
1

Software	
 Metrics	
 Validation	
 Criteria:	
 	

A	
 Systematic	
 Literature	
 Review	

Andrew Meneely

Ben Smith

Laurie Williams

North Carolina State University

(apmeneel, bhsmith3, lawilli3)@ncsu.edu

Abstract

Context: Researchers proposing a new metric have the burden of proof to demonstrate to the

research community that the metric is acceptable in its intended use. This burden of proof is

provided through the multi-faceted, scientific, and objective process of software metrics

validation. Over the last 40 years, however, researchers have debated what constitutes a “valid”

metric.

Aim: The debate over what constitutes a “valid” metric centers on software metrics validation

criteria. The objective of this paper is to guide researchers in making sound contributions to the

field of software engineering metrics by providing a practical summary of the metrics validation

criteria found in the academic literature.

Method: We conducted a systematic literature review that began with 2,288 papers and ultimately

focused on 20 papers. After extracting 47 unique validation criteria from these 20 papers, we

performed a comparative analysis to explore the relationships amongst the criteria.

Results: Our 47 validation criteria represent a diverse view of what constitutes a valid metric. We

categorized each validation criterion into three categories and nine sub-categories. We present an

analysis of the conflicts, common themes, and philosophical motivations behind the validation

criteria.

Conclusions: Although the 47 validation criteria are not conflict-free, the diversity of motivations

and philosophies behind the validation criteria indicates that metrics validation is complex. We

have determined in this paper that, rather than arbitrarily choosing validation criteria for each

metric, researchers should choose criteria that confirm that the metric is appropriate for its

intended use. Researchers proposing new metrics should consider the applicability of the

validation criteria in terms of our categorization and analysis.

Keywords: software metrics, validation criterion, systematic literature review

2

1. Introduction

Practitioners and researchers alike use software metrics to both improve and understand software

products and the software development process. The field of software metrics has a variety of

applications including quality assessment, prediction, task planning, and research. Researchers

proposing a new metric have the burden of proof to demonstrate to the research community that

the metric is truly representative of the attribute it is intended to represent. But how do we, as a

community, ensure that a metric is suitable and acceptable for its intended purpose? Without some

formal system of rules for the merits of a metric, the software engineering community will find

itself flooded with metrics that lend no understanding to the state of the art. This system of rules

for ensuring the worthiness of a metric is known as software metrics validation, and software

engineering researchers have debated what constitutes validation for almost half a century.

The community has not yet reached a consensus on this system of rules. Instead, software metrics

researchers have often been proposing their own, specialized means of validation. This ad hoc

approach to validation leads to results that cannot be generalized and to contributions that are not

stated in a manner consistent with a standard form of metric validation.

Before we look at where metric validation must go, we must look at where it has been. The metrics

validation community has likely not reached a consensus because no researcher has provided a

"proper discussion of relationships among the different approaches [to metric validation]"

(Kitchenham, Pfleeger et al. 1995). The objective of this paper is to guide researchers in making

sound contributions to the field of software engineering metrics by providing a practical summary

of the metrics validation criteria found in the academic literature. We performed a systematic

literature review, beginning with 2,288 potential peer-reviewed publications and ultimately

focusing on 20 publications that propose or indicate software metrics validation criteria. Our

review is a useful guide for two audiences: 1) metrics researchers: software engineering

researchers who propose, use, and validate new metrics; and 2) metric validation researchers:

software engineering researchers seeking to propose methodologies, criteria, or frameworks for

validating metrics.

Metrics researchers will want to use this review as:

• A reference guide. We have compiled a list of the unique criteria presented in the literature

with definitions and examples. Additionally, metrics researchers can see where authors

discuss the same criteria but with different vocabulary.

• A source for threats to metric validity. Metrics researchers can consult our survey to

enumerate the issues a given metric may encounter. Furthermore, this source acts as a guide

on issues where the community disagrees or published criteria contradict each other.

• A big picture. We present a hierarchical relationship among the criteria that can be used to

gain an understanding of how a given criterion relates to the "big picture" of software

engineering metric validation. Our analysis of the philosophical motivations behind a

3

validation criterion is helpful for understanding not only the criteria themselves, but the

“spirit” of the criteria.

• Inspiration. The criteria that have been proposed can act as a set of guidelines to help inspire

a new way of thinking about currently-existing metrics. Our comparative analysis of the

criteria introduces underlying, tacit concepts that all researchers should be aware of when

thinking about metrics.

Software metrics validation researchers will want to use this review as:

• A roadmap for current criteria. We provide the validation criteria that researchers can use

to view how their proposals fit into the overall body of work on metric validation.

• A call for discussion. In summarizing the validation criteria, we have summarized the

discussion surrounding metric validation. We found that this discussion has not concluded and

wish to re-invigorate the discussion amongst the top minds in our field to help reach a

consensus on what is meant by metric validity.

• A direction for a standard. Understanding the categorization and the motivation of the

validation criteria assists the metrics validation community in deciding on a standard set of

criteria for validating a metric.

• A guide for future criteria. The hierarchical relationship we discovered when comparing the

criteria can serve as a tool for generating new metrics validation criteria. Certain holes and

weaknesses exist in the overall hierarchy, and new criteria could be proposed that address

these holes and weaknesses.

This paper is organized as follows. In Section 2, we present the terms specific to this review and

their definitions. Next, in Section 3, we present the process we used to conduct the review. In

Section 4, we present the sources from our review. We present the extracted criteria in Section 5

and the mapping of their relationships in Section 6. Next, we present the common themes and

conflicts we discovered in Section 7. Finally, we conclude by outlining the opposing philosophies

we have identified in the literature in Sections 8 and 9.

2. Terms and Definitions

During our review, we found many different usages and definitions for the same words. We define

our usage of the following words here in Section 2.1. Next, we define examples that we refer to

throughout the paper in Section 2.2.

2.1 Metric Terminology

• Attribute: The specific characteristic of the entity being measured (IEEE 1990). For example,

the attribute for a Lines of Code metric is "size".

o Internal attribute: Attributes that to the product itself exhibits, for example, the

size of code (ISO/IEC 1991) (Fenton 1991).

4

o External attribute: Attributes that are dependent on the behavior of the system, for

example, the reliability of a system an external attribute (ISO/IEC 1991).

• Component: One of the parts that make up a software system. A component may be hardware

or software and may be subdivided into other components (IEEE 1990).

• Failure: an event in which a system or system component does not perform a required

function within specified limits (ISO/IEC 1991).

• Fault: an incorrect step, process, or data definition in a computer program (ISO/IEC 1991).

• Metric: A metric is a "quantitative scale and method which can be used to determine the

value a feature takes for a specific software product" (IEEE 1990). Fenton (Fenton and Neil

2000), (Fenton 1994) explains that essentially any software metric is an attempt to measure or

predict some attribute (internal or external) of some product, process, or resource. Fenton

(Fenton 1991) points out that metric has been used as:

o a number derived from a product, process or resource;

o a scale of measurement

o an identifiable attribute (see above).

Also, a metric measures the degree to which a system, component or process possesses a

given attribute (see above) (IEEE 1990). An internal metric measures an internal

attribute, and an external metric measures an external attribute.

• Quality Factor: an attribute of software that contributes to the degree to which software

possesses a desired combination of characteristics (Schneidewind 1992).

• Statistical correlation: we use the term "statistical correlation" in the broad sense of one

variable "co-relating" with another, not to be confused with the correlation coefficients that

are specific statistical tests used to estimate the correlation between two variables.

• Validation: the ISO/IEC of definition of validation is "confirmation, through the provision of

objective evidence, that the requirements for a specific intended use or application have been

fulfilled" (ISO/IEC 1991). However, the results of this review indicate that the community

does not agree on a universal definition of metric validation. We include the ISO/IEC

definition for clarity and general understanding. Metric validation, as we view it, is the

ensuring that a metric is acceptable by the community in both interpretation and use because it

is well-grounded, relevant, meaningful and logically correct.

2.2 Examples

In our discussions throughout this paper, we use several examples of metrics to illustrate concepts

found in the criteria. We list the referenced definitions for these metrics here:

• Lines of Code (LOC) metric: the general notion of counting the number of lines

of source code in a program, without adhering to one specific standard.

5

• Cyclomatic Number: McCabe's cyclomatic complexity (McCabe 1976), which is based on

the number of edges, nodes, and components in a program flow graph.

• Code Churn: a measure of how much a unit of code has changed over a period of time,

usually measured by the number of lines of code added/deleted at each revision in the version

control system (Elbaum and Munson 1998).

• Static Analyzer: a tool that performs automated static analysis on source or binary code, such

as FindBugs (N. Ayewah, D Hovemeyer et al. 2008). An automated static analysis tool is a

program that analyzes another program's source code and reveals possible faults in the form of

"warnings".

• Code Coverage: the percentage of a structural entity that is executed by a given test set. For

example statement coverage is the percentage of statements executed by the test suite.

3. Methodology and Process

Kitchenham recommends a procedure for conducting systematic literature reviews (Kitchenham

2004), which we follow for this review. One goal of a systematic literature review is "to provide a

framework/background in order to appropriately position new research activities" (Kitchenham

2004). Additionally, we consider the following three critical aspects of the literature review:

foundation in the literature, abstraction, and backwards informative. Figure 1 illustrates the

conceptual structure of our review as a pyramid, with the tiers of the pyramid representing the

steps we performed in the study.

Figure 1: Building a review with foundation in literature

The structure of our review in Figure 1 has the following characteristics:

• Foundation in literature: Our foundation is in the concrete evidence of proposed metrics

validation criteria and surrounding discussion; we achieved these conceptual ideas through

synthesis and analysis of these sources available in the literature. We have intentionally not

projected our own ideas onto what previous researchers have said.

• Abstraction: The review began at the concrete stage of gathering papers. As the review

proceeded, we traveled into increasingly higher layers of abstraction until reaching the

conceptual stage of deriving opposing philosophies.

6

• Backwards Informative: Occasionally, a more abstract process would give us new insight

into a more concrete process after its completion, and we would revisit these ideas to help

solidify the foundation. For example, once we had settled on a set of sources to be the basis of

our review, we decided to consider the sources that were cited by our original set in the review

process.

The following sub-sections focus on the bottom two tiers: gathering the literature and analyzing

the literature. The process is broken down into two parts: planning the review (Section 3.1) and

conducting the review (Section 3.2).

