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Abstract

In this article we describe an interaction style for direct manipulation systems,
based on a close analogy to the use of simple hand tools. We describe the prop-
erties of physical tools and tool use and explain their implications for interactive
software. To illustrate how the properties governing physical tool-based interac-
tion can be applied to software design, we discuss systems in three application
domains: illustration, control of an optimization process, and text editing. Our
work motivates and explains novel interaction techniques and gives insight into
how some conventional techniques can be improved.
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1 INTRODUCTION

Tool use is a fundamental aspect of the ways in which humans interact with their envi-
ronments, both in the physical world and within the computer interface. In the physical
environment, workshops, garages, and even kitchens each contain a wide array of tools
assembled for a common purpose. These tools are usually arranged by category, as with
a rack of screwdrivers, and within each category, there are often several different sizes
and types, such as Phillips, Torx, and flat blade screwdrivers. Analogies in software
environments follow naturally from our experience with tools in the real world. This
is more than the commonplace observation that software applications can be viewed as
conceptual tools; rather, software environments often contain components that delib-
erately mimic the properties or organization of physical tools. For example, an illus-
tration application might supply a palette of tool objects for drawing lines, circles, and
various other shapes, with other aspects of functionality given in menus organized by
appropriate categories.

The ubiquity and effectiveness of the tool metaphor in software environments sug-
gests that people’s experiences with everyday physical tools carries over to the use of
software tools. Yet little effort has been put into understanding the characteristics of
physical tool use and how those characteristics may support or undermine interactions
when adapted to software design. Our basic assumption is that in order to understand
how people might apply their tool-using skills in a software environment, it will be
helpful to have an abstract description of the use of physical tools. While physical tool
use does not capture all of the complexity of the interaction with a software system, a
conceptual framework for tool use may provide useful new insights to designers.

We believe that an improved understanding of the nature of tool use and its related
concepts can help us to generate better explanations of why many software tools are
effective. Further, the application of these concepts can lead to the development of
novel interaction techniques. We have explored some of these new directions in our
work, by building tool-based software environments that support drawing and other
tasks with analogies to actions in the physical world.

In this article, we examine the properties of physical, manufactured hand tools and
how they are generally used, and we draw inferences to the way interactive software
components should be designed if they are to reflect these same properties. Section 2
motivates our focus on physical rather than cognitive tools, given that computers are
commonly viewed as cognitive aids. The separation between physical and cognitive
tool use is not a sharp line; we can gain significant insight by considering the physical
side of the relationship. Section 3 describes an abstraction of physical tool-using behav-
ior. Although our discussion is driven by physical tools, we focus mainly on properties
that transfer to software environments. Sections 4 and 5 illustrate the benefits of taking
a tool perspective in three software systems that we have built. In Section 4 we de-
scribe an interactive drawing system called HabilisDraw [Butler and St. Amant, 2004,
Daughtry and St. Amant, 2003, St. Amant and Horton, 2002b,a], which demonstrates
the unified application of tool-based concepts to the domain of illustration. Section 4
ends with an interpretation of conventional software tools in terms of physical tool
concepts. Section 5 covers the two remaining applications. One is an interactive sys-
tem for guiding an optimization process, patterned roughly after the interface to the



Human-Guided Simple Search system [Anderson et al., 2000]. The other is a global
find-and-replace dialog for use in a word processing application. The applications in
this section illustrate how tools can influence design in domains that may have a less
than obvious physical interpretation.

2 MOTIVATION

Computers are commonly viewed as cognitive tools, in the sense given by Hutchins
[1995], Woods and Roth [1988], and Norman [1991]: cognitive tools transform the
representation of problems so that they can be more easily solved. For example, sta-
tistical packages and spreadsheets allows users to deal with abstract data objects and
procedures for analysis and manipulation, rather than low-level computations on arrays
of numbers. In principle, word processors allow users to concentrate on content, with
issues of style and formatting handled automatically. It is reasonable to ask, then, how
an analysis of physical tool use can help us to understand human-computer interaction.

Physical tool use involves more than the execution of physical actions; it also en-
tails the selection, construction, and adaptation of appropriate tools, the monitoring
and evaluation of progress in applying tools, and the acquisition of sometimes complex
skills [Baber, 2003]. Most interestingly, there is the common experience of engage-
ment with physical tools, in which the tool user begins to think of a tool in hand as
an extension of his or her own body, rather than as a separate object with which to
interact Maravita and Iriki [2004]. All of these are key issues in the study of cognition
and have received considerable attention in human-computer interaction.

Understanding the nature of physical tool use is especially important for the current
generation of user interfaces. Our interaction with cognitive tools via direct manipula-
tion software interfaces follows the conventions of interaction with physical artifacts.
Terms for the objects with which users interact, such as windows, buttons, palettes,
menus, and so forth, have become so familiar that it is easy to forget that they are
metaphors for real world objects. The principles of direct manipulation interfaces ex-
plicitly identify common properties between software and physical objects: objects
are continuously represented in the interface, rather than appearing and disappearing
with the actions taken by the user [Shneiderman, 1992]; users carry out actions di-
rectly on objects, rather than communicating with or issuing commands to the inter-
face [Hutchins, 1989, Shneiderman, 1992]. This means that the design of the physical
metaphors in an interface, or, by extension, the design of tools in the interface that
reflect physical considerations, can influence the effectiveness of the computer as a
cognitive tool.

3 PHYSICAL TOOL USE

The phenomenon of tool use has received attention in artificial intelligence and sit-
uated cognition [Brady et al., 1984, Agre and Horswill, 1997], human-computer in-
teraction and cognitive psychology [Baber, 2003, Hutchins, 1995], and related fields
(e.g., Keller and Keller 1996, Preston 1998, Semin 1998). The most extensive analyses,



however, are to be found outside these fields, in ecological and experimental psychol-
ogy [van Leeuwen et al., 1994, Wagman and Carello, 2001, 2003], animal psychol-
ogy [Beck, 1980, Dent-Read and Zukow-Goldring, 1997, Gibson and Ingold, 1993,
Povinelli, 2000, Russon et al., 1996, Tomasello and Call, 1997, St Amant and Horton,
2008], and studies of the evolution of cognition [Deacon, 1998, Mithin, 1996, Sterelny,
2003]. For our purposes, we can summarize this diverse literature by focusing on defi-
nitions of tool use and the general types of tools that exist.

The most widely accepted definition of tool use is due to Beck [1980], in research
on animal cognition:

Thus tool use is the external employment of an unattached environmental
object to alter more efficiently the form, position or condition of another
object, another organism, or the user itself when the user holds or carries
the tool during or just prior to use and is responsible for the proper and
effective orientation of the tool.

Researchers in non-human primate cognition offer colorful illustrations of different
aspects of this definition. Tool use involves direct action [Vauclair, 1996]: a striking
action with a stone, with the goal of cracking open a nut, is an example of tool use. In
contrast, some primates show uncanny accuracy in dropping objects onto researchers’
heads [Ingmanson, 1996]; this is considered tool-related behavior rather than actual
tool use. Tool use is goal-directed activity [Ingmanson, 1996]: sometimes desirable
ends are achieved through the incidental or even accidental use of an object, which is
not considered a tool in that case. Tool use involves effective behavior: one influential
study involved monkeys given the task of pushing a reward out of a narrow, transparent
tube; one monkey unwrapped a thick bundle of reeds held together with masking tape,
but then tried to push with the tape instead of a reed [Visalberghi and Limongelli, 1996].
Tool use often amplifies existing behavior, such as using a stick to extend one’s reach
(e.g., through a narrow opening, or to touch a moderately distant object). Amplification
is a common aspect of tool use in experimental settings and in the wild [Povinelli,
2000].

