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Abstract To improve software quality, static or dynamic defect-detection
tools accept programming rules as input and detect their violations in soft-
ware as defects. As these programming rules are often not well documented
in practice, previous work developed various approaches that mine program-
ming rules as frequent patterns from program source code. Then these ap-
proaches use static or dynamic defect-detection techniques to detect pattern
violations in source code under analysis. However, these existing approaches
often produce many false positives due to various factors. To reduce false pos-
itives produced by these mining approaches, we develop a novel approach,
called Alattin, that includes new mining algorithms and a technique for de-
tecting neglected conditions based on our mining algorithm. Our new mining
algorithms mine patterns in four pattern formats: conjunctive, disjunctive,
exclusive-disjunctive, and combinations of these patterns. We show the bene-
fits and limitations of these four pattern formats with respect to false positives

This paper is an extended version of our previous work published at ASE 2009 [Thum-
malapenta and Xie(2009a)]. Our previous work introduced the concept of balanced and
imbalanced patterns that are expressed in the Or pattern format. In this work, we propose
additional new pattern formats Xor and Combo. We also propose new mining algorithms
for mining patterns in Or, Xor, and Combo pattern formats. Furthermore, we show the ben-
efits and limitations of And, Or, Xor, and Combo pattern formats by applying the patterns
mined using these formats to the problem of detecting neglected conditions in applications
under analysis.
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and false negatives among detected violations by applying those patterns to
the problem of detecting neglected conditions.

1 Introduction

Programming rules serve as a basis for applying static or dynamic defect-
detection tools to detect rule violations as software defects and improve soft-
ware quality. However, in practice, these programming rules are often not
well documented for Application Programming Interfaces (APIs) due to var-
ious factors such as hard project delivery deadlines and limited resources in
the software development process [Lethbridge et al(2003)Lethbridge, Singer,
and Forward]. To tackle the issue of lacking documented programming rules,
various approaches have been developed in the past decade to mine pro-
gramming rules from program executions [Ernst et al(2001)Ernst, Cockrell,
Griswold, and Notkin,Ammons et al(2002)Ammons, Bodik, and Larus,Yang
et al(2006)Yang, Evans, Bhardwaj, Bhat, and Das], individual versions [Engler
et al(2001)Engler, Chen, Hallem, Chou, and Chelf,Li and Zhou(2005),Acharya
et al(2006)Acharya, Xie, and Xu,Ramanathan et al(2007)Ramanathan, Grama,
and Jagannathan,Shoham et al(2007)Shoham, Yahav, Fink, and Pistoia,Chang
et al(2007)Chang, Podgurski, and Yang,Acharya et al(2007)Acharya, Xie, Pei,
and Xu,Wasylkowski et al(2007)Wasylkowski, Zeller, and Lindig], or version
histories [Livshits and Zimmermann(2005),Williams and Hollingsworth(2005)]
of program source code. A methodology, commonly referred to as mining soft-
ware engineering data (MSED) [DMSE(2010)], adopted by these approaches
is to mine common patterns (e.g., frequent occurrences of pairs or sequences
of API calls) across a sufficiently large number of data points (e.g., code exam-
ples). These common patterns often reflect programming rules that should be
obeyed when programmers write code using API calls involved in these rules.
Then, these approaches use static or dynamic defect-detection techniques that
accept mined patterns as inputs and detect pattern violations as potential
defects in applications under analysis.

Since the inception of the MSED methodology, the major focus is to mine
various types of patterns and use those patterns for detecting defects in ap-
plications under analysis. Although MSED has been shown to be effective in
detecting defects in applications under analysis, a major drawback of MSED
is that the violations detected by existing MSED-based approaches often in-
clude a large number of false positives. This phenomenon is reflected in the
empirical evaluations of existing approaches [Engler et al(2001)Engler, Chen,
Hallem, Chou, and Chelf, Li and Zhou(2005), Acharya et al(2006)Acharya,
Xie, and Xu, Chang et al(2007)Chang, Podgurski, and Yang, Wasylkowski
et al(2007)Wasylkowski, Zeller, and Lindig] where majority of detected vio-
lations turn out to be false positives.

To illustrate how detected violations turn out to be false positives, we use
two code examples (shown in Figure 1) using the next method of the Iterator

class. The next method throws NoSuchElementException when invoked on an
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Example 1:
00:String printEntries1(ArrayList<String>

entries) {
01: ...
02: Iterator it = entries.iterator();...
03: if (it.hasNext()) {
04: String last = (String) it.next();... }}

Example 2:
00:String printEntries2(ArrayList<String>

entries) {
01: ...
02: if (entries.size() > 0) {
03: Iterator it = entries.iterator();...
04: String last = (String) it.next();... }}

Fig. 1 Two code examples using the next method of the Iterator class

ArrayList object without any elements. Programmers can avoid this excep-
tion by using either the condition check “P1: boolean-check on return of
Iterator.hasNext before Iterator.next ” (shown in printEntries1 from Exam-
ple 1) or “P2: const-check on return of ArrayList.size before Iterator.next ”
(shown in printEntries2 from Example 2). In general, programmers use either
P1 or P2 but not both, since using both P1 and P2 is redundant. Consider that
a single pattern P1 is mined from the data points. A static defect-detection
technique reports a violation in printEntries2 , since the method does not
satisfy P1. However, the code example does not include any defect on using
Iterator.next , since printEntries2 satisfies P2; therefore, the detected viola-
tion turns out to be a false positive.

In our empirical investigation of false positives generated by existing ap-
proaches [Engler et al(2001)Engler, Chen, Hallem, Chou, and Chelf, Li and
Zhou(2005),Acharya et al(2006)Acharya, Xie, and Xu,Chang et al(2007)Chang,
Podgurski, and Yang,Wasylkowski et al(2007)Wasylkowski, Zeller, and Lindig],
we identify that a major reason for such a large number of false positives is
that the focus of MSED is to mine single patterns (such as P1) or conjunctive
patterns (such as P1 ∧P2) (more details are presented in Section 5). The con-
junctive pattern P1 ∧ P2 describes that both P1 and P2 often appear together
among the data points (e.g., code examples). We identify that these single
or conjunctive patterns alone cannot describe the nearly complete behavior
among data points, resulting in false positives. The reason why single or con-
junctive patterns are not sufficient is that programmers write source code in
different ways to achieve the same programming task (as shown in Examples
1 and 2). For example, the pattern P1 ⊕ P2

1 describes both the condition
checks that can be used before the next method. Furthermore, using the pat-
tern P1⊕P2 does not result in violations in printEntries1 and printEntries2 ,
thereby reducing false positives. We focus on mining patterns that describe
nearly complete rather than complete behavior, since the patterns that de-
scribe complete behavior cannot help detect violations as deviations from those
patterns, resulting in false negatives.

1 The symbol ⊕ represents the exclusive-or relationship.
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To reduce both false positives and false negatives among detected viola-
tions and to infer patterns that describe nearly complete behavior, in this
paper, we propose a novel approach, called Alattin , that includes new mining
algorithms and a technique that detects neglected conditions (described next)
using patterns mined by our mining algorithms. In particular, our algorithms
mine patterns in four pattern formats: conjunctive (And or ∧), disjunctive (Or
or ∨), exclusive-disjunctive (Xor or ⊕), and combinations of these patterns
(referred to as Combo patterns). We use Alternative Patterns to collectively
refer to patterns of all four formats and refer to individual patterns such as
P1 and P2 in P1 ∧ P2 as alternatives.

