NCSU Technical Report: TR-2010-22

Triage for Legal Requirements

Aaron K. Massey and Annie I. Antén
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
{akmassey, aianton}@ncsu.edu

October 11, 2010

Abstract

The high cost of non-compliance with laws and regulations that gov-
ern software systems makes legal requirements prioritization crucial. In
addition, software design, expense, and time constraints all influence how
requirements are prioritized. Prioritizing requirements derived from laws
and regulations can be untenable using traditional pairwise requirements
prioritization techniques because the number of pairwise comparisons grows
quadratically with the number of requirements. In this paper, we intro-
duce legal requirements triage—a technique used to subdivide a require-
ments set into three subsets: (a) implementation ready legal requirements;
(b) legal requirements that require further refinement; and (c) non-legal
requirements. Legal requirements triage supplements a traditional pair-
wise requirements prioritization by focusing analysts on implementation
ready legal requirements to reduce the number of pairwise comparisons.
Herein, we discuss a case study in which we applied these techniques to pri-
oritize 75 functional requirements for the iTrust Medical Records System,
an open-source electronic health records system that must comply with
the U.S. Health Insurance Portability and Accountability Act (HIPAA).
Our study shows that we were able to reduce significantly the number of
pairwise comparisons.

1 Introduction

In the United States, the Health Insurance Portability and Accountability Act
(HIPAA)! regulates Electronic Health Records (EHR) systems. HIPAA is de-
signed to protect patient medical information. HIPAA includes serious penalties
for non-compliance and raises the importance of solid requirements engineering
and software design for legally compliant software. For non-criminal infractions,
violators could be fined up to $25,000 per year per violation.

IPub. L. No. 104-191, 110 Stat. 1936 (1996)

NCSU Technical Report: TR-2010-22

The U.S. Department of Health and Human Services (HHS) writes and en-
forces the final HIPAA regulations. Although passed by Congress in 1996, HHS
issued the final security rule on February 20, 2003. This rule took effect on
April 21, 2003 with a compliance date of April 21, 2005 for large covered en-
tities and April 21, 2006 for small covered entities. Thus, software engineers
had only two years to ensure their systems were HIPAA compliant. In 2009,
Congress amended HIPAA with the HITECH Act, which was passed as a part
of the American Recovery and Reinvestment Act?, President Obama’s first ma-
jor legislative initiative upon taking office. These changes include provisions for
data breach notification that must be implemented as early as January 1, 2011
for some organizations and by January 1, 2013 for all covered organizations.

Tight legal compliance timeframes and substantial fines and penalties for
non-compliance make lean or agile software development techniques appropri-
ate. At the 2009 International Requirements Engineering Conference, Dave
West of Forrester Research argued in his keynote that requirements engineer-
ing researchers should focus on improving or adopting agile methods and tech-
niques because they are becoming more mainstream. Agile methods are more
implementation-oriented, whereas requirements engineering methods are more
documentation-oriented [25]. In addition, agile methods focus on shorter it-
eration cycles and more direct customer collaboration [27]. Although primar-
ily considered an element of agile development, shorter iteration cycles can be
applied to other iterative development methodologies and leads to earlier im-
plementation and deployment [27]. Performing triage for legal requirements
supports both agile and iterative software development processes for systems
that must comply with the law.

To begin implementation, developers need a set of implementation ready
requirements. Requirements triage is the process of determining which require-
ments should be implemented given the available time and resources [8]. In
the context of legal requirements, implementation order should be influenced
by legal domain knowledge [24]. Legal requirements triage allows requirements
engineers to focus on requirements with legal implications early in the engineer-
ing process, avoid expensive and unnecessary refactoring, and demonstrate legal
due diligence by incorporating laws and regulations efficiently throughout the
engineering effort.

In this paper, we propose a legal requirements triage technique—a technique
used to subdivide a requirements set into three subsets: (a) legal requirements
that are implementation ready; (b) legal requirements that require further re-
finement; and (c) non-legal requirements. Our technique consists of four steps:
(1) producing an XML-markup of the legal text; (2) entering requirements into
our legal requirements management tool; (3) performing the legal requirements
triage; and (4) performing a final pairwise prioritization. Our triage technique
uses numeral assignment [11] and k-means clustering (also called Lloyd’s algo-
rithm) [16] to divide the legal requirements into two subsets: implementation
ready and needing further refinement. The non-legal requirements comprise the

2Pub. L. No. 111-5, 123 Stat. 115 (2009)

NCSU Technical Report: TR-2010-22

third and final output requirements set. We employ the iTrust Medical Records
System, an open-source EHR system—a system that must comply with the
HIPA A—as the subject of our case study [32].

The remainder of this paper is organized as follows. Section 2 describes
related work and background information for this research. Section 3 outlines
our legal requirements triage algorithm. Section 4 describes our methodology for
applying our requirements triage technique. Section 5 describes our experiences
in applying this methodology in a case study. Section 6 describes the threats
to validity of our case study. Section 7 summarizes our work and discusses
potential future work in this area.

2 Related Work

We focus on two primary areas of related work: (A) legal requirements and (B)
requirements triage and prioritization.

2.1 Legal Requirements

Bringing software into legal compliance is a challenging software engineering
concern [24]. The need to resolve ambiguities, to follow cross-references, and to
understand a rich set of domain knowledge make legal compliance particularly
challenging for requirements engineers [24]. Currently, engineers rely on abbre-
viated summaries of legal texts that attempt to make dense legal terminology
more accessible for requirements engineers to achieve legal compliance [24].

In addition, laws and regulations may continue to be amended by adminis-
trative agencies or interpreted in judicial proceedings for years after their initial
passage [24]. For HIPAA, the HHS has discretion on how frequently to updates
regarding healthcare information technology can occur. Legal norms suggest
that the HIPAA regulations could be revised as often as every year [2]. How-
ever, HHS is not the only government body that has the authority to change
HIPAA. The U.S. Congress amended HIPAA through the HITECH Act, which
includes data breach notification requirements and expands enforcement au-
thority to cover business associates. Furthermore, U.S. court rulings for cases
involving HIPAA could impact interpretations of the regulation. Pairwise re-
quirements prioritization techniques are at a disadvantage when used with legal
requirements because the prioritization must be completely recalculated when
a change in law occurs and the calculation effort grows quadratically with the
number of requirements.