3.1 Planning the Review

Based upon Kitchenham’s systematic review process (Kitchenham 2004), the first phase of

planning a systematic literature review is to identify the research objective that should be satisfied

by conducting the review. The objective of our review was to provide a practical summary of the

metrics validation criteria found in the academic literature.

The second step for planning a systematic literature review is to develop the search strategy, as a

part of developing the review protocol (Kitchenham 2004). As recommended in Brereton, et al.

(Brereton, Kitchenham et al. 2007), we used the following search engines to conduct our review:

Google Scholar (http://scholar.google.com) CiteSeerX (http://citeseerx.ist.psu.edu/)

IEEExplore (http://ieeexplore.ieee.org) ACM Portal (http://portal.acm.org/portal.cfm)

After narrowing our research objective to focus on the criteria for validating metrics, we decided

on the following queries:

• software AND engineering AND metrics

• software AND metrics AND validation

• software AND metrics AND evaluation

These search criteria capture a wide range of publications, so an overwhelming number of results

were obtained with each search. Since reviewing all of the results was infeasible, we developed a

stopping heuristic. We used our searches using the following method:

1. For both of the search strings, run the search on all four search engines.

2. Record the bibliographic information for any source not previously recorded that

appeared to be about the validation (or evaluation) of software engineering metrics. This

step was mostly based on title and type of publication.

3. Continue through the search results until reaching 10 consecutive, irrelevant results.

4. Otherwise, continue to the next set of 10 results (step 3).

Since the search engines we used rank the results by relevance, we found this procedure to be

effective at producing useful results. In most cases, the density of relevant titles steadily decreased

as we examined each source.

7

We created the form shown in Figure 2 to assess the quality of our primary sources and identify

sources that fit our research objective.

 Question Answer
1. Are there clearly identifiable metrics validation criteria?

• Does the paper contain one or more criteria that can be extracted?
• Is this paper an examination of what should be required to make a

software engineering metric valid? (See Desired vs. Necessary
Criteria in Section 7.4)

• Does this paper exhibit scientific objectiveness, or is it a "position
paper"? If the paper is a position paper, reject it.

Yes/No

2. If the answer to 1 is No, then why should this paper be excluded from
the study? List reasons.

3. What are the metrics validation criteria or groups of criteria this paper
describes?

• Summarize each criterion into a single bullet point.
• What is the motivation for this criterion?
• Is this a single criterion, or a group of criteria?
• Do the authors indicate this criterion as being necessary for

validation or a desirable property?

List the criteria.

4. How is this criteria related to other criteria?
• List the related criterion and its source.
• Explain the rationale for the conflict

o Establish why these criteria are related.
o Establish that these criteria indeed are indeed opposing, or

the same.
o If these criteria conflict, do these criteria just oppose each

other, or are they truly mutually exclusive?
o If these criteria are similar, are they synonyms or is there a

strong enough difference in their definition to warrant a new
criterion?

List the
criterion,

source, and
explanation

Figure 2: Primary Source Full-Text Review Form.

3.2 Conducting the Initial Search

The initial search consisted of a “first pass” (Section 3.2.1) through the titles, then a “second pass”

(Section 3.2.2) through the abstracts of the given titles. The “third pass” was through the full texts

of the chosen sources (Section 3.2.3).

3.2.1 First Pass: Authors and Titles

In the first pass through the search results, we were as inclusive as possible because we did not

read abstracts; we tracked only titles and authors. The procedure resulted in the data presented in

Table 1. The total results column in Table 1 comes from the search engine's self-reported total

number of results upon executing the query. The reviewed results column comes from executing

the procedure in Section 3.1. The researchers are given code names: here, the first author is

Researcher A and the second author is Researcher B. For example, Researcher B searched

IEEExplore for "software AND metrics AND evaluation" and found a total of 1,836,783

results. Researcher B iterated through each set of 10 results and collected the relevant titles and

authors for these sources. Then, after 90 sources, the researcher saw a set of 10 results (numbers

90-100) with no relevant titles, and the researcher stopped. Out of the 3 million sources returned

8

by the search engines, we examined 2,288 sources. We accepted only 536 of the 2,288 sources we

saw in the search of step one.

Table 1: Search engines, queries, and results for the first pass.

Index / Search
Engine

Search String (Query) Total
Results

Reviewed
Results

Researcher

Google Scholar software AND engineering AND metrics 125,000 270 B
IEEExplore software AND engineering AND metrics 1,492 125 B

CiteSeerX software AND engineering AND metrics 539,029 170 B
ACM software AND engineering AND metrics 7,640 100 B

Google Scholar software AND metrics AND validation 50,400 510 A
IEEExplore software AND metrics AND validation 223 223 A

ACM software AND metrics AND validation 2,430 300 A
CiteSeerX software AND metrics AND validation 548,575 150 B

Google Scholar software AND metrics AND evaluation 118,000 150 B
IEEExplore software AND metrics AND evaluation 1,836,783 100 B
CiteSeerX software AND metrics AND evaluation 26,953 90 B

ACM software AND metrics AND evaluation 6,898 100 A
Total 3,263,423 2,288 A & B

Several types of sources came up after completing the first pass of the initial search. Of the sources

found, 47% were conference proceedings and 38% were journal papers the remaining 15% were

books, technical reports, standards, presentations, and unknown. Since books are hard to locate,

and are likely to present a review of literature themselves, we eliminated books from our review.

CiteSeerX does not indicate the type of source in its results, and these sources did not warrant

further collection of bibliographic information, as they were all eliminated from the review in a

later phase. The next few phases of the search are summarized by Figure 3.

Figure 3: Overall view of the source-gathering procedure used in initial literature review

9

Next, we voted to confirm the 536 titles for relevance. As prescribed by Brereton, et al. (Brereton,

Kitchenham et al. 2007), Researcher A voted on whether the results found by Researcher B were

relevant to the review, and vice versa. Researcher A collected 176 unique titles, of which

Researcher B accepted 64 (thus eliminating 112). Researcher B collected 360 sources, of which

Researcher A accepted 92 (thus eliminating 268). Thus, we accepted a total of 156 titles from the

voting confirmation to proceed to the next phase of the review.

3.2.2. Second Pass: Confirming the Abstracts.

After confirming the titles, we gathered the abstracts for the 156 titles and each researcher voted

whether the abstract was relevant or not with the revised criteria as shown in Table 2. Researcher

A voted yes to 46 of 156 abstracts and Researcher B voted yes to 59 of 156 abstracts. The

researchers agreed on 102 abstracts and disagreed on 54. A meeting was held to form consensus on

the 54 contested abstracts. We voted 40 abstracts as irrelevant and vote 14 as relevant. This result,

combined with the other consensus obtained by both researchers independently agreeing on the

status of the abstracts resulted in 51 relevant abstracts total and 105 irrelevant abstracts.

Table 2: Second pass voting results

Voter Yes (Keep) No (Discard)
Researcher A 46 110
Researcher B 59 97

Researchers A & B Agreed 102 54
Meeting Votes 14 40

Overall Consensus 51 105

The overall consensus on the abstracts, as determined above, was passed on to the Arbiter, the

third author in this paper. As shown in Table 3, the Arbiter voted on the relevance of the 156

abstracts and indicated that 38 were relevant and 118 were irrelevant. The Arbiter agreed with the

researchers' consensus for 121 abstracts and disagreed with the researchers on 35 abstracts.

Another meeting was held to form overall consensus on the abstracts. Out of the 35 abstracts

discussed at the meeting, the full research team (consisting of Researcher A, Researcher B, and the

Arbiter) accepted 17 abstracts and rejected 18 abstracts. We accepted 44 abstracts total (rejecting

112), and proceeded to the next phase of the review.

Table 3: Second pass voting with arbiter results

Voter Yes (Keep) No (Discard)
Researchers 51 105

Arbiter 38 118
Agreed 121 35

Meeting Votes 17 18
Overall Consensus 44 112

3.2.3 Third Pass: Full Texts.

The next phase of the search was to gather the full text for each of the 44 sources whose abstract

the research team agreed upon as shown in Table 4. Researcher A and Researcher B then voted on

whether the source matched the criteria for the systematic literature review by completing the form

shown in Figure 1 for each source.

10

In this phase, the researchers agreed on 29 full texts, and disagreed on 15. The researchers held

another meeting to discuss the full list of all 44 full texts. After forming consensus, 27 full texts

were rejected, and 17 were accepted (note: we added three sources in the follow-up search

described in section 3.3). The notes gathered during the establishment of the chosen sources were

used to develop the full list of 47 metrics validation criteria.

Table 4: Full text third pass voting results

Voter Yes (Keep) No (Discard)
Researcher A 17 27
Researcher B 16 28

Agreed 29 15
Overall Final Consensus 17 27

In summary, we searched a population of over 3 million sources, examined 2,288 titles, and

selected 536 sources. Of those 536 sources, we voted to confirm the relevance and were left with

156 relevant titles. Those 156 titles were confirmed for their abstract content by each researcher,

and then the arbiter. We formed consensus on 44 relevant abstracts. The researchers then used the

full texts of each of the 44 sources to decide on a consensus of 17 sources that were used to

construct this review, and are listed in the next section.

3.3. Conducting the Follow-Up Search

After extracting data from the final 17 primary sources from the first search, we determined that in

the interest of thoroughness we should conduct a second search based upon the references of our

sources. The 17 sources for our study contained 548 unique references, which we used to conduct

what is referred to as the "follow-up search". The titles were easier to exclude in the follow-up

review because the research questions had been more solidly formulated, and the researchers had

experience with knowing what papers were needed for the study. The pass through the titles

resulted in 22 publications. We then examined the abstracts for those 22 publications and found

eight relevant sources. After reviewing the full text for these eight sources, we selected three

sources that were relevant, bringing the total number papers included in our study to 20. None of

the sources from the follow-up review contained new metrics validation criteria. We did, however,

find additional support for metrics validation criteria we had already discovered.

4.0 Sources and Metadata

Our review revealed 20 sources regarding metrics validation criteria. An empirical analysis of the

years of the publications (see Figure 4) reveals that a large number of writings were conducted on

the topic of software engineering metrics validation criteria between the years of 1987-1995, and

since that time the publicized research on metrics validation has declined.