In general, mining Or and Xor patterns is more challenging than mining
And patterns, since Or and Xor patterns do not follow the Apriori prin-
ciple [Han and Kamber(2000)] in data mining. Given an input database of
itemsets for applying mining techniques, the Apriori principle states that if
an itemset is frequent, then all its subsets should also be frequent. Existing
mining techniques [Burdick et al(2001)Burdick, Calimlim, and Gehrke] that
target at mining And patterns use this principle for pruning the search space.
For example, if an itemset P1 is not frequent, then any super And itemset of
P1 such as P1∧P2 cannot be frequent, and hence can be pruned. However, the
Apriori principle does not hold for mining Or and Xor patterns. For example,
although the itemset P1 is not frequent, its super Or itemset such as P1 ∨ P2

can be frequent, since P1 ∨ P2 is supported by more itemsets in the input
database compared to P1 or P2 individually.

In this paper, we show the benefits and limitations of these four pattern
formats with respect to false positives and false negatives by applying these
pattern formats to the problem of detecting neglected conditions. Neglected
conditions, also referred to as missing paths, are known to be an important
category of software defects and are considered to be one of the primary reasons
for many fatal issues such as security or buffer overflow vulnerabilities [Chang
et al(2007)Chang, Podgurski, and Yang]. As shown by a recent study [Chang
et al(2007)Chang, Podgurski, and Yang], 66% (109/167) of defect fixes applied
in the Mozilla Firefox project are due to neglected conditions. In particular,
neglected conditions (related to an API call) refer to (1) missing conditions
that check the arguments or receiver of the API call before the API call or (2)
missing conditions that check the return values or receiver of the API call after
the API call. In our approach, we mine patterns that describe necessary condi-
tion checks related to an API call in these four formats and use those condition
checks for detecting neglected conditions in applications under analysis.

This paper makes the following main contributions:

– An empirical investigation of four pattern formats: conjunctive (And or ∧),
disjunctive (Or or ∨), exclusive-disjunctive (Xor or ⊕), and combinations
of these patterns (referred to as combo patterns) in software engineering
data.

– New mining algorithms for efficiently mining patterns in Or, Xor, and
Combo pattern formats.
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01:public Object evaluate(Object val) { ...
02: if (val != null &&

val instanceof Collection) {
03: Collection coll = (Collection) val;
04: Iterator i = coll.iterator();
05: if(!coll.isEmpty()) {
06: for (; i.hasNext();) {
07: Object obj = i.next();
08: if(obj instanceof Node) {
09: Node node = (Node) obj;
10: //...
11: } } } }
12: return new Double(sum);
13: }

Fig. 2 A code example using Iterator.next gathered from Google code search.
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Fig. 3 An example input database ISD.

– A technique that applies patterns of these four pattern formats for de-
tecting neglected conditions around individual API calls in an application
under analysis.

– Two evaluations to demonstrate the effectiveness of our approach. Our
evaluation results show that the best pattern-mining approach (in terms
of reducing both false positives and false negatives) is to first mine And
patterns for API methods and next mine Combo patterns. Among viola-
tions detected by Combo patterns, the best violation-detection approach is
to assign higher priority to the violations of API methods with And pat-
terns compared to the violations of API methods without And patterns.
The primary reason is that the former violations are more likely to be real
defects compared to the latter violations.

2 Example

We next use an illustrative example to describe our approach on how we
collect the data that describes necessary condition checks around API calls.
We also show how our proposed four pattern formats affect the number of
false negatives and false positives among detected violations. Consider that
an application under analysis uses the Iterator.next method as shown in the
printEntries2 method in Figure 1.

Initially, we gather relevant code examples that invoke the Iterator.next

method by constructing queries to Google code search [GCSE(2006)]. These
relevant code examples are required for mining patterns that describe nec-
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essary condition checks around the Iterator.next method. Figure 2 shows a
code example gathered from Google code search. We next construct control-
flow graphs (CFG) for collected code examples and perform two traversals
(backward and forward) of the CFG from the node corresponding to the
Iterator.next method. In the backward traversal, we collect the condition
checks on the receiver and argument objects preceding the call site of the
Iterator.next method. Similarly, in the forward traversal, we collect the con-
dition checks on the receiver and return objects succeeding the call site of
the Iterator.next method. For the current code example, our backward and
forward traversals gather the following condition checks.

a: boolean-check on the return of Iterator.hasNext
before Iterator.next

b: boolean-check on the return of Collection.isEmpty
before Iterator.next

c: instance-check on the return of Iterator.next
with org.w3c.dom.Node

d: boolean-check on the return of Iterator.hasNext
after Iterator.next

Condition check “a” describes the condition check performed before the
call site of the next method, whereas Condition check “d” describes the con-
dition check performed after the call site of the next method. The reason for
two condition checks is that the next method (Statement 7) is invoked in a for

loop. Section 4 presents more details on how we exploit program dependencies
while performing backward and forward traversals. The preceding set of con-
dition checks collected from the code example forms an itemset in the itemset
database ISD, used as input for mining patterns. We analyze all gathered code
examples to generate various itemsets and use different mining algorithms for
mining the patterns in formats: And, Or, Xor, and Combo. Section 3 presents
more details on our mining algorithms.

Figure 3 shows a sample itemset database ISD with six itemsets. This
ISD includes four distinct items labeled with IDs 1 through 4. The figure
also shows the condition check corresponding to each item. We next apply our
mining algorithms for mining different pattern formats. The patterns mined
by our algorithms with a minimum support threshold value min sup of 0.4 are
shown below:

– And Pattern: “1 ∧ 4”, support: 0.5
– Or Pattern: “1 ∨ 2 ∨ 3 ∨ 4”, support: 1.0
– Xor Pattern: “1⊕ 2”, support 1.0; “4”, support: 0.5
– Combo Pattern: “(1 ∧ 4)⊕ 2”, support: 0.83

Among the itemsets shown in ISD, Items 1 and 4 often appear together
with an ∧ relation, since the methods hasNext and next are often used in a
loop (as shown in Statements 6 and 7 in Figure 2). Although the And pat-
tern captures this behavior, the And pattern cannot capture the relation with
Item 2, resulting in false positives when applied on code examples such as
printEntries2 in Figure 1. On the other hand, the Or pattern does not result
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in false positives, since the pattern includes all items. However, the Or pattern
does not help in detecting violations, resulting in false negatives. Although the
Xor pattern can perform better than the Or pattern, the Xor pattern may
not detect violations in code examples, which include only Item 1 and do not
include Item 4. As shown in this example, the Combo pattern describes the
nearly complete behavior and also helps reduce both false positives and false
negatives.

Along with the challenges faced while mining Or and Xor patterns, Combo
patterns pose additional challenges in choosing the suitable operator while
combining items. For example, the suitable operator for combining items “1”
and “4” is ∧, although “1 ∨ 4” results in a higher support value than “1 ∧ 4”.
We describe these challenges in subsequent sections and present our algorithms
for mining these patterns.

In summary, this example illustrates the existence of pattern formats And,
Or, and Xor, and also shows that no single pattern format alone can help in
describing the necessary condition checks around API calls.

3 Mining Algorithms for Alternative Patterns

We next describe four pattern formats that we use in our empirical study.
We first present formal definitions for the four pattern formats and next de-
scribe our algorithms for mining the pattern in four formats with illustrative
examples.

3.1 Formal Definitions

Let M = {m1, m2, ..., mk} be the set of all possible distinct items. For exam-
ple, an mj represents a condition check such as “boolean-check on return of
Iterator.hasNext before Iterator.next ”. Consider an ItemSet Database ISD
as {is1, is2, ...,isl}, where each itemset isj includes different sets of elements
such as {m1, m2, ..., ma} from the set of all possible distinct elements.

Definition 1 Pattern Candidate. A pattern candidate pc is a single item
mk ∈ M or a combination of two elements associated by a logical operator
op ∈ {∧,∨,⊕}. Each element in the combination is an item mi ∈ M or another
pattern candidate.