Because tools are developed to meet problem-solving needs, the diversity of tasks
faced by tool-using agents means that an enormous number of different kinds of tools
exist. Catalogs of tools have been compiled for practical use (e.g., Duginske 2001),
and some taxonomies have been developed in specialized areas. For example, Oswalt
describes and compares a number of taxonomies related to tools for subsistence, with
higher-level categories that include artifacts and naturefacts, and lower-level cateogories
for implements and weapons [Oswalt, 1973]. We are aware of no general, domain-
independent taxonomy of tools, however. To address this gap we have developed a
small set of categories that give broad coverage of both common tools in the physical
world and interaction mechanisms in software environments:

e Tools that produce a persistent effect on materials or the environment. We call
these effective tools. Examples in the physical world include hammers, saws,
screwdrivers, and so forth. Though effective tools tend to be those that first come
to mind when we think of tools,' this category does not encompass all types.

n an informal and unscientific survey, the second author has asked several dozen people at different



e Tools that provide information about materials or the environment. These have
been called instruments in the tool use literature [Hutchins, 1995]. Instrumenta-
tion may be built into an effective tool, as when a table saw indicates the angle at
which it is cutting a board. Tools that act alone as instruments include measuring
tapes, calipers, microscopes, magnifying glasses, and so forth.

e Tools that constrain or stabilize materials or the environment for the further ap-
plication of effective tools. We call these constraining tools; others have charac-
terized them as metatools [Matsuzawa, 1991]. Examples include clamps, rulers,
wedges, and other devices that limit movement or flexibility. We often find ar-
tifacts that are simultaneously constraining and effective tools. For example, a
handsaw is effective, in that the blade makes a cut in a piece of wood, but it also
compensates for lateral movement, in that the breadth of the blade forces (or at
least facilitates) a straight-line cut. That is, because the breadth of the blade must
follow the toothed edge through the groove as the wood is cut, it is easier to cut
in a straight line than not. Jigsaws and keyhole saws have a very narrow blade
just to relax this constraint.

e Tools that demarcate the environment or materials. The goal of demarcating
tools is to distinguish similar areas or pieces of the environment so that they can
be treated differently. Examples include the carpenter’s pencil, pushpins, and
working surfaces inscribed with fixed markings, as on a seamstress’s table.

Beck’s definition and our taxonomy give the basic outlines of the characteristics of
tool use. Our analysis of the literature has led to a revised definition of tool use that
takes the issues above into account [St Amant and Horton, 2008]:

Tool use is the exertion of control over a freely manipulable external object
(the tool) with the goal of (1) altering the physical properties of another ob-
ject, substance, surface or medium (the target, which may be the tool user
or another organism) via a dynamic mechanical interaction, or (2) mediat-
ing the flow of information between the tool user and the environment or
other organisms in the environment.

Although the revised definition captures a wider range of tool-using behaviors, it
is still quite abstract; we find that tools in use have many other properties worth con-
sideration. For example, tools have affordances [Gibson, 1979]; tools are sometimes
composite objects, where components are other tools; tools are applied to solve prob-
lems in characteristic ways; the organization of tools follows specific patterns. In the
following sections, we will attempt to explain these and other properties of tool use as
arising naturally from properties of tool-using agents and tools as physical objects.

3.1 Tools in use

We now move to an explanation of the characteristic ways in which tools are conceptu-
alized and used. For each of the points below, we describe the concept, give an example

times to quickly name three tools. With surprising consistency, the tools named are hammer, screwdriver,
and saw, in that order.



of human tool use to illustrate the concept, and explain how it is related to the concepts
we have introduced.

e Object status and manipulability. Tools such as screwdrivers and hammers can
be picked up and used, as a direct implication of their status as persistent physical
objects and a tool user’s manipulation capabilities.

e Affordance. The affordances of an object indicate how it can be used [Gibson,
1979, Norman, 1988].2 For example, the handle of a tool such as a hammer
affords grasping, because of its match to the dimensions of the human hand.
Because tools are manipulated for their effect on other objects, they give rise
to other affordances; when a tool is held in the hand, new affordances become
relevant due to the tool’s transformation of the user’s interaction abilities. The
shape of the head of the screwdriver is a specialized inverse match to the screws
that it drives (e.g., a blade for slotted screws, a Phillips head for Phillips screws),
which means that screws afford being driven by the screwdriver-in-hand.

o Specialized action. Closely related to the issue of affordance is the tailoring
between tools and the necessary physical actions for their application in order to
reach a desired result. For example, hammers and handsaws require distinctly
different motor actions for effective use. This results from tools being designed
to exploit the physical architecture of the human body.

e Open-loop versus closed-loop action. It is common to take a practice swing
before first hammering a nail, to ensure that the following blows are accurate.
Such a preparatory action is an example of closed-loop action, in motor action
terms—a relatively controlled motion in which feedback is attended to. The
actual effect is achieved by an open-loop, ballistic action without continuous
monitoring of feedback, carried out after the earlier calibration stage. Open-loop
action is not appropriate for all forms of tool use (e.g., consider the activities of
watch repair or surgery), but it is common practice in many domains.

o Effect locality. Most physical tools in the real world must come in contact with
an object to have an effect on it (leaving aside tools such as pressure hoses and
air brushes.) This tends to enforce locality on the effect of actions. For example,
a hammer strikes a nail at one point of contact; in contrast, the idea of making a
hammer more efficient by giving it multiple heads or a single much larger head,
so that several nails could be driven simultaneously, does not seem very plausi-
ble. Effect locality is an immediate implication of two factors: a single focus of
attention (a limited number of in-focus objects) and an inability to perfectly repli-
cate actions. Even if the latter were possible, uncertainty about environmental
factors would dictate that results be monitored, subject to attentional constraints,
in order to ensure the success of actions.

e [teration. Iteration is common in tool use. For example, hammering a nail often
takes several blows of the hammer, and if several nails are required, they are

2Qur discussion here relies on a significant simplification of different treatments of the concept of affor-
dance in the HCI literature; St. Amant [1999] gives a more detailed account.



visited in turn. Iteration is a way to compensate for effect locality, for the same
reasons as given above. Because actions cannot be carried out with certainty,
progress toward a goal is often incremental, so that monitoring by the perceptual
system can ensure that mistakes are not made.

e Material consolidation. In some cases of tool use, it is possible to avoid the in-
efficiency associated with iteration due to effect locality. For example, if several
boards need to be cut to the same length, they can be stacked or clamped together
and then cut at the same time. Consolidating materials can be seen as the pur-
suit of two benefits. One is increased efficiency; applying a movement trajectory
repeated on a composite object may take less effort and time than a series of
trajectories iterated over individual objects, due to set-up time. The other benefit
is a reduction in uncertainty. If the same result is desired for several objects, and
these objects can be consolidated, actions carried out on the composite object
can eliminate the need for precise, repeated measurements, which are subject to
perceptual limitations and prone to action errors.