Some researchers focus on building logical models of regulation directly from
actual legal texts [6, 23, 18, 21]. These models do not address requirements
triage or prioritization, but requirements generated from these models could
serve as inputs to our legal requirements triage technique. Of these approaches,
only Maxwell et al. traces requirements directly to elements of the legal text
[21].

NCSU Technical Report: TR-2010-22

Researchers are exploring automated processes for generating traceability
links for regulatory compliance [3, 7]. Cleland-Huang et al. use a machine
learning approach to automatically generate traceability links for regulatory
compliance [7]. However, their links trace from a requirement to an information
technology responsibility identified in the law rather than to a specific subsec-
tion of the legal text itself. Berenbach et al. describe techniques for just in
time regulatory traceability [3]. They intentionally trace requirements to higher
level segments of the legal text rather than to individual subsections [3]. To
complete the process, a requirements engineer must be involved manually|[3].
These approaches may reduce the effort required to trace requirements to spe-
cific subsections of a legal text, which is required by the algorithm presented in
this paper, even though they do not currently produce such a mapping.

Breaux developed an XML markup of legal texts that formally describes the
structure of the legal text [4]. Breaux applied this XML markup to HIPAA for
the purposes of supporting requirements acquisition [4]. In this paper, we extend
Breaux’s XML markup to denote cross-references, exceptions, and definitions.
These are not identifiable by the structure of the legal text and must be manually
identified. In addition, we changed the names of XML elements to have semantic
meaning related to the existing structure of the legal text. For example, instead
of using a generic ‘div’ tag, we used tags related to the type of the node, such
as ‘subpart’ and ‘section.’

Legal texts often contain exceptions that can indicate one aspect of a legal
text takes precedence over another. Exceptions in the law are another challenge
for requirements engineers [24]. Breaux et al. developed the FBRAM (Frame-
based Requirements Analysis Method)— a methodology to build requirements
that achieve needed legal compliance. The FBRAM also yields a comprehensive
prioritization hierarchy for an entire legal text [4, 5, 6]. This hierarchy can
identify which requirement takes precedence in cases of legal exceptions [5]. As
a result, it is more useful for proving that a set of requirements has the same
legal precedence as a set of legal regulations than for prioritizing requirements
for the purposes of software construction or maintenance. In this paper, we
employ legal exceptions as a metric for performing requirements triage rather
than legal precedence.

2.2 Requirements Triage and Prioritization

Quickly identifying implementation ready requirements is important for meeting
legal compliance deadlines when using agile or iterative software development
practices, which do not complete a comprehensive requirements analysis prior
to beginning implementation. Requirements triage is the process of determining
which requirements should be implemented given available time and resources
[8]. The word ‘triage’ comes from the medical field where it refers to the practice
of sorting patients based on which patients would most benefit from medical
treatment [8, 30, 15]. Disaster victims can be triaged into three categories:
those that would only recover if they receive medical attention, those that would
recover regardless of treatment, and those with no hope of recovery [30, 15]. In

NCSU Technical Report: TR-2010-22

this paper, we develop legal requirements triage to divide a set of requirements
into the following three sets: (a) legal requirements that are implementation
ready; (b) legal requirements that require further refinement; and (c) non-legal
requirements.

Duan et al. created a process for creating a list of prioritized require-
ments from a set of customer requests and business requirements using semi-
automated requirements prioritization and triage techniques [9, 15]. Their sys-
tem, called Pirogov, uses an automated clustering algorithm that groups re-
quirements [9, 15]. A requirements engineer then prioritizes these groups and
creates weightings for the categories of requirements [9, 15]. A prioritization
algorithm then creates a final prioritization [9, 15]. In this paper, we present an
automated triage and clustering algorithm for legal requirements rather than
customer requests or business requirements.

Triage alone is insufficient for requirements prioritization because it does not
provide a complete ordering of requirements based on implementation readiness.
Within the set of implementation ready legal requirements, some requirements
may still depend on others. Requirements prioritization is the process of order-
ing requirements according to some previously agreed upon factor of importance
[13]. Herein, we focus on prioritizing according to implementation readiness be-
cause it is critical for iterative software development processes.

Karlsson classifies two primary approaches to requirements prioritization:
pairwise comparison techniques and numeral assignment techniques [11]. Pair-
wise comparison techniques involve ranking the relative priorities of each pair
of requirements in the system [11]. Karlsson et al. show that pairwise compar-
ison techniques require substantial effort upfront due to the quadratic growth
of comparisons as the number of requirements increases [13]. Avesani et al.
identify Analytic Hierarchy Process (AHP) as the reference method for pair-
wise requirements prioritization in case study-based requirements engineering
research [1], and numerous researchers adapted AHP for requirements priori-
tization [10]. AHP provides heuristics for prioritizing elements from multiple
domains based on multiple criteria[29]. In addition, AHP has mathematical sup-
port for ranking elements using priority vectors[29]. In this paper, we discuss
the use of pairwise prioritization in Section 4.4.

The numeral assignment prioritization technique is a ranking system in
which requirements engineers assign numeral values to represent the priority of
software requirements [11]. One such approach consists of assigning a discrete
value to a requirement on a scale from 1 (optional) to 5 (mandatory) [11]. Karls-
son showed that numeral assignment prioritization techniques take more time
and produce less reliable prioritizations than pairwise comparison techniques
[11]. In our prior work, we showed that assigning values to legal requirements
based on the structure of a legal text can produce a useful legal requirements
prioritization while requiring little training or domain knowledge[19]. In this
paper, we expand on our prior work in two ways: (1) We introduce four new
metrics and maintain the four previously developed metrics for assigning nu-
meral values to the requirements; and (2) We provide tool support to automate
the process of calculating these values.

NCSU Technical Report: TR-2010-22

3 Legal Requirements Triage Algorithm

In this section we describe a legal requirements triage algorithm that takes as
an input a legal text and a set of requirements previously mapped to specific
sections of a legal text as described in prior work [20, 19]. The algorithm
produces as outputs three sets of requirements: (a) implementation ready legal
requirements; (b) legal requirements that need further refinement; and (¢) non-
legal requirements.