The preceding definition is a recursive definition, which defines that a pat-
tern candidate can be either a simple or nested pattern candidate. For example,
a simple pattern candidate pck : mi ∧ mj is a combination of two items mi

and mj with the operator op ∈ {∧}. On the other hand, a nested pattern
candidate pcl : mi∨pck is a combination of an item mi and the preceding pat-
tern candidate pck with the operator op ∈ {∨}. We use notations pck.left and
pck.rigℎt to refer to the left and right child pattern candidates, respectively,
and refer to pck as their parent pattern candidate. Furthermore, we use the
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notation pck.op to refer to the operator op of the pattern candidate pck. We
classify a pattern candidate by its format, especially using its operator.

Definition 2 And Pattern Candidate. An And pattern candidate is a
pattern candidate where the operator op ∈ {∧} and all the child pattern
candidates are also And pattern candidates.

Definition 3 Or Pattern Candidate. AnOr pattern candidate is a pattern
candidate where the operator op ∈ {∨} and all the child pattern candidates
are also Or pattern candidates.

Definition 4 Xor Pattern Candidate. A Xor pattern candidate is a pat-
tern candidate where the operator op ∈ {⊕} and all the child pattern candi-
dates are also Xor pattern candidates.

Definition 5 Combo Pattern Candidate. A Combo pattern candidate is
a pattern candidate where the operator op ∈ {∧,∨,⊕}.

The category of Combo pattern candidates subsumes the categories of And,
Or, and Xor pattern candidates. An example combo pattern candidate is
“pc1 ⊕ pc2”, where pc1 and pc2 are “mi ∧mj” and “mk ∧ml”, respectively.

To compute frequent patterns among pattern candidates, we use a thresh-
old value, referred to as min sup, that describes the minimum support for a
pattern candidate to be classified as a frequent pattern. Algorithm 1, IsSupportedBy ,
describes how we compute support values for the preceding pattern formats. In
particular, IsSupportedBy accepts a pattern candidate pck and an itemset isj ,
and returns true , if isj supports pck, and otherwise returns false . Initially,
IsSupportedBy checks whether pck is a single item and returns true or false

based on whether pck is contained in isj . Otherwise, IsSupportedBy recursively
computes whether pck.left and pck.rigℎt of pck are supported by the itemset
isj , and uses the operator pck.op for checking whether isj supports pck (Lines
4 - 15). We compute the support value of a pattern candidate pck, referred to
as Support( pck) , based on the number of the itemsets (in ISD) that return
true for the algorithm IsSupportedBy .

Definition 6 Frequent Pattern (FP). A pattern candidate pck is consid-
ered as a frequent pattern, if Support( pck) ≥ min sup.

A frequent pattern fpk is considered as an And, Or, Xor, or Combo pattern
based on the operator fpk.op.

3.2 Mining Algorithms

We next present our algorithms for mining preceding pattern formats. In par-
ticular, we present algorithms for mining Or, Xor, and Combo patterns, since
mining And patterns can be achieved by well-known approaches such as a fre-
quent itemset miner [Burdick et al(2001)Burdick, Calimlim, and Gehrke]. We
first explain our algorithm for mining Or and Xor patterns, and next describe
the algorithm for mining Combo patterns.
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Algorithm 1 IsSupportedBy (pck, isj)

Require: PatternCandidate pck, ItemSet isj
Ensure: true , if isj supports pck
Ensure: false , if isj does not support pck
1: if pck is a SingleItem then

2: return pck ∈ isj
3: else

4: bool lefts = isSupportedBy(pck.left, isj)
5: bool rights = isSupportedBy(pck.rigℎt, isj)
6: if pck.op == ∨ then

7: return lefts ∨ rights
8: end if

9: if pck.op == ∧ then

10: return lefts ∧ rights
11: end if

12: if pck.op == ⊕ then

13: return lefts ⊕ rights
14: end if

15: end if

3.2.1 Mining Or and Xor Patterns

In general, mining Or and Xor patterns is more challenging than mining And
patterns, since these patterns do not follow the Apriori principle [Han and
Kamber(2000)]. The Apriori principle states that if an itemset is frequent,
then all its subsets should also be frequent. Existing mining techniques that
target at mining And patterns use this principle for pruning the search space.
For example, if an itemset pc1 is not frequent, then any super itemset of pc1
such as pc1 ∧ pc2 cannot be frequent, and hence can be pruned. However, the
Apriori principle does not hold for mining Or and Xor patterns. For example,
even if the itemset pc1 is not frequent, then its super itemset such as pc1 ∨ pc2
can be frequent. To address this issue, we propose a greedy algorithm based on
the following property for pruning the search space of patterns. This property
is inspired by Nanavati et al. [Nanavati et al(2001)Nanavati, Chitrapura, Joshi,
and Krishnapuram] and is applicable to both Or and Xor patterns.

Property 1 The support of an Or or Xor pattern candidate pck, represented
as Support( pck) , formed from two pattern candidates pck.left and pck.rigℎt

should have higher value than Support( pck.left) and Support( pck.rigℎt) .

The rationale behind the preceding property is based on our objective to
mine patterns that describe nearly complete behavior. For example, a pat-
tern candidate pck = pci ∨ pcj , whose support value is less than Support( pci)

and Support( pcj ) is not useful compared to individual pattern candidates in
achieving our objective. Algorithm 2, MineXorOr , describes our greedy algo-
rithm for mining Or and Xor patterns. MineXorOr accepts itemset database
ISD, min sup, and ptype ∈ {∨,⊕} as inputs.

Initially, MineXorOr identifies all distinct items in the itemset database
ISD using the function ComputeDistinct (Line 2). Among these distinct items,
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Algorithm 2 MineXorOr(ISD, min sup, ptype)
Require: ISD, min sup, ptype
Ensure: Set<PC> PCSet
1: PCSet = �
2: Set<M> distinctItems = ComputeDistinct(ISD)
3: for all mi ∈ distinctItems do

4: if Support(mi, ISD) >= min sup then

5: PCSet+ = mi

6: end if

7: end for

8: Set<PC> CurrSet = distinctItems
9: loop

10: Set<PC> NextSet = �
11: Set<PC> CℎildSet = �
12: Set<PC> PWSet = ComputePairwise(CurrSet, ptype)
13: for all pcj ∈ PWSet do
14: sval = Support(pcj , ptype)
15: if (sval < min sup ∣∣ sval ≤ Support(pcj .left) ∣∣ sval ≤ Support(pcj .rigℎt))

then

16: Continue

17: end if

18: NextSet+ = pcj
19: PCSet+ = pcj
20: end for

21: if NextSet.size() ≤ 1 then

22: break
23: end if

24: NextSet = ApplyGreedy(CurrSet, NextSet)
25: for all pcj ∈ CurrSet do
26: if pcj /∈ {pck.left, pck.rigℎt}, ∀pck ∈ NextSet then
27: NextSet+ = pcj
28: end if

29: end for

30: CurrSet = NextSet
31: end loop

32: return PCSet

MineXorOr checks whether the support of any of these items is greater than
min sup and adds those items to PCSet (Lines 3 to 7). Next, MineXorOr uses
various iterations, where pairwise combinations are computed using the func-
tion ComputePairwise from the elements of the previous iteration stored in
CurrSet (Lines 9 to 31). For example, consider Or patterns. For the CurrSet

= {pc1, pc2, pc3}, ComputePairwise returns a set with three elements, i.e., PWSet

= {pc1 ∨ pc2, pc1 ∨ pc3, pc2 ∨ pc3}. The algorithm next identifies the elements
in PWSet, whose support values are greater than min sup and satisfy Property
1. MineXorOr next chooses pattern candidates (from NextSet) that participate
in the next iteration by greedily choosing one parent pattern candidate in
NextSet with the highest support value for each pattern candidate in CurrSet

using the function ApplyGreedy (Line 24). The rationale behind our greedy ap-
proach is based on our empirical investigation that the real patterns describing
necessary condition checks around API calls often have higher support values
compared to other patterns. Finally, MineXorOr identifies those pattern candi-
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Fig. 4 All possible itemsets with four distinct items.