o Variation and duplication. Physical tools are rarely unique elements of a class.
Instead, we often see different instances with slight variations, side by side, used
for different purposes. For example, a tool chest might contain several screw-
drivers of different types and sizes. Tools of similar or related functionality
are grouped together for easy access. Many workshops even contain identical
instances of the same tool, in different locations for convenience. These are as-
pects of the effective use of space [Kirsh, 1995, Vauclair, 1996], required among
other reasons because of the spatial extent of tools as objects. For example, many
experienced tool users lay out their tools before beginning a task, on the assump-
tion that some common tools are almost always eventually needed and should be
ready to hand. Efficient organization, duplication, and variation of tools reduce
the navigation cost of retrieving tools, as well as reducing uncertainty concerning
the location of tools.

o Adjustability and composability. Many physical tools are built of components
that can be put together in different ways; alternatively, physical tools can gener-
ally be combined with other tools or materials such that their effect is modified.
For example, if a bolt is too tight to loosen with a short-handled wrench, one
can strike the handle with a hammer, or insert the handle into a pipe, using it as
a sleeve, to extend the handle and increase leverage. The composition of tool
objects transforms the capabilities of a tool, just as a grasped tool transforms the
capabilities of the manipulator. As illustrated by the examples above, actions
taken to adjust or compose tools can allow an otherwise unreachable goal to be
achieved or reduce the cost of achieving it. Mithin [1996] gives two other justifi-
cations for composable tools: reliability and maintainability. For tasks in which
tools wear out quickly or are likely to break, such as hunting with spears or traps,
an alternative to discarding entire tools and constructing new ones from scratch
is to replace the worn-out or damaged tool parts. This comes back to the issue of
efficency, or cost, in tool construction activities that are part of a larger tool use
context.



4 HABILISDRAW

Deriving its name from one of the first hominid species known to manufacture stone
tools, Homo habilis, HabilisDraw is a prototype drawing application for exploring the
use of software-based tools in an interactive system. We chose to start with a drawing
application because it is a familiar domain for most computer users, has a well estab-
lished set of interaction mechanisms, and clear parallels to physical tools in the real
world. We begin this section with a description of the HabilisDraw interface and a dis-
cussion of the HabilisDraw tool set. We then place the tool use in HabilisDraw within
the framework described above and conclude with a brief qualitative analysis.

4.1 Interaction in HabilisDraw

Most existing drawing and painting applications already exploit a tool-using metaphor,
with pens, brushes, rectangle tools, and the like. Some of these metaphors, however,
such as the tools for drawing rectangles and circles via bounding boxes, have no simple
analogs in the real-world. Others such as pens and brushes do bear some conceptual
resemblance to their real-world counterparts, but are used in a manner far removed
from that of physical tools. None qualify as tools in our taxonomy.

In contrast to the “tools” found in these applications, the tools in HabilisDraw were
designed to mimic physical tools in as many respects as were practical. The most
basic difference is that all tools in HabilisDraw are first-class artifacts. Palettes of
buttons are replaced by tool boxes, and the use of menu-based commands is kept to
a minimum. In HabilisDraw, tools are persistent objects rather than transient modes;
they remain in place on the work surface until the user chooses to move or delete them,
and multiple instances of a tool class may exist simultaneously, each instance with its
own customized properties.

Though we have experimented with different input devices, the classic version of
HabilisDraw is entirely mouse-based. Binding the necessary interactions to a single
mouse button proved difficult, so we utilize both the left and right mouse buttons when
manipulating tools in HabilisDraw. The general form for interaction is as follows: a
right click plus drag “grasps” the tool, allowing the user to move it to a new location;
while grasped, pressing the left mouse button activates the tool (e.g., causes a pen tool
to draw, or a ruler tool to align objects). Releasing the left mouse button deactivates
the tool, releasing the right mouse button drops the tool back onto the canvas. In early
testing, this seemed to be the most difficult aspect for new users to learn. In order
to provide a simpler mechanism, we also introduced an alternative control scheme:
clicking and dragging with either button moves a tool to a new location; a single click
with either button performs a “sticky grasp”, binding the tool to the cursor; as before,
pressing the left mouse button activates the tool, releasing deactivates the tool; a single
right click drops the tool back onto the canvas. While less efficient when the user needs
to switch between tools frequently, this method is closer to the mode-based behavior
many users may expect from a drawing application.

Certain tools, such as rulers and compasses, have drag handles on the their surfaces.
Clicking and dragging on one of these handles allows the user to easily adjust the
length and orientation of the tool. It is also possible to open up a control panel, via



a menu selection. Like the screw on an adjustable wrench, or the switches and dials
on many power tools, the control panel gives the user explicit control over all of the
adjustable properties of the currently selected tool (e.g., the lengths and angles of rulers
and compasses and the RGBA values of pens and ink wells).

Interaction with real-world tools tends to be much richer and more flexible than
standard point-and-click mouse actions can easily replicate, and the use of both left
and right mouse buttons, sometimes simultaneously, may seem overly complex. As
noted, this proved to be the major problem for users trying to learn to use the system.
Human hands have multiple degrees of freedom and may grasp the same tool with
a variety of grips, depending on how the tool is to be manipulated. For example, a
physical tool may be picked up and relocated with a very loose grip while a bit more
effort would be expended in setting up a precision grip if the tool is to be used. In
HabilisDraw, a left click is used for actions associated with effective tool use, while a
right mouse button is used for actions relating to relocation.

To overcome such limitations of mouse-based interaction, we have developed a
different version of HabilisDraw for the DiamondTouch table-top input device [Dietz
and Leigh, 2001], which we have extended to support two-handed touch input. In
HabilisDraw DT [Butler and St. Amant, 2004], objects are picked up with a pinching
action of the thumb and forefinger, and can be moved or oriented with a single action,
which significantly simplifies interaction. HabilisDraw DT adds another dimension
to the original system, in terms of both interaction and tools; some of the discussion
below applies only to the DiamondTouch version of the system, which we indicate
where appropriate.

4.2 Tools in HabilisDraw

Some tools in HabilisDraw will already be familiar to users of common drawing appli-
cations, though their usage in HabilisDraw tends to be very different. Pen tools draw
lines and ink wells (similar to the “paint bucket” in most drawing packages) fill in the
color of drawn objects. Other tools, such as rulers, which act as straight edges, and
compass tools, for drawing circles, will be unfamiliar to new users. Figure 1 shows a
sample drawing produced in the environment.