Legal texts are hierarchical documents. Without knowing the meaning of
a legal text, we can still infer some meaning from its structure. Consider the
structured text in Figure 1. It is a hierarchical document with three levels.
We are able to infer that levels (i) and (ii) are more specific than levels (a)
and (b) because they are deeper in the hierarchy. For this algorithm, the only
non-hierarchical elements of the legal text that must be identified are cross-
references and exceptions, which enable further inferences based on the structure
of the legal text. For example, a cross-reference indicates that the section in
which it occurs may include additional, possibly unspecified, requirements. In
addition, an exception indicates that that the associated legal text is meant to
be interpreted differently than the rest of the section.

In the remainder of this section we discuss the calculation of triage scores for
each requirement in subsection 3.1 and the use of k-means clustering to identify
which requirements are implementable based on their triage scores in subsection
3.2.

a. Lorem ipsum dolor sit amet.

(1) Ezxcept when: ed do eiusmod.
(2) Incididunt ut labore et dolore.

i. Magna aliqua.

ii. Ut enim ad: Section (f)(2).
(3) Quis nostrud exercitation.

i. Fugiat nulla pariatur.
ii. Consectetur adipisicing.

(4) Ullamco laboris nisi ut aliquip.
b. Ex ea commodo consequat.

c. Duis aute irure dolor.

Figure 1: Sample Hierarchical Legal Text

NCSU Technical Report: TR-2010-22

3.1 Calculation of Triage Scores

The purpose of our legal requirements triage algorithm is to calculate triage
scores for each requirement and subdivide the requirements set so that develop-
ers can begin implementation quickly. In this section, we assign triage values to
requirements based on metrics calculable from the mappings of the requirements
to the legal text. We assign weightings to the metrics in our algorithm because
the metrics produce relative values rather than absolute values. The weightings
allow requirements engineers to interpret the scores more easily. We also nor-
malize the metrics used in our calculation so that requirements engineers can
more easily emphasize particular areas.

Our algorithm provides three categories of legal requirements triage metrics:
Dependency, Complezity, and Maturity. Dependency metrics estimate the ex-
tent to which a requirement may be dependent on other, unknown requirements.
Complexity metrics estimate the engineering effort required to implement a par-
ticular requirement. Maturity metrics estimate a requirement’s readiness for
implementation. These metrics categories form the final triage score outlined
in Equation 1 below. Definitions for the metrics themselves can be found in
Table 1. Note that a lower triage score indicates a requirement that is more
implementation ready and a higher triage score indicates a requirement needs
further refinement. (This is why the maturity metrics are subtracted from the
sum of the other two metrics.) Also note that we normalize the metrics and
adjust the weightings to compensate for the number of metrics in each category.

Name: Sample Requirement
Description: Occaecat cupidatat non.

Legal Subsections: (a)(1) and
(a)(2) (i)

Figure 2: Sample Requirement

NCSU Technical Report: TR-2010-22

‘sdewr JuotoImbal © YoIym 07 SUOI}DS o8rquooIod
[eAd[-1S0Y31Y oY) Ul suorjdesqns poddew Jo o8ejuedtod oy, | JUSW[[YN] UOIPOSANG dg Ayumyeqy
((g) sdewr Juouroamb
-01 YR} YOIYM 0} SUOI}ISNS JO Ioquinu o) snutwt (IH Q)
sdewr yuowoImbal © YOIYM 0] UOTIPesqNs [2Ad[-1sodoap oy T, ado(q uoroesqng ag Ayumyey
‘sdewr Juaweambax
' UOIYM 07 SUOIdSNS UIIIM sUOI)dodxo JO Ioquinu oy J, suorpdooxyy o Ayxorduro))
‘sdewr juetembar © YoTYM 09 SUOIIIRSANS
O UIY)IM PIIUNO0D A[OAISINDDI SUOIPISSUNS JO IOQUINU ST, JUnoy) UOI39sqng g Ayxorduro))
'sdewr Juowaanbar ©
UOTYM 07 STOTIIASNS UIYIIM PUNOJ SOOUSIUSS JO IoqUINU ST, S9OURIUOG JO IoqUINN SN Ayxerduo))
‘sdewr juowrormbolx
B OIYM 0} SUOI}IISqNS UMM PUNOJ SPIOM JO IoqUINU O, SPIOAA JO ToqUUILN] MNT Lyxorduo))
‘sdewr juowermbor & yoIym 09
SUOI109SqNS UIIIM PUNOJ SOOUSIOJOI-SSOId JO Ioquunu oy, SOOUDIOJOI-SSOI)) o) Aouepuada(]
‘sdewr JuemaImbal ®© YoTyMm 09 SUOI}IRSNS JO ISqUINU 91, paddey suorjoesqng ng Aouspuado(]
uorydriose(q aure N os[qerrep | AioSage)

SOLI3QIN 98®LL], :T 9[qRL,

NCSU Technical Report: TR-2010-22

T= D+C-M (1)
p= B (% &) @)
C= G (M))
M= M (s se) (@)

Dependency metrics estimate the extent to which a requirement may depend
on other, unknown requirements. Equation 2 displays the complete calculation
of the Dependency metrics. The first Dependency metric computes the number
of subsections mapped (Sps) from each requirement to the relevant elements
of a legal text. Recall that a mapping of requirements to specific sections of a
legal text is provided as an input to our technique. To calculate Sy; count each
mapping of a requirement to a subsection once. Consider the sample require-
ment from Figure 2, which maps to sections (a)(1) and (a)(2)(ii) from Figure
1; its Sps score is two. The second Dependency metric computes the number
of cross-references (C') found within the subsections to which the requirement
is mapped. Because subsection (a)(2)(ii) of our sample hierarchical document
is a cross-reference, C' = 1 for the requirement from our previous example. It is
important to note that neither Sy, or C indicate actual, known dependencies;
instead, these metrics indicate potential dependencies.