11

Figure 4: Number of sources over time

Furthermore, the papers involved significant cross-referencing, discussion, and disagreement,

which we present visually using a citation network (see Figure 5), which is a directed graph of our

sources. Each source is represented by a node, where the name is comprised of the first five letters

of the first author’s name along with the year. A node is connected to another node if the two

nodes cite each other. Upon visual inspection, the majority of the sources cite a paper published a

year or two prior.

Figure 5: Citation network for the 20 sources in our study.

12

Additionally, we provide the number of Google Scholar "cited by" values1 for the 20 sources in

Figure 6. These "cited by" values offer a rough approximation of how often the sources in our

survey have been cited since their publication. The median number of citations for the sources in

our study was 54.5, and the standard deviation was 132.4.

Figure 6: Number of Google Scholar citations, sorted chronologically

Also, we find that insight can be gained by looking at the tag cloud for the raw text of the 20

sources, as shown in Figure 7. A tag cloud2 is a graphical representation of words in which the size

of the word is relative to the frequency of occurrence in the text. The larger a word, the more

frequently it appears in the text. The text for the source of this cloud was not altered in any way, so

page numbers, references, and copyright information are included in the cloud.

1 Citation counts gathered on 9/24/2009

2 Generated by <http://tagcrowd.com/>

13

Figure 7: A tag cloud generated from the full text of the 20 sources in review

This tag cloud helps demonstrate some salient points about the sources included in our study:

1. The words "software", "measure", "metrics", and "model" are the four largest words,

indicating that the concatenation all the text of our review is on point with the objective of our

research.

2. The word "complexity" is inordinately large, which corroborates an observation we made

anecdotally: many authors writing about metrics validation are also writing about complexity

metrics. A deeper discussion of code complexity can be found in Section 7.2.

3. The word “quality” appears prominently, implying that many of the papers included a

discussion of a metrics being related to software quality.

4. The word “validation” is not as large as one might expect. However, since the sources we

included in our review are writing about validation, and specifically what it comprises, the

papers usually do not need to repeatedly mention it by name.

5.	
 Extracting	
 the	
 Validation	
 Criteria	

We read each of the 20 sources and recorded all of the validation criteria presented by each source.

After extracting all criteria from all sources, we combined identical criteria together, resulting in a

list of 47 unique criteria. If two criteria were closely related but discussed slightly different

concepts, we left them separate.

14

Our intention is not to indicate to the reader that validating a metric requires the satisfaction of all

47 validation criteria, nor that the reader can freely select which criteria apply to a specific

situation. Rather, we intend the list presented in Figure 10 to act as a) a reference point for this

paper and for future research; and b) an invitation the research community to continue the

discussion of what should be required to designate a metric as valid. Therefore, this list is not

conflict-free (i.e. some criteria contradict each other).

We first summarize the 47 criteria in Figure 10 in alphabetical order. We further synthesize the

resultant criteria in Section 6.

Figure 10: List of all 47 validation criteria found in the review

In the following list, the sentence after the name, in italics, is our definition of the criterion, as

combined from each of the cited papers. Then, after the definition is a brief discussion of that

specific criterion. For the rest of this paper, a reference to a number with a pound sign denotes a

reference to one of these criteria (e.g. #30 refers to predictability).

1. A priori validity. A metric has a priori validity if the attributes in association are specified in

advance of finding a correlation (Fenton 1994), (Courtney and Gustafson 1993), (Briand,

Emam et al. 1995), (Baker, Bieman et al. 1990). A priori validity is often referred to in the

converse as a "shotgun correlation" (Courtney and Gustafson 1993) where a correlation

between a metric and a quality factor is found in a data set, then explained post hoc. If one

examines enough metrics (discarding any lack of correlation), one could eventually find a

statistically significant, yet fortuitous correlation. Instead, the authors point out that the

hypothesis of a metric's meaning ought to precede finding a correlation.

25. Monotonicity
26. Metric Reliability
27. Non-collinearity
28. Non-exploitability
29. Non-uniformity
30. Notation validity
31. Permutation validity
32. Predictability
33. Prediction system validity
34. Process or Product Relevance
35. Protocol validity
36. Rank Consistency
37. Renaming insensitivity
38. Repeatability
39. Representation condition
40. Scale validity
41. Stability
42. Theoretical validity
43. Trackability
44. Transformation invariance
45. Underlying theory validity
46. Unit validity
47. Usability

1. A priori validity
2. Actionability
3. Appropriate Continuity
4. Appropriate Granularity
5. Association
6. Attribute validity
7. Causal model validity
8. Causal relationship validity
9. Content validity
10. Construct validity
11. Constructiveness
12. Definition validity
13. Discriminative power
14. Dimensional consistency
15. Economic productivity
16. Empirical validity
17. External validity
18. Factor independence
19. Improvement validity
20. Instrument validity
21. Increasing growth validity
22. Interaction sensitivity
23. Internal consistency
24. Internal validity

15

2. Actionability: A metric has actionability if it allows a software manager to make an

empirically informed decision based on the software product's status. (Fenton and Neil 2000),

(Roche 1994) The metric should reflect some property of the software in a way that enables

managers to make decisions during the software development lifecycle. Roche uses the terms

"interpretative guidelines" and "recommendations for action" when discussing the

actionability of a metric. We introduce the word "actionability" as our interpretation of the

idea discussed by the authors.

3. Appropriate Continuity: A metric has appropriate continuity if the metric is defined (or

undefined) for all values according to the attribute being measured (Kitchenham, Pfleeger et

al. 1995). Kitchenham et al. phrase this criterion as "the metric should not exhibit any

unexpected discontinuities". This issue arises typically from fraction calculations where the

denominator can be zero. For example, if one used the metric F/LOC (faults per line of code),

one would need to define F/LOC for LOC=0, since the equation is discontinuous.

4. Appropriate Granularity. A metric has appropriate granularity if the mapping from

attribute to metric is not too finely- or coarsely-grained (Kitchenham, Pfleeger et al. 1995),

(Weyuker 1988). This criterion is a grouping of three of Weyuker's complexity criteria.

Kitchenham et al. also discuss these three criteria, but in terms of all metrics (not just

complexity). The three criteria could be grouped as fine, medium, and coarse granularity.

a. A metric has fine granularity if there are only finitely many programs that can

achieve a given measure (Weyuker's Property 2). For example, the cyclomatic

number is not finely grained as one can create an infinite number of programs

that have the same cyclomatic number.

b. A metric has medium granularity if there are two programs that compute the

same function, but have different measures (Weyuker's Property 4). This

property is based on the idea that different programs can perform identical

functionality with differing implementations and, therefore, result in different

complexities. For example, cyclomatic complexity has medium granularity

because one can write two programs that have different complexities, but still

perform the same functionality.

c. A metric has coarse granularity if two different programs can result in the same

measure (Weyuker's Property 3). That is, not every measurement needs to be

unique to a specific program. The two programs can represent two different

implementations altogether (not just renamings of each other) and can still have

the same complexity value.

5. Association: A metric has association validity if it has a direct, linear statistical correlation

with an external quality factor (Schneidewind 1991), (Schneidewind 1992), (Fenton 1994).

We use the term "direct" to imply that the metric is measured without the use of a model.

Measurement of this criterion is typically done by the Pearson correlation coefficient or the

coefficient of determination (e.g. R2) in a linear regression. Fenton uses the term "external

16

correlation" when discussing association validity. Note that Schneidewind and Fenton

explicitly differentiate this term from "prediction" validity (#32). Association validity differs

from predictability in that association does not separate training sets from test sets (e.g. using

cross-validation), nor does association involve using a model.

6. Attribute validity: A metric has attribute validity if the measurements correctly exhibit the

attribute that the metric is intending to measure (Kitchenham, Pfleeger et al. 1995), (Baker,

Bieman et al. 1990). Kitchenham's discussion of attribute validity focuses on the actual

measurements of a metric. For example, if one were measuring the attribute validity of the

"psychological complexity" of code, one might poll a group of developers and empirically

evaluate their agreement. Kitchenham makes the point that the attributes being measured need

to be aspects of software that have both intuitive and well-understood meanings.

7. Causal model validity: A metric has causal model validity if it can be used in a causal model

that explains a quality factor (Fenton and Neil 2000). If a metric can be used as a variable in a

model of causality (e.g. Bayesian Belief Networks), then more credence can be given to the

metric's ability to cause changes in an external quality factor. Note that a metric functioning as

a variable within a causal model does not imply a causal relationship, but indicates a stronger

possibility of a causal relationship. We note the distinction between causal model validity and

causal relationship validity (see #8).

8. Causal relationship validity: A metric has causal relationship validity if it has a causal

relationship to an external quality factor (Roche 1994), (Curtis 1980). Rather than having

only a statistical correlation with an external quality factor, the attribute measured by a metric

must be shown to cause changes in the quality attribute by a properly designed and controlled

experiment. For example, warnings from a perfect static analyzer that finds null dereferences

could be used as a metric to predict null reference failures in a system because executing a

fault causes a failure. Causal relationship validity is different from causal model validity (#7)

because a causal model does have to dictate a relationship.

9. Content validity: A metric has content validity if it applies "thoroughly to the entire domain

of interest" (Curtis 1980). A metric must capture the entire notion of an attribute to be

considered valid. For example, McCabe's cyclomatic complexity number might be considered

content invalid in the domain of "complexity" as it does not account for psychological

complexity because obfuscating variable names does not affect cyclomatic complexity but

does affect psychological complexity. Curtis uses the term "face valid" to refer to a metric

broadly sampling a domain. Interestingly, we did not encounter an example that the authors

presented that had content validity.

10. Construct validity: A metric has construct validity if the gathering of a metric’s

measurements is suitable for the definition of the targeted attribute. (Curtis 1980). The word

“construct” in this sense refers to the tool, instrument, or procedure used to gather

measurements. Curtis refers to construct validity as when “the operational definition yields

17

data related to an abstract concept”. Showing that a metric does not have construct validity

means showing that a specific implementation of a metric is not valid.

11. Constructiveness: A metric is constructive if it helps the researcher understand software

quality (Cavano and McCall 1978). For example, if a metric measures the attribute of “size”,

but is not correlated with quality (e.g. there are an equal number of high quality large

components, and low quality small components), then the metric is not constructive.