The list of tools in the original HabilisDraw includes pens, rulers, compasses, ink
wells, push pins, glue tools, guide tools, and lenses, as shown in Figure 2, as well as a
tool box from which new tools can be retrieved. Since the development of the original
toolset, there have been two revisions. The first revision extended the original toolset
by adding two new tools to provide automation, movers and rotators, and a new tool
for composition, the bar tool. The second revision, mentioned above, is HabilisDraw
DT, which features a slightly different toolkit, including a tape dispenser and a cutting
arm.

e A tool box. A collapsable tool box palette is provided which contains at least
one copy of each class of tool. Selecting a tool from the box creates a new
instance of that tool. Dragging an existing tool onto the tool box removes it from
the environment. In cases where it makes sense to have quick access to several
different configurations of the same base tool, the tool box includes multiple
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Figure 1: The HabilisDraw environment

variations of a tool class. For example, the tool box contains a row of pen tools
with different common line widths, and a row of ink wells containing different
colors.

e Pens. The primary effective tools in all variants of HabilisDraw are pens. Each
instance of a pen has a color and line width associated with it. When used alone,
a pen simply produces a freehand line object. More complex drawing actions are
possible by combining a pen tool with a ruler, which acts a straight edge, or with
a compass, which constrains the pen tool to an arc.

e Rulers. Rulers in HabilisDraw have variable length and orientation, which may
be adjusted by dragging a ruler’s handles. While they can be used as instruments
for comparing lengths, their primary function is as straight edges, or constraining
tools. An active ruler will push along drawn objects with which it comes in
contact, and may thus be used to align objects to the ruler’s edge. Since a ruler
may be set to any angle, this method of alignment is much more flexible that
relying on the standard “align left/right/top/bottom” menu functions, as shown

10



v
e o *
L 28,8 b4 o
e
. |
n | ] St |
[
/ %%“T""mh -
L2 , .
] J . .
~, n ™
Bl
length: 80,0 L

|
|
angle: 1650 | /
§} S DS =
|
|
|

Figure 2: Tools in HabilisDraw

on the right in Figure 3. Additionally, a ruler resting on the work surface will
constrain the motion of an active pen, forcing it to follow a straight line for as
long as the pen is held against the ruler’s edge. In this manner, a user can place
multiple rulers together to form a jig for creating lines with specific angles.

o Compasses. A compass tool consists of a central base and a handle at the end of
an arm. The length and rotation of the arm is adjusted by dragging the handle.
Activating a pen tool while it is over the handle of a compass constrains the
pen tool to follow the arm as it rotates around the base at a fixed radius. Thus
the compass tool is able to draw not only circles, but arcs as well. When a pen
already constrained by a compass contacts the edge of a ruler, all three tools
work together, resulting in an arc with a flat portion where the ruler forces the
pen to follow a straight line, as shown in Figure 3.

o [nk wells. The primary function of an ink well is simply to store a color. Acti-
vating a pen tool while over a well causes the pen to adopt the color of the “ink”
stored in the well. Wells may also be used as effective tools—bringing a grasped
ink well’s “spout” to a drawn object and activating the well copies the color it
contains onto the object. Similarly, a well’s color may be copied into a pen or

11
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another well by activating the well while it is over the other tool. In Habilis-
Draw DT, transfer of ink between ink wells is incremental, a mixing process that
creates new colors.

Push pins. Push pins constrain drawn objects and other tools. A drawn object
with a push pin placed on it cannot be moved until the pin is removed. A ruler
being pushed along the work surface or a compass being rotated will stop when
it collides with a pin.

Guide tools. Guide tools may be used to draw lines that are not intended to be
part of the drawing, but provide notation or aid in alignment; they are demarcat-
ing tools. The visibility of lines drawn with a guide tool may be toggled on and
off.

Glue tools. A glue tool may be used to join two or more drawn objects together.
The drawn objects may then be moved or rotated as though they were a single
object. Glue tools are constraining tools. Separating glued objects must currently
be done via a menu command, as there is no “solvent” tool.

Lenses. Lenses are instruments that provide a zoomed in view of the work sur-
face underneath. Zoomed tools and drawn objects may be manipulated “through”
a lens. The zoom factor of a lens may be set via the control panel, or multiple
lenses may be overlaid to combine their effects.

Bar tools. For more flexible tool composition, we introduced bar tools. Bar tools
generate rigid connecting bars to which other tools may be attached. For exam-
ple, by attaching several pens at regular intervals along a bar tool, a user creates
a new tool for drawing parallel lines like those of a staff in music notation. Bars
can be set to constrain the spatial relationship between other tools; alternatively,
they can be set such that their length will vary automatically.

Movers and rotators. Movers and rotators add a degree of automation to Habilis-
Draw. When attached to a bar, movers and rotators give a composite tool linear
and rotational impetus, respectively. This allows users to easily accomplish new

12
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Figure 4: A composite tool for drawing spirals

tasks, such as drawing spirals (rotator plus pen plus shrinking bar), that would be
impossible in a typical drawing application. Figure 4 shows the composite tool
and a sample result.

o Cutter and taper. In HabilisDraw, drawing operations result in changes to a
global canvas. In HabilisDraw DT, drawing is carried out on explict sheets of
paper. Paper objects are dragged from a stack and positioned on the working
surface. A straight cutting arm, in a fixed position along the edge of the work-
ing surface, cuts through any sheets of paper under it, allowing the creation of
differently shaped pieces. The cutter is thus an effective tool. These pieces can
be taped together, constrained into specific configurations. Combinations of cut-
ting and taping operations can produce collages; overlapping pieces of paper
can further act as simple stencils for drawing. A sample drawing produced by
HabilisDraw DT is shown in Figure 5.

Some of the tools above have an associated dialog box through which parameters
can be changed. A dialog box for a HabilisDraw pen, for example, allows changes to its
color, the width of its tip, and so forth. Following the arguments of Beaudouin-Lafon
[2000], we might say that interactions with buttons, text boxes, and other widgets via
dialog boxes are a violation of the principles of direct manipulation, and thus of tool
use, but there is a sense in which such interactions are consistent with tool concepts,
even though they may not be instances of tool use. Many physical tools have settings
that change their behavior: an adjustable wrench, for example, or a wood plane. For
software tools, by analogy, it is natural to associate a control panel with tool properties.
Metaphorically speaking, opening a dialog box to change the properties of a tool is
equivalent to opening a control panel to change some of its switches or settings. In
keeping with this analogy, and unlike most dialogs in typical interfaces, control panels

13



Figure 5: The HabilisDraw DT environment

in HabilisDraw are modeless and explicitly associated with the objects they modify. It’s
important to notice that dialog boxes acting in this role do not make changes directly
to the environment and are thus not equivalent to tools. Instead, they make changes to
a tool, in a preparation phase, which can then affect the environment in a different way.
In this restricted sense, dialogs are consistent with the physical tool metaphor.

4.3 Tool Use in HabilisDraw

In this section, we consider how tool use in HabilisDraw compares with tool use in
the real world and with traditional software interfaces, and explore how the interaction
techniques used in HabilisDraw apply the concepts of tool use developed above.

The HabilisDraw toolset includes instances of all the classes in our tool taxonomy.
Pens and ink wells are effectors, directly altering the environment by creating and
modifying drawn objects. Lenses and rulers (when used for comparing lengths) act as
instruments, augmenting the user’s perception of the HabilisDraw environment. Rulers
(as straight edges), compasses, and push pins all constrain the motion of pens, drawn
objects, and each other. Push pins and guide tools may be used to distinguish different
parts of the work surface and fall under the category of demarcating tools. Note that
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the categories are not exclusive, and even simple tools like pins and rulers may belong
to more than one group.

To the extent that was practical, we tried to imbue the tools in HabilisDraw with the
properties of physical tools. All drawing environments give some attention to physi-
cal consistency, by the nature of the domain. Objects may overlap one another, for
example, or be grouped together. With tools as visible objects, new opportunities for
consistency with the physics of the environment become possible (even if some physi-
cal laws, e.g., those dealing with dynamics, are neglected.)