Fig. 5 Mining Xor patterns.

dates in CurrSet whose parent pattern candidates do not belong to NextSet

(Lines 25 - 29). MineXorOr adds such pattern candidates to NextSet as well,
since these pattern candidates can still be helpful when combined with other
pattern candidates in NextSet.

We next explain the algorithm in detail using the itemset database shown
in Figure 3. The itemset database includes four distinct items. Figure 4 shows
all possible pattern candidates that can be derived using the preceding four
distinct items. This figure shows the complete search space of pattern can-
didates. We first explain mining Xor patterns and next explain mining Or
patterns.

Mining Xor Patterns. Figure 5 shows how MineXorOr prunes the search
space and generates patterns “1 ⊕ 2” (support 1.0) and “4” (support: 0.5).
The value shown in braces next to each pattern candidate indicates support
value of that pattern candidate. The pattern candidates shown in gray are
pruned by MineXorOr due to three factors. First, the support value of pattern
candidate is lower than min sup. For example, Support (2⊕3) = 0.33, which is
lower than min sup. Second, the pattern candidate does not satisfy Property
1. For example, the pattern candidate “1⊕3” does not satisfy Property 1, since
Support (1⊕3) ≤ Support (1). Third, the pattern candidate is not the candidate
with the highest support value among the parent pattern candidates of each



12

Fig. 6 Mining Or patterns.

Fig. 7 Phase 1 of mining Combo patterns.

Fig. 8 Phase 2 of mining Combo patterns.

child pattern candidate. For example, the pattern candidate “2⊕4” is pruned,
since the pattern candidate “1⊕ 2” has a higher support value than “2⊕ 4”.
Since all parent pattern candidates of “4” are pruned away, MineXorOr adds
this candidate to NextSet for the next iteration and computes further pattern
candidates such as “1⊕ 2⊕ 4”.

Mining Or Patterns. Figure 6 shows how MineXorOr prunes the search
space and generates the Or pattern “1∨2∨3∨4” (support: 1.0). Similar to Xor
patterns, the pattern candidates are pruned due to the same three factors.

3.2.2 Mining Combo Patterns

We next describe how we mine combo patterns. The algorithm for mining
Combo patterns includes two phases. Phase 1 mines And Patterns and Phase
2 mines Combo patterns using the output of Phase 1. We next explain each
phase in detail.

Phase 1. Algorithm 3, MineComboP1, shows Phase 1 of mining Combo pat-
terns. In particular, MineComboP1 computes pairwise And combinations of all
pattern candidates in CurrSet and checks whether new pattern candidates
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Algorithm 3 MineComboP1(ISD, min sup)
Require: ISD, min sup, ptype
Ensure: Set<PC> PCSet
1: Set<M> distinctItems = ComputeDistinct(ISD)
2: Set<PC> CurrSet = distinctItems
3: PCSet = distinctItems
4: loop

5: Set<PC> NextSet = �
6: Set<PC> PWSet = ComputePairwise(CurrSet, “And”)
7: for all pcj ∈ PWSet do
8: sval = Support(pcj , ptype)
9: if sval < min sup then

10: Continue

11: end if

12: if Support(pcj .left⊕ pcj .rigℎt) ≥ min sup then

13: Continue

14: end if

15: NextSet+ = pcj
16: PCSet− = pcj .left
17: PCSet− = pcj .rigℎt
18: PCSet+ = pcj
19: end for

20: if NextSet.size() ≤ 1 then

21: break
22: end if

23: CurrSet = NextSet
24: end loop

25: return PCSet

have higher support values than min sup (Lines 9 - 11). If yes, MineComboP1

computes the support of Xor combination of the two candidates, shown as
Support (pcj .left ⊕ pcj .rigℎt) in Line 12. If the preceding support value is
also higher than min sup, then MineComboP1 ignores the And combination.
The rationale behind this decision is that, if both “pcj .left ∧ pcj .rigℎt” and
“pcj .left⊕pcj .rigℎt” have higher values than min sup, then the suitable com-
bination of pcj .left and pcj .rigℎt is “pcj .left ∨ pcj .rigℎt”.

Figure 7 shows the output of MineComboP1 with the itemset database ISD
shown in Figure 3. As shown in the figure, Phase 1 produces three pattern
candidates as output: “1 ∧ 4”, “2”, and “3”, which are passed as inputs to
Phase 2.

Phase 2. Phase 2 of mining Combo patterns is similar to Algorithm 2 for
mining Xor and Or patterns. The major difference is to choosing a suitable op-
erator, op ∈ {∨,⊕}, when combining two pattern candidates during the com-
putation of pairwise combinations. Given two pattern candidates pci and pcj ,
Phase 2 chooses the ∨ operator if “Support (pci∧pcj) ≥ min sup&& Support (pci⊕
pcj) ≥ min sup”; otherwise, Phase 2 chooses the ⊕ operator. The rationale
behind this decision is the same as the reason given in Phase 1. Figure 8 shows
the output of Phase 2 resulting in the pattern “(1 ∧ 4)⊕ 2” (support: 0.83).
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4 Alattin Approach

Our Alattin approach accepts an application under analysis and detects ne-
glected conditions around APIs reused by the application. More specifically,
Alattin scans the application and gathers APIs reused by the application.
Alattin uses our mining algorithms to mine patterns that serve as program-
ming rules in reusing those APIs. Then Alattin detects violations of these
programming rules. In summary, Alattin includes four major phases. In Phase
1, Alattin gathers relevant code examples that reuse APIs. In Phase 2, Alat-
tin analyzes gathered code examples or application under analysis to generate
pattern candidates suitable for mining. In Phase 3, Alattin applies mining al-
gorithms on pattern candidates to mine patterns. In Phase 4, Alattin detects
violations of mined patterns in the application under analysis. We next explain
each phase in detail. We use notations Ci and Fi to denote a class or a method
used by the application under analysis, respectively.

4.1 Phase 1: Gathering Code Examples

In Phase 1, Alattin gathers code examples from existing open source reposito-
ries through code search engines (CSE) such as Google code search [GCSE(2006)]
and Koders [KODERS(2005)]. These code search engines are primarily used
by programmers in searching for relevant code examples from available open
source projects on the web. As these CSEs can serve as powerful resources
of open source code, these CSEs can be exploited for other tasks such as de-
tecting violations in applications that reuse existing open source projects. Our
approach uses a CSE to gather relevant code examples and mines gathered
code examples to detect violations in an application under analysis.

To collect code examples through a CSE, Alattin constructs queries for
each Ci and Fi. For example, Alattin constructs query of the form “lang:java

Iterator next ” to collect code examples that invoke the next method of the
Iterator class. More specifically, our queries include the names of the class and
method along with the language type. Alattin stores gathered code examples
in the local file system for further analysis. Alattin uses Google code search
(GCSE) [GCSE(2006)] for collecting relevant code examples with two main
reasons: (1) GCSE provides client libraries that can be used by other tools
to interact with and (2) GCSE has public forums that provide good support.
However, our approach is independent of GCSE and can leverage any other
CSE to gather relevant code examples.

4.2 Phase 2: Generating Pattern Candidates

In Phase 2, Alattin analyzes gathered code examples or application under
analysis statically to generate pattern candidates suitable for mining. These
pattern candidates include condition checks that are performed before and af-
ter invoking an Fi method. To identify these condition checks on method calls,
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Alattin has to associate condition checks in the conditional expressions of If

or While statements with the related method calls. We use the Iterator.next

method and its relevant code example in Figure 2 as a running example for
explaining Phase 2.

Alattin includes two sub-phases in Phase 2: CFG construction and traver-
sal. In the CFG construction sub-phase, Alattin constructs CFGs for each
code example with two kinds of nodes: control (CT ) and non-control (NT )
nodes. Control nodes represent control-flow statements such as if, while, and
for, which control the flow of the program execution. Non-control nodes repre-
sent other statements such as method calls or type casts. For example, State-
ment 5 in the code example (Figure 2) is a control node and Statement 9 is
a non-control node. When encountering a control node, say CTi (i indicates
the statement id), Alattin also extracts all variables, say {V1, V2, ..., Vn},
that participate in the conditional expression of that node and the condition
checks on those variables. For example, the control node CT2 includes the
{(val , null-check ), (val , instance-check )} pairs. If the control node includes
comparisons with expressions such as method calls, our approach stores those
method calls also as additional information within the control node. When en-
countering a non-control node such as a method call, Alattin extracts variables
such as {receiver , argument1 , ..., argumentN } associated with the method call.