12. Definition Validity: A metric has definition validity if the metric definition is clear and

unambiguous such that its collection can be implemented in a unique, deterministic way

(Lincke and Lowe 2006) (Cavano and McCall 1978) (Roche 1994) (Bush and Fenton 1990; El

Emam 2000). We use the term “deterministic” from Lincke et al. to mean that, given a

definition of a metric, the measurement made would be consistent across all who implement

the definition, implying full clarity and a lack of ambiguity. The term “unique” implies that,

given a definition and an artifact, the metric result should be unique from all other

measurements. Cavano calls this kind of definition “consistent” and “detailed”; Roche calls it

“clear” and “unambiguous”; Bush calls this a “precise” definition.

13. Discriminative Power: A metric has discriminative power if it can show a difference

between high-quality and low-quality components by examining components above/below a

pre-determined critical value (Schneidewind 1991), (Schneidewind 1992). The discriminative

power criterion is used to establish sets of metric values that should be considered “too

dangerous” or “off limits”. For example, if the LOC metric has discriminative power for

number of faults with a critical value of 100, then components with over 100 lines of code are

more likely to have a dangerous number of faults than files with fewer than 100 lines of code.

14. Dimensional Consistency: A metric has dimensional consistency if the formulation of

multiple metrics into a composite metric is performed by a scientifically well-understood

mathematical function (Kitchenham, Pfleeger et al. 1995), (Henderson-Sellers 1996). For

example, converting from a vector to a scalar loses vital information about the entity.

Kitchenham uses the example of multiplying the X,Y position coordinates on a Cartesian

plane is meaningless because, while we would obtain a value, we would not know what

attribute is being measured.

15. Economic Productivity: A metric has economic productivity if using the metric quantifies a

relationship between cost and benefit (Jones 1994). That is, a metric is considered invalid if it

does not result in saving money in the long run. Jones stipulates that gathering and collecting

a metric must not be cost-prohibitive. Furthermore, achieving “good” scores of the metric

must not also be cost-prohibitive. For example, removing all known faults in a software

system may be cost-prohibitive, even if it would improve a “number of known faults” metric.

We introduce the term "economic productivity" as an interpretation of Jones' arguments

against commonly-used metrics.

16. Empirical validity: A metric has empirical validity if experimentation and/or observation

corroborates either a) the intended measurement of a metric; or b) the relationship between

18

the metric and an external software quality factor. Empirical validation is typically performed

with statistical analysis of data obtained via experiments or project history.

17. External validity: A metric has external validity if it is related in some way (e.g. by

prediction, association or causality) with an external quality factor (El Emam 2000), (Briand,

Emam et al. 1995), (Baker, Bieman et al. 1990), (Fenton 1994). External validity is a broad

category of validation criteria. For example, if one showed that files with a high LOC is

associated with having many faults, then LOC would be considered externally valid.

However, correlating LOC with another internal metric, such as code churn, would not be

considered external validation. El Emam equates the term “external” with “empirical”

validation, and we distinguish the two terms. For an in-depth discussion on the difference, see

Section 6.1.

18. Factor Independence: A metric has factor independence if the individual measurements used

in the metric formulation are independent of each other (Roche 1994). Roche describes factor

independence as an “analytical principle” that applies when a metric is composed of several,

individual measurements.

19. Improvement validity: A metric has improvement validity if the metric is an improvement

over existing metrics (El Emam 2000). The term “improvement” that El Emam uses denotes a

broad range of possible improvements that a metric could have. Examples of improvements

include ease of measurement, stronger association with a quality factor, or a closer

representation to the attribute being measured.

20. Instrument validity: A metric has instrument validity if the underlying measurement

instrument is valid and properly calibrated (Kitchenham, Pfleeger et al. 1995). For example,

consider a tool has been improperly implemented the definition for branch coverage; this tool,

as an instrument, would be invalid. As a result, the data gathered from that tool (in this case,

the poorly defined branch coverage) would also be considered invalid.

21. Increasing Growth validity: A metric has increasing growth validity if the metric increases

when concatenating two entities together (Weyuker 1988). Said another way, a metric should

never go down if one is concatenating code together. Note that this criterion requires a

specific scale type, which is why Kitchenham et al. explicitly reject this criterion. For

example, the code coverage for different program bodies should never decrease by

concatenating two components together.

22. Interaction Sensitivity: A metric has interaction sensitivity if two components of a program

result in different metrics depending on how they interact with one another (Weyuker 1988).

Weyuker's Property 6 uses this criterion to discuss how components interact with one another,

which can be specific to complexity, but might be a property that applies to other software

metrics. For example, cyclomatic number is not concatenation sensitive as the cyclomatic

number of a concatenation of program bodies is always equal to the sum of the individual

cyclomatic numbers of each body. In other words, cyclomatic number does not take into

account the interaction between components, only individual components. The term

19

“concatenation sensitive” is not used explicitly by Weyuker, but is our interpretation based on

the author's mathematical definition.

23. Internal consistency: A metric has internal consistency if "all of the elementary

measurements of a metric are assessing the same construct and are inter-related" (Curtis

1980). Curtis also argues that a lack of internal consistency results in losing the ability to

interpret the metric.

24. Internal validity: A metric has internal validity if the metric correctly measures the attribute

it purports to measure (El Emam 2000) (Baker, Bieman et al. 1990). Internal validity is a

broad category of validation criteria that is solely concerned with the metric itself, regardless

of being associated with an external quality factor. Most authors of our sources discuss some

form of internal validity, however, many will use the term "theoretical" synonymously with

"internal". For a deeper discussion on this issue, see Section 6.1.

25. Monotonicity: A metric has monotonicity if the components of a program are no more

complex than the entire program (Weyuker 1988). For example, if a module has one highly

complex method, then the entire module should be at least as complex as that method. This

notion applies to other metrics as well, not just complexity metrics.

26. Metric Reliability: A metric has reliability if the measurements are "accurate and

repeatable" (Curtis 1980). Curtis argues that a "reliable" metric ought have little random

error. Curtis explicitly states that metric reliability is a super-category for internal consistency

(#23) and stability (#39).

27. Non-collinearity: A metric has non-collinearity if it is still correlated with an external quality

factor after controlling for confounding factors (El Emam 2000). For example, if a

complexity metric was highly influenced by code size to the point where no extra variance is

explained once code size was included, then the complexity metric is collinear (and therefore

does not pass this criterion).

28. Non-exploitability: A metric exhibits non-exploitability if developers cannot manipulate a

metric to obtain desired results (Cavano and McCall 1978). We introduce use the term

“exploitability” to describe the phenomenon where people can manipulate a metric's

measurements without changing the attribute being measured. For example, if LOC is being

used as an effort metric, then a developer could start writing exceedingly verbose code to look

more productive. Cavano uses the term “stability” when referring to non-exploitability, which

is not to be confused with our use of stability (#39).

29. Non-uniformity: A metric has non-uniformity if it can produce different values for at least

two different entities (Weyuker 1988). As Weyuker states, "A metric which rates all programs

as equal is not really a measure".

30. Notation validity: A metric has notation validity if the metric is reasoned about

"mathematically with precise, consistent notation" (Henderson-Sellers 1996). Henderson-

Sellers argues that a metric cannot be validated by other researchers if the metric is not

20

properly defined with correct, consistent, and unambiguous mathematical notation.

Furthermore, a metric with an unclear definition could mislead other researchers to draw

wrong conclusions about a metric.

31. Permutation validity: A metric has permutation validity if the metric values are responsive

to the order of the statements. (Weyuker 1988). Weyuker argues this criterion for complexity.

Her argument is that the interaction of statements in a program affects the notion of

complexity, so permuting the statements in a program ought to affect the complexity of a

program.

32. Predictability: A metric has predictability if it can be shown to predict values of an external

quality factor with an acceptable level of accuracy (Fenton 1994), (Fenton 1991),

(Schneidewind 1991), (Schneidewind 1992), (Curtis 1980), (Roche 1994), (Bush and Fenton

1990), (El Emam 2000). Most of the authors in our sources allude to some form of prediction

as one way to validate a metric with an external quality factor. In each discussion, the authors

imply that showing a metric to be predictive implies that, historically, a metric could have

been used to assess quality in the system. The "acceptable" level of accuracy would change

from process to process and must be interpreted according to the domain of interest. Note that

the Fenton and Schneidewind specifically differentiate predictability from association (#5).

33. Prediction System validity: A metric has prediction system validity if the metric is part of an

model with procedures on how to use the model, which both must be specified before the study

takes place (Baker, Bieman et al. 1990), (Fenton 1991), (El Emam 2000). The authors define a

prediction system as involving "a mathematical model and prediction procedures for it". A

prediction system has metrics in addition to models, and a prediction system can be validated.

However, the authors emphatically stress that a metric does not always need to be part of a

prediction system to be validated.

34. Process or Product Relevance: A metric has product or process relevance if it can be

“tailored to specific products or processes” (Roche 1994), (Briand, Emam et al. 1995),

(Schneidewind 1991), (Schneidewind 1992). Roche argues that metrics validated in one

domain ought to be transferable to other domains.

35. Protocol validity: A metric has protocol validity if it is measured by a widely accepted

measurement protocol (Kitchenham, Pfleeger et al. 1995). The example that Kitchenham et al.

provides is measuring a person's height: the agreed-upon protocol is from the feet to the head,

and not including an upstretched arm.

36. Rank Consistency: A metric has rank consistency if it shares the same ranking as a quality

factor (Schneidewind 1991), (Schneidewind 1992). For example, if code churn were to have

rank consistency with number of faults, then the ranking of files by code churn would match

the ranking of files by number of faults. The rank consistency validation criterion is meant for

direct relationships.

37. Renaming Insensitivity: A metric has renaming insensitivity if renaming parts of a program

does not affect the metric's measurement (Weyuker 1988). For example, if one were to rename

21

all of the variables in a program, the complexity value should not change. Although Weyuker

specified this property for complexity, the metric can be generalized to other metrics.

38. Repeatability: A metric has repeatability if the metric is shown to be empirically valid for

multiple different projects or throughout the lifetime of one projects (Schneidewind 1991),

(Schneidewind 1992), (El Emam 2000) Schneidewind defines the repeatabilty criterion so that

one cannot make a claim of validation on simply one or two project case studies. While

Schneidewind does not provide a concrete number, he implies that the number of projects

required to obtain repeatability might differ from person to person depending on what they use

the metric for. El Emam states "only when evidence has accumulated that a particular metric

is valid across systems and across organizations can we draw general conclusions."

