kw]
required function fég)”)[f_{w] for the subset N K@) of the whenever 7T is not a solid term of fég) K]
domain N of the function F, ((g)”), Example L.6 provides an For instance, in Example L.6, the multivariate polynomial
illustration. - .7:((8)) [[1 N3 Ny], that is the polynomial Ny x N2 x (Ny)?, has
For each vector Ky, in case r > 2, in the]glemainder one solid term, 7 = Ny x N2 x (N4)?. The reason for the term
of this proof we will refer to the polynomial f((g))[Rw] as T being a solid term of the polynomial]—"((QQ))[[1 N3 Ny is
fég;/)[f(w}; same for the respective functions for the queries that the query @ w.r.t. the family of databases {D g (Q)}
Q and Q’. (See Proposition L.49 for a justification.) Fur- has a monomial class CiQ) whose multiplicity monomial is
ther, for uniformity of notation, in the case where r < 1 we exactly the term 7. (See Example L.5 for the details on the
will refer to the function fgg)”) (which we showed in Sec- monomial class CiQ)-)

tion L.9.2 to be a multivariate polynomial in terms of the Now consider an abstract example of a phantom term.

elements of the vector N and with integer coefficients, on the

))) @ EXAMPLE L.9. Consider the case where m = 0 and
entire domain A of the function) as 75, ’[N]. In the latter r = w=2. Suppose that for these values of m, v, and w, for

case (of r < 1), the only subdomain NEw) of the domain A some hypothetical CCQ query Q" and for some hypothetical
family of databases {D) (Q)}, it holds that the set of all
monomial classes in this setting consists of two monomial

classes, say CiQ”) and CéQ”). By m = 0, we have that the

is the set NV; hence we can use the notations]-';g)”) [Ky] and

]—'((g;l)[/\ﬂ interchangeably when r < 1. (Formally, in case

L e e e B e o= nomcopy signature of each of C{®") and " is the empty
there exists exactly one permutation K., of the vector N, vector. Suppose that the copy signa,);ure of Cy is [N1 N2 |,
such that the first element of the vector K, is the constant and that the copy signature of CéQ) s [Na Ny .
1. Thus, the domain N ¥ %) does indeed coincide with the The noncopy signatures of the two monomial classes are
domain N in all cases where r < 1.) identical. Thus, by our results of Section L.9.5, the function
. . L . L for the multiplicity of the tuple t7), in the answer to the query
L.104 Query equivalence implies identical multivari- Q" on the databases {Dye) (Q)}, will be computed as the
ate polynomials cardinality of the union of the sets for the copy signatures of
We now show that for two CCQ queries Q and Q' such the two monomial classes. That is, the multiplicity function
that Q =¢ Q’, the functions _Fég)) and }'((S)l) can be ex- will be
pressed, on each well-defined (as in Sections L.9.2 and L.10.3)
infinite-cardinality subdomain of the set N, as identical mul- 2 x N1 x No — (min(Ny, N2))2 .
tivariate polynomials in terms of the elements of the vec- _ o
tor N and with integer coefficients. This result, Proposi- Then for the vector Ky = [1 Ni Na |, the multivari-

tion L.50, is immediate from the results of Section L.9.5 and ate polynomial for this multiplicity function on the domain

from Propositions L.46 and L.49. N il be

_ ProrosiTiON L.50. Given a CCQ query Q, w‘ith vector 2% Ny x Ny — (N1)2 .

N for the query @ constructed as defined in Section L.3.1;

and given o CCQ query Q" such that Q =c Q' holds. Then In this polynomial, (i) the term N1 X N2 is a solid term of

ff’" each copy-variable-ordering vector, Ku, fOZthci vector the polynomial, because the monomial class CgQ) (as well

N, we have that the multivariate polynomials]-'(Q) [Kw] and as C;Q)) has the term N1 x Na as its multiplicity monomial.

fég))[}?w], in terms of the elements of the vector N and with In contrast, (ii) the Fferm (N1)? is by definition a phantom

integer coefficients, are identical functions on the domain term of the polynomial. O
(RU/’)

N - L.10.6 The multiplicity function for the query Q

L.10.5 Solid terms and phantom terms of the poly- We now make several observations concerning the solid

nomials for the multiplicity functions and phantom terms in the polynomials }'((g; [K.] for the

To proceed, we need to introduce technical denotations function]—'ég)) of the query Q. First, as usual, we will need

for the te1.‘ms.of the multivariate polynomials_that we ha\/z/e some terminology. For CCQ queries @ and Q" (where Q”,

been considering. Suppose that for CCQ queries 6;2 and Q" as usual, may or may not be the query Q) and for the vector

we are given the multivariate polynomial }'fg) >[Kw] for an N constructed for the query @ as defined in Section L.3.1,

52

fix an arbitrary copy-variable-ordering vector, K, for N. In

case m > 1, consider all the terms in the function }'((g)”) [I_(w]

such that each term has the product N1 X N2 X ... X Np,
Call all these terms collectively “the m-covering part of

the function fég;/)[l?w} . For the case m = 0, we say that

all the terms of the function ng;l)[l?w] constitute the m-
covering part of the function.

The observations of this subsection, Propositions L.51 and L.52,

are made for the polynomials .7—'((3; [Ky], that is for the case
where the query Q" coincides with the query Q.

PROPOSITION L.51. Given an explicit-wave CCQ query
Q, with vector N constructed as defined in Section L.3.1.
Then we have that:

e For each copy-variable-ordering vector, K., for the vec-
tor N, the m-covering part of the function fég)) [Kw]
has at least one term with a nonzero coefficient; and

e For each pair (K’w,ﬁ'{,j) of copy-variable-ordering vec-
tors for the vector N, the m-covering part of the func-
tion fég)) [Kw] and the m-covering part of the func-

tion F;S; [Kl,] are identical multivariate polynomials

(in terms of the elements of the vector N and with in-
teger coefficients).

O

The observations of Proposition L.51 are immediate from
the relevant definitions, from the construction of the func-
tion]-"((g)), and from the definition of explicit-wave query.
Specifically, the second bullet of Proposition L.51 follows
from the fact that among all the monomial classes for the
query @ whose (classes’) noncopy signature is a permuta-
tion of the vector [Ny N2 ... Ny,] in case m > 1, or
is the empty vector in case m = 0, for each pair of such
monomial classes with the same noncopy signature, there
is unconditional dominance between the two classes. This
fact holds by the definition of explicit-wave query, Defini-
tion L.10. We then use the results of Section L.9.2 (specif-
ically of Proposition L.42) to establish that the respective
m-covering polynomials do not depend on the vector K.,
because the relevant sets C"°"°™ do not depend on the
vector Kw.

The results of Proposition L.51 permit us to talk about

“the m-covering part of the function f((g; 7 for every explicit-

wave CCQ query Q. We denote by Q((g; this nonempty mul-
tivariate polynomial in terms of the elements of the vector
N and with integer coefficients. Notice that the reference to
copy-variable-ordering vectors has been dropped from the
notation for g((g)) .

The next observations, in Proposition L.52, are about the
properties of the function g((g)) for explicit-wave queries Q.
The results of Proposition L.52 hold by the relevant defini-
tions and by Proposition L.33.

PROPOSITION L.52. Given an ezplicit-wave CCQ query
Q, we have that:

e [In the function QES;, each term is a solid term;

e FEach term of the function g((g)) has a positive coeffi-
cient; and

e The multivariate polynomial Q((g; has a (solid) term

which is the wave PL? of the query Q w.r.t. the family
of databases {D gz) (Q)}-
O

L.10.7 The m-covering part of the polynomials F'Q K .,),

(@)
in case where Q =c Q'

In this subsection we show that for CCQ queries @@ and
Q@' such that @ is an explicit-wave query and such that
Q =c @', it holds that all the m-covering parts of all the
polynomials F((S))[Rw] have, as a solid term, the wave P
of the query @ w.r.t. the family of databases {D) (Q)}.

The first observation that we make follows trivially from
Propositions L.50 and L.52.

ProposITION L.53. Given an explicit-wave CCQ query
Q and a CCQ query Q" such that Q =c¢ Q'. Then for each
copy-variable-ordering vector, K., for the vector N, the m-

covering part of the function .7-'((3)/) [Kw] has, with a positive-
integer coefficient, the wave Pl of the query Q w.r.t. the
family of databases {D g) (Q)}. O

The only difference between the formulations of Proposi-
tion L.53 and of Proposition L.54 is that Proposition L.54

claims that the term PiQ) is a solid term in the m-covering

part of the function ffg;) [I?w], for each vector K.