Recall that metrics are normalized by the algorithm and weighted accord-
ing to the weightings provided by the requirements engineer performing the
triage. The Dependency metrics Sy, and C' are normalized as percentages of
the total number of subsections in the legal text (St) and the total number of
cross-references in the legal text (C7r), respectively. After normalization, the

maximum possible value for SS—I;I is one and the maximum possible value for

% is one. Recall that the Dependency metrics are weighted to enable easier

interpretation of the triage scores. Since there are two Dependency metrics, the
Dependency weighting (Dy) is divided by two and applied to both dependency
metrics. Thus, the maximum possible dependency score for any provided value
of DW is DW

Complexity metrics estimate the engineering effort required to implement
a particular requirement. Equation 3 displays the complete calculation of the
Complexity metrics. In the Complexity category, the triage algorithm evalu-
ates requirements based on four metrics: number of words (Ny), number of
sentences (Ng), the subsection count (S¢), and the number of exceptions (E).
The number of words (Ny) and number of sentences (Ng) are calculated by
summing the total number of words and sentences respectively found in the
sections of the legal text to which the requirement maps. Sentences can be de-
tected using Manning and Schiitze’s algorithm [17]. For the sample requirement
in Figure 2, Ny = 22 and Ng = 5. The subsection count (S¢) is calculated by
recursively counting the number subsections beneath the subsection to which a
requirement maps until all subsections have been counted once. For the sample

NCSU Technical Report: TR-2010-22

requirement, S¢ is two. The number of exceptions (F) is calculated by summing
the total number of exceptions found in the subsections to which a requirement
maps. An exception is a specific condition specified in a legal text under which
broader legal conditions do not hold[5, 4]. Often the structure of an exception
is similar to a case statement in a procedural programming language [5, 4]. In
such an instance, each subsection is marked as an exception and counted sep-
arately for the purposes of this calculation. In our sample legal text, section
(a)(1) contains an exception. As a result, E = 1 for our sample requirement.

As with the Dependency metrics, the Complexity metrics are then normal-
ized and weighted according to the weightings provided by the requirements
engineer performing the triage. The Ny and Ng metrics are normalized as
percentages against the total number of words (Wr) and sentences (STr) in the
legal text, respectively. The S¢ and E metrics are normalized against the total
number of subsections in the legal text (St) and the total number of excep-
tions in the legal text (E7), respectively. As with the dependency metrics, the
maximum possible value for each of the normalized Complexity metrics is one.
Because there are four Complexity metrics, the Complexity weighting (Cy) is
divided by four and then multiplied by each normalized metric as shown in
Equation 3. Thus, the maximum possible complexity score for any provided
value of Cyy is Cyy.

Maturity metrics estimate the implementation readiness of a requirement.
Estimating maturity is an important part of legal requirements triage because
it distinguishes between requirements that represent a complex legal require-
ment as stated in the legal text and requirements that represent higher level
legal statements. Consider the transaction code sets described in the HIPAA
Transaction Rule (§162.900 through §162.1802). A requirement for transaction
logging may be traced to significantly more sections in the Transaction Rule
than a privacy requirement might map to in the Privacy Rule even if both
requirements are specified optimally given the descriptions in the legal text. Al-
though such a transaction logging requirement needs refinement from a software
engineering standpoint, it accurately represent the requirements needed for legal
compliance. Thus, it may be ready for further prioritization and implementa-
tion. Without maturity metrics, this requirement would have consistently high
triage scores and may be classified as needing refinement for many iterations.

Sp= SCp—Su (5)
<5M+So)
Sp= s~ (6)

We developed two maturity metrics to address concerns regarding require-
ments that cannot be refined further based solely on the legal text: the subsec-
tion depth (Sp, found in Equation 5) and the subsection fulfillment percentage
(Sp, found in Equation 6).

Subsection depth is a maturity estimate because deeper level sections of a
hierarchical legal text tend to be more specific than higher level subsections.

NCSU Technical Report: TR-2010-22

The deeper the requirement maps within the legal text, the more specific it
is. The subsection depth (Sp) is calculated as the deepest-level subsection to
which a requirement maps (SCp) minus the number of subsections to which
that requirement maps (Sps). For example, our sample requirement maps to
two subsections of our sample legal text: (a)(1) and (a)(2)(ii). The deepest of
these is (a)(2)(ii), which as a depth of three. Since SCp = 3 and Sy, = 2 for
our sample requirement, Sp is one.

Subsection fulfillment percentage is a maturity estimate because legal re-
quirements are less likely to be omitted as a higher percentage of legal subsec-
tions can be traced to some requirement. Subsection fulfillment (Sr) percentage
represents the percentage of unmapped subsections in the highest-level sections
to which a requirement maps. The highest-level section for a reference is the
section with a depth of one. Consider the mapping (a)(2)(ii). Since (a) has a
depth of one, it is the highest-level section for that reference. The Sr metric is
calculated as follows. First, calculate the subsection count for the highest-level
subsections mapped by the requirement (SCp). This represents the base num-
ber for the percentage. Note that this is not the same value as the S¢ metric
because it is calculated using the highest-level subsections rather than the more
specific mappings. For our sample legal text, SCy = 9 because our sample
requirement has (a) as its highest-level subsection, and there are nine subsec-
tions under section (a). Second, determine how many subsections are mapped
to other requirements in the highest-level sections mapped by the requirement
(So). For our example, assume that we have other requirements that map to
(a)(4), (b), and (c) in our sample legal text. This gives us a total of three
other mapped subsections. However, the highest-level section mapped by the
requirement is (a), so we ignore the requirements mapping to (b) and (c), which
leaves us with a value of one. Third, divide the total number of mapped sections
(Sym + So) by the total number of subsections in the highest-level subsections
to which the requirement maps (SCpr). This value is the subsection fulfillment
percentage (Sp). For our sample requirement, the result is % = %

As with both the Dependency and Complexity metrics, we normalize the
Maturity metrics and apply the Maturity weighting (Mw/) to them. For the
Sp metric, we simply divide by the deepest-level subsection found in any of
the subsections mapped to the requirement. We do not need to normalize the
Sr metric because it already has a maximum value of one. Since there are
two Maturity metrics, we divide My, by two and then multiply it against the
two Maturity metrics as shown in Equation 4. Thus, the maximum possible
maturity score for any provided value of My, is My .

3.2 Identifying Implementation-Ready Requirements

After all the triage scores are calculated, we separate the legal requirements
into three requirements sets: implementation ready, needing further refinement,
and non-legal. First, we assign any requirement not mapped to a section of
the legal text to the non-legal requirements set. Then, we perform the k-means
clustering to group the remaining requirements into the implementation ready

NCSU Technical Report: TR-2010-22

requirements set and the needing further refinement requirements set.