39. Representation Condition: A metric satisfies the Representation Condition if the attribute is

a numerical characterization that preserves properties of both the attribute and the number

system it maps to. (Fenton 1991), (Kitchenham, Pfleeger et al. 1995), (Fenton 1994), (Bush

and Fenton 1990), (Harman and Clark 2004), (Baker, Bieman et al. 1990). Under the

Representation Condition, any property of the number system must appropriately map to a

property of the attribute being measured (and vice versa). Fenton (Fenton 1994) describes the

Representation Condition as a two-way correspondence between a metric and an attribute.

Kitchenham (Kitchenham, Pfleeger et al. 1995) states that "intuitive understanding" of an

attribute is preserved when mapping to a numerical system. All of the authors cite the

Representation Condition from Measurement Theory, a scientific discipline not specific to

software engineering.

40. Scale validity: A metric has scale validity if it is defined on an explicit, appropriate scale

such that all meaningful transformations of the metric are admissible (Briand, Emam et al.

1995), (Fenton 1991), (Kitchenham, Pfleeger et al. 1995), (Fenton 1994), (El Emam 2000).

The scales discussed are typically: nominal, ordinal, interval, ratio, and absolute. Each scale

type denotes a specific set of transformations that dictate how the metric can be used. As one

example, adding two values of a metric of nominal scale "Yes/No" is not admissible. As

another example, the temperature Farenheit is of interval scale which has subtraction as an

admissible transformation, meaning that the difference in temperature between 50 to 60

degrees and 60 to 70 degree are the same. Ratios, however, are not admissible on the interval

scale, meaning that 50 degrees is not twice as hot as 25 degrees. Many of the sources also

denote specific statistical tests that ought to be run in validating metrics of different scale

types.

41. Stability: A metric has stability if it produces the same values "on repeated collections of data

under similar circumstances" (El Emam 2000), (Curtis 1980), (Cavano and McCall 1978).

One example of a metric that might not be fully stable is the number of failures in a system.

Since the existence of a failure is ultimately a decision made by humans (especially in the case

of validation failures), two humans may disagree on whether specific system behavior is a

failure or not due to an ambiguous requirements specification. Cavano calls this “fidelity”.

22

42. Theoretical validity: A metric has theoretical validity if it does not violate any necessary

properties of the attribute being measured (Kitchenham, Pfleeger et al. 1995), (Briand, Emam

et al. 1995), (Briand, Emam et al. 1995). Theoretical validity is a broad category of validation

criteria that involve making arguments about the properties of a metric. Theoretical validation

is usually performed using formal logic. Many authors use the term “theoretical” synonymous

with “internal” validity (#24), however we differentiate the two. For a deeper discussion on

this issue, see Section 6.1.

43. Trackability: A metric has trackability if the metric changes as the external quality factor

changes over time (Schneidewind 1991), (Schneidewind 1992). A metric should reflect the

external quality factor in such a way that if the external quality factor changes, then the metric

also changes in the same direction. For example, if a high cyclomatic number is shown to be

trackable with the number of faults, then reducing the number of faults in a program (e.g.

fixing the faults) should, in turn, reduce the complexity. Schneidewind discusses using

trackability to assess whether a component is improving, degrading, or stagnating in quality

over time.

44. Transformation Invariance. A metric has transformation invariance if it results in the same

measurement for two semantically-equivalent programs (Harman and Clark 2004). We use the

term "semantically equivalent" to mean that a compiler could potentially interpret two

syntactically-different programs as the same. Harman et al. claim that if one were to make

semantics-preserving changes to a program, then the value of the metric should not change.

Weyuker's Renaming (#36) is one special case of semantic equivalence. However, two

different implementations with indistinguishable results are not necessarily semantically

equivalent. Note that the term “transformation” here is not to be confused with the admissible

transformations mentioned in scale validity (#38); admissible transformations are

transformations of numbers, and this criterion refers to transforming a program.

45. Underlying theory validity: A metric has underlying theory validity if it its construction is

based upon an underlying theory that has validity within the domain of the application (El

Emam 2000), (Roche 1994), (Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990),

(Roche 1994). To consider a metric to be valid, there must be a valid theory that describes

how the metric measures what it is supposed to measure. For example, the underlying theory

behind code churn is that if code has been shown to change substantially in the version control

system, then the project itself has undergone a substantial amount of change. We note here

that underlying theory validity applies to both internal and external validity; but the difference

in these cases is in how the theory is used. On the internal side, the underlying theory required

for validity must state why the metric in question is worth measuring or why the metric is an

accurate representation of the attribute being measured from a theoretical standpoint. On the

external side, the underlying theory is why a metric would be statistically associated with an

external software quality factor (or external attribute).

46. Unit validity: A metric has unit validity if the units used are an appropriate means of

measuring the attribute (Kitchenham, Pfleeger et al. 1995), (Fenton 1994). For example, fault

23

rate may be used to measure program correctness or test case effectiveness (Kitchenham,

Pfleeger et al. 1995).

47. Usability: A metric has usability if it can be cost-effectively implemented in a quality

assurance program (Cavano and McCall 1978). A metric must be feasibly collected within a

process. For example, a metric that requires several months of computation might not be

considered usable.

6. Mapping the Validation Criteria

The spectrum of metrics validation criteria presented in Section 5 indicate that software

engineering metrics researchers have not converged on what constitutes a valid metric. In this

section, we describe how we mapped our criteria into a single categorization.

Our approach to mapping the validation criteria was a bottom-up process. We first noticed several

similarities and differences amongst the criteria. For example, many criteria dealt with relating to a

quality factor, while others dealt with the meaning of a metric. Whenever we found criteria with

similarities, we grouped the criteria together. In other cases, we noticed that some validation

criteria are not atomically satisfiable criteria, but broad categories that can contain many criteria.

Whenever we determined that one criterion was a specific instance of a separate, broader criterion,

we marked the broad criterion as a category. A specific criterion, conversely, is presented as

atomic and concretely satisfiable by its sources.

In the mapping process, we found that all of our criteria groupings could be described by

categories we had already discovered. Thus, we did not introduce new categories of validation

criteria, we used only the categories referred to in the literature in our mapping process.

The result of our mapping process was a categorization of the 47 criteria, as presented in Figure

11. An arrow between a criterion and a category indicates that the criterion is a part of or specific

instance of that group. Specific criteria are represented as boxes, categories of criteria are

represented as ovals. The number in parentheses refers to the number of references that directly

discussed the criterion. A more detailed presentation of this map including a tracing to the original

sources can be found in Appendix A.

Our mapping represents the validation criteria and categories we found in the literature. We do not

view this mapping to be a complete list of all possible criteria. Thus, in for any given category, a

criterion may be presented in the future. For example, (shown in Figure 11) attribute validity may

not be the only kind of empirical, internal validity, but is the only kind we have come across in our

review. Additionally, two criteria required multiple categorizations, including empirical (#16) and

theoretical (#42), which are described in detail in the following section.

24

Figure 11: The 47 criteria, categorized with number of references in parentheses

In the following sections, we describe our reasoning behind some of the major decisions we made

in the mapping process.

6.1 Internal/External vs. Theoretical/Empirical

Beneath our top-level categories are THEORETICAL validity (#42), and empirical validity (#16).

While many of the authors equate the terms "internal" with "theoretical" and "empirical" with

"external", we distinguish the ideas. We view internal and external validation as dealing with what

is being validated, while theoretical and empirical validation deal with how a metric is validated.

Specifically, internal validation deals with how well a metric measures an attribute, whereas as

external validation relates a metric to a quality factor (i.e., another metric). Theoretical validation

uses logic to argue formally whether a metric is valid or not, while empirical validation employs

25

analysis of data from experimentation or observation. The authors equate the terms because, as we

have seen in our review, researchers typically perform internal validation theoretically and external

validation empirically. One exception, however, is attribute validity (#6) which is an empirical

way to validate a metric internally.

6.2 Construct validity

Construct validity (#10) differs from internal and external in that it deals with how a metric is

implemented and studied (i.e. the construct itself). The construct validity of a metric will differ

from research project to research project. For example, one could have a metric that was internally

valid and was externally valid, but the analysis may be wrong because of a poor instrument (#20).

Also in the construct validity category is definition validity (#12), which deals with providing a

clear, unambiguous, deterministically-defined metric. Many authors (Lincke and Lowe 2006),

(Henderson-Sellers 1996), (Baker, Bieman et al. 1990), (El Emam 2000), (Roche 1994) stress the

importance of providing clear definitions for both the metrics and the analysis in metrics

validation. Among the reasons for definition validity is that providing a valid metric definition

(e.g. in a publication) allows that metric to be correctly reproduced so that it can be correctly

studied and used by other researchers.

6.3 Representation Condition and Internal, Theoretical Validity

Within internal validity, theoretical validity is the Representation Condition. The Representation

Condition is a mathematical property taken from Measurement Theory that deals with the

relationship between a metric's attribute and the number system it maps to. Some authors (Fenton

1994), (Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990) claim that satisfying the

Representation Condition is the same as internal, theoretical validity. However, in our review we

found several criteria that are not concerned directly with Representation Condition, but could still

be considered internal and theoretical. For example, actionability (#2) can be satisfied by making a

logical argument about the attribute being measured, but does not deal with the mathematical

mapping between an attribute and the number system.

Kitchenham, et al. also explain that one way of corroborating a measure (perhaps satisfying the

Representation Condition in the process) is to perform experiments to see whether people agree

that an attribute exists or whether mapping to a value captures their understanding of the attribute

(#6) (Kitchenham, Pfleeger et al. 1995). Finding disagreements in such an experiment would

underscore the importance of theoretical validity as some authors define metrics for concepts such

as size, complexity, cohesion, coupling, but do so without providing a precise definition for the

attribute they intend to measure. Without precise definitions, software measurement becomes a

matter of belief. If two people disagree on the concept of, say, code size, then they will certainly

disagree on a metric. For example, Weyuker (Weyuker 1988) highlights the difficulty in

evaluating complexity metrics because not everybody agrees on what a complexity metric is truly

supposed to be measuring. A more thorough discussion of complexity is provided in Section 7.2.

26

6.4 External, Empirical Validity

The external, empirical validity category included all of the criteria that involved some sort of

statistical analysis with a quality factor. Some of the authors (Baker, Bieman et al. 1990), (Fenton

1994), (Schneidewind 1992) point out that external, empirical validation is not made up entirely of

prediction. Of Schneidewind's six validation criteria (Schneidewind 1992) (all of which fall into

external, empirical), the notion of prediction is its own category (#30).