PROPOSITION L.54. Given an ezplicit-wave CCQ query
Q and a CCQ query Q" such that Q =c Q'. Then for each
copy-variable-ordering vector, K.,, for the vector N, the m-

covering part of the function]:((3)/) [Kw] has, as a solid term,

the wave P? of the query Q w.r.t. the family of databases
{Dxo (Q)}- O

In the proof of Proposition L.54, for the cases where r > 2
we will be keeping track of all the occurrences of all the
variables Ny,+1 through Ny,4+. in the m-covering parts of
the multivariate polynomials ng)>[l_(w] and -7'—53)) [K.], for

various _vectors K,. For each possible vector Ky (for the
vector N of Q) and for the m-covering part of the polynomial

f((g;/)[f{w], where Q" is one of Q and Q’, we set up a set
B@”)[R'w] defined constructively as follows:
(I) In case m > 1, drop the product ITjZ; N; from all terms

of the m-covering part of the polynomial F'S)[K.).

olyn (@
mQ@[K,]. In case m = 0,

Call the resulting function f!
denote by f<m’QN>[K'w] the (original) m-covering part
of the polynomial]—"((g))[K,]. Observe that for all
m > 0, the function f(m’Q”)[R'w] is a multivariate poly-
nomial, with integer coefficients, in terms of the vari-
ables Nyt1, - oy Nmtw only.

(II) To the output f(m’Q”)[R'w} of Step (I), apply the al-
gorithm B-CONSTRUCTION, to obtain the set B(f(™®")
[K.w]). Then return the set BQ[K,] := B(f™")

[Kw]).
We now specify the algorithm B-CONSTRUCTION.
Algorithm B-CONSTRUCTION.
Input: Multivariate polynomial P in terms of variables
Nm+1, -+ -y Nm4w, where w > 1, with integer coefficients.
Output: Set B(P).

(1) Rewrite equivalently (syntactically) the polynomial P,
as follows:

(a) First “expand” each power > 2 in the polynomial.
That is, for each expression in P of the form A®,
where A € {Np+1, ..., Nmtw} and b > 2, replace
the A® by the product II}_; A.

(b) Then “expand” each nonunity integer coeflicient in
the resulting polynomial P’. That is, consider each
term 7 with a nonzero and nonunity (by absolute
value) integer coefficient in P’. That is, suppose
T = C x T', with the integer coefficient C € Z
— {-1,0,1}, and with 7" a product of elements of
the set {Nm+1, ..., Nmiw}, perhaps with multi-
ple occurrences of some of these variables (by (a)
above). Then, for each such term 7, (i) in case C
> 0, replace 7 in P’ with a sum of C copies of the
term 7'; and (ii) in case C < 0, replace T in P’
with a sum of C copies of the term (—1) x T".

(2) Set B(P) := 0. For each variable N; € {Ny41, ...,
Npmtw}, count the number M;H of positive occurrences
of Nj in the output of step (1), and count the number
M ;_) of negative occurrences of N; in the output of
step (1); then, whenever the difference M;H — M;_)
is not zero, add to the set B(P) the element (M;Jr) -
M) x N;.

(3) Output the resulting set B(P).

We provide three illustrations of the construction of sets
B@"[K,], in Examples L.10 through L.12.

EXAMPLE L.10. Consider the construction of the set
B@[K,] in the context of Example L.9. In that ezam-

ple, the m-covering part of the function f((g;/)[f{w], for the

vector Ky, = [1 Ny N2, s

2><N1><N2—(N1)2.

(Recall that in Example L.9, m = 0, hence each term of
the polynomial .7-—((8))[Kw] of Ezample L.9 is also a term

of the m-covering part of .7:((8;/)[[7{11,}.) Thus, Step (I) of
the construction algorithm renames the above function into
fm@OK,]. By Step (1)(a) of algorithm B-CONSTRUCTION,
m,QII>|: —

we rewrite the polynomial f(K] equivalently as

2Xx N1 X No — N1 X Ny .

Then, by Step (1)(b) of the algorithm, we rewrite the above
expression equivalently as

N1><N2—|—N1><N2—N1><N1.

The set B(Q//)[Rw] for this function is B(Q”)[f(w] ={2x
N2 }. The reason is, the expression that we obtained as
the outcome of step (1)(b) of algorithm B-CONSTRUCTION
has two positive-sign occurrences of Na, two positive-sign
occurrences of N1, and two negative-sign occurrences of Ni.
O

EXAMPLE L.11. We give an illustration of the construc-

tion of sets B<Ql’)[}?w}, using the function .7-—((3; of Exam-

ple L.6. In that example, m = 2 and r = w = 2. We

note that the query Q of Example L.6 is not an ezxplicit-wave

query. As shown in that example, the polynomial F'S) [[1N3 N4l

(@

is

FS 1 Ns N Jj = N1 x Na x (Na)*
and the polynomial fég;[[1 N4 N3] is

F G 1 Na Ny JJ = N1 x Ny x (N3)* .
Hence, the set BQ[[1 N3 N, || for the case of Ezam-
ple L6 is BD[[1 N3 Ny |] = { 2 x Ny }, and the set
B(Q)[[1N4 N3 ” isB<Q)[[1N4 N3]]:{QXNg } O

EXAMPLE L.12. Consider an abstract example for the
case where m = 3 and r = w = 2. Suppose that for these
values of m, v, and w, for some hypothetical CCQ query Q"
and for some hypothetical family of databases {D gy (Q)}, it
holds that the set of all monomial classes in this setting con-
sists of four monomial classes, CiQ”) through CiQ//). Sup-
pose that the noncopy signatures and the copy signatures of
the four classes are as follows:

e For the monomial class C£Q”), <I>n[C§Q“)]
(Y1 Y2 V3], and ®.[C°] = [N4 N5 | .

e For the monomial class CéQ”), @n[CéQ”)]
[Y1 Y2 Vs], and ®.[CS°] = [N5 Na | .

e For the monomial class CéQ”), @n[CéQ”)]
[Yo Ys V1], and ®.[CS°)] = [N4 Na | .

e Finally, for the monomial class CiQ”>, @n[CiQ”)] =
[Y3 Yy Ya], and ®.[CS°] = [N5 N5 | .

The two monomial classes C%Q”) and CéQN) have identical
noncopy signatures [Yi Yo V3] The two other monomial

classes, CéQN) and C‘(IQ”), each have a unique noncopy sig-
nature. Thus, by our results of Section L.9.5, the function
for the multiplicity of the tuple tg,, in the answer to the
query Q" on the databases {D) (Q)}, will be computed as
the expression for the cardinality of the union of the sets

for the copy signatures of the two monomial classes CiQ”)

and CéQ“), which (expression) is multiplied by the product
H?lej and then summed up with the multiplicity mono-
mials for the other two monomial classes. By definition,
the multiplicity monomial for the monomial class CéQN) is
(I_,N;) x (N1)?, and the multiplicity monomial for the
monomial class CiQ”) is (II3_1N;) x (Ns)?. In turn, the
cardinality of the union of the sets for the copy signatures
of the two monomial classes C§Q”) and CéQ”) s computed
similarly to the function of Example L.9. Thus, the overall
multiplicity function will be

(131 N;) X (2 x Ny x N5 — (min(Ny, N5))* +(N1)> 4+ (N5)?) .

Then for the vector K, = [1 N1 N5 |, the multivari-
ate polynomial for this multiplicity function on the domain
NEw) will be

(TI3-1 Nj) X (2 X Na x N5 — (Na)* + (Na)® + (N5)*) =

= (IT)—1N;) x (2 x Ny x N5 + (N5)?) .

Similarly, for the vector K, = [1 N5 Ny |, the multivari-
ate polynomial for this multiplicity function on the domain

NEW will be

(I3_1 N;) x (2 x Na x N5 — (Ns)? + (Na)? + (N5)?) =

= (IT]_1N;) x (2 x Ny x N5 + (Na)?) .

Consider the construction of the sets BQ[K,] and §(Q”) K],

for the above two vectors K, = [1 Ny N5] and K, =
[1 N5 Ni]. In the construction of the set B2 [K.,], the

m-covering part of the function }'ég)“)[l?w] is, by definition,

(II3_1 N;) x (2 x Na x N5 + (N5)?) .

Thus, Step (I) of the construction algorithm obtains the poly-
nomial

FmR K, =2 x Ny x N5 + (Ns)? |

by dividing the entire m-covering polynomial by the product

II3_, N;. By Step (1)(a) of algorithm B-CONSTRUCTION, we

rewrite the polynomial f(m’Q”)[I_(w] equivalently as
2><N4><N5+N5><N5 .

Then, by Step (1)(b) of the algorithm, we rewrite the above
expression equivalently as

N4 X N5 + N4 X N5 + N5 X N5 .