In the CFG traversal sub-phase, Alattin associates gathered condition
checks with their related method calls such as Iterator.hasNext . The traversal
phase includes two kinds of traversals: backward and forward. Alattin performs
a backward traversal from the call site such as NT7 of the Fi method to col-
lect condition checks on the receiver and argument objects preceding the call
site. Similarly, Alattin performs a forward traversal to collect condition checks
on the receiver and return objects after the call site of the Fi method. In
each traversal, Alattin exploits program dependencies for associating condi-
tion checks with method calls. Failing to consider these program dependencies
may result in programming rules that are not semantically related as shown in
the limitations of the PR-Miner [Li and Zhou(2005)] and DynaMine [Livshits
and Zimmermann(2005)] approaches. To exploit program dependencies, Alat-
tin uses the concept of dominance with a combination of control-flow and
data-flow dependencies.

Definition: A node N dominates another node M in a control flow graph
(represented as N dom M) if every path from the starting node of the CFG to
M includes N .

Initially, Alattin identifies the dominant CTi nodes for each NTk node. For
example, the control node CT6 dominates the non-control node NT7. Alattin
computes the intersection between the variable set associated with the CTi

node, say {V1, V2, ..., Vn}, and the receiver or argument variables of the NTk

node, say {receiver , argument1 , ..., argumentN }. If the intersection {V1, V2, ...,
Vn} ∩ {receiver , argument1 , ..., argumentN } ∕= ∅, Alattin checks whether the
NTk node is dependent on the CTi node, i.e., whether there exists at least
one variable of NTk node involved in the CTi node and is not redefined in the
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path between CTi and NTk nodes. If the NTk node is dependent on the CTi

node, Alattin adds the condition check to the pattern candidate. For example,
the extracted condition check for nodes CT6 and NT7 in the code example is
“boolean-check on return of Iterator.hasNext before Iterator.next ”, which
indicates that a boolean-check must be done on the return variable of the
hasNext method before the call site of Iterator.next . In our experience, we
found that there can be various code examples without any condition checks
around an Fi method. Failing to consider these code examples can assign
incorrect support values to mined patterns. To address this issue, we add
an Empty Pattern Candidate to the input database ISD for each such code
example.

4.3 Phase 3: Mining Alternative Patterns

In Phase 3, Alattin uses our mining algorithms (described in Section 3) to
mine patterns in all four pattern formats: And, Or, Xor, and Combo patterns.
Alattin applies our mining algorithms on pattern candidates of each Fi method
individually. The reason is that if we apply mining algorithms on all pattern
candidates together, the patterns related to an Fi method with a few pattern
candidates can be missed due to patterns (related to other Mj methods) with
a large number of pattern candidates. For each Fi, Alattin mines patterns in
all four pattern formats. We used a min sup threshold value of 0.4 based on
our empirical experience [Thummalapenta and Xie(2009a)].

4.4 Phase 4: Detecting Neglected Conditions

In Phase 4, Alattin detects violations of mined patterns in the application
under analysis statically. More specifically, Alattin gathers condition checks
around each call site of an Fi method in the application under analysis. Alat-
tin constructs an itemset isj using gathered condition checks. For each mined
pattern pck in all patterns of four formats, Alattin uses IsSupportedBy (Al-
gorithm 1) to check whether the itemset isj supports the mined pattern pck.
If the itemset does not support the mined pattern, Alattin reports a viola-
tion. For each detected violation, Alattin assigns a support value as the same
value as the support value of the associated mined pattern used to detect the
violation.

5 Evaluations

We conducted two evaluations to assess the effectiveness of Alattin. We use
the APIs provided by three Java default API libraries to show the existence of
alternative patterns. We next use four popular applications to show the bene-
fits and limitations of alternative patterns with respect to false positives and
false negatives among detected violations. The details of subjects and results
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of our evaluations are available at
https://sites.google.com/site/asergrp/projects/alat tin/ . We
next present research questions addressed in our evaluations.

5.1 Research Questions

In our evaluations, we address the following research questions.

– RQ1: How high percentage of And, Or, Xor, and Combo patterns represent
real programming rules, respectively? Since real programming rules are re-
quired for detecting violations in applications under analysis, this research
question helps to show the pattern formats that are suitable for detecting
violations.

– RQ2: How low percentage of false negatives and false positives exist among
violations detected using And, Or, Xor, and Combo patterns, respectively?
Since false positives are one of the common issues faced by existing static
defect-detection techniques, this research question helps to show that the
patterns that describe nearly complete behavior (such as Or or Combo)
help reduce the number of false positives with no or low increase of false
negatives.

5.2 Subject Applications

We next present subject applications used in our evaluations. In our evalua-
tions, we used three Java default API libraries and four popular open source
libraries. Table 1 shows the characteristics of the subject applications. Columns
“Classes” and “Methods” show the number of classes and methods, respec-
tively. For mining patterns of three Java default API libraries, we gathered
49858, 5555, and 15052 code examples for Java Util, Java Transaction, and
Java SQL, respectively. Column “KLOC” shows the kilo lines of code in each
subject application.

The Java Util package2 includes the collections framework and other popu-
lar utilities used by many different applications. Java Transactions3 and Java
SQL4 are industry standards for developing multi-tier server-side Java ap-
plications. Hibernate5 and HsqlDB6 abstract relational databases to use an
object-oriented methodology. Columba7 is an open source email-client appli-
cation written in Java. Columba provides a user-friendly graphical interface

2 http://java.sun.com/j2se/1.4.2/docs/api/java/util/p ackage-summary.
html

3 http://java.sun.com/javaee/technologies/jta/
4 http://java.sun.com/j2se/1.4.2/docs/api/java/sql/pa ckage-summary.

html
5 http://www.hibernate.org/
6 http://hsqldb.org/
7 http://sourceforge.net/projects/columba/
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Table 1 Subject applications and their characteristics.

Application #Classes #Methods KLOC

Java Util APIs 19 144 -
Java Transaction APIs 7 37 -
Java SQL APIs 14 93 -
Hibernate 478 4334 118
HsqlDB 143 1178 41
Columba 1500 7674 136
BCEL 357 2691 32
Total 2518 16151 327

Table 2 Alternative patterns mined by Alattin

Application And Patterns Or Patterns

Total #RR #PR #FP Total #RR #PR #FP
Java Util 40 34 0 6 51 25 19 7
Java Sql 26 26 0 0 24 21 3 0
Java 3 3 0 0 9 2 4 3
Transaction

Xor Patterns Combo Patterns

Total #RR #PR #FP Total #RR #PR #FP
Java Util 54 35 11 8 50 32 11 7
Java Sql 33 30 3 0 24 21 3 0
Java 8 2 4 2 8 2 4 2
Transaction

RR: Real Rules, PR: Partial Rules, FP: False Positives

and is suitable for internationalization support. The BCEL library8, devel-
oped by Apache, is mainly used to analyze, create, and manipulate Java class
files. We selected these applications, since these applications are popular open
source applications and are used as subjects in evaluating previous related
approaches [Weimer and Necula(2005),Thummalapenta and Xie(2009b)].

5.3 RQ1: Alternative Patterns

We next address the first research question of whether alternative patterns
exist in real applications and how high percentage of those patterns represent
real programming rules. To address this question, we configured Alattin, which
by default accepts an application under analysis and mines patterns for third-
party APIs, to accept a set of classes and methods directly. In this mode of
operation, Alattin mines patterns (programming rules) for the APIs of the
given classes and methods.