In HabilisDraw, a ruler is provided for drawing straight lines, as shown in Figure 3.
A pen can be used to draw freehand curves, but when it comes in contact with the long
edge of a ruler, it is constrained to follow a straight line. This constraint extends to the
drawing of other types of objects as well, as in the use of the compass tool. Drawing
angles, semicircles, or circle quadrants (using two rulers) is a natural extension of the
use of two or more familiar tools, rather than requiring an additional specialized tool.
Physical consistency in the functionality of the ruler also extends to manipulation of
objects after they have been created. To align objects on a canvas in a conventional in-
terface, a menu or dialog is commonly provided for vertical or horizontal arrangement.
In HabilisDraw, the ruler can be used to push objects into alignment, in any desired
orientation.

HabilisDraw tools such as the ruler and the compass mediate the user’s actions in
a way comparable to physical tools, largely by increasing physical realism in the be-
havior of the software tools. Baber explains why this can be important. He describes
a virtual reality environment in which the user grasps a 3D mouse and, by carrying
out hammering motions, causes a virtual mallet to move accordingly in the environ-
ment [Baber, 2003]. What distinguishes this from more realistic tool use is that the
user gains an understanding of the procedure but not the practice of carrying out the
task in the real world. If we were to further reduce the realism in the environment, say,
by tracking the user’s empty hand with cameras, we would hardly say that the activity
constituted tool use at all—a key element, the tool itself, is missing. As the engagement
of the user with a tool decreases, both in duration and in the symmetry between actions
and results, some of the basic nature of tool use is lost. This is part of the reason that
pressing buttons and selecting modes are not examples of tool use in our conceptual
framework.

In general, tool objects in HabilisDraw reflect the properties of physical tool use as
follows.

e Object status and manipulability. All tools in HabilisDraw are persistent. They
may be picked up, carried around, used, dropped anywhere, and left for later.
When it is functionally appropriate, tools may be rotated and resized. Since
interaction is limited to two dimensions and must be mediated by a mouse, more
complex manipulations, such as rotation, must be performed as separate actions
by adjustment of a tool’s drag handles.

Such a separate manipulation stage is appropriate when compared with the way
humans use physical tools. Tool use in the real world tends to comprise two
distinct phases: an initial setup phase, in which tools and materials are brought
into position, and an action stage, in which the tool is actually applied. In the

15



Figure 6: Two compass designs

real world, a user might first adjust the angle of a ruler, then its position, and
only then apply a pen to its edge. This is exactly how the task is accomplished
in HabilisDraw.

e Affordances. HabilisDraw tools have affordances that most non-tool-based in-
terfaces designed for the same tasks do not. These are mainly perceived af-
fordances (a phrase due to Norman 1999) rather than physical affordances, but
they share some important properties with the transformed affordances associ-
ated with physical tools as discussed above.

In some cases, the affordances of a tool in HabilisDraw are based on an abstract
representation of its real world counterpart. For example, pen tools reproduce
the salient visible features of real pens—Ilong and thin for a precision grip, with
a pointed effector tip colored to indicate the shade of the pen’s ink. Ruler tools
similarly reflect real world straightedges.

Other tools, such as the compass, bear little resemblance to real world objects,
because real tools do not always translate into two dimensions in a reasonable
way. The compass in HabilisDraw suggests its function by way of similarity to
the shapes it creates. Contrast the compass shown on the left in Figure 6 with
the modified representation on the right—even if these two tools had the same
functionality, the visual representation of the tool on the left is more consistent
with its behavior. We view the compass tool as providing a “true” affordance
for drawing circles for two reasons. First, it constrains the movement of the pen
to a circular path, and such physical constraints are closely associated with true
affordances [Norman, 1999]. Second, this dynamic constraint is symmetrical
with its appearance. This is more than a cultural or logical convention, as might
be provided by changing the cursor to an arc, indicating that a circle will be
produced by a dragging action. If we perceive the appropriateness of a physical
tool for its task based on symmetry (as in the screwdriver and screw example
earlier), we carry out an analogous process with software tools.

e Specialized action. In a typical drawing application, straight lines, rectangles,
arcs, and circles all tend to be created in the same manner; the user clicks the
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icon representing the desired shape, the cursor changes shape, and the user clicks
and drags to identify two opposing corners of a bounding box. This approach
definitely has its strengths - once a user learns how to create one kind of object,
they can create any of the other types. But while users can quickly learn how to
create objects in these interfaces, it is often very difficult for them to judge how
to form the bounding box to generate the desired size, shape, and position.

In HabilisDraw, the process of drawing a circle is identical to that of drawing
an arc, but very different from drawing a straight line. However, both actions
are consistent with the user’s experiences of drawing circles and lines in the real
world, and so can be quite intuitive, as well as highly predicable. Further, it can
be expected that specializing actions to the class of a tool will improve compat-
ibility, facilitating recall and increasing familiarity, thus offsetting the increased
memory requirements of remembering multiple mechanisms.

Open/closed loop actions. Drawing tends to be precision work, so open loop
actions in a drawing application, aside from scribbling with the pen, are generally
counter-productive. However, supporting open loop actions as alternatives to
targeted movements, when feasible, does reduce action execution time [Dulberg
et al., 1999]. While it is not widely applied in the interface, HabilisDraw does
allow for open loop action when creating circles. While drawing a circle, the
compass constrains the pen tool to a fixed radius, and there is no difference
between an arc that just closes a circle and one that exceeds 360 degrees. Thus
once the compass has been set to the proper radius (a closed-loop action), all
the user needs to do is activate the pen over the compass and drag in a vaguely
circular motion. Multiple identical circles can be created without the need for
further closed-loop actions.

Effect locality. Increasing the locality of effects in an interface reduces indirec-
tion, making results immediately visible and thus improving comprehensibility.
Traditional drawing applications typically exploit this fact by localizing most ef-
fects to the area immediately around the cursor. Similarly, effects in HabilisDraw
are localized around the active tool. But for certain functions, traditional inter-
faces must resort to indirect, non-local menu commands or global modes. For
example, in the case of alignment, a user might have to first highlight the objects
to be aligned and then select an “align left” command from a pull-down menu.
In HabilisDraw however, the effective region of a tool need not be restricted to
a single point at the tip of a cursor in order to be local. Again taking alignment
as an example, the entire length of a ruler could be used to simultaneously align
objects across the extent of the work surface, without violating the principle of
effect locality.