The k-means algorithm subdivides a set of values into k clusters iteratively
based on values provided to the algorithm as an initial mean for each group. To
get two groups, we set k = 2. Since additional iterations improve the accuracy
of group assignments in k-means, we use a n-iteration 2-means algorithm, where
n is the total number of legal requirements. In the first iteration, we select the
highest triage score and the lowest triage score as our two initial means. Because
these requirements are the maximum and minimum, we know that they will be
in separate sets. Then, we randomly select a requirement from the remaining
requirements in the set and assign it to the group with the closest mean. After
assigning the requirement, we recalculate the mean for the group to which it was
assigned. We continue assigning requirements to groups in this manner until all
the requirements are assigned. This ends the first iteration. Starting with the
second iteration, we begin by using the final means calculated in the previous
iteration as the initial means for the two groups. Then, we randomly select a
requirement and assign it to the group with the closest mean. Once again, we
continue until all the requirements have been assigned.

Since the k-means algorithm will always produce two groups, even if all the
requirements are actually implementation ready or needing further refinement,
the final sets must be analyzed to determine if they are different enough to
treat as distinct. To accomplish this, we calculate the standard deviation of the
implementation ready requirements group. If the mean of the implementation
ready requirements group is more than five standard deviations away from the
mean of the group of requirements needing further refinement, then we accept
the groups as distinct. We use standard deviation as an acceptance criteria
based our prior work where we found over five standard deviations of separation
between the implementation ready requirements and those requiring further
refinement [19]. However, since each development situation may have different
time constraints, budgets, and resources, the final decision to accept the groups
as distinct may reasonably be made using other criteria.

4 Methodology

In order to support agile and iterative software development processes for sys-
tems that must comply with the law, software developers need to quickly identify
requirements that are legally ready for implementation. To this end, we built a
requirements management tool, called Red Wolf, that provides automated sup-
port for the legal requirements triage algorithm described in 3. Figure 3 shows
a screenshot of Red Wolf with six of the requirements from this case study.
We now describe our four-step methodology for using Red Wolf for legal
requirements triage. Figure 4 displays an overview of this methodology. Note
that steps one and two can be done concurrently. In our case study, however,
we produce an XML markup of the legal text first (discussed in 4.1), and then
enter the requirements into our legal requirements management tool second
(discussed in 4.2). Third, we choose weightings for the triage algorithm and

NCSU Technical Report: TR-2010-22

Red Wolf R i M: A product of The Privacy Place
q

= and North Carolina State University

Aaron: Edit Profile | Logout

Listing Requirements (showing 75 of 75)

Name Description User Legal Subsection
Requirement iTrust shall allow an employee, using their Aaron None. Show Edit Destroy
1 authorized account, to create a new patient

record by adding demographic information for
the new patient.

Requirement iTrust shall allow an employee, using their Aaron None. Show Edit Destroy
2 authorized account, to disable a patient record by
marking that patient's record as disabled.

Requirement iTrust shall allow an employee, using their Aaron None. Show Edit Destroy
authorized account, to destroy invalid patient
records.
Requirement iTrust shall email a patient when their account ~ Aaron 164.312(c)(2) and Show Edit Destroy
4 status is altered as per Requirements 1,2 or 3 164.312(e)(2)(i)
with a description of the alteration made.
Requirement iTrust shall email a personal representative when Aaron 164.312(c)(2)and Show Edit Destroy
5 the account status of a patient they represent is 164.312(e)(2)(i)
altered as per Requirements 1, 2 or 3.
Requirement iTrust shall maintain a patient's records for a Aaron 164.528(a)(1), Show Edit Destroy
6 period of seven years after their record has been 164.308(a)(7)(ii)(A),
disabled. 164.528(a)(3),

164.528(b)(1), and
164.530()(2)

Figure 3: Red Wolf Requirements Management Screenshot

conduct the triage. Fourth, we discuss options for pairwise prioritization of the
final requirements groups.

4.1 Step One: Produce Legal XML

Requirements engineers must have some legal text to perform a legal require-
ments triage. In the United States, the Code of Federal Regulations (CFR) is
the repository of legal regulations created and maintained by Executive Branch
agencies of the federal government. These legal regulations are the detailed
administrative laws to which individuals and businesses must directly comply.
There are 50 titles in all representing broad areas such as agriculture, natu-
ral resources, commerce, transportation, and healthcare. The U.S. Government
Printing Office (GPO) hosts many regulations, including HIPAA, online. Figure
5 shows a sample section of HIPAA as it appears in on the GPO website3.

To enable automated legal requirements triage, a requirements engineer must
first produce an XML-formatted version of the legal text. We built tool support
to partially automate the process of producing an XML-formatted version of
HIPAA using the text files available for download on the GPO’s website. This
tool consists of a set of regular expressions generated by a manual translation
of the legal text to our XML format. The requirements engineer must provide
Red Wolf with the URL of the GPO page. When a regulation spans multiple
text files, Red Wolf will merge them together into a single text file. Because
the text files contain some HTML links (e.g. a link to the table of contents on
every page), Red Wolf automatically removes these HTML tags, page numbers,
and other bracketed notes. Unfortunately, Red Wolf does not yet complete the

Shttp://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html

NCSU Technical Report: TR-2010-22

Input 1: Input 2:
Legal Text Requirement Set

v

v

Step One:
Produce XML
of Legal Text

Step Two:
Enter
Requirements
into Tool

\ Step Three: J
Perform Triage

N D

. Output Set 2:
Output Set_ 1: Legal Output Set 3:
Implementation- .
ready Legal Reqwrements Non_-LegaI
Requi Needing Requirements
equirements -
Refinement
Step Four:
Perform
Pairwise T TTTTITTITTITTITTITTITTITTTTT
Prioritization : Legend i
] Outputs |
‘ | Flow —p i
] :
Prioritized, ! Steps (Inputs) !
Implementation-] i
ready Legal ! |
Requirements

Figure 4: Methodology Overview

§164.312 Technical safeguards.

A covered entity must, in accordance
with §164.306:

(a)(1) Standard: Access control. Imple-
ment technical policies and procedures
for electronic information systems
that maintain electronic protected
health information to allow access
only to those persons or software pro-
grams that have been granted access
rights as specified in §164.308(a)(4).

Figure 5: HIPAA §164.312(a)(1)

actual XML markup automatically. As a result, a requirements engineer must
manually verify and, if necessary, complete the markup.