We conclude that the set B [K.w] for this function is B@" [Kw]

:{ZXN4,4><N5}. B
By similar reasoning, for the vector K., we obtain that the
set BOQ)[K,] for the m-covering part of the function

(IT3_1 N;) x (2 x Na x N5+ (Na)?) .
is BQ[K!] = { 4 x N4,2 x N5 }. O

The challenge in the proof of Proposition L.54 is that the
Proposition is to be proved for arbitrary CCQ queries Q'
such that Q" =¢ Q. For this reason, we have to assume
that while for all K,, the m-covering part of the function

FESQ [K.] “looks like” the all-positive-coefficient polynomial
Q((S)) (see Propositions L.50 and L.52), it may still be that

the m-covering part of the function]-';g),) [K.] has some neg-
ative terms hidden in there but canceled out by some pos-
itive terms. That is, it may still be that the m-covering
part of the function }'((g)/)
cardinality of the union of two or more sets, as in, e.g., Ex-
ample L.9. If this is the case then the term pL@ (i.e., the
wave of the query Q) in these polynomials could be a phan-
tom term resulting from the application of the inclusion-
exclusion principle to compute the cardinality of such set
unions. (Example L.12 provides an abstract illustration of
how negative terms of a polynomial can get canceled out by

[K.] has some expressions for the

55

positive terms, for all vectors K, to result for each K, in
a polynomial that does not have any negative-sign terms.)
We now make three observations, in Proposition L.55 and
in Corollaries L.2 and L.3, concerning the properties of the
sets B(Q”)[R'w] for functions féQQ;,), where Q" is one of Q

and Q.

ProposITION L.55. Given two multivariate polynomials,
P1 and P2, in terms of variables Ny41, . .., Nmtw, for some
m > 0 and w > 1, and with integer coefficients. Let each
of Nm+1, -.., Nm+yw be defined on a domain that includes
(at least) an infinite-cardinality subset of the set Z of all
integers. Then P1 = Pa implies that the outputs of algorithm
B-CONSTRUCTION on the inputs P1 and P2 are identical sets.
O

That is, Proposition L.55 says that the sets B (P1) and
B (P2), in the notation of this subsection, are identical sets.
The claim of Proposition L.55 is immediate from Propo-
sition L.46 and from the construction of the algorithm B-
CONSTRUCTION.

COROLLARY L.2. Given CCQ query Q, with vector N con-
structed as defined in Section L.3.1, and given CCQ query
Q' such that Q =c Q. Then for each copy-variable-ordering
vector K, for the vector N, the sets B'9[K,,] and B@" [Kw]
are identical sets. m|

The result of Corollary L.2 is immediate from Proposi-
tions L.55 and L.50.

The proof of our next result, Corollary L.3, is immediate
from Propositions L.51 and L.55.

COROLLARY L.3. Given an explicit-wave CCQ query Q,
with vector N constructed as defined in Section L.3.1. Then
for each pair (K., K,) of copy-variable-ordering vectors for
the vector N, the sets B9 [K,] and BQ K], are identical
sets. O

Note that the result of Corollary L.3 does not hold in case
where @ is not an explicit-wave query. See Example L.11
for an illustration.

As a final step before proving Proposition L.54, we for-
mulate a lemma that we will use in the proof of Proposi-
tion L.54.

LEMMA L.2. Given n > 1 natural numbers a1, az, ...,
an such that a1 < az < ... < an. For each j € {1,...,n},
let the set Aj be A; := {1, 2, ..., a5 — 1, a;}. Then the
cardinality of the set |J;_, A; is the natural number a,. O

The claim of Lemma L.2 is trivial. (Observe that for all
n we have that (a) A; C A, for all j € {1,...,n}, and that
(b) the cardinality of the set A, is exactly an.) Still, we
take care to prove this claim. The reason is, in the proof
of Proposition L.54, it will be important to us that in the
expression for the cardinality of the set U;:I Aj;, where the
expression is obtained by the inclusion-exclusion principle,
“almost all” the terms in the expression cancel each other
out, while leaving “uncanceled out” only the term a.

ProoOF. The proof is by induction.
Basis: n = 1. The claim of Lemma L.2 holds trivially in
this case.

Induction step: Let m > 2, and assume that the claim
of Lemma L.2 holds for n — 1. Examine the expression for
the cardinality of the set U?:l Aj, where the expression is
obtained by the inclusion-exclusion principle. In this ex-
pression, there are two groups of terms: The first group is
the sum >7 | A;|, that is the sum > 27) a;. In the sec-
ond group, each term is of the form min(a;,,ajs,...,a;,)
(with either a positive or negative sign), for some k such
that 2 < k < n and where each a;, € {a1,...,a,}, forl €
{1,...,k}.

Assume w.l.o.g. that in the term min(a;,,ajs,...,a;,),
it holds that aj;; < aj, < ... < aj,. (From a1 < az <

. < an in the statement of Lemma L.2, we have a to-
tal < order on the set {a1, a2, ..., an}.) Thus, the term
min(aj,, aj,, - . . ,a;,) can be replaced by the equivalent term
aj,. We call this replacement rule our first equivalent-replac-
ement rule.

Observe that from a1 < as < ... < a, it holds that when
we use this equivalent-replacement rule, for all terms of the
form min(aj,,aj,,...,a;5,), with k& > 2, the result of this
equivalent replacement is an element of the set {a1, ..., an—1}.
That is, an is the only element of the set {a1, ..., a,} that by
our replacement rule never (equivalently) replaces the term
min(aj,, aj,,- .-, a;,), even in those cases where a, is one
of the a;,, aj,, ..., aj,. Hence our second equivalent-replac-
ement rule is to replace the term min(aj,, aj,, - .., a;,), such
that (i) k£ > 2, (ii) aj, < aj, < ... < ay,, and (iii) aj, = an,
with the equivalent min-expression min(a;, , aj,, - .., a5, ;).

(In the special case where k = 2, this equivalent min-expression

reduces to min(a;,) and hence can be replaced equivalently
by a;,)

We will use these two equivalent-replacement rules to rewrite
min-terms in the expression for the cardinality of the set
U?zl A; by the inclusion-exclusion principle. For instance,
the expression for the cardinality of the set U?:l Aj, in case
n = 2, can be rewritten equivalently, as follows.

(a) We use our first equivalent-replacement rule to obtain
an equivalent rewriting of that expression, a1 + a2 —
a1. To obtain this expression, we replace the expres-
sion for the cardinality of the set A;) A2, that is the
expression min(ai,az), with a1, using a1 < as.

(b) We use our second equivalent-replacement rule to ob-
tain an equivalent rewriting of that expression, a1 +
az — ai. (This is the same rewriting as in (a).) To
arrive at this expression, we replace the expression for
the cardinality of the set Ay ().Az2, that is the expres-
sion min(a1, az2), with min(a1), using the facts (i) k =
2 > 2, (ii) a1 < a2, and (iii) a2 = an. We then further
rewrite min(a1) equivalently as just aq .

Now consider, for a general n > 2, the expression, call it
&n, for the cardinality of the set U;L:1 Aj as obtained by the
inclusion-exclusion principle. First, consider all the terms
in the expression &, such that each term mentions a,. Call
this group of terms &,,, and refer to all the remaining terms
in &, collectively as £//. We analyze the expressions £, and
&

(A) Tt is easy to see that the expression £, evaluates to a,—1
by our induction assumption. (This expression is ex-
actly the expression, which we call &,,_1, for the cardi-
nality of the set U;:ll Aj as obtained by the inclusion-
exclusion principle.)

56

(B) In the expression &;, we set aside the term |A,| = an.
All the remaining terms in & are each of the form
min(aj,, jy, - - -, a;5,), with £ > 2, and such that (as-
suming aj; < aj, < ... < aj,) it holds that a;, =
an. We use our second equivalent-replacement rule to
rewrite each such term in &, as min(a;, , ajy, ..., a5,)-
(For all cases k = 2 we further equivalently rewrite the
resulting term min(a;,) as aj; .) It is easy to see that
after all these equivalent replacements are done, the
expression &), equals an, — En_1. (Again, &,_1 here
denotes the expression for the cardinality of the set
U;:ll A; as obtained by the inclusion-exclusion princi-
ple.)

(C) Finally, we put together the outputs of steps (A) and
(B), to obtain that the expression &, = &, + &,, eval-
uates to (En—1) + (an — En—1). (While this is immate-
rial here because the two expressions &£,—1 cancel each
other out in this expression for &£,, by our induction
assumption we know that &£,-1 evaluates to an—1 .)
We conclude that the expression &, can be rewritten
equivalently as just a, .

End of the induction step. Q.E.D. [

We now provide an illustration of the use of Lemma L.2
in the proof of Proposition L.54.