Table 2 shows the patterns mined in all four formats: And, Or, Xor, and
Combo. For each pattern format, Columns “Total”, “RR”, “PR”, and “FP”
show the total number of mined patterns, real rules, partial rules, and false
positives, respectively. Real rules describe properties that must be satisfied
when using an API method. In real rules, all alternatives are real properties.

8 http://jakarta.apache.org/bcel/
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Fig. 9 Classification of mined patterns

In contrast to real rules, some alternatives in Partial rules do not represent
real properties. The reason for introducing partial rules is that partial rules
are as effective as real rules in reducing false-positive defects; however, par-
tial rules can increase false-negative defects due to false-positive alternatives
among mined patterns. False positives represent mined patterns where none of
the alternatives represents real properties. To mine patterns in all four pattern
formats, Alattin took 13, 1, and 1 seconds for Java Util, Java Sql, and Java
Transaction, respectively. All experiments were conducted on a machine with
2.2GHz Intel processor and 3GB RAM. We used available on-line documenta-
tions, JML specifications9, or source code of applications for classifying mined
patterns into these three categories.

Figure 9 shows the percentages of real, partial, and false-positive rules
among mined patterns of each pattern format. In summary, a high percentage
of And, Or, Xor, and Combo patterns represent real rules. We also found
that Or, Xor, and Combo patterns include new real rules that do not exist
among And patterns. Since existing approaches mine only And patterns, our
results show that new defects can be detected using Or, Xor, and Combo
patterns. The figure also shows that, except And patterns, all other pattern
formats include a considerable percentage of partial rules. Therefore, although
these three pattern formats can help reduce false positives, these three pattern
formats can result in false negatives among detected violations. Furthermore,
Or patterns have higher percentage of partial rules compared to Xor and
Combo patterns, indicating that Or patterns result in more false negatives
compared to Xor and Combo patterns.

We next present example patterns in each pattern format for the read

method of the java.util.jar.JarInputStream class, which extends the ZipInputStream

class. This class is used for reading the contents of a Jar file from any input
stream such as FileInputStream . This class includes three methods: getNextEntry ,
getNextJarEntry , and read . The getNextEntry method reads the next Zip file
entry, represented as an instance of the ZipEntry class, and positions the stream

9 http://www.eecs.ucf.edu/ ˜ leavens/JML/
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00: ...
01: JarInputStream in;
02: ZipEntry ze; ...
03: while ((ze = in. getNextEntry()) != null) {
04: if(thePath.equals(zipEntry.getName())) {
05: ByteArrayOutputStream buffer =

new ByteArrayOutputStream();
06: byte[] bytes = new byte[2048];
07: int bytesRead;
08: while((bytesRead = in. read(bytes)) != -1) {
09: buffer.write(bytes, 0, bytesRead);
10: }
11: return new ByteArrayInputStream

(buffer.toByteArray());
12: }
13: } ...

Fig. 10 Alternative patterns mined for the read method of the JarInputStream class.

at the beginning of the entry data in the Jar file. On the other hand, the
getNextJarEntry method reads the next Jar file entry, represented as an in-
stance of the JarEntry class, and positions the stream at the beginning of
the entry data. Indeed, the JarEntry class extends the ZipEntry class and in-
cludes additional methods such as getAttributes for reading the attributes
specific to the Jar file. In general, programmers use either getNextEntry or
getNextJarEntry for iterating through the entries in the Jar file and for read-
ing the contents using the read method. Furthermore, if there is only one entry
to read from the Jar file, the read method is used directly without using ei-
ther getNextEntry or getNextJarEntry . Figure 10 shows an example usage of
getNextEntry and read methods. This code example is extracted from Apache’s
Jakarta Cactus project10.

Figure 11 shows the patterns mined for the read method in all four for-
mats. The And pattern includes only one alternative P1, which describes that
there should be a condition check with “-1” on the return value of the read

method. Here, “-1” indicates that the end of the entry is reached. The Or Pat-
tern includes two alternatives “P1 ∨P2”, where P2 indicates that there should
be a null-check on the return of the getNextJarEntry method. The reason
that the And pattern could not mine the alternative P2 is that there are vari-
ous scenarios where P1 and P2 are not used together. For example, when P2 is
used, programmers often get the size of the buffer to be read using the getSize

method of JarEntry , which is the return type of the getNextJarEntry method.
Therefore, programmers often do not explicitly check the return value of the
read method, when the getNextJarEntry method is used. Figure 11 also shows
that there are two Xor patterns. Interestingly, the second pattern “P2 ⊕ P3”
shows that programmers often use either getNextJarEntry or getNextEntry ,
but not both together, since the related pattern “P2 ∨P3” is not being mined.
However, the Xor pattern alone could not mine the relation among all alter-

10 http://jakarta.apache.org/cactus/
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Method: JarInputStream.read (byte[], int, int)
A. And Pattern

Pattern: “P1”, SUP(P1): 0.63
P1: “const-check on the return of JarInputStream.read

with -1”

B . Or Pattern

Pattern: “P1 ∨ P2”, SUP(P1 ∨ P2): 0.67
P1: “const-check on the return of JarInputStream.read

with -1”
P2: “null-check on the return of

JarInputStream.getNextJarEntry() before
JarInputStream.read ”

C . Xor Patterns

Pattern: “P1”, SUP(P1): 0.63
P1: “const-check on the return of JarInputStream.read

with -1”
Pattern: “P2 ⊕ P3”, SUP(P2 ⊕ P3): 0.52
P2: “null-check on the return of

JarInputStream.getNextJarEntry() before
JarInputStream.read ”

P3: “null-check on the return of
JarInputStream.getNextEntry() before
JarInputStream.read ”

D . Combo Pattern

Pattern: “P1 ∨ (P2 ⊕ P3) ”, SUP(P1 ∨ (P2 ⊕ P3)): 0.67
P1: “const-check on the return of JarInputStream.read

with -1”
P2: “null-check on the return of

JarInputStream.getNextJarEntry() before
JarInputStream.read ”

P3: “null-check on the return of
JarInputStream.getNextEntry() before
JarInputStream.read ”

Fig. 11 Alternative patterns mined for the read method of the JarInputStream class.

natives P1, P2, and P3. The Combo pattern addresses this issue via mining
the pattern “P1 ∨ (P2 ⊕ P3)”, and shows the relation among all alternatives.

5.4 RQ2: False Positives and False Negatives

We next address the second research question of whether alternative patterns
help reduce false positives among detected violations. We also address whether
these patterns introduce no or a low percentage of false negatives among de-
tected violations. To address this question, we used the four subject applica-
tions (Hibernate, Columba, BCEL, and HsqlDB) shown in Table 1. In par-
ticular, we mined patterns in all four formats from these applications under
analysis and apply mined patterns on those applications to detect violations.
We next inspected detected violations to classify violations as real defects or
false positives based on available specifications such as JML and call sites of
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Table 3 Analysis of violations detected in subject applications.

Application # Real And Patterns Or Patterns

Defects Total #RD #FN % #FP % Total #RD #FN % #FP %
Columba 49 117 26 23 47 91 78 113 41 8 16.3 72 63.7
Hibernate 22 93 14 8 36 71 76 177 17 5 22.7 160 90.4
Hsqldb 6 13 6 0 0 7 53.8 5 5 1 16.7 0 0
BCEL 1 2 0 1 100 2 100 13 1 0 0 12 92.3

Xor Patterns Combo Patterns

Total #RD #FN % #FP % Total #RD #FN % #FP %
Columba 49 164 49 0 0 115 73 144 47 2 4 97 67
Hibernate 22 214 21 1 4.5 193 90.2 195 19 3 13.6 176 90.3
HsqlDB 6 11 6 0 0 5 45.5 10 6 0 0 4 40
BCEL 1 20 1 0 0 19 95 16 1 0 0 15 93.8

RD: Real Defects, FN: False Negatives, FP: False Positives
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Fig. 12 Real defects and false negatives among detected violations.

related API methods in source code of these subject applications. In our in-
spection, we ignored the violations related to API methods whose all pattern
formats include only one alternative, since our objective is to show the ben-
efits and limitations of alternative patterns. The primary reason is that such
patterns do not help show benefits of alternative patterns, since those patterns
have the same number of false positives or false negatives in all pattern for-
mats. To compute false negatives, we need a baseline that shows the number
of defects exist in subject applications. Since such a baseline does not exist for
these applications, we identified all distinct real defects detected using pat-
terns in all pattern formats and used those defects as a baseline for computing
false negatives among violations detected using each pattern format.