NCSU Technical Report: TR-2010-22

<section id="164.312" title="Technical safeguards.">A covered entity must, in accordance
with <ref>Sec. 164.306</ref>:
<section id="(a)">
<section id="(1)" title="Standard: Access control.">Implement technical policies
and procedures for electronic information systems that maintain electronic protected
health information to allow access only to those persons or software programs that have
been granted access rights as specified in <ref>Sec. 164.308(a) (4)</ref>.</section>
Remaining text of Section 164.312(a).</section>
Remaining text of Section 164.312.</section>

Figure 6: Sample XML Markup for HIPAA §164.312(a)(1)

Other researchers have employed XML representations of legal texts [4, 3,
14]. Herein, we modified Breaux’s XML format [4] in three ways. First, we
gave unique names with semantic meaning to each hierarchy of the XML tags
rather than using “div” for each of them. For example, subparts were labeled
with the “subpart” tag, sections were labeled with the “section” tag and so on.
Second, we decided to use the “ref” tag to denote a cross-reference to another
law or another section within the HIPAA. Third, we denote exceptions using
the “except” tag. Neither Breaux’s nor Kerrigan and Law’s XML formatting
track cross-references or exceptions [4, 14]. Figure 6 depicts the same sample
legal text found in Figure 5 using our XML markup format. Note that once a
legal text has been marked up using our XML format requirements triage can
be performed without manual intervention on every iteration.

4.2 Step Two: Enter Legal Requirements

Our legal requirements triage algorithm also requires a set of legal requirements
that are mapped to (or have traceability links to) specific subsections of the
legal text. In order to automatically perform the legal requirements triage,
these requirements must be entered into Red Wolf. If a set of requirements that
have been previously mapped to a legal text is not available, then a requirements
engineer should use an existing technique to create this mapping [4, 5, 20, 21].
Legal requirements that would qualify as an input may be elicited through a
variety of techniques. For example, the techniques for eliciting and specifying
requirements outlined by Breaux et al. and Maxwell et al. are acceptable so long
as traceability to the original legal text is maintained [4, 5, 21]. In addition,
Massey et al. outline a procedure for mapping existing requirements to the
relevant portions of a legal text [20]. Optionally, a requirements engineer may
choose to use an automated traceability technique [3, 7] and manually complete
the mapping to specific subsections of the legal text using one another technique
[4, 5, 20, 21].

Our legal requirements management tool accepts natural language require-
ments with the following attributes: Name, Description, Legal Subsections,
Origin, Context, and Rationale. These attributes were chosen because we used
them in a prior study in which we elicited and validated legal requirements for
the iTrust Medical Records System [20]. However, the only attributes required
by Red Wolf are Name, Description, and Legal Subsections. The Name attribute

NCSU Technical Report: TR-2010-22

Name: Requirement 6

Description: iTrust shall maintain a
patient’s records for a period of seven
years after their record has been
disabled.

Legal Subsections: 164.528(a)(1),
164.308(a)(7) (i) (A), 164.528(a)(3),
164.528(b)(1), and 164.530(3)(2)

Figure 7: Sample Case Study Requirement

is a short name that can identify the requirement. The Description attribute is
a text block that represents the key functionality required. The Legal Subsection
is a text string identifying the list of subsections to which the requirement maps
in the law. Our legal requirements management tool parses this subsection to
perform the requirements triage. Figure 7 displays the required attributes of a
sample requirement from our case study.

The optional requirements attributes are Origin, Context, and Rationale.
The Origin attribute is a string describing how the requirement was elicited.
For example, “During consultation with a legal expert.” The Context attribute
further describes the situations or environments when the requirement is used.
For example, “This requirement is a part of the user registration process.” The
Rationale attribute describes the reasons the requirement is needed. For exam-
ple, “The customer wants to make sure that log files are backed up on an hourly
basis.” These attributes can be useful when conducting a pairwise prioritization
in Step Four.

Red Wolf automatically assigns and updates the following attributes to re-
quirements as they are processed: ID, User, Created At Date, Updated At Date,
and Priority. The ID attribute is a unique number that can also be used to iden-
tify the requirement. The User attribute is the username of the individual who
added the requirement to the system. The Created At Date and Updated At
Date attributes denote the date and time the requirement was created and last
updated respectively. The Priority attribute is a text string identifying the
priority group of the requirement. This attribute has four possible values: Un-
analyzed, Non-Legal, Not Implementation Ready, and Implementation Ready.
The Unanalyzed value denotes a requirement that has not yet been processed
by the requirements triage system. The Non-Legal value is assigned to require-
ments that do not map to legal subsections and cannot be triaged using our
algorithm. The Not Implementation Ready value denotes a legal requirement
that has been triaged and found to be not yet ready for implementation. The

NCSU Technical Report: TR-2010-22

Implementation Ready value denotes a legal requirement that has been triaged
and found to be ready for direct implementation or further prioritization with
a pairwise prioritization technique.

4.3 Step Three: Execute Requirements Triage

Once the XML-formatted legal text and the requirements are entered into Red
Wolf, requirements engineers must set the weightings described in Section 3.1
to perform the requirements triage. Red Wolf has a settings page on which
requirements engineers can establish both the weightings for the categories of
requirements and the version of the XML-formatted legal text to use for the
triage. Once set, the requirements engineer simply clicks a button to perform
the triage.

When Red Wolf completes the triage, it displays a summary screen. The
summary screen shows which requirements the tool found to be in each of the
three groups (implementation ready, needing refinement, and non-legal) along
with the average triage score and standard deviation for each of the k-means
clusters. Red Wolf also indicates if the mean value of implementation ready
requirements set is five standard deviations away from the mean value of the
set of requirements needing further refinement.

4.4 Step Four: Perform Prioritization

After the automated triage, requirements engineers must still prioritize the im-
plementation ready requirements according to software engineering standards.
Because our triage technique focuses on legal implementation readiness, software
concerns must be taken into account separately. Numerous pairwise prioritiza-
tion techniques, including AHP, could fulfill this step [9, 10, 11, 12, 13, 15, 26,
28, 1].