The notion of an underlying theory (#45) appears in both the external, empirical and internal,

theoretical categories. In each situation, the actual theory would be different. An underlying theory

for internal validation would be about how a metric measures a given attribute, whereas the

underlying theory in external validation would be about how one attribute relates to another

attribute.

A priori validity (#1) and underlying theory (#45) are also related ideas in the context of external,

empirical validity. The difference is that the a priori validity criterion states that the underlying

theory must be presented before performing a correlation, and the underlying theory criterion

merely states that a correlation must have an underlying theory.

While Schneidewind's trackability validation criterion (#43), which was not mentioned often by

other sources in our study, bears resemblance to the causality criterion (#8). The trackability

validation criterion states that a metric must change as the external quality factor changes. If a

metric's attribute truly causes change in software’s external quality, then trackability ought to be

empirically supported (e.g. increasing quality reduces code size, and vice versa). Although a

metric can be trackable and still lack causality, one can use the contrapositive of the causality

implying trackability to argue that a metric lacks causality (i.e. not trackable implies not causal).

For example, one could invalidate the claim that low test coverage causes faults by showing that

fixing a fault in code does not change the test coverage. The fact that test coverage trackability is

invalid causes test coverage trackability to be causally invalid.

7.	
 Conflicts	
 and	
 Common	
 Themes	

As we proceeded to analyze the criteria from our study, we noticed that several ideas were

recurrent in our sources. In some instances, such as with code complexity, the sources have

differing views about a particular validation criterion or group of criterion. In this section, we

outline these cases by comparing and contrasting the perspectives we observed.

7.1 Measurement Theory

A common line of reasoning in many of the sources in our study involves a discussion of

measurement theory. Measurement theory is a field taken from mathematics that deals with

developing sound measurements. Within measurement theory, there are different scales that a

metric can take the form of, which provides a set of “admissible transformations” for that scale.

Five major scale types are often discussed: (Briand, Emam et al. 1995), (Fenton 1994):

27

• Nominal: is a classification of the objects without the notion of order or distance between

the classes. No transformations of the given nominal metric are admissible other than

equality. Schneidewind's discriminative power (#13) is based on this measurement

principle (Schneidewind 1992).

• Ordinal: is a ranking of the classified objects. Equality and inequality (e.g. <, >) are

admissible transformations. Schneidewind's ranking consistency (#36) is based on this

measurement principle (Schneidewind 1992).

• Interval: a metric with ordinal scale type, with the distances between the objects being

meaningful, but the measures themselves are not. Admissible transformations include

equality, inequality, addition, and subtraction. The Prediction (#32) criterion uses the

interval scale to predict a factor value and the ratio scale for measuring prediction

accuracy. Association (#5) also uses the interval scale for measuring the difference in

component quality (Schneidewind 1992).

• Ratio: a metric with an interval scale and a meaningful "zero" value, so that ratios

between values are meaningful. Admissible transformations include equality, inequality,

addition, subtraction, multiplication, and division.

• Absolute: a metric has an exact mapping to the attribute it is measuring; all

transformations preserve meaning.

Curtis (Curtis 1980) explains that statistical techniques make no assumptions about the type of

scale employed, so the problem of scale type validity is one in measurement theory rather than

statistical theory. Curtis’s statement supports what Kitchenham, et al. (Kitchenham, Pfleeger et al.

1995), Fenton, et al. (Fenton 1994) and other authors indicate regarding scale validity.

Kitchenham, et al. also suggest that accuracy is an important criterion for one scale type over

another. Furthermore, Kitchenham, et al. recommend that measures should be subject to some

measurement error determined by the accuracy of the chosen scale type (Kitchenham, Pfleeger et

al. 1995). Many other authors discuss measurement theory and scale types (El Emam 2000) (Bush

and Fenton 1990) (Fenton 1991) (Briand, Emam et al. 1995) (Schneidewind 1992).

7.2 The Complexity Controversy

Among all of the sources we reviewed, the most frequently cited work was Weyuker's (Weyuker

1988) complexity metrics validation criteria (#4a-c, 21, 22, 25, 29, 31, 37). Although Weyuker’s

nine criteria are specifically defined over code complexity measures, we include Weyuker's

criteria in this paper for three reasons:

1. Weyuker is the only complexity-based author found in our study who proposed criteria

for validation of complexity metrics;

2. Her criteria have been intensely contested by other metrics validation researchers over the

years; and

28

3. Her criteria are closely related to the Representation Condition, a property that many

researchers cite as the most important category in internal metrics validation.

Kitchenham, et al. (Kitchenham, Pfleeger et al. 1995) provided a thorough examination of the

complexity metrics validation criteria, generalizing some criteria to all metrics while also rejecting

several criteria. Kitchenham, et al. contend that Weyuker's Monotonicity (#25) and Interaction

Sensitivity (#22) are inadmissible since they imply a specific scale type (Kitchenham, Pfleeger et

al. 1995). Kitchenham, et al. also regard Increasing Growth (#21) as inadmissible because it

involves the relation “less than” (i.e. “<”) and thereby excludes nominal scale units (Kitchenham,

Pfleeger et al. 1995). Kitchenham, et al. explain that Renaming Insensitive (#37) is related to the

Representation Condition and that accepting the Representation Condition means Renaming

Insensitive (#37) is unnecessary. Kitchenham, et. al also explain that Weyuker's Permutation (#31)

is incorrect because she is confusing program correctness with structural complexity (Kitchenham,

Pfleeger et al. 1995).

The issue of the necessary scale types in code complexity is a much-discussed topic. Briand, et al.

(Briand, Emam et al. 1995) support Weyuker's complexity metric validation criteria by indicating

that complexity metrics need not be additive (i.e. on an interval scale). Note that they did not to

indicate that metrics cannot be additive, just that additivity should not be a mandatory requirement

for complexity metrics. The statement by Briand, et al. is in direct contradiction with the argument

presented by Fenton (Fenton 1994) which indicates that complexity metrics must be additive.

Furthermore, transformation invariance (#43) is a specific instance of Weyuker's Renaming

Insensitivity (#36). For example, renaming a variable preserves semantics of a program. However,

transformation invariance can include other semantics-preserving transformations, which Harman

and Clark provide an example of. Furthermore, Weyuker's appropriate granularity criteria (#4) are

meant to capture the notion that different implementations of the same functionality can have

different measurements, which is a different concept than semantically equivalent programs

having the same metric. As a result, transformation invariance can be considered a generalization

of renaming insensitivity, but bounded by appropriate granularity.

Fenton (Fenton 1994) describes several weaknesses in Weyuker's approach, claiming that it

attempts to characterize several incompatible views of complexity. Fenton also explains that

Weyuker's granularity criteria (#4) are from “incompatible views of complexity” (Fenton 1994).

Fenton also explains that Weyuker's axiomatic approach to complexity is prescribing necessary but

not sufficient criteria for the validation of complexity metrics.

7.3 “External Validation is All We Need”

Another contested part of the literature is the metrics validation framework presented by

Shneidewind (Schneidewind 1991) (Schneidewind 1992) (#5, #13, #32, #36, #38, #43). Most of

the disagreements with Schneidewind's framework are not in the necessity of his six validation

criteria, but in the initial claim that they are sufficient. That is, the claim that external (#17),

empirical (#16) validation is enough to consider a metric valid. Central to the disagreement is the

29

following statement: “If metrics are to be of greatest utility, the validation should be performed in

terms of the quality functions (quality assessment, control, and prediction) that the metrics are to

support” (Schneidewind 1992).

Specifically, Kitchenham, et al. (Kitchenham, Pfleeger et al. 1995) explain that Schneidewind's

method of validating software metrics is incomplete as validating a predictive model is different

from validating a measure. However, Kitchenham, et al (Kitchenham, Pfleeger et al. 1995) agree

that basic statistical techniques such as correlation analysis can be used to investigate relationships

between attributes. Fenton (Fenton and Neil 2000) disagrees with Schneidewind by stating that

valid metrics may be inherently poor at predicting software quality.

None of the authors in our sources, however, seem to disagree with the correctness of any of

Schneidewind's six validation criteria, rather, they extend his framework. Briand, et al. (Briand,

Emam et al. 1995) explain that once a measure is valid from a theoretical point of view, the

measures must be validated empirically as no theoretical model can guarantee truthfulness,

supporting Schneidewind’s emphasis on external, empirical validation. Lastly, El Emam (El

Emam 2000) presents a more detailed version of Schneidewind's (Schneidewind 1991),

(Schneidewind 1992) approach by demonstrating various techniques to find statistical correlation.

Roche (Roche 1994) agrees with Schneidewind (Schneidewind 1992) when he says "associated

with the validation process is on-going validation"; that is, a metric should be validated

continuously on various projects and through time, which Schneidewind supports in describing

repeatability (#38).

7.4 Necessary, Desirable, and Sufficient Criteria

In extracting and mapping the validation criteria, we noticed that some authors presented their

criteria with varying levels of necessity. Some of the criteria are presented as a ways to invalidate

a metric rather than describing what is sufficient for validation. Furthermore, some authors

presented their criteria as necessary for validation, while others treated their criteria as desirable.

In this paper, we examine three relationships between a validation criterion and metric validity:

“sufficient”, “necessary”, and “desirable”.

• A sufficient validation criterion S is defined by extending the formal logic definition of

"sufficient" (Barwise 2002): if a metric M satisfies S, then M is valid. However, if M does

not satisfy S, it is not necessarily invalid. Informally, satisfying a sufficient criterion is enough

consider a metric valid, but it may not be the only criterion that exists.

• A necessary validation criterion N is defined by extending the formal logic definition of

"necessary" (Barwise 2002): if a metric M does not satisfy N, then M is invalid. However, if

M satisfies N, we cannot say that M is (fully) valid. Informally, a metric must satisfy a

necessary criterion to be considered valid, but satisfying a necessary criterion is not enough to

consider the metric valid.

30

• A desirable validation criterion D is defined by extending the definition of (Weyuker 1988):

if a metric M does not satisfy D, then M is not necessarily invalid, however, metric M

satisfying D enables M to be interpreted or used in a specific way.