Iteration. lIteration in a drawing application is generally limited to the process
of creating multiple identical copies of a drawn object. Traditionally, this is
achieved by selecting the base object, selecting the copy function, and pasting
until enough copies are created. While this ignores effect locality (it can be dif-
ficult to predict where a new copy will appear), this technique is now ubiquitous
in all sorts of interfaces, because it is extremely efficient. KidPad [Bederson
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et al., 1996] embodies this functionality in a “clone tool.” While we include
standard menu and keyboard-based cut, copy, and paste functions for both tools
and drawn objects, HabilisDraw also supports a different, admittedly less effi-
cient approach. Compasses, rulers, and pins can be combined to form “jigs.” A
pen tool can then be used in repeated combination with a jig to create multiple
identical objects. While less efficient than cloning, jigs are more powerful, in
that they allow for some variation in the “copies,” to the extent that the jig under-
constrains the pen’s motion. In the simplest case, a single ruler allows the user
to create multiple lines at the same angle, but of different lengths.

e Material consolidation. In the classic version of HabilisDraw, there is limited
opportunity for material consolidation, since rulers are the only class of tool
capable of directly operating on multiple objects simultaneously. However, by
using a gluer tool to first group a collection of drawn objects together, some
additional opportunities become available (e.g., applying a new color to the entire
collection with an ink well). Additionally, material consolidation is an important
technique in HabilisDraw DT, where stacking allows multiple pieces of paper to
be cut identically and simultaneously with the cutting arm.

e Variation and duplication. One of HabilisDraw’s most basic features is the abil-
ity to have multiple instances of any class of tool, each with its own particular
settings. This, combined with the ability to freely organize tools anywhere on
the workspace can greatly improve the efficiency of drawing tasks. There is a
tradeoff, in that if the user forgets where a tool was dropped, a visual search
must be performed, or else the user must select a new instance from the tool box
and reapply any custom settings. This can be more than offset by the benefits of
keeping tools right next to the area where they are to be used and eliminating the
need to keep changing a tool’s settings between frequently used values, reducing
the costs of tool selection and preparation.

o Adjustability and composability. Like tools in the real world, tools in Habilis-
Draw are often more effective or efficient when they are used in combination.
The simplest case is using an ink well to quickly assign a new drawing color
to a pen tool—moving a pen over an ink well and left clicking copies the ink
well’s color into the pen. This effect is easily achieved in a conventional drawing
application, but we note that the mechanism in HabilisDraw more closely reflects
the interaction of plausible real-world tools.

More complex interaction is also possible with HabilisDraw. Tools such as the
ruler and compass may be used to constrain the motion of a pen tool as it draws.
A pen may be used in combination with a single ruler for drawing lines of a given
angle, used with a compass for drawing circles and arcs of a given radius, used
with several rulers to generate lines meeting to form angles, or used with both
rulers and a compass to generate semi-circles. Using the tools in combination
is much easier than trying to draw these objects free-hand, and, once the tools
are in place, the user can use them as a jig to create multiple copies of the same
drawn object.
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4.4 Discussion

The HabilisDraw interface uses many techniques we believe to be novel, and we are
aware of no other work as direct or extensive in applying tool concepts to the domain
of software tools. Nevertheless we are not the first to explore the use of tool-based
software techniques.

Conventional software environments incorporate some of the properties of physical
tool use, most clearly in their effective use of space. Functionality, in the form of menu
items, icon palettes, and so forth, commonly relies on grouping by similarity. Material
consolidation is another way of describing the process of selecting objects before car-
rying out an operation on them. Viewed as abstract tools, Unix utilities are composable
via pipes and adjustable via flags. The concept of affordance, or its software equivalent,
is also widely applied in direct manipulation interfaces [Gaver, 1991, Norman, 1991],
though not without controversy about how interaction mechanisms can be interpreted
in affordance terms [Norman, 1999].

Some systems have taken a more comprehensive approach to applying tool con-
cepts. Of these, KidPad is the best known, a drawing environment developed by Beder-
son et al. [1996] to study collaboration in software environments [Stewart et al., 1999].
KidPad introduced the concept of “local tools”—persistent instances of tools such as
crayons and erasers that share some properties in common with the tools in Habilis-
Draw, in particular the same kind of manipulability and the status of tools as objects.
Many of the tools in KidPad have different effects when used in collaboration by two
different users, allowing for a degree of composability. The x-ray window and magni-
fication tools in KidPad are also similar to the lens tools in HabilisDraw; these types of
instruments can be considered basic versions of a “Magic Lens,” the development of
which also involved exploration of composibility between tools [Bier et al., 1993].

The “stick-based” tools due to Raisamo [1999] also make strong use of tool con-
cepts. The “alignment stick” is a tool used in much the same way as HabilisDraw
rulers; stick-based tools extend naturally to further functionality for sculpting and ma-
nipulating objects in two dimensions. The emphasis on bimanual interaction and phys-
ical consistency are paralleled in HabilisDraw and HabilisDraw DT.

Other systems, especially in the areas of two-handed and tangible interaction, also
rely on tools with a physical flavor. Owen et al. [2005] describe experiments on a curve
matching task, with one condition involving the separate manipulation of two physical
control devices, a stylus and a puck, that modify the parameters of the curve. This work
is notable for its emphasis on the integrative aspects of bimanual manipulation; Owen
et al. explore the potential advantages in efficiency of action, exploitation of existing
bimanual skills, and expressiveness. Balakrishnan et al. [1999] describe a means of
drawing by laying out virtual tape, based on typical activities in automotive design.
The EnLighTable [Terrenghi et al., 2006] provides tools comparable to magic lenses
to examine and modify images. The design is partly motivated by our familiarity with
instruments like physical lenses as well as by their specialized physical properties: they
allow for collaborative examination and manipulation of images in a collection. The
Balloon Selection technique of Benko and Feiner [2007] allows precise selection of
volumes in three dimensions above a tabletop, in augmented reality; a virtual balloon
and string are controlled by both hands to position a selection region. The specialized
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nature of this tool and its exploitation of effect locality play a strong role in its useful-
ness. The IntuPaint system [Vandoren et al., 2008] supports painting with fingers and
tangible electronic brushes, taking advantage of users’ experience with the physical as-
pects of painting with brushes in the real world. Specialized brushes can be used, with
differing physical characteristics, to achieve different effects.

Aside from this work, there is surprisingly little exploitation of the other basic
properties of physical tool use: manipulability, specialized action, effect locality, du-
plication, composability, open-loop action, and so forth. In most direct manipulation
user interfaces, very few of what are called tools actually have the properties of phys-
ical tools. For example, the icons in the toolbar of a word processing application are
not tools as we have characterized them. Even leaving aside the issue of manipulabil-
ity, it is difficult to think of a physical tool that can be almost instantaneously picked
up, applied for appropriate effect, and then released, as can be done by clicking on a
Save File icon, for example. Other icons that set global modes, such as for italicized
text, have no straightforward interpretation as tools in a physical sense. In drawing
applications, different types of closed curves, such as circles and ellipses, rectangles,
regular polygons, elliptical quadrants, and so forth, are all typically generated by the
same non-specialized action of drawing a square or rectangular bounding box, though
each is conceptually associated with a different tool. We do not view such interaction
techniques as being flawed; on the contrary, some are famously successful. We believe,
however, that alternative approaches, in particular those that adhere more closely and
consistently to the properties of physical tool use, have a role to play as well.

When creating interfaces that rely as heavily as HabilisDraw does on the properties
of physical tool use, an important open issue concerns the possible tradeoffs. We run
several dangers. Software tools that more closely resemble physical tools may be less
efficient, in a task analysis sense. They may be more difficult to use, by being overly
constrained due to irrelevant physical considerations. They may be more difficult to
learn in the first place; for example, in a conventional drawing application, many dif-
ferent types of objects are created by selecting a mode and drawing a bounding box.
This kind of consistency is missing from drawing tools in physical environments; their
uses must be learned separately. It might even be argued that we are inappropriately
conflating different types of tools: physical tools are associated with amplification,
while cognitive tools are concerned with problem transformation [Hutchins, 1995]. Fi-
nally, we face a practical limitation in working with conventional input devices, the
keyboard and mouse, or even with touch-based interaction—some types of physical
affordances and interactions simply will not transfer from richer, physical tool-using
environments.