5 Case Study Results

In this section, we discuss the results of an experiential case study in which
we applied our requirements triage technique to 75 functional requirements for
the iTrust Medical Records System, an open-source EHR system designed by
students at North Carolina State University over 11 semester-long courses for
use in the United States healthcare industry. The initial iTrust developers
expressed their requirements for iTrust as Unified Modeling Language use cases
in consultation with both a practicing physician and a professional from the
North Carolina Healthcare Information and Communications Alliance. Because
iTrust is designed for eventual real-world use, it must comply with HIPAA.
Massey et al. previously evaluated the iTrust requirements for legal com-
pliance, and provided an initial mapping of iTrust requirements to the HIPAA
regulations [20]. This evaluation produced a total of 73 requirements, of which

NCSU Technical Report: TR-2010-22

Table 2: Triage Results (D = 30,C = 30, M = 60)

Set Requirements | Mean | Std. Dev.
Implementation Ready 46 5.73 0.76
Needing Refinement 12 24.4 2.7
Non-Legal 17 N/A N/A

63 were functional and 10 were non-functional [20]. To these 63 functional re-
quirements we add 12 additional functional requirements for iTrust identified
by Maxwell and Antén [21]. These 75 functional requirements and the text of
HIPAA, to which these requirements must comply, form the inputs for this case
study.

We chose to use a Dependency weighting (D) of 30, a Complexity weighting
(Cw) of 30, and a Maturity weighting (M) of 60 to ensure a larger magnitude
of triage scores. In addition, the algorithm is structured that ratios of 1 : 2 for
Dw : My and Cy : My, will keep relatively good triage scores near zero. Using
these weightings, Red Wolf produced 46 implementation ready requirements as
shown in Table 2. The number of pairwise comparisons for 46 requirements
is 1,035. In contrast, a pairwise prioritization technique that produce a total
ordering of 75 initial requirements would require 2,775 comparisons. Thus, our
legal requirements triage algorithm reduced the number of pairwise comparisons
needed to prioritize implementation ready legal requirements to 37.3% when
compared to a complete prioritization.

The non-legal requirements set produced is not analyzed as a part of the
triage and they may be implementation ready. Therefore, requirements en-
gineers may reasonably desire to include the non-legal requirements in their
post-triage, pairwise prioritization of requirements. In our case study, we would
need to include the 17 non-legal requirements for such a pairwise prioritization.
This results in 1,953 pairwise comparisons, which is about 70.4% of the number
of pairwise comparisons needed for all 75 requirements.

6 Threats to Validity

We developed our legal requirements triage technique by conducting an ex-
ploratory case study in which we analyzed the iTrust requirements. Internal
validity is not a concern for exploratory case studies [33]. Thus, we only discuss
threats from construct validity, external validity, and reliability.

Construct validity refers to the appropriateness and accuracy of the measures
and metrics used for the concepts studied [33]. This case study relies on two
sources of requirements for the iTrust Medical Records System: those produced
by Massey et al.[20] and those produced by Maxwell and Antén[22]. Using
multiple sources of requirements improves the appropriateness and accuracy
of our results. In this study, we also addressed construct validity by strictly

NCSU Technical Report: TR-2010-22

adhering to the methodology in Section 4 and by submitting draft reports of
this work for review to our colleagues at The Privacy Place and North Carolina
State University.

External validity refers to the ability to generalize the findings of a case
study to other domains [33]. Although no healthcare provider is currently using
iTrust in industry, healthcare professionals have consulted with the develop-
ers of iTrust from the beginning [20]. In addition, other researchers are using
iTrust as a subject of study for requirements engineering research [7]. Although
HIPAA represents a single legal domain, we have consulted with legal experts
and determined that HIPAA is significantly similar in form to other executive
branch administrative regulations.

Reliability refers to the ability of other researchers to repeat a case study
[33]. After developing our triage algorithm, we developed the Red Wolf tool that
supports and automates much of the process. We are currently in the process
of licensing Red Wolf as an open source requirements management tool. This
would allow others to repeat our case study.

7 Summary and Future Work

Quickly and accurately triaging and prioritizing legal requirements is increas-
ingly important for software design of systems that must comply with the law.
In this paper, we present a tool supported legal requirements triage technique.
Our technique takes as inputs a legal text and a set of software requirements
with traceability links to specific subsections of the legal text to which it must
comply. It produces as output three sets of requirements that can be used for
further prioritization: (a) implementation ready legal requirements; (b) legal re-
quirements that require further refinement; and (c) non-legal requirements. We
also developed Red Wolf, a tool that automates our legal requirements triage
algorithm. Using Red Wolf in an experiential case study, we triaged 75 require-
ments for iTrust, an EHR system that must comply with HIPAA. Our case study
showed that our legal requirements triage technique reduced the number of pair-
wise comparisons needed for a complete prioritization of implementation ready
legal requirements to 37.3% of the number needed for a complete prioritization.

Our technique is designed to be used in an iterative software development
processes, including various agile development methodologies. Such processes
require quick identification of implementable requirements for both design and
implementation. Currently, the only manual step is producing a custom XML
markup of the legal text, which only has to be done once, prior to the first
iteration. In addition, this step can be semi-automated through tool support as
described in Section 4.1.

In this paper, we assume a mapping of requirements to specific subsections
of a legal text as part of our input requirements set. However, in a real-world
environment, these links must be generated. Techniques exist to do this manu-
ally, but it may be possible to automate this step. For example, techniques for
automatically identifying traceability links for regulatory environments may be

NCSU Technical Report: TR-2010-22

integrated with the triage algorithm we present in this work [3, 7]. Currently,
these techniques do not map a requirement directly to specific sections of a legal
text.

Producing an XML-formatted legal text is the other manual component for
real-world engineering applications of this technique. However, as we produced
the XML-formatted legal text, we recorded a set of regular expressions that
can match the changes needed to partially automate this process in the future.
In addition, Data.gov?, an open government initiative, recently released XML-
formatted versions of numerous U.S. legal texts, including the Code of Federal
Regulations. We are currently modifying Red Wolf to support this official XML-
format and eliminate the manual markup element described in Section 4.1.

Finally, because our technique is designed to improve management of evolv-
ing legal requirements we plan to conduct additional studies involving amend-
ments to the HIPAA regulations, including the recent final ruling from HHS on
the HITECH Act[31].

Acknowledgment

This work was supported by NSF ITR Grant #522931 and NSF Cyber Trust
Grant #0430166. The authors would like to thank J. Maxwell, J. Young, and
the members of The Privacy Place for their feedback on early drafts of this

paper.