For example, Kitchenham et al. (Kitchenham, Pfleeger et al. 1995) regard the Representation

Condition (#39) as necessary, but Cavano (Cavano and McCall 1978) presents constructiveness

(#11) as desirable.

Furthermore, even when multiple authors discussed the same criterion, some would treat the

criterion as necessary; others would treat the criterion as desirable. For example, (Kitchenham,

Pfleeger et al. 1995) refers to the criteria in (Weyuker 1988) as being necessary, while Weyuker et

al. (Weyuker 1988) refer to their criteria as desirable.

We also noticed that the authors attempted to find conditions that are desirable and necessary, but

nobody presents sufficient criteria. While Schneidewind presents his criteria as necessary

(Schneidewind 1991), (Schneidewind 1992), Briand, et al. have argued that he implies his criteria

are sufficient as well (Briand, Emam et al. 1995). Indeed, Briand, et al. have indicated that there

should be no all-encompassing set of criteria which is to be deemed sufficient when they write

“Measurement concepts that are different in nature should be characterized by different sets of

properties” Briand, et al. (Briand, Emam et al. 1995).

Ultimately, not every author explicitly stated how crucial their validation criterion was, so we

could not assemble a full classification of "desired versus necessary" criteria without inferring

ideas that the authors never conveyed. However, the observation warranted a deeper analysis of

why the authors felt that certain criteria were more important than others. This deeper analysis

brought us to collect our authors' motivations into a spectrum of philosophies, which we discuss in

the following section.

8. Spectrum of Philosophies

We postulate that the reason researchers have yet to determine a sufficient set of criteria comes

from a fundamental difference in philosophies about how a metric ought to be used. A metric

could be used either as a pragmatic way of improving software and its surrounding processes or

more rigorously as a window into understanding the very nature of software. We view the

differing perspectives as being based on two opposing philosophies:

• The goal-driven philosophy holds that the primary purpose of a metric is to use it in for

assessment, prediction, and improvement. Validating a metric internally (#24), then, only

serves to improve the usefulness of the metric in its application. If a metric

is “almost” internally valid (i.e. passes many internal validation criteria, but fails a few), those

with a goal-driven perspective would not see a major problem as long as the project benefited

from the guidance and decision support gleaned from using the metric.

• The theory-driven philosophy views that the primary purpose of a metric is to gain

understanding of the nature of software. Validating a metric internally, then, is of central

31

importance. If a metric does not follow the Representation Condition (#39), for example, then

the metric is invalid and should not be further studied. Those of the theory-driven perspective

often denounce the use of external, empirical studies claiming that the studies do not include a

thorough discussion of internal, theoretical validity.

More specifically, the goal-driven philosophy can be characterized by the following ideals:

• Specify measurement goals. Metrics should be gathered, defined and analyzed with respect

to a specific goal; that is, how to fix a given set of problems in a given project or

organization. For example, Fenton (Fenton 1994) and Briand et al. (Briand, Emam et al.

1995), explain that measurement activities must always have clear objectives and in fact be

objective-based (e.g. goal/question/metric (Basili and Weiss 1994)) also agree with this idea.

• Goals vary with specific processes and products. Metrics can only be validated to a certain

project, process, or environment. Schneidewind (Schneidewind 1991) and Roche (Roche

1994) contend that metrics should be used in similar processes, products or environments.

• Validation is a continuous process. Since metrics are validated to specific projects, a metric

that is valid today may not be valid tomorrow, and a metric that is valid on the current project

may not be relevant on the next project. For example, Schneidewind explains that the

fundamental problem in software metrics validation is the following: there must be a project

in which metrics are validated, and a different project in which the metrics are applied. There

could be significant time lags, product differences, and process differences between these two

projects, and these scheduling differences should signal the need to exercise care in choosing

the two projects such that the application of the metrics is appropriate (Schneidewind 1991).

• All theoretical analysis eventually serves a goal. Theoretical analysis, such as the

Representation Condition, ought to be pursued, but only insofar as helping achieve the

measurement goal. For example, Schneidewind explains that the purpose of metrics validation

is to identify metrics that are related to software quality factors (which are typically the

measurement goal) (Schneidewind 1991).

• Metrics can have an ad-hoc definition. A metric can be specific to a product, process,

environment, or technology. For example, a metric that looks for the use of a specific module

in the code would be an ad hoc definition as it would not have meaning outside of its project.

Those of the goal-driven perspective would view ad hoc definitions acceptable as long as the

metric leads to fulfilling a goal.

• Actionable metrics are the best. Actionable metrics that are associated with quality factors

are the most desirable as they can be used to predict and improve the process. Un-actionable

prediction is less useful, but can still fulfill specific goals and should still be pursued.

• “Good enough” is good enough. Statistical theory is only relevant to the extent that it helps

us to measure the association or predictability of an actionable metric; a debate on whether a

metric is defined over the correct scale type is less important than external validation because

an improper scale type can still be used in practice and achieve adequately effective results.

32

• No universally applicable set of criteria exists. All validation criteria serve to fulfill a

specific goal, which can vary from project to project. The goal, then dictates which criteria

apply to a given project.

The theory-driven philosophy can be characterized by the following ideals:

• Must have a theory. Metrics should be gathered based upon an underlying theory of how the

measurement is representative of an attribute in the software. Improvement in a process-

driven sense takes a back seat to improvement of our knowledge of software. For example,

Briand, et al. contend that internal attributes are interesting for software engineers as long as

they are a part of software engineering theories (Briand, Emam et al. 1995).

• Metrics should be generally applicable. A metric must be universally defined before we can

begin to apply it. For example, Lincke (Lincke and Lowe 2006) contends that metric

definitions should be independent of environments or project-specifics.

• Metrics should be repeatable. Metrics should be gathered systematically by a program or

clearly specified procedure, so as to ensure that there are no errors during measurement. The

goal-driven philosophy would agree with this idea, too, but only to the extent that the error is

within an acceptable range to make an acceptable prediction.

• Theoretical, internal validation is paramount. All possible values of the metric must align

with the assumptions of the attribute being measured. Insinuated in this idea is that a metric

should be held to close scrutiny mathematically and analytically before it is ever tested

empirically or applied to a process. Scale type, admissible transformations, and appropriate

use of statistical techniques are all stressed.

• Know the underlying reasons. Eventually, the true validation of metrics can help us

understand the underlying forces that cause software and the software development process to

behave the way that they do.

• Un-actionable is not useless. Just because a metric is not actionable does not render it useless

to understanding software. Some metrics are relevant because they help us characterize

software for many purposes outside of prediction and other specific project goals. Therefore,

those of theory-driven philosophy would view actionability as orthogonal to a metric’s

validity.

• A universally applicable set of criteria does exist. A universally-applicable set of criteria

must exist if we are to understand and agree upon the nature of software.

We contend that the two ends of the spectrum are counter-opposed, meaning they compete with

one another both in theory and in practice. However, the two philosophies are not mutually

exclusive. A given researcher or practitioner may agree or disagree with some aspects of both

extremes and borrow motivations from both philosophies. Even within the same sources, we

frequently discovered metrics validation criteria that seemed to emanate from both philosophies.

As such, we contend that the two philosophies below represent the two ends of a spectrum as

shown in Figure 12.

33

Figure 12: The spectrum of diametrically-opposed philosophies

One may consider a relative ordering of a given validation criterion or set of criteria in terms of

their position on the spectrum, but we find that no objective system of measurement exists for

determining such an ordering. Thus, we do not indicate a mapping of the criteria onto the spectrum

we propose in this paper. We do not view that one paper, author, or criterion fully adhere to one

extreme or the other. However, we view the following as representative examples of criteria that

are motivated by either the goal-driven philosophy or the theory-driven philosophy.

• We view five of Schneidewind's six criteria (Schneidewind 1991), (Schneidewind 1992) to be

primarily motivated by a goal-driven philosophy: association (#5), rank consistency (#36),

discriminative power, (#13), predictability (#30), and trackability (#42).

• However, we view Schneidewind's sixth criterion, repeatability (#35), as being in the middle

of the spectrum. If a metric has been shown to be related to a quality factor on repeated

occasions, then it is reliable for satisfying specific project goals and lends credence to a

universal truth.

• We view the Representation Condition (#39) and its sub-criteria to be primarily motivated by

a theory-driven philosophy. If a metric satisfies the Representation Condition, then

understanding the number system the metric maps to implies understanding the attribute being

measured.

• We view actionability (#2) to be primarily motivated by the goal-driven philosophy.

Actionability is often discussed in terms of satisfying specific goals of a project (Curtis 1980),

(Roche 1994), (Fenton and Neil 2000). Those of the theory-driven philosophy would view

actionability as orthogonal to a metric's validity: if a metric is valid but is un-actionable in

practice, it still speaks to the nature of software.

9.	
 Choosing	
 Validation	
 Criteria:	
 A	
 Scenario	

Suppose a researcher, John, proposes a new metric named SuperM. In his analysis, John wishes to

demonstrate to the audience that the metric can be used to prevent security vulnerabilities from

being injected into the software project. In his first study, John introduces the metric with an

underlying theory of how the metric is related to post-release vulnerabilities (A priori validity, #1).

John shows a statistical association (Association, #5) between the metric and post-release

vulnerabilities. This association indicates that the metric is worth investigating further, so John a

prediction system (Prediction system validity, #33) to show that SuperM empirically predicts post-

release vulnerabilities with an acceptable amount accuracy.

Next, John introduces SuperM to a development team, to demonstrate its usefulness in an

industrial setting. The developers are asked to follow SuperM and use it to guide their manual

34

inspections. On the first day of the study, John notices that developers can "fool" SuperM by

quickly copy-and-pasting dead code to inflate the metric's values (Non-exploitability, #28). To

achieve non-exploitability and thereby protect the truthfulness of the metric's values, the developer

creates SuperM2.

A separate researcher, Jane, upon examining our list of metrics validation criteria, comes across

the repeatability criterion (Repeatability, #38) and decides to test the predictability and association

for SuperM2 with several software projects. Jane's study shows that SuperM2 is repeatable across

all but one of the projects in the study. This result shows that while SuperM2 does extend beyond

the context of the initial project, it may not be applicable to all projects.