Table 3 shows detected violations in all subject applications. Column “Real
Defects” shows the total number of distinct defects detected using all pattern
formats in each application. We used these defects as a baseline for computing
the number of false negatives among violations detected using each pattern for-
mat. For each pattern format, Columns “Total”, “RD”, “FN”, and “FP” show
the total number of violations, real defects, false negatives (their percentage),
and false positives (their percentage), respectively. We next summarize our
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Fig. 13 False positives among detected violations.

findings for each pattern format with respect to real defects, false negatives,
and false positives.

Real defects and False negatives. Figure 12 shows comparison between
real defects and false negatives for the four pattern formats in each subject
application. The figure shows that Or, Xor, and Combo patterns helped de-
tect new defects that are not detected using And patterns. For example, in
the Columba application, Or patterns detected 41 real defects, whereas And
patterns detected only 26 real defects. The reason for new defects is due to
the new patterns mined using the Or, Xor, and Combo pattern formats.

Regarding false negatives, our results show that the violations detected
using And patterns include a high percentage of false negatives in 3 out of 4
applications. Since And patterns represent patterns that can be mined by ex-
isting approaches, the results show the ineffectiveness of existing approaches in
detecting defects in applications under analysis. Among Or, Xor, and Combo
patterns, violations detected using Or patterns have a higher number of false
negatives compared to the violations detected using Xor and Combo patterns.
For example, in the Columba application, violations detected using Or pat-
terns include 8 (16.3%) false negatives compared to 0 (0%) and 2 (4%) false
negatives among violations detected using Xor and Combo patterns, respec-
tively. The primary reason is that Or patterns often include partial rules (as
shown in Figure 9), resulting in false negatives among detected violations.
The results show that Xor patterns are quite effective in detecting defects
compared to all three other pattern formats: And, Or, and Combo. However,
Combo patterns are also shown to be effective than Or patterns and have
similar effectiveness as that of Xor patterns.

False positives. Figure 13 shows the number of false positives among
violations detected using patterns in each pattern format. Initially, we expected
that Or and Combo patterns help reduce a high percentage of false positives
among violations detected using And and Xor patterns. However, contrary to
our expectation, the number of false positives is high among violations detected
using Or and Combo patterns. For example, in the Hibernate application, the
numbers of false positives are 71, 160, 193, and 176 among violations detected
using And, Or, Xor, and Combo patterns, respectively.



24

Fig. 14 False positives among detected violations related to API methods with And pat-
terns.

Fig. 15 False positives among detected violations related to API methods without And

patterns.

In our manual analysis of these false positives, we identified an interesting
phenomenon: the majority of false positives is related to the API methods that
do not have any patterns mined using the And pattern format and have new
patterns mined using one or more of the Or, Xor, and Combo pattern formats.
To illustrate this scenario, we classified all false positives among detected vi-
olations into two categories: FPAnd and FPWithOutAnd. FPAnd includes all
false positives detected using patterns (Or, Xor, and Combo patterns) related
to API methods that have mined patterns using the And pattern format.
In contrast, FPWithOutAnd includes all false positives detected using pat-
terns (Or, Xor, and Combo patterns) related to API methods that do not
have mined patterns using the And pattern format. Figures 14 and 15 show
the classification of false positives for categories FPAnd and FPWithOutAnd,
respectively. Figure 14 shows that Or patterns help significantly reduce the
number of false positives among detected violations compared to And and Xor
patterns. Although Combo patterns help reduce false positives, these patterns
are not as effective as Or patterns. The primary reason is that most of the
Combo patterns are similar to Xor patterns based on our algorithm described
in Section 3.



25

Figure 15 shows the classification of false positives for API methods with-
out And patterns. As shown in the figure, neither Or nor Combo patterns
help reduce false positives among violations detected using Xor patterns. The
primary reason is that most of these mined patterns are false positives, result-
ing in false positives among their detected violations. We next summarize our
findings.

5.5 Summary

In summary, based on our results, comparing to Or, Xor, and Combo patterns,
And patterns are not effective in detecting defects and result in both false pos-
itives and false negatives among detected violations. Although Xor patterns
are effective in detecting defects, these patterns result in a large number of
false positives among detected violations. On the other hand, Or patterns are
effective in reducing false positives, but, result in false negatives as shown in
our results. Combo patterns can perform reasonably well with respect to both
false positives and false negatives. However, Or or Combo patterns often result
in false-positive patterns for those API methods without any And patterns.
Therefore, based on our empirical results, the best pattern-mining approach
(in terms of reducing both false positives and false negatives) is to first mine
And patterns for API methods and next mine Combo patterns. Among vio-
lations detected using Combo patterns, the best violation-detection approach
is to assign higher priority to the violations of API methods with And pat-
terns compared to the violations of API methods without And patterns. The
primary reason is that the former violations are more likely to be real defects
compared to the latter violations.

6 Threats to Validity

The threats to external validity primarily include the degree to which the
subject programs and used CSE are representative of true practice. The current
subjects range from small-scale libraries such as Java SQL APIs to large-scale
libraries such as BCEL and Hibernate. We used only one CSE, i.e., Google
code search, which is a well-known CSE. These threats could be reduced by
more experiments on wider types of subjects and by using other CSEs in future
work. The threats to internal validity are instrumentation effects that can bias
our results. Faults in our Alattin prototype might cause such effects. There can
be errors in our inspection of source code for confirming rules or defects. To
reduce these threats, we inspected available specifications and also call sites
in source code.
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7 Discussion

Since the inception of the Mining Software Engineering Data methodology,
researchers have explored the mining of various pattern types ranging from
simple itemsets that represent necessary condition checks around API method
calls [Thummalapenta and Xie(2009a)] to complex graph-based pattern types
that describe the usage patterns of one or multiple objects [Nguyen et al(2009)Nguyen,
Nguyen, Pham, Al-Kofahi, and Nguyen]. In this paper, we focused on mining
itemset pattern types in four pattern formats and showed their benefits and
limitations. In our future work, we plan to explore other pattern types such
as sequences [Srikant and Agrawal(1996)] and graph-based pattern types [Han
and Kamber(2000)] to develop new mining algorithms for mining those pat-
tern types in various formats and show their benefits and limitations in defect
detection.

In this paper, we proposed a greedy technique for mining patterns in Or,
Xor, and Combo pattern formats. Our greedy technique (shown as the func-
tion ApplyGreedy in Algorithm 2) chooses one parent pattern candidate with
the highest support value for each pattern candidate. The primary reason for
adopting the greedy technique is to reduce the search space of pattern candi-
dates. In future work, we plan to explore other techniques such as clustering
techniques [Han and Kamber(2000)]. In particular, we plan to first group items
(among itemsets in the input database) that are closely related to each other.
We next apply our mining algorithms without the greedy technique on each
cluster individually. We expect that the number of items in each cluster could
be low and help reduce the search space of pattern candidates significantly. We
also plan to adopt some properties used by Zhao et al. [Zhao et al(2006)Zhao,
Zaki, and Ramakrishnan] for handling search space of pattern candidates while
mining patterns.