References

[1] P. Avesani, C. Bazzanella, A. Perini, and A. Susi. Facing Scalability Issues
in Requirements Prioritization With Machine Learning Techniques. 13th
IEEE International Conference on Requirements Engineering, pages 297—
305, Aug.-2 Sept. 2005.

[2] K. Beaver and R. Herold. The Practical Guide to HIPAA Privacy and
Security Compliance. Auerbach Publications, 2004.

[3] B. Berenbach, D. Grusemann, and J. Cleland-Huang. The Application of
Just In Time Tracing to Regulatory Codes and Standards. Fighth Confer-
ence on Systems Engineering Research, 2010.

[4] T. D. Breaux. Legal Requirements Acquisition for the Specification of
Legally Compliant Information Systems. PhD thesis, North Carolina State
University, 2009.

[6] T. D. Breaux and A. I. Antén. Analyzing regulatory rules for privacy
and security requirements. IEEE Transactions on Software Engineering,
34(1):5-20, Jan. 2008.

“http://www.data.gov/

NCSU Technical Report: TR-2010-22

[6]

T. D. Breaux, M. W. Vail, and A. I. Antén. Towards Regulatory Com-
pliance: Extracting Rights and Obligations to Align Requirements with
Regulations. In Proceedings of the 14th IEEE International Requirements
Engineering Conference, pages 49-58, Washington, DC, USA, September
2006. IEEE Society Press.

J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A Ma-
chine Learning Approach for Tracing Regulatory Requirements Codes to
Product Specific Requirements. 32nd International Conference on Software
FEngineering, May 2-8 2010.

A. Davis. The Art of Requirements Triage. Computer, 36(3):42-49, Mar
2003.

C. Duan, P. Laurent, J. Cleland-Huang, and C. Kwiatkowski. Towards
Automated Requirements Prioritization and Triage. Requirements Engi-
neering, 14(2):73-89, 06 2009.

A. Herrmann and M. Daneva. Requirements Prioritization Based on Ben-
efit and Cost Prediction: An Agenda for Future Research. 16th IEEE
International Requirements Engineering, pages 125-134, Sept. 2008.

J. Karlsson. Software Requirements Prioritizing. Proceedings of the Sec-
ond International Conference on Requirements Engineering, pages 110-116,
Apr 1996.

J. Karlsson and K. Ryan. A Cost-Value Approach for Prioritizing Require-
ments. IEEE Software, 14(5):67-74, Sep/Oct 1997.

J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for
prioritizing software requirements. Information and Software Technology,

39(14-15):939 — 947, 1998.

S. Kerrigan and K. H. Law. Logic-Based Regulation Compliance-
Assistance. In Proceedings of the 9th International Conference on Artificial
Intelligence and Law, pages 126-135, New York, NY, USA, 2003. ACM.

P. Laurent, J. Cleland-Huang, and C. Duan. Towards Automated Re-
quirements Triage. In 15th IEEE International Requirements Engineering
Conference, pages 131-140, Oct. 2007.

S. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129-137, 1982.

C. Manning and H. Schiitze. Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, MA, 1999.

F. Massacci, M. Prest, and N. Zannone. Using a security requirements
engineering methodology in practice: The compliance with the Italian data
protection legislation. Computer Standards & Interfaces, 27(5):445-455,
2005.

NCSU Technical Report: TR-2010-22

[19]

23]

[24]

[25]

[26]

A. K. Massey, P. N. Otto, and A. I. Antén. Legal Requirements Prioritiza-
tion. Proc. of the 2nd Intl. IEEE Workshop on Requirements Engineering
and the Law, 2009.

A. K. Massey, P. N. Otto, L. J. Hayward, and A. I. Antén. Evaluating
Existing Security and Privacy Requirements for Legal Compliance. Re-
quirements Engineering, 2009.

J. C. Maxwell and A. I. Antén. Developing Production Rule Models to
Aid in Acquiring Requirements from Legal Texts. 17th IEEE International
Requirements Engineering Conference, pages 101 —110, Aug. 31-Sept. 4
2009 2009.

J. C. Maxwell and A. I. Antén. Validating Existing Requirements for Com-
pliance with Law Using a Production Rule Model. Proc. of the 2nd Intl.
IEEE Workshop on Requirements Engineering and the Law, pages 1-6,
2009.

M. J. May, C. A. Gunter, and I. Lee. Privacy APIs: Access Control Tech-
niques to Analyze and Verify Legal Privacy Policies. Proceedings of the
Computer Security Foundations Workshop, pages 85 — 97, 2006.

P. N. Otto and A. I. Antén. Addressing Legal Requirements in Require-
ments Engineering. 15th IFEE International Requirements Engineering
Conference, pages 5-14, 15-19 Oct. 2007.

F. Paetsch, A. Eberlein, and F. Maurer. Requirements Engineering and
Agile Software Development. Twelfth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pages

308 — 313, June 2003.

A. Perini, A. Susi, F. Ricca, and C. Bazzanella. An Empirical Study to
Compare the Accuracy of AHP and CBRanking Techniques for Require-
ments Prioritization. Fifth International Workshop on Comparative Eval-
uation in Requirements Engineering, pages 23-35, Oct. 2007.

Z. Racheva, M. Daneva, and L. Buglione. Supporting the Dynamic Repri-
oritization of Requirements in Agile Development of Software Products.
Second International Workshop on Software Product Management, pages
49 -58, Sept. 2008.

K. Ryan and J. Karlsson. Prioritizing Software Requirements In An In-
dustrial Setting. In Proceedings of the 19th International Conference on
Software Engineering, pages 564-565, May 1997.

T. L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, 1980.

E. Simmons. Requirements Triage: What Can We Learn From a “Medical”
Approach? IEEE Software, 21(4):86-88, July-Aug. 2004.

NCSU Technical Report: TR-2010-22

[31] U.S. Department of Health and Human Services. Medicare and medicaid
programs; electronic health record incentive program: Final rule. U.S.
Federal Register, 2010.

[32] L. Williams, T. Xie, and A. Meneely. The iTrust Medical Records System,
http://agile.csc.ncsu.edu/iTrust /wiki/dokuwiki.php. September 2008.

[33] R. K. Yin. Case Study Research: Design and Methods, volume 5 of Applied
Social Research Methods Series. Sage Publications, 3rd edition, 2003.