These and related issues have been addressed to some extent by others. Gentner and
Nielsen argue that richer cues can improve learnability and usability, offsetting the loss
of consistency in the use of different tools [Gentner and Nielsen, 1996]. Constraints
are often viewed as opportunities for learning [Fischer, 1994]. We have addressed
learnability and usability issues directly, through traditional formative evaluation. We
found that users were generally receptive to the concepts embodied by HabilisDraw
and were able to use the tools with reasonable facility, aside from the mouse button
confusion associated with HabilisDraw described above (and addressed by Habilis-
Draw DT). Our observations applied even to users with very little experience with

20



computers. We believe that this is due to the unified application of tool concepts to
the domain of drawing, and to the increased realism and physical consistency of the
implementation. For example, the highly intuitive way in which the compass tool can
be used to draw arcs (often a difficult problem in traditional drawing applications) was
particularly well received.

Perhaps the most important question about HabilisDraw concerns generality. Habilis-
Draw demonstrates how concepts of tool use can be applied in a domain that has ob-
vious physical analogs for objects and behavior, but do tool concepts have anything to
contribute to interaction design in other domains? In the next section we show that this
is the case.

S OTHER APPLICATIONS

In the following two sections we discuss applications of tool use concepts for solving
specialized problems, one in interactive search control, the other in word processing.

5.1 Interactive search control

Some types of computational problems common in industry and manufacturing are so
large or complex that they can be solved only approximately; they are intractable in the
worst case. Examples include scheduling in job shops, vehicle routing in transporta-
tion, and layout in circuit board design. Work by Anderson et al. [2000] on Human-
Guided Simple Search (HuGSS) offers a promising direction for practical solutions:
problem-solving responsibilities can be carefully allocated between the computer and
a user, such that the collaboration results in solutions better than either party might
come up with working alone.

One HuGSS application has been to a variant of the traveling salesman problem,
which involves a salesman who must visit a number of geographically distributed cities
while keeping the distance traveled as small as possible. The user works with HuGSS
through a graphical display of routes that the system has found. The user can iteratively
activate a search process that computes the best route it can find within a fixed period
of time. The user examines the solution and modifies it by selecting parts of the route
that need further refinement or identifying those parts that already have a reasonable
solution. The amount and timing of the system’s effort are always under the user’s
control.

In our work, we have focused on the details of interaction with a HuGSS-like sys-
tem, which we call Smithy. Smithy is a small but fully functional and self-contained
application that works on simple traveling salesman problems of the kind shown in
Figure 5. The search algorithm internal to Smithy is a standard simulated annealing
technique. Simulated annealing mimics the behavior of metal in a blacksmithing pro-
cess, in which repeated heating and cooling phases incrementally reorganize crystalline
structure so that the metal is gradually strengthened. The blacksmith controls the pro-
cess by deciding on the temperature to which the metal should be re-heated at each
point and how the stages should be timed. Many search problems are amenable to an
analogous solution process, which in Smithy works as follows.
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Figure 7: A randomized search interface

The user specifies an initial energy value, the equivalent of a temperature, at which
the search begins. The initial state is a random solution (i.e., all locations in a random
path order.) At each iteration of the annealing algorithm, one location is selected and
placed in a different position along the path order. If the change shortens the path,
it is always accepted. If the path is lengthened, the new order may still be accepted,
with a probability based on the degree of change and on how much energy is left in the
system. When the energy is high, it is possible that orderings that dramatically increase
the path length may be accepted. With each iteration however, energy is dissipated, and
the probability of accepting a change that increases the path length drops toward zero.
When the search comes to quiescence, the user can specify a new energy value, higher
or lower than the original value, for a repetition of the process.

The application shown in Figure 7 demonstrates how tool concepts can be applied
to the interaction with such a system. Our basic design directly exploits the energy
metaphor of the simulated annealing process, by allowing the user to strike the box in
Figure 7 with a simulated hammer, providing energy values for the search. Three tools
are defined within this framework; the tools constitute a mixed metaphor, but they work
together well:

e Pushpins. Locations are specified through a data file and can be interactively
modified once displayed. If the user places a pushpin inside the box, a new
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location is created. If the user moves the mouse cursor over an existing location,
a pushpin appears, which the user can then move to a new location or drag out
of the box to delete the location entirely. (This tool actually behaves more like a
pin dispenser than an individual pushpin, to avoid the need for repeated selection
of new pins.)

e A marking pen. The marking pen serves to connect specific locations. The user
picks up the marking pen and draws a stroke between two locations to guarantee
that a direct route is included in any solutions that the system generates. The
effect of marking an already-marked segment is to toggle it off, removing the
constraint on possible solutions.

o A hammer. A hammer tool gives the user approximate control over the search
process. Figure 7 shows the hammer in the midpoint of a striking action. The
hammer is initially displayed in a horizontal position; when the user picks it up
and brings it closer to the box, it rotates until its head is parallel to the edge of
the box, simulating a striking motion. The user strikes the box by dragging the
hammer into contact with it. This motion is equivalent to providing an approxi-
mate energy value for a new search starting from the current state. The speed of
the motion is linearly correlated with the magnitude of the energy level. That is,
small taps with the hammer will result in small changes to the current solution,
while a higher-speed “impact” will result in larger changes.

Because “dropping” errors are a problem for drag actions (i.e., the mouse being
inadvertently released while dragging an object [MacKenzie et al., 1991]), all of the
tools are selected by clicking rather than dragged to use. Four users informally asked
to experiment with the application had no problems using it.

These tools illustrate the application of tool concepts in several ways. Different
physical motions are specialized to different results: dragging to a target for location
placement, drawing or tracing a straight line to fix a constraint, and striking motions for
specifying the magnitude of desired change to an intermediate solution. The animation
of the hammer tool provides an affordance-by-physical-association for its use. (One
of our users suggested that shaking the box would be a useful direct alternative to the
hammer tool, a creative idea, but we found it difficult to devise an interface in which
the presence of this interaction capability was clearly conveyed to users.) Users iterate
a simple tapping action, so that incremental progress toward a result can be monitored.
In its reliance on open-loop action, the hammer is also a novel interaction technique, to
our knowledge. Specifying an exact energy value for iterating a search requires more
expertise than can be expected from most users, but an approximate judgment (i.e.,
change this solution a lot versus change it just a bit) is appropriate. We note that the
open-loop property of the motion allows for a very fast interaction cycle—instead of,
say, changing a slider value or typing a number and then pressing a “Go” key, a single
brief action simultaneously acts to specify magnitude and to initiate/confirm action. In
cases where users can be expected to have knowledge about exact parameterizations of
a search algorithm, or in which the search algorithm cannot respond in real time, this
interaction design will be less appropriate.
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We see this as a novel application of tool ideas potentially useful in specialized
situations. For example, with anti-lock braking systems (ABS) the driver is not ex-
pected to understand the details of the microprocessors that activate and deactivate
the brakes depending on surface conditions; instead, the driver moderates the system’s
behavior through a relatively simple interface. Similarly, interactions analogous to
those in Smithy could be applied to information processing tasks such as automated
layout [Sears, 1993], planning and scheduling [St. Amant, 1997], or information ex-
ploration [Williams, 1984], in general, tasks in which it is less important for the user to
understand the internal activities of the software than it is to apply guidance or steer-
ing: more or less of some approximate quantity, a solution along these lines rather
than those. In Smithy, simple input requirements are matched by simple tool-based
techniques whose efficiency would be difficult to match with more conventional inter-
action mechanisms.