Our current implementation sometimes is not precise and cannot identify
equivalent but syntactically different conditions. For example, our current im-
plementation considers the conditions a > 0 and a ≥ 1 as different. In future
work, we plan to address these issues using more precise static analysis that
can identify equivalent conditions. Furthermore, we use intra-procedural anal-
ysis for detecting violations. Therefore, in a few cases, some detected defects
could be false positives with respect to the entire system point of view. How-
ever, this limitation does not affect the results of comparing the benefits and
limitations of our four pattern formats, since we use the same analysis for all
four pattern formats. In future work, we plan to address this limitation by
using inter-procedural analysis.

8 Related Work

PR-Miner developed by Li and Zhou [Li and Zhou(2005)] uses frequent itemset
mining to mine programming rules from C code and detect their violations.
DynaMine developed by Livshits and Zimmermann [Livshits and Zimmer-
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mann(2005)] uses association rule mining to extract simple rules from software
revision histories for Java code and detect defects related to rule violations.
PR-Miner or DynaMine may suffer from issues of a high number of false pos-
itives since their rule elements are not necessarily associated with program
dependencies. Furthermore, these approaches target at only frequent patterns,
whereas Alattin can mine alternative patterns that include both frequent and
infrequent alternatives.

Another related approach to our Alattin approach is the approach devel-
oped by Chang et al. [Chang et al(2007)Chang, Podgurski, and Yang] that
applies frequent subgraph mining on C code to mine condition rules and to
detect neglected conditions. Both Alattin and their approach target at the
same type of defects: neglected conditions. Alattin significantly differs from
Chang et al.’s approach in three main aspects. First, their approach cannot
mine infrequent alternatives. Second, their approach is limited on a much
smaller scale of code repositories (in fact, only one project code base) than
Alattin, which exploits a CSE to search for relevant code examples from open
source code available on the web. Third, the scalability of their approach is
heavily limited by its underlying graph mining algorithms, which are known
to suffer from scalability issues. In contrast, Alattin uses our new ImMiner
algorithm based on frequent itemset mining, being much more scalable.

Williams and Hollingsworth [Williams and Hollingsworth(2005)] incorpo-
rate an API call return value checker for C code, which checks that a value
returned by an API call is checked before being used. This type of return-value
checking before use falls into a subset of the types of rules being mined by Alat-
tin. Different from their tool, Alattin does not require or rely on version histo-
ries, which may not include the types of defect fixing (required by their tool)
related to the rules being mined. Acharya et al. [Acharya et al(2006)Acharya,
Xie, and Xu] developed a tool to mine interface details (such as an API
call’s return values on success or failure and error flags) from model-checker
traces for C code, and then mine interface robustness properties for defect
detection. Similar to the tool of Williams and Hollingsworth [Williams and
Hollingsworth(2005)], Acharya et al.’s tool mines only a subset of neglected
conditions (e.g., return-value checking before use) mined by Alattin. In addi-
tion, as shown by Acharya et al. [Acharya et al(2006)Acharya, Xie, and Xu],
only the interface details of 22 out of 60 POSIX API functions can be suc-
cessfully mined by their tool, whereas Alattin exploits a CSE to alleviate the
issue by collecting relevant API call usages from the web. Furthermore, these
approaches cannot mine alternative patterns targeted by Alattin.

Engler et al. [Engler et al(2001)Engler, Chen, Hallem, Chou, and Chelf]
proposed a general approach for detecting defects in C code by applying statis-
tical analysis to rank deviations from programmer beliefs inferred from source
code. Their approach allows users to define rule templates, which are not
required by our approach. In addition, their approach also cannot mine infre-
quent alternatives targeted by our Alattin approach.

Although ours is the first approach to propose new pattern formats such
as disjunctive and exclusive-disjunctive pattern formats for mining software
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engineering data, a few approaches have been proposed (in the data mining
research area) that target at mining patterns in these preceding formats for
other applications such as market basket analysis [Agrawal et al(1996)Agrawal,
Mannila, Srikant, Toivonen, and Verkamo]. Zhao et al. [Zhao et al(2006)Zhao,
Zaki, and Ramakrishnan] proposed an approach, called BLOSOM, that tar-
gets at mining itemset patterns in four pattern formats: conjunctive, disjunc-
tive, conjunction of disjunctive, and disjunction of conjunctive. In contrast
to their BLOSOM approach, our Alattin approach additionally proposes the
exclusive-disjunctive pattern format and includes a greedy technique for han-
dling the search space of pattern candidates. In future work, we plan to adopt
some properties used by their approach for handling the search space of pat-
tern candidates while mining disjunctive patterns. Nanavati et al. [Nanavati
et al(2001)Nanavati, Chitrapura, Joshi, and Krishnapuram] proposed an ap-
proach for mining disjunctive association rules. Given a minimum confidence
min conf, their approach uses concepts from propositional logic for pruning the
association rules that do not have confidence higher than min conf. Shimizu
and Miura [Shimizu and Miura(2005)] proposed algorithms for mining dis-
junctive sequence patterns. In contrast to these two preceding approaches,
our Alattin approach targets at mining itemset patterns in disjunctive and
exclusive-disjunctive pattern formats.

Finally, our previous approaches PARSEWeb [Thummalapenta and Xie(2007)]
and CAR-Miner [Thummalapenta and Xie(2009b)] also exploit code search
engines for gathering relevant code samples. PARSEWeb accepts queries of
the form “Source → Destination” and mines frequent method-invocation se-
quences that accept Source and produce Destination. Although Alattin uses
code search engines for gathering relevant code examples, Alattin targets at
mining patterns that describe programming rules that should be obeyed while
reusing APIs. Unlike PARSEWeb, which mines frequent sequences, Alattin
mines alternative patterns with both frequent and infrequent alternatives.
CAR-Miner also incorporates a new mining algorithm for mining exception-
handling rules in the form of sequence association rules. CAR-Miner and Alat-
tin differ significantly in three major aspects. (1) CAR-Miner mines rules for
detecting exception-handling-related defects, whereas Alattin mines rules for
detecting neglected conditions. (2) Alattin is a more general approach com-
pared to CAR-Miner and can be applied to enhance various existing mining-
based approaches including CAR-Miner for detecting alternative rules. (3)
CAR-Miner mines new kinds of patterns for reducing false negatives (i.e., de-
tecting new kinds of exception-handling defects). In contrast, Alattin mines
new kinds of patterns for reducing false positives.

9 Conclusion

To reduce false positives in static defect detection based on code mining, we
have developed a novel approach, called Alattin, that includes new mining al-
gorithms and a technique for detecting neglected conditions. Our new mining
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algorithms mine patterns in four pattern formats: And, Or, Xor, and Combo. In
our evaluations, we show the benefits and limitations of these pattern formats
with respect to false positives and false negatives among detected violations
that represent neglected conditions in applications under analysis. Our evalua-
tion results show that the best pattern-mining approach (in terms of reducing
both false positives and false negatives) is to first mine And patterns for API
methods and next mine Combo patterns. Among violations detected by Combo
patterns, the best violation-detection approach is to assign higher priority to
the violations of API methods with And patterns compared to the violations
of API methods without And patterns. The primary reason is that the former
violations are more likely to be real defects compared to the latter violations.

In this paper, we follow a problem-driven methodology in advancing the
field of mining software engineering data. Our current approach and previous
approach [Thummalapenta and Xie(2009b)] serve as examples in this direction.
More specifically, in our approaches, we empirically investigate problems in
the software engineering domain and identify required types of patterns for
addressing those problems. We further develop new mining algorithms for
mining these required types of patterns, rather than being constrained by
available mining algorithms from the data mining community. Our approaches
primarily target at reducing false negatives and false positives among detected
violations. Our previous approach [Thummalapenta and Xie(2009b)], which
mines programming rules as sequence association rules, focuses on reducing
false negatives by detecting new kinds of defects. In contrast, our current
approach focuses on a new sub-direction of reducing false positives among
detected violations. In future work, we plan to further expand our research
by investigating broader types of problems, patterns, mining algorithms, and
defects.
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