EXAMPLE L.13. Consider an abstract example for the
case where m = 1 and r = w = 3. Suppose that for these
values of m, v, and w, for some hypothetical CCQ query Q"
and for some hypothetical family of databases {D 5y (Q)}, it
holds that the set of all monomial classes in this setting con-
sists of three monomial classes, CiQ”) through CP(,Q”). Sup-
pose that the noncopy signatures and the copy signatures of
the three classes are as follows.

e For the monomial class C%Q”), @n[CiQ”)} =[Y1] and
DJC9) = [Ny 1 N3] .

e For the monomial class CéQﬁ), @n[CéQ”)} =[Y1] and
3 [C0) = [Ny 1N]

e Finally, for the monomial class CéQ”), @n[CéQﬁ)] =

[X2] (for some set variable X3) and @C[CQQN)] =
[N2 N3 Na.

The two monomial classes CgQ”) and C;Q”) have identical
noncopy signatures [Y1 |. The remaining monomial class,

CéQ”>, has a unique noncopy signature. Thus, by our re-
sults of Section L.9.5, the function for the multiplicity of the
tuple tg,, in the answer to the query Q" on the databases
{Dxu)(Q)}, will be computed as the expression for the car-
dinality of the union of the sets for the copy signatures of the
two monomial classes CﬁQN) and CéQ”), which (expression)
is multiplied by N1 and then summed up with the multiplic-

ity monomial for the monomial class CéQ”). By definition,

the multiplicity monomial for the monomial class CéQN) is
1 x N2 X N3 x Na. (Here, the 1 in the product comes from
the Xs in the noncopy signature of the monomial class.) In
turn, the cardinality of the union of the sets for the copy
signatures of the two monomial classes C;Q”) and CéQN) 18
computed similarly to the function of FExample L.9. Thus,
the overall multiplicity function will be

N1 X (Ng X Ng + N4 X N2 — min(N27N4) X mzn(N3,N2))+

+1 X No x N3 X Ny .

Then for the vector K, = [1 N2 N3 Ny], the multivari-
ate polynomial for this multiplicity function on the domain
NEw) il be

N1 X (N X N3+ Ny X Ny — (N2)?) +1x Ny X N3 x Ny .

By deﬁnition the set B<Q”>[K] as computed on this poly-
nomial is B(?)[w] = {N3, Ns}. (Recall that we first dis-
card from the polynomial the product No X N3 X Ny, which is
not part of the m-covering part of the polynomial. Then we
divide the remaining polynomial by N1, and the set B@" [Kuw]
results from counting the positive and negative occurrences
of the variables from {N2, N3, Na} in the resulting polyno-
mial.)

We now show that we can obtain the same set B@") [,
by using the counting shortcut furnished by Lemma L.2. In-
deed, consider the polynomial, call it f[K.),

f[kw] = Na X N3 + Ny X Ny — (NQ)Q,

that is used as the input to the algorithm B-CONSTRUCTION
in the computation of the set BY)[K,] . The intuition
for this polynomial is that the multiplicity of the tuples con-
tributed by the monomial classes CiQﬁ) and CéQN) to the set
r)(Q", Dy (Q)) is computed using:

(a) the value of the cardinality of the union of the sets N5
= {1, 2, , Nao} and Nj = {1, 2, , Na} — these
sets “arise from” all the elements in the first position
in all the relevant copy signatures, that is, in the copy

and C (@ (recall
[N2 1 N3 |

signatures of monomial classes C(Q”
that these copy signatures are P [C(Q)]
and ®.[CS) = [N4 1 N2]);

the value of the cardinality of the union of the sets 1*
= {1} and 1* = {1} — these sets “arise from” all the

elements in the second position in all the relevant copy
signatures; and, finally,

(b)

(c) the value of the cardinality of the union of the sets
Ng = {1, 2, s N3} and NQ* = {1, 2, B NQ} -
these sets “arise from” all the elements in the third (the
last/rightmost) position in all the relevant copy signa-

tures.

It is exactly the above intuition that explains the results of
Section L.9.5, specifically the formulation and the use of the
result of Proposition L.44 in the construction of the multi-
plicities of tuple t¢, by the inclusion-exclusion principle.

Now given the total order on the variables N2 through Ny
as provided by the vector Ky, = [1 N2 N3 Na], the values
in (a)-(c) above can each be computed using Lemma L.2.
Specifically, the cardinality of each set union in question is
Ny for (a), 1 for (b), and N3 for (c). Observe that the set
B(Q”)[K] as computed earlier in this example by definition
of that set, is exactly B?" [K,] = {Ns,Na}, that is, the

result of putting together the N4 for (a) and the N3 for (c).
(We drop the 1 obtained from (b), as the computation of

57

the set B(Q”)[Kw] by its definition does not account for the
terms or multipliers that are the constant 1.) a

We are now ready to prove Proposition L.54.

PRrROOF. (Proposition L.54) We consider first the case where
@’ is under the jurisdiction of Proposition L.42 (of Sec-
tion L.9.2; our query Q' would be the Q" in the statement
of Proposition 1.42). In that case, for each vector K, we
clearly have that all terms in the m-covering part of the func-
tion]—"(Q) [Ky] are solid terms. Hence, by Proposition L.53
we have the desired result of Proposition L.54.

Note that in all cases where @’ is not under the jurisdic-
tion of Proposition L.42, it holds that we have » > 2. (Re-
call Corollary L.1 of Section L.9.2; the Corollary outlines a
special case of Proposition L.42 and covers all cases where
r < 1.) In the remainder of the proof, we consider this case
of Q' not satisfying the conditions of Proposition L.42 (and
hence r > 2 for this case).

The proof for this case is by contradiction: We assume

that for some vector Kw7 the m-covering part of the multi-

P

variate polynomial]-' (@ [of the query

Q, w.r.t. the family of databases {Dxw (@)}, as a phantom

f((g))[Kw] has
the wave of the query @ is by Proposition L.53.) Note that it
follows immediately from the definitions of solid and phan-
tom terms (see Section 1.10.5) that for all vectors K., the
7§ Kol
the family of

w] has the wave

term. (The fact that the m-covering part of

m-~covering part of the multivariate polynomial

has the wave P{? of the query @Q (w.r.t.
databases {D g (Q)}) as a phantom term.

We will arrive at a contradiction with the above phantom-
term assumption, by keeping track of all the occurrences
of all the variables N,,+1 through N4, in the m-covering

T 7e
and F 5] [K Kw),

w. (Recall that » > 2 holds, hence by

parts of the multivariate polynomials F, ((g))[Ko
for various vectors K.
Proposition L.4 we have that w > 1 and thus the set of vari-
ables {Nm+1, ..., Nmtw} is not empty.) For each possible
vector K, (for the vector N of Q) and for the m-covering
part of the polynomial]-'ég) [K.], where Q" is one of Q and

Q', we consider the set B?")[K,,] as defined earlier in this
subsection.

Specifically, for the query Q' and for each fixed vector K,
we construct the set B®") [Kw] as follows. Observe that by
definition of the set B(Q/)[I_(w], the set can be obtained by
“breaking up” the relevant polynomial into a sum of terms
where each term is a single variable from among {Ny.11,
..vy Nmtw}, each multiplied by the coefficient (41) or by
the coefficient (—1). (For instance, the polynomial

2 x Ny x N5+ (Ny)?
of Example L.12 can be rewritten as
(N4 4+ N4+ N5 + N5) + (Ns + Na)

and the summing up of all the variable occurrences sepa-
rately by variable name and by the sign of each term would
result in the correct set B(?’)[Kw] = { 4x Ny, 2x Ns } for
that polynomial.)

In the polynomial, call it f(Q'), that results from the
above “breaking up” of the relevant polynomial, we now
propose to (i) group together the terms that originate from
monomial classes having the same noncopy signature, and,

in the resulting groups, to (ii) further group together the
terms that result from “the same position” in the relevant
copy signatures. For instance, using the polynomial f[K,]
of Example L.13, we first “break it up” into the sum:

f(Q)= N2+ N3+ Ny+ No— N2 — N2,
and then group the elements of this sum further, as
f(Q") = (N2 + Ny — Na) + (N3 + N2 — Na) .

The first grouping above evaluates to item (a) in Exam-
ple L.13, and the second grouping - to item (c) in the Exam-
ple. (We do not obtain here groupings by distinct noncopy
signatures as suggested in (i) above, because both monomial
classes from Example L.13 that contrlbute to the polynomial
f(Q"), have the same noncopy signature.)

Now each such grouping “by position in the copy signa-
tures” can be evaluated by Lemma L.2, as the mazimal-value
element of the group, according to the vector K. For in-
stance, in the above f(Q’) with groupings that originates
from Example L.13, the expression in the first parenthe-
ses, (N2 + Ny — Na), is actually (N2 + N4 — min(Na2, Ny)).
Thus, under K, = [1 N2 N3 Ny], this expression eval-
uates to N4 by Lemma L.2. Similarly, the expression in
the second parentheses, (N3 + N2 — N2), which is actually
(N3 + N2 — min(Ns, N2)), evaluates under K., to N3 by
Lemma L.2. As a result, we obtain the B for f(Q’), that
is the correct set B(®" [Kw], as the set having exactly these
two results, N4 and N3, each coming from the evaluation of
one of the two individual groupings.