Meiyappan presents a study on SuperM2 and shows that, in the Java programming language, an

infinite number of programs could have the same SuperM2 value. As a result, Meiyappan

recommends not using SuperM2 in a Java context. Furthermore, the Meiyappan notices that some

implementations of SuperM2 produce negative values, but SuperM2 does not make sense for

negative values. Meiyappan investigates John's work and, upon confirming that SuperM2 is not

defined in the negative range (Appropriate Continuity, #3), submits a patch to the original tool to

fix the instrument (Instrument Validity, #20).

Each one of the studies in this scenario was driven by one factor: a pre-determined set of

validation criteria from this literature review. In each of the steps of the progression above, a

researcher initially had a question about the metric he or she wished to have answered. Next, the

researcher decided on a set of metric validation criteria that would answer the question he or she

had about the metric. After evaluating the metric using the chosen metrics validation criteria, the

researcher was able to provide evidence for the answer to the question he or she initially posed.

The end result is an evolutionary process of articulating the merits and limitations of a proposed

metric.

10.	
 Conclusion	

Our systematic literature review revealed that the academic literature contains a highly diverse set

of assertions on what constitutes a valid metric. Our review resulted in 47 distinct validation

criteria in the published software engineering literature, coming from 20 papers and 20 distinct

authors. Some of the authors explicitly disagree with some criteria, while other criteria subsume

each other. Understanding the opposing motivations behind the criteria helps us take the next steps

toward establishing software metric validation criteria. Researchers proposing new metrics should

consider the applicability of the validation criteria in terms of our categorization and analysis.

Establishing a set of necessary and/or sufficient criteria could bring metrics validation research

from ad hoc analysis to a mature science of measurement and software improvement. However,

after analyzing the criteria and the discussion among the authors of the papers, we conclude that

35

metrics validation criteria provide answers to questions that researchers have about the merits and

limitations of a metric.

10. Sources

• (Kitchenham, Pfleeger et al. 1995) B. Kitchenham, S. L. Pfleeger, and N. Fenton,

"Towards a Framework for Software Measurement Validation," IEEE Transactions on

Software Engineering, vol. 21, pp. 929-944, 1995.

• (Curtis 1980). B. Curtis, "Measurement and experimentation in Software Engineering,"

Proceedings of the IEEE, vol. 68, pp. 1144-1157, 1980.

• (Roche 1994) J. M. Roche, "Software metrics and measurement principles," ACM

SIGSOFT Software Engineering Notes, vol. 19, pp. 77-85, 1994.

• (Weyuker 1988) E. J. Weyuker, "Evaluating software complexity measures," IEEE

Transactions on Software Engineering, vol. 14, pp. 1357-1365, 1988.

• (Jones 1994) C. Jones, "Software metrics: good, bad and missing," Computer, vol. 27,

pp. 98-100, 1994.

• (Fenton 1994) N. Fenton, "Software measurement: a necessary scientific basis," IEEE

Transactions on Software Engineering, vol. 20, pp. 199-206, 1994.

• (Schneidewind 1991) N. F. Schneidewind, "Validating software metrics: producing

quality discriminators," in International Symposium on Software Reliability Engineering,

1991, pp. 225-232.

• (El Emam 2000) K. El Emam, "A Methodology for Validating Software Product

Metrics," National Research Council of Canada, Ottawa, Ontario, Canada NCR/ERC-

1076, June, 2000.

• (Fenton and Neil 2000) N. E. Fenton and M. Neil, "Software metrics: roadmap," in Future

of Software Engineering, Limerick, Ireland, 2000, pp. 357-370.

• (Briand, Emam et al. 1995) L. Briand, K. E. Emam, and S. Morasca, "On the application

of measurement theory in software engineering," International Software Engineering

Research Network Tech Report #ISERN-95-04, 1995.

• (Schneidewind 1992) N. F. Schneidewind, "Methodology for validating software

metrics," IEEE Transactions on Software Engineering, vol. 18, pp. 410-422, 1992.

• (Henderson-Sellers 1996) B. Henderson-Sellers, "The mathematical validity of software

metrics," ACM SIGSOFT Software Engineering Notes, vol. 21, pp. 89-94, 1996.

• {Briand, 1995 #230} L. Briand, K. E. Emam, and S. Morasca, "Theoretical and empirical

validation of software product measures," International Software Engineering Research

Network, Technical Report, 1995.

36

• (Harman and Clark 2004) M. Harman and J. Clark, "Metrics are fitness functions too," in

10th International Symposium on Software Metrics, 2004, pp. 58-69.

• (Cavano and McCall 1978) J. Cavano and J. McCall, "A framework for the measurement

of software quality," in Software quality assurance workshop on functional and

performance issues, 1978, pp. 133-139.

• (Lincke and Lowe 2006) R. Lincke and W. Lowe, "Foundations for defining software

metrics," in 3rd International Workshop on Metamodels, Schemas, Grammars, and

Ontologies for Reverse Engineering (ATEM '06), Genoa, Italy, 2006.

• (Baker, Bieman et al. 1990) A. L. Baker, J. M. Bieman, N. Fenton, D. Gustafson, A.

Melton, and R. Whitty, "A philosophy for software measurement," Journal of Systems

and Software, vol. 12, pp. 277-281, 1990.

• (Courtney and Gustafson 1993) R. E. Courtney and D. A. Gustafson, "Shotgun

Correlations in Software Measures," Software Engineering Journal, vol. 8, pp. 5-13,

1993.

• (Bush and Fenton 1990) M. E. Bush and N. E. Fenton, "Software measurement: A

conceptual framework," Journal of Systems and Software, vol. 12, pp. 223-231, 1990.

• (Fenton 1991) N. Fenton, "Validating software measures," Journal of Software Testing,

Verification & Reliability, vol. 1, pp. 27-42, 1991.

11. References

Baker, A. L., J. M. Bieman, et al. (1990). "A philosophy for software measurement." Journal of
Systems and Software 12(3): 277-281.

Barwise, J., Etchemendy, J (2002). Language, Proof, and Logic, Center for the Study of Language
and Information.

Basili, V. R. and Weiss (1994). "A methodology for collecting valid software engineering data."
IEEE Transactions on Software Engineering SE-IO(6): 728-738.

Brereton, P., B. A. Kitchenham, et al. (2007). "Lessons from Applying the Systematic Literature
Review Process Within the Software Engineering Domain." Journal of Systems and
Software 80: 571-583.

Briand, L., K. E. Emam, et al. (1995). On the application of measurement theory in software
engineering, International Software Engineering Research Network Tech Report
#ISERN-95-04.

Briand, L., K. E. Emam, et al. (1995). Theoretical and empirical validation of software product
measures, International Software Engineering Research Network, Technical Report.

Bush, M. E. and N. E. Fenton (1990). "Software measurement: A conceptual framework." Journal
of Systems and Software 12(3): 223-231.

Cavano, J. and J. McCall (1978). A framework for the measurement of software quality. Software
quality assurance workshop on functional and performance issues.

Courtney, R. E. and D. A. Gustafson (1993). "Shotgun Correlations in Software Measures."
Software Engineering Journal 8(1): 5-13.

Curtis, B. (1980). "Measurement and experimentation in Software Engineering." Proceedings of
the IEEE 68(9): 1144-1157.

37

El Emam, K. (2000). A Methodology for Validating Software Product Metrics, National Research
Council of Canada, Ottawa, Ontario, Canada NCR/ERC-1076, June.

Elbaum, S. G. and J. C. Munson (1998). Getting a handle on the fault injection process: validation
of measurement tools. Software Metrics Symposium, 1998. Metrics 1998. Proceedings.
Fifth International.

Fenton, N. (1991). "Validating software measures." Journal of Software Testing, Verification &
Reliability 1(2): 27-42.

Fenton, N. (1994). "Software measurement: a necessary scientific basis." IEEE Transactions on
Software Engineering 20(3): 199-206.

Fenton, N. E. and M. Neil (2000). Software metrics: roadmap. Future of Software Engineering,
Limerick, Ireland.

Harman, M. and J. Clark (2004). Metrics are fitness functions too. 10th International Symposium
on Software Metrics.

Henderson-Sellers, B. (1996). "The mathematical validity of software metrics." ACM SIGSOFT
Software Engineering Notes 21(5): 89-94.

IEEE (1990). IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology.

ISO/IEC (1991). "ISO/IEC 9126: Information Technology - Software Product Evaluation - Quality
Characteristics and Guidelines for their Use,." International Organization for
Standardization and the International Electrotechnical Commission.

Jones, C. (1994). "Software metrics: good, bad and missing." Computer 27(9): 98-100.

Kitchenham, B. (2004). "Procedures for Performing Systematic Reviews." Joint Technical Report,
Keele University Technical Report TR/SE-0401 and NICTA Technical Report 0400011T.

Kitchenham, B., S. L. Pfleeger, et al. (1995). "Towards a Framework for Software Measurement
Validation." IEEE Transactions on Software Engineering 21(12): 929-944.

Lincke, R. and W. Lowe (2006). Foundations for defining software metrics. 3rd International
Workshop on Metamodels, Schemas, Grammars, and Ontologies for Reverse Engineering
(ATEM '06), Genoa, Italy.

McCabe, T. (1976). "A complexity measure." IEEE Transactions on Software Engineering SE-
2(4): 308-320.

N. Ayewah, D Hovemeyer, et al. (2008). "Using Static Analysis to Find Bugs." IEEE Software
25(5): 22-29.

Roche, J. M. (1994). "Software metrics and measurement principles." ACM SIGSOFT Software
Engineering Notes 19(1): 77-85.

Schneidewind, N. F. (1991). Validating software metrics: producing quality discriminators.
International Symposium on Software Reliability Engineering.

Schneidewind, N. F. (1992). "Methodology for validating software metrics." IEEE Transactions on
Software Engineering 18(5): 410-422.

Weyuker, E. J. (1988). "Evaluating software complexity measures." IEEE Transactions on
Software Engineering 14(9): 1357-1365.

38

Appendix	
 A:	
 Mapping	
 Authors,	
 Criteria	
 and	
 Categories	
 	

We present the full mapping of our criteria, from the sources in our study in Figures 13, 14, 15,

and 16. An arrow between a source and a criterion or a group of criteria indicates that the source

mentioned or purported the idea or criterion. An arrow between a criterion and an idea or group

indicates that the criterion is a part of or specific instance of that group.

Figure 13: The metrics map at high level, with legend

39

Figure 14: Internal metrics validation criteria, with authors included

40

Figure 15: External metrics validation criteria, with authors included

Figure 16: Construct validity criteria, with authors included