5.2 A find and replace dialog

It is relatively common, at least based on anecdotal evidence, for users to enter an
overly general or overly specific string into a search dialog box in word processing
applications. For example, a user might search for occurrences of the word “image”, in
order to replace them with the word “icon”. Globally replacing “image” with “icon”,
however, may produce unexpected changes, such as “iconery” from “imagery”, or the
less likely “pilgricon” from “pilgrimage”. If the user naively adds spaces before or
after “image” in the search, then occurrences adjacent to newlines or punctuation (e.g.,
commas, periods, or parentheses) will be missed. The safest route is to iterate through
matching occurrences, deciding whether to change each one in context. This has its
own difficulties, however, with each successive match appearing at an unpredictable
place on the screen and sometimes even with the dialog box moving to avoid obscuring
the matched string in the document.

A consideration of the properties of tool use offers a more principled way of ad-
dressing these issues. In particular, a problem arises when a user carries out an action
that has global (i.e., non-local) effects beyond the immediately visible context. Poten-
tial problems are thus not amenable to quick identification and resolution.

The Find and Replace dialog shown in Figure 8 extends the local effect tool prop-
erty to global replacements. After entering a search string, the user clicks the Find
button. The dialog displays all matches in the document so that the user can inspect
the result of a global replace operation to eliminate unintentional replacements. The
items are displayed in column form to facilitate the visual identification of similar or
different items.

In this design, the Find button essentially prepares the environment for the Re-
place action, by consolidating the source information (i.e., the “materials”, in physical
terms.) No change is made to the document during this preparation phase. The effect of
clicking on the Replace button is localized to the visible display, though the effects are
simultaneously duplicated in the text in the document. Locality cannot be guaranteed,
because the number of items to be displayed may be larger than the display box, but
the improvement to locality is clear.

Clicking on the Replace button replaces the matched items subject to optional user
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Figure 8: A Find and Replace dialog with local effects

constraints. The user can add such constraints by selecting one of the matching items,
which automatically raises a menu with the following actions:

e Remove this match. This grays out the selected item so that clicking the Replace
button does not affect it. Two matches in Figure 6 have been treated in this way.

e Remove all identical matches. This grays out all items that are identical to the
selected item (recall that all matching items may not be identical to the search
string), removing them from consideration for replacement.

o Include this match and Include all identical matches. These actions re-activate
grayed-out items so that they will be affected by the Replace button action.

e Undo this replacement and Undo replacements for identical matches. After
clicking the Replace button, these menu actions locally undo the replacement.
This means that users can selectively evaluate which matches are to be finally
replaced either before or after clicking the Replace button.

e Replace this match and Replace all identical matches. Through these menu ac-
tions the user can locally achieve the same effect as the global Replace button.
This is meant for situations in which a search string produces a large number of
matches of which only a few need to be changed.

e Go to occurrence. This scrolls the document to the selected item, replicating the
functionality of a conventional Find Next Occurrence button.

The dialog box can also display the text surrounding each matching occurrence, to
provide more context for the user’s actions. The user can elect to see a specific number
of words or characters on both sides of a match by changing the relevant settings.

In comparison with an iterative find and replace sequence, this dialog supports more
efficient interaction for common uses. It does not require the user to visually reacquire
a highlighted match in the document for each successive search, or to press a button or
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key to walk through the document. If the user simply ignores the displayed matches,
it is no slower than a global find and replace action, and achieves the same results;
the costs of visual search and adding replacement constraints, if any, are offset by the
benefit of avoiding errors. It is even possible by way of the menu functions to iterate
through the document to examine and change each match in turn (in case an entire
paragraph is needed for context), though this is less efficient than in a conventional
dialog.

A formative evaluation of this interaction technique with four users led to useful
discussions about whether cancellation should be provided within the dialog or by the
word processing system, whether the document should scroll to the first matching oc-
currence when the Find button is clicked so that the user will see the mirroring between
the dialog and the document, and whether identical matches should be distinctly col-
ored. The participants found the dialog usable in the form presented here, and remarked
on a few positive aspects: compared with other dialogs for Find and Replace, it shows
more information, and it provides feedback on a global action of the system that would
otherwise not be available except by iterative browsing. They also were of the opinion
that this dialog would be faster than an iterative find and replace strategy, and more
robust against inadvertent errors than a standard global find and replace action without
detailed feedback.

Ensuring that actions have local effects can improve other interaction techniques
as well, such as in tabbing dialogs and some kinds of menu selection. For example,
in some interfaces, users can select multiple items from a scrolling menu. Pressing a
modifier key while clicking the mouse causes new items to be added to the selected
set, while clicking the mouse alone causes the clicked item to be selected and all other
selections to be abandoned. This process is prone to error if pressing the modifier key
and clicking the mouse are not synchronized; if already selected items have scrolled out
of view, the user may not even realize that only the last item clicked has been selected,
with all previously clicked items inadvertently deselected. Some interfaces maintain a
separate list of selected items to avoid this problem. Each selection action made by the
user causes a locally visible effect of adding an item to the selection list.

6 CONCLUSION

As platforms become more diverse and computer software more sophisticated, inter-
action designers will face more difficult and challenging problems. We believe that a
close analysis of existing design concepts can lead to a better understanding of why
some interfaces work as well as they do and why others fail. Specifically, we have
focused on interface designs that draw upon the human facility for tool use.

Whether or not a conscious decision was made on the part of the designers, many
familiar interface elements employ a tool use metaphor, to a greater or lesser extent.
We have presented an abstract framework for the analysis of such interfaces, built upon
a set of concepts taken from the use of everyday physical tools. Tools are categorized
according to their function and associated with a set of common properties that users
can rely upon when interacting with tools in the real world. Analogies are drawn to
demonstrate how these concepts carry over to tools in software interfaces.
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While the tool metaphor is widespread in interface design, the metaphor is often
quite shallow, with tools in many software interfaces sharing only a passing resem-
blance to physical tools. Such a design may be deliberate and well-founded, but we
argue that it is important to be aware of these inconsistencies and to understand the
underlying design choices.

Further, an exploration of the concepts underlying the tool metaphor in software
interfaces can lead to opportunities for novel approaches to new and existing prob-
lems. We have presented three examples of interfaces that make novel use of the tool
use metaphor, both in domains with clear physical analogs (drawing, mixed initia-
tive search), and in domains where the relation to physical tool use is more abstract
(find/replace dialogs).

One of the lessons we learned from our early work with drawing applications was
that mapping mouse-based input to the control of even moderately complex interface
tools can be awkward, especially for novice users accustomed to simple point and click
actions. We found that the use of a touch sensitive interface provided a more intuitive
method of control. We are hopeful that the growing presence of touch-based (as well
as motion and orientation-sensitive) interfaces in mobile and tablet computing will
provide additional avenues for the development of novel tool-based interfaces.
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