It is easy to generalize the above observations, to show
that the set BQ" [K] can be computed correctly using the
process of “breaking up” the relevant polynomial into a sum
of individual variables from {Nm+1, ..., Nm+w} (with some
of the occurrences of the variables possibly multiplied by
(—1)), and of then using Lemma L.2 to evaluate each group-
ing in that sum to a single variable in {Np+1, ..., Nmgw},
each variable always multiplied by (41).

Note 1. From the correctness of this alternative compu-
tation of the set B(®") [K.] and by the result of Lemma L.2,

we obtain the following for all CCQ queries Q and Q' and
for the function }'(3)) for the multiplicity of the tuple t¢, in
the answer to Q' on the database D ;) (Q) for each i € N.

(Q")
]:(Q)

has, for each vector K, the set B(Ql)[f(w} whose all ele-
ments have natural-number coefficients. That is, no such

We obtain that the m-covering part of the function

set B(Q/)[I_(w] has an element whose integer coefficient is a
negative number.

We now arrive at a contradiction with our assumption
(see beginning of this proof) that for all vectors K, the m-

covering part of the multivariate polynomial féQ) [K.] has
PLD of the query @ (w.r.t. the family of databases
{Dxu (Q)}) as a phantom term. Denote by F{9)K,) the
F&) 1Kl
(for the query Q'), and by F(Q)[K] the m-covering part

the wave
m-~covering part of the multivariate polynomial

of the multivariate polynomial f(Q> [Ky] (for the query Q).
Recall that in case m > 1, we have for each of F,(nQ) [R’w] and
F,(nQ)[f(w] that each term of each of these two polynomi-
als has the product II7_; N; (possibly multiplied by some-

thing else.) In case m > 1, we divide each of F,SqQ)[I_{w]

58

and F,STQ/)[KH,] by this product II7.;N;, and call the re-
sulting polynomials (each with integer coefficients and each
) (Q)[w] and

in terms of the variables Npt1, .., Nmtw

(@D [K], respectively. In case m = 0, we rename F\) [K,,]
into f(Q)[K., and rename jaSh >[Kw] into £)[R'w]. Ob-
serve that by our assumption r > 2, we have that for all

m > 0, each of f(Q)[K,] and f<Q)[
terms of w > 1 variables Ny,4+1, ...

K] is a polynomial in
3 N m—tw-

Now for an arbitrary K, we rewrite F&Q,)[I_(w] equiv-
alently as a sum of one or more groups, each group en-
closed in parentheses, where each group is the result of ap-
plying the inclusion-exclusion principle to a cardinality-of-
set-union expression that would arise in the construction of

the function .F((g)) (See Propositions L.43 and L.44 for the
construction. See Example L.6 for an illustration of how
one such group would be constructed.) The only reason

we are doing the rewriting is that the original, unparen-

thesized, version of the polynomial FT(,LQI)[I_(M} could have
some terms from such groupings canceled out by (opposite-
sign) terms, across such groupings. (See Example L.12 for
an illustration of such cancellations.) In the remainder of
this proof, we use this “parenthesized-and-grouped” version

of the polynomial FTSTQ”[R'U,}, as well as the “parenthesized-

and-grouped” version of F,(TLQ/)[R{U] for a possibly different
vector K,. Note that from Proposition L.52, we have that
the polynomial F, @R [Ky], for the query Q and for an arbi-
trary K., has exactly the same set of (all-solid) terms in
both its parenthesized-and-grouped version and its original
(unparenthesized) version.

Note 2. By the construction in the previous papagraph,
we have that all the resulting groupings are the same across
all the vectors K,. That is, for any pair of vectors (K., K.,),

the structure of the groupings will be the same in F,(,LQ/) [Kw]

and in F,ngl) [K,]. The reason is, each such grouping reflects
the cardinality of the union of a certain collection of sets,
and each collection of sets originates from a collection of
monomial classes, where the collection “belongs together”
because all the monomial classes in the collection share the
same noncopy signature. Clearly this grouping of monomial
classes has nothing to do with the choice of the vector K.
Fix an arbitrary K,. By our assumption, the polyno-
mial F,(,LQ/)[KU,} has the term PiQ), the wave of the query
Q, (i) as a phantom term, and (ii) (by Proposition L.53)
with a positive coefficient. Then there must exist a group-
ing in £)[Ky), call this grouping G*, such that P'? (is
a term in G* and) arises in G from the application of the
inclusion-exclusion principle to the computation of the cardi-
nality of the union of at least three sets, by Propositions 1..43
and L.44. (There are at least three such sets because the
phantom term PﬁQ) in G* has the positive sign. This ob-
servation is immediate from the definition of the inclusion-
exclusion principle.) To the monomial classes that generate
these z > 3 sets in the construction of G*, we refer as (mono-
mial classes) P;', Py, ..., P;.
By our assumption that pL@)
there must exist a j € {1, ..., r} such that the copy signa-
tures of the monomial classes Py, ..., P; have, in the jth
position of their copy signatures, at least two distinct values
from the set {1, Nm+1, ..., Nmtw}. (Otherwise, i.e., as-

is a phantom term in G*,

suming that P£Q> does not have a “multiplier” arising from
a min-expression with at least two distinct elements of the
set {1, Nm+1, ..., Nm4w} as the arguments of the min,
P must be the multiplicity monomial of one of the mono-
mial classes Py, ..., PJ, hence we obtain that P s a
solid term by definition. Therefore, we arrive at a contra-
diction with our assumption that P,E@ is a phantom term
in G*.) Further, in that jth position, the copy signatures of
the monomial classes Py, ..., P have at least two distinct
values from the set {Nm+1, ..., Nm+tw}. (Observe that we
obtained the latter set by dropping the element 1 from the
preceding set.) The reason is, the term PiQ) has exactly
m + r occurrences of the variables from the set {Ny, ...,
Npmtw} (see Proposition L.32), hence the part Péon)y

Definition L.10) of P,EQ) must have a separate occurrence
of one of Nyt+1, ..., Nmytw for each of the r positions in

(see

the relevant copy-signatures. As P£Q> has a variable, call
it N4, (N} is one of Npt1, .., Nmtw) in its jth position
where P,EQ) has a min-expression involving at least two dis-
tinct elements of the set {1, Np41, ..., Nimtw}, it must be
that other members of that min-expression are also variables
(that is, elements of the set {Nm+1, .., Nmtw}), with at
least one variable that is distinct from Nj. Otherwise (i.e.,
in case where the only other member of the min-expression
in the jth position of P is the constant 1) the variable N}
cannot be the minimum. (Recall that for the set {Np,y1,

.y Nm4w}, each element of the set is a natural number
and hence cannot accept values below 1.) Denote by Np
the variable in this min-expression such that under the to-
tal order induced by the vector K, the value of Nj is not
less than the value of any other variable mentioned in this
min-expression.

We summarize that for the fixed vector K, the variable
N7 in the (from now on fixed) jth position of P£Q>, in group
G™, is the result of evaluating a min-expression involving, as
arguments, the variable N and at least one other variable,
Nz (N} and N3 are distinct variables), from among Ny, 41,
..oy Nmyw. From the rule for evaluating min-expressions,
we obtain immediately that the total order for the fixed
vector K, (see Section 1..10.3 for the relevant definitions)
includes the inequality N3 < Ng. It follows from this in-
equality that in G*, the copy signatures of the monomial
classes Py, ..., P} have, in this fixed jth position of their
copy signatures, at least two distinct variables from the set
{Nm+1, - -+, Nm+w}. Denote by N the minimal-value such
variable (in the jth position in G*), under the total order
induced by K, and denote by N 5 the maximal-value such
variable (in the jth position in G*), under the total order in-
duced by K,,. That is, under the total order induced by K,
we have that N, < N} < N < Nj, and the jth position
of the copy signatures of the monomial classes Py, ..., P
does not have any variable, call it X, such that X € { Ny, 41,
vy Nm4w} and such that either X < Nj holds under the
total order induced by K, (with X and N being distinct
variables), or N3 < X holds under the total order induced
by K. (with X and Nj being distinct variables). On the
other hand, observe that N5 and N} could be the same vari-
able, and that Nj and Nj could be the same variable. (As

P
the min-expression in the jth position in PiQ) may or may
not include all of the variables that occur in the jth position

is just one term in the grouping G*, the arguments of

59

in the copy signatures of all the monomial classes Py, ...,
P;.

Fz"om the previous paragraph we obtain immediately that
the set {Nm+1, ..., Nmtw} has at least two elements (at
least N} and Ng # Nj). We conclude that unless w > 2,
we arrive at a contradiction with our assumption that Pl
is a phantom term in the polynomial fég;)[f?w]. That is,
for all » > 2 such that w < 1, we have that P,EQ) is a solid
term in the polynomial]:((3)/) [K), for all vectors K,,, which
completes our proof of Proposition L.54 for all these cases.
Hence in the remainder of this proof, we assume r > 2 and
w > 2.

We now return to our fixed vector f(w, and to the fixed

group G™ in the polynomial F},LQ,)[KW]. In case m > 1,
divide each term of F,S@Q)[K'w] and each term of F,(nQ)[R'w]
by IT;L; N; to obtain F@I[K,) and fi2)[K.,] respectively, as
discussed earlier in this proof. (In case m = 0, recall that we
just rename F,(nQ)[f(w] into f,(nQ >[f(w] and rename F,(,LQ) [Kw]
into f,SIQ) [Kw].) Denote by g* the group in the polynomial
7(,?)[f(w} that results (by such division/renaming) from the
group G* in the polynomial F@)[R'w]. Clearly, by G* in
o)[f(w] having the term P,EQ), the group ¢* in fT(nQ)[f(w]
must have a term that is the part Pég’gp)y (see Definition L.10)
of P{?). o
We now compute the set B9)[K,], by applying to the
polynomial f{?7[K.,,] our equivalent modification of algo-
rithm B-CONSTRUCTION as discussed in the beginning of this
proof. By definition of this modification and by Lemma L.2,
each (parenthesized) grouping in the polynomial f,SIQ)[R'w]
will contribute to the (raw data for the) set B(Q/)[I_(w] ex-
actly r variables (perhaps with repetitions of the same vari-
able names among the r occurrences) from the set { Ny, 1,
.y Nm4w}, each such contribution multiplied by (41).
Each such contribution corresponds to a separate position
(between 1 and r) in the relevant copy signatures, for the
given grouping (by cardinality-of-the-set-union). Specifi-
cally, from our earlier discussion of the min-expression in
the fixed jth position of P9 it follows that this fixed jth
position of Pc(c%)y in the grouping ¢g* will contribute to the
set B(Q") [Kw) the variable N (multiplied by (+1)). We con-

clude that the set B(Q/)[f(w] has an element C' x Nj, with
C € N4. (The reason for C possibly being greater than 1
is that, apart from the fixed jth position of ’Pc((;Qp)y in the
grouping g*, other positions in this or other groupings could
also contribute Nj to the (raw data for the) set B(Ql)[f?w}.)

Now consider (and fix) an arbitrary vector K, such that
Nj is the second element of this vector, and that Nj is the
last element of the vector. (For instance, if all the variables
in all the vectors of the form K,, are N2, N3, N4, Ns, and
if we have Nj = N3 and N5 = Nz, then one possibility for
K,is K, =[1 N3 N5 Ns N>].) Clearly, the fixed jth

position of Pc(%)y in the grouping ¢g* will now contribute to

the set B?)[K/,] the variable N (multiplied by (+1)).
Observe that for the vector K, it holds that the poly-

nomial f&Q/>[Rw} contributes to the (raw data for the) set

B@) [K,] the variable N} only for those groupings and only
for those (Ith) positions in those groupings where in all the

copy signatures for the monomial classes for the grouping,
the Ith position in all the copy signatures has either the vari-
able Nj (in the [th position in at least one such copy signa-
ture) or the constant 1 (in the Ith position in any number,
including zero, of such copy signatures). Observe also that
by Note 2 (earlier in this proof), for the vector K, (which
we fixed earlier in this proof), all such Ith positions, exactly
the same as for K/,, would also each contribute the variable
Nj to the (raw data for the) set B(Q/)[R'w]. We conclude

that the set B(Q’)[f({v] either does not have an element for
Nj at all (in case none such Ith position exists), or has an
element for Nj with a multiplier C’ € Ny such that C” is
strictly less than C, where C is the multiplier for Nj in the
set B(Q/)[I?w].

We infer that for the two fixed (distinct) vectors K., and
K/, the sets B(9)[K,] and B?")[K/,] are not identical sets.
Using Corollaries L.2 and L.3, we conclude that for the CCQ
queries @ and Q', Q =¢ Q' cannot hold. Thus, we have ar-
rived at a contradiction with the assumption that that for at
least one vector K., the m-covering part of the multivari-

ate polynomial]-'fg) [K.] has the wave PLD of the query @

(w.r.t. the family of databases {Dy)(Q)}) as a phantom
term. Q.E.D. [J

L.10.8 Proof of the main result of this section

We can now put together all the auxiliary results of this
section, to prove Proposition L.47 of Section L.10.2. Actu-
ally the proof is immediate from Proposition L.54 and from
the definition of solid terms of polynomials for our multi-
plicity functions (as given in Section L.10.5). We can finally
conclude that the result of Theorem 4.1 holds. Q.E.D.

M. PROOFS FOR SECTION 5
M.1 Proof of Proposition 5.1

In this section we provide a proof of Proposition 5.1. Ex-
ample 5.1 serves as an illustration of the proof.

Proor. If: This direction is straightforward. Take an
arbitrary M-identity SCVM, call it u, from Q onto Q’. The
desired GCM from Q.. onto Q... is obtained by extending
to the copy variables introduced into the condition of @ to
construct Q.. and Q... The desired extended mapping is a
GCM that extends onto the subgoal of Q.. and of Q.. the
association that p induces from the subgoals of the query
Q to the subgoals of the query Q’. That is, the extended
mapping would induce the same mapping as p at the subgoal
level of the two queries, modulo the copy variables added
when transforming query @ (Q’, respectively) into Q.. (into
Q..., respectively).

Only-If: In this part of the proof, we use the following

definitional notation for the four queries: Q(X) « L, M;

Qce(X) ¢ Lee, Mee; Q'(X) < L', M'; and QL (X) < L., M.

By definitions of Q’, Qce, and Q..., we have that (a) L' C L,
(b) Ll C Lecs (¢) M = M’, (d) M, C Mee, and (e) M C
M,.

Let v be a GCM from Q. onto Q... Denote by v; the
mapping resulting from restricting the domain of the GCM v
to the range of v. Observe that the range of v is the set of all
the variables (including copy variables) and constants in the
atoms in the set L... As v induces an automorphism from
the subset L., of Le. (in Qce) to the condition L., of Q.., v1

60

is a bijection, and therefore there exists an inverse mapping
v ', Consider the composition v; ' o v. By construction,
vy ! o v is a well-defined mapping whose domain is the set
of all terms occurring in the set L... Further, ul_l o v isan
identity mapping when the domain of vy 1o v is restricted
to the terms occurring in the set L... In particular, 1/1_1
o v is an identity mapping on each variable in the set M.
(Recall that the set L., contains all the variables in the set
M..) Finally, observe that the mapping v; ' o v is a GCM
from the query Q.. onto the query Q...

Now consider the mapping, call it ¢, resulting from re-
stricting the domain of the mapping v; Lo v to all the terms
occurring in the query Q. We show that ¢ is an M-identity
SCVM from the query @ onto the query @Q'. Indeed, we
have that conditions (1)—(3) and (5) of Definition 3.1 are
satisfied for ¢ by definition of the queries Q.. and Q.., as
well as by construction of the mapping v, 1o v. Further,
by construction ¢ is an identity mapping when restricted to
the domain M.

We now observe that from Q' having all the copy variables
of the query @, for each subgoal s of Q) that is in the set L —
L’ (as set difference), s must be a relational subgoal of the
query Q. Hence we have, by definition of ¢, the satisfaction
by ¢ of condition (4) of Definition 3.1. (The reason is, each
such subgoal s is mapped by ¢ into some atom, either rela-
tional or copy-sensitive, in the condition L’ of the query Q’.
Further, each relational subgoal s’ in L’ is mapped by ¢ into
a relational subgoal, specifically into s itself.) In addition,
by each such subgoal s in L — L’ being a relational atom,
we avoid the complication of ¢ mapping the copy variable of
s — in case s were a copy-sensitive atom — to a different vari-
able (recall that ¢(s) cannot be s, by s ¢ L’), and of thus ¢
violating the requirement that the desired SCVM map each
element of the set M into itself. The mapping ¢ could also
map s, in case s were a copy-sensitive atom, into a relational
atom, thus violating condition (5) of Definition 3.1.

Finally, ¢ maps each atom in L — L’ into an atom in L',
and maps L’ onto itself. We conclude that ¢ is an M-identity
SCVM from Q onto Q'. Q.E.D. O

M.2 Proof of Proposition 5.2

In this section we provide a proof of Proposition 5.2.
In the proof of Proposition 5.2 we use a straightforward
observation, as follows.

ProPOSITION M.1. For k > 2, let Q1, Q2, ..., Qr be
CCQ queries such that for each i € {2,...,k}, we have that
Qi is a reduced-condition query for Q;—1. Further, for each
j € {1,....,k — 1}, let there exist a CVM p; from Q; to
Qj+1- Then pg—1 o piy—2 o ... 0 p1 s a CVM from Q1 to
Qk. 0

The result of Proposition M.1 is immediate from Defini-
tion 3.1.

PROOF. (Proposition 5.2) For a CCQ query @, denote by
Q™™ the output of the algorithm MINIMIZE-CCQ-QUERIES
when given @ as input. (Clearly, for each input the algo-
rithm outputs a CCQ query.) We prove that Q™" is a
minimized version of Q by proving for Q™ all the items of
Definition 2.3 (of minimized versions of CCQ queries).

We first show that item (1) of Definition 2.3 holds for Q™"
w.r.t. Q. That is, we show that Q™™ is a reduced-condition
query for Q. Q™™ has been obtained by the algorithm

MiNiMIZE-CCQ-QUERIES applying to @ (and then to its suc-
cessive reduced-condition queries) one or more M-identity
SCVMs. (Observe that there exists a M-identity SCVM
from the input query @ to its regularized version, which is
used in line 1 of the pseudocode for the algorithm.) By
Proposition M.1 and by all these SCVMs being M-identity
SCVMs, there exists an M-identity SCVM, u, from @ to
itself, such that p is the composition of those SCVMs. By
definition of M-identity SCVMs, Q™™ is the query u(Q) and
is thus a reduced-condition query for Q.

We now show that item (2) of Definition 2.3 holds for
Q™. That is, we show that Q™™ is a minimized query.

e First, we have that Q™" is a regularized query. (A
CCQ query is called a regularized query if its regular-
ized version is the query itself.) Indeed, line 1 of the
pseudocode for algorithm MINIMIZE-CCQ-QUERIES ob-
tains the regularized version of the query @, and after
that the algorithm uses that regularized version start-
ing from line 2 of the pseudocode. Thus, for each (if
any) M-identity SCMV, call it u, applied by the al-
gorithm to the current query Q’, 1(Q’) cannot be an
unregularized query, by construction of u(Q’). We con-
clude that once the algorithm is done with the applica-
tions of all possible such M-identity SCVMs, Q™" is
also a regularized query.

e Second, denote by Q" the query that results from re-
moving one or more subgoals from the regularized (as
obtained in the previous item) query Q™. There are
two cases:

— Q" has strictly fewer multiset variables than Q™"
does. In this case, by Theorem 3.1, Q" =¢ Q™™
cannot hold.

— Q" has all the multiset variables of Q™. Then, by
Q™" being an output of the algorithm MINIMIZE-
CCQ-QUERIES and by Proposition 5.1, there can-
not exist a GCM from Q7™ into Q.. It follows
by Theorem 3.2 that Q" =¢ Q™™ cannot hold.

We conclude that Q™™ is a minimized query.

Finally, we show that item (3) of Definition 2.3 holds for
Q™™ and for Q. That is, we show that Q™™ =¢ Q holds.
Indeed,

e Q™" Ceo Q holds by the existence of an (M-identity)
SCVM from @ to Q™'", see reasoning in the beginning
of this proof, and by Theorem 3.3.

e Q Cc Q™™ holds by the existence of an identity SCVM
from Q™" to Q (recall that Q™" is a reduced-condition
query for @ that retains all the multiset variables of Q)
and again by Theorem 3.3.

We conclude that Q™" =¢ Q holds. O
M.3 Proof of Proposition 5.4

In this section we provide a proof of Proposition 5.4.

PROOF. Denote by Vi (by Va, respectively) the number
of variables in the query @1 (in Q2, respectively). Similarly,
denote by C1 (by Ca2, respectively) the number of constants
in the query Q1 (in Q2, respectively). Denote by M; the set
of multiset variables of the query @1, and by Ms the set of
multiset variables of the query Q2. As usual, |M;| denotes
the cardinality of M;, and similarly for Mas.

From p; being a CVM, we obtain immediately that (i)
|Mi| > |Ma|, and that (ii) C1 < Ca (recall that a CVM

61

maps each constant into an identical constant). Now from
p1 being a mapping from the condition of the query @i
onto the condition of the query @2, we have that (iii) the
condition of query @: has at least as many subgoals as the
condition of query @2, and that (iv) C1 + Vi > Cs + Va.
From (ii) and (iv) we obtain immediately that (v) V1 > V5.

Symmetrically, from p2 being a CVM and a mapping from
the condition of Q2 onto the condition of @)1, we have that
(a) |M1| < |Ma|, that (b) C1 > Cb, that (c) the condition
of query @1 has at most as many subgoals as the condition
of query Q2, that (d) C1 + Vi < Cy + Va, and that (e) V4
< Va.

It follows that:

o M| = [Moa];

L Cl = CQ;

e The conditions of Q)1 and of Q)2 are of the same cardi-

nality (as bags of atoms); and

o Vi =V

We use reasoning similar to the above to obtain that, in
addition, p1 induces a bijection from the head vector of
query Q1 to the head vector of query Q2. Symmetrically,
w2 induces a bijection from the head vector of query Q2 to
the head vector of query Q1.

Now, by definition of CVM, the mapping, call it v1, that
results from restricting the domain of p1 to the set M; of
multiset variables of the query @1, is a bijection from M;
to the set M> of multiset variables of the query Q2. Sim-
ilarly, the mapping, call it v2, that results from restricting
the domain of p2 to the set Mas, is a bijection from Ms to
M.

From the above observations and from the definition of
SCVM we conclude that p; is an isomorphism SCVM from
Q1 to Q2, and that ps is an isomorphism SCVM from Q2
to Q1. 1

M.4 Proof of Theorem 5.1

In this section we provide a proof of Theorem 5.1.

PROOF. (Theorem 5.1) Let @Q be a CCQ query. The exis-
tence of a minimized version of Q) follows from soundness of
algorithm MINIMIZE-CCQ-QUERIES. Now suppose there ex-
ist two distinct minimized versions of @, @1 and Q2, where
each of ()1 and Q)2 satisfies Definition 2.3. We show in this
proof that there exists an isomorphism M-identity SCVM
from @1 to @2, and that there exists an isomorphism M-
identity SCVM from Q2 to Q1. (See Example 5.2 for an
illustration.)

We first establish that there exists an M-identity SCVM
from @Q onto QQ1, and another from @ onto Q2. Indeed, by
definition of minimized version of a CCQ query, we have that
Q1 is a reduced-condition query for @) such that Q1 =¢ Q.
By Theorem 3.1 we then have that Q1 has all multiset vari-
ables of the query Q. Then, by Q1 € Qmin(Q), by The-
orem 3.2, and by Proposition 5.1, there must exist an M-
identity SCVM from @ onto @i, call this SCVM p1. Simi-
lar reasoning provides the proof for the existence of an M-
identity SCVM pue2 from @ onto Q2.

Consider the M-identity SCVM ps from @ onto Q2. Ob-
serve that, by @1 being a reduced-condition query for @Q
that has all the multiset variables of @, 2 is an M-identity
SCVM from Q1 into Q2.

We now prove that u2 is a mapping from Q1 onto Q2. (By
symmetric reasoning, we obtain that u1 is a mapping from

Q2 onto Q1.) Indeed, assume toward a contradiction that
there exists a proper reduced-condition query for @2, call
this query @3, such that uo is a mapping from @1 into Q5.
Then, by pe being an M-identity SCVM, Q35 has all multiset
variables of the query Q. From the existence of an identity
SCVM from Q3 to @ (@3 is a reduced-condition query for
Q) and by Theorem 3.3, we have Q C¢ Q3. Conversely, by
Q =c @1, by the existence of SCVM ps from Q5 to Q35 and
by Theorem 3.3, we have Q5 Cc Q. We infer that a proper
reduced-condition query for Q2, that is @3, is combined-
semantics equivalent to the query Q. Thus, Q2 cannot be
a minimized version of the query), and we arrive at the
desired contradiction. We conclude that o is an M-identity
SCVM from Q1 onto Q2.

By po being an M-identity SCVM from Q1 onto Q2, by
(symmetrically) p1 being an M-identity SCVM from Q2 onto
@1, and by Proposition 5.4, we obtain that uo is an isomor-
phism M-identity SCVM from Q1 to Q2, and that pq is an
isomorphism M-identity SCVM from Q2 to Q1. Q.E.D. [

N. NECESSARY AND SUFFICIENT CON-
DITIONS OF [6] FOR COMBINED-SEM-
ANTICS QUERY EQUIVALENCE

Cohen in [6] provides necessary and sufficient conditions
for combined-semantics equivalence of CQ queries, possi-
bly with negation, comparisons, and disjunction. For these
necessary and sufficient conditions to be applicable, both
queries to be tested for combined-semantics equivalence are
to satisfy one of the following conditions:

1. Neither of the two queries has set variables; or
2. Neither of the two queries has multiset variables; or

3. Neither of the two queries has same-name predicate
twice or more in positive (i.e., nonnegated) subgoals;
or

4. Each query is a join of a set (i.e., no multiset variables)
subquery with a multiset (i.e., no set variables) sub-
query. The formal definition is that neither query may
have a subgoal that would have both a multiset variable
and a set variable; or

5. Neither query may have copy variables.

Now consider a restriction of the query language stud-
ied in [6] to CCQ queries. In the remainder of this sec-
tion, we consider the above conditions 1-5 only as applied
to the queries that satisfy this restriction. (That is, in the re-
mainder of this section we consider CQ combined-semantics
queries only, without any extensions of this query language.)
Under this query-language restriction, each of the above con-
ditions 1-5 enforces that each CCQ query in question be an
explicit-wave query, by Definition 4.1 in this current paper.
Specifically:

1. Whenever neither of the two queries has set variables,
then both queries are explicit-wave queries because in
each query, each copy-sensitive subgoal has no set vari-
ables. (See Section 6 in this current paper for this syn-
tactic sufficient condition for a CCQ query to be an
explicit-wave query.)

2. Whenever neither of the two queries has multiset vari-
ables, then neither query has copy-sensitive subgoals.
Hence, both queries in question are explicit-wave queries
by Definition 4.1 (1).

62

3. Whenever neither of the two queries has same-name
predicate twice or more in positive (i.e., nonnegated)
subgoals, then both queries are explicit-wave queries
because neither (CCQ) query has self-joins. (The fact
that a CCQ query without self-joins is an explicit-wave
query is an easy inference from Definition 4.1 (2).)

4. Whenever neither query may have a subgoal that would
have both a multiset variable and a set variable, then
both queries are explicit-wave queries because in each
query, each copy-sensitive subgoal has no set variables.
(See Section 6 in this current paper for this syntactic
sufficient condition for a CCQ query to be an explicit-
wave query.)

5. Whenever neither query may have copy variables, then
both queries are explicit-wave queries by Definition 4.1
(1).

We conclude that if we apply to only CCQ queries the
necessary and sufficient conditions of [6] for query combined-
semantics equivalence, then each of these conditions would
be applicable exclusively to pairs of explicit-wave queries.
Thus, when all the queries in question are required to be CCQ
queries, we have that all the necessary and sufficient condi-
tions of [6] for combined-semantics equivalence of queries
are subsumed by Theorem 6.3 of this current paper and by
its variant, Theorem N.1, as follows. (The result of Theo-
rem N.1 is immediate from Theorems 4.1 and 6.1.)

THEOREM N.1. Given explicit-wave CCQ queries Q1 and
Q2. Then Q1 =c Q2 if and only if there exists a CVM from
Q1 to Q2, and another from Q2 to Q1. a

Observe that the CCQ query @ of Example 3.1 does not
satisfy (individually) any of the conditions 1-5 of this sec-
tion. Thus, none of the necessary and sufficient query-
equivalence conditions of [6] would apply to a pairing of
this query with an arbitrary query in the query language
considered in [6]. (By definition, see Definition 2.1, CCQ
queries do belong to the query language considered in [6].)
We make the same observation about the CCQ query Q' of
Example 3.1, as well as about the query CCQ @ of Exam-
ple 3.2. Still, by Theorem 6.3 (or by Theorem N.1) of this
current paper we obtain that (i) Q@ #¢ Q' for the queries
of Example 3.1, and that (ii) @ =¢ Q' for the queries of
Example 3.2. (See also Section 6.)

O. PROOF OF PROPOSITION 6.1

In this section we provide a proof of Proposition 6.1.

PROOF. If: Let v be an isomorphism SCVM from Q7"
to Q5. We show that there exists a CVM from Q; to Qs.
By Q7™ being (up to an isomorphism M-identity SCVM,
see Theorem 5.1) the output of algorithm MINIMIZE-CCQ-
QUERIES, by construction of the algorithm MINIMIZE-CCQ-
QUERIES, and by Proposition M.1, we have that there exists
a SCVM, 1, from Q1 to QT*™. Finally, there exists an iden-
tity SCVM, 12, from Q5™ to Q2. By another application of
Proposition M.1, we obtain that ¢z o 11 o p is a (S)CVM
from @1 to Q2. Symmetrically, we obtain that there exists
a CVM from Q2 to Q1. Q.E.D.

Only-If: Suppose there exists a CVM &; from Q1 to Q.
We show that there exists an isomorphism SCVM from Q7"
to Q5¥'". There exists a SCVM, 2, from Q2 to Q5. (See
the If part of the proof for the justification of the existence

of po. The justification is given there — symmetrically —
for the existence of a SCVM p1 from Q1 to Q7*™.) By
Proposition M.1, we obtain that the mapping p2 o & is a
CVM from Q; to Q5".

Construct a mapping v1, by restricting the domain of uo o
&1 to the set of terms of the query Q7. By Q7" having all
the multiset variables of the query @1 and being a reduced-
condition query for Q1, we have that v is a CVM from Q"
to anin.

From the existence of a CVM from @1 to @2 and of a
CVM from Q2 to Q1, by Theorem 3.3 we obtain that Q1 =c¢
Q2. Further, from Q1 =¢ Q7" from Q2 =¢ Q5" and
by transitivity of =¢, we obtain Q7" =¢ Q7*". From
Theorem 3.1 we have that the queries Q7" and Q5" have
the same number of multiset variables. Therefore, v1 must
be a SCVM from Q7™ to QF".

We now show that v1 is a SCVM from from Q7™ onto
Q™. The proof is by contradiction: Assume that v is
not an onto mapping. Then the query vy (QT**™) is a proper
reduced-condition query for Q7*", and thus also a proper
reduced-condition query for Q2. We have the following:

e Q1 =c Q7™ (by definition of QT*™);
e Q1 =c Q2 (by the existence of a CVM &; from Q1 to

Q2, by the existence of a CVM from Q2 to @1, and by
Theorem 3.3);

e Q2 Co v _{”m) (by the existence of an identity CVM
from 11 (QT"'") to Q2 and by Theorem 3.3); and

o (Qi’”:") Cco Q7™ (by v1 being a CVM from Q7" to
v1(QT"™) and by Theorem 3.3).
min)’

Using transitivity of C¢, we infer that Q2 =¢ v1(QF
where v1 (QT'™) is a proper reduced-condition query for Q3
We conclude that Q5*" cannot be a minimized query for Q2,
and thus arrive at the desired contradiction. Therefore, 11
is a SCVM from from Q7" onto Q5"

Symmetrically to the above proof for v1, we obtain that
there exists a SCVM, vz, from Q5" onto Q7'". From the
existence of two “onto” CVMs vy and vs, using Proposi-
tion 5.4, we conclude that v is an isomorphism SCVM from
QM to QT and that v, is an isomorphism SCVM from
QT to Q™. Q.E.D. O

P. PROOF OF SUFFICIENT CONDITION FOR

A CCQ QUERY TO BE AN EXPLICIT-
WAVE QUERY

ProposiTION P.1. Given a CCQ query Q such that each
copy-sensitive subgoal of Q has no set variables. Then Q is
an explicit-wave query. O

ProOOF. We prove that for all queries such as @ in the
statement of Proposition P.1, each such query satisfies Def-
inition 4.1. Indeed, consider a query @ satisfying the condi-
tion that each copy-sensitive subgoal of @) has no set vari-
ables. In case () has at most one copy-sensitive subgoal, we
obtain immediately that @ satisfies Definition 4.1 (1). Thus,
in the remainder of this proof we assume that @ has at least
two copy-sensitive subgoals. We will show that in this case,
Q always satisfies Definition 4.1 (2).

Let (w1, 42) be an arbitrary pair of noncopy-permuting
GCMs from Q.. to itself such that pu; and p2 agree on
Mponcopy. Consider an arbitrary copy-sensitive subgoal of

min

63

Q, call this subgoal s. By definition of the query Qce, s must
be a subgoal of Q... The atom s may have as arguments
only constants, head variables of the query @, and multiset
variables. (Recall that no set variables of @@ may be argu-
ments of s.) Now each of y1 and p2 map each constant to
itself (by each of p1 and pe being a GCM), and by each
of p1 and w2 being a mapping from Q.. to itself we obtain
that each of p1 and p2 maps each head variable of Qc. (that
is, each head variable of @, by definition of Q..) to itself.
Finally, consider each multiset noncopy variable, call it Y,
such that Y is an argument of the atom s. By p1 and e
agreeing on Myoncopy, We have that pi(Y) and p2(Y) are
the same term of the query Q. (Recall that, by definition
of Qce, we have that for all terms that are present in Qe
but not in @, each such term is a copy variable.) We con-
clude that atoms pi(s) and p2(s) have the same relational
template. Hence, @ satisfies Definition 4.1 (2). Q.E.D. [J

