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Abstract 

Context: Researchers proposing a new metric have the burden of proof to demonstrate to the 

research community that the metric is acceptable in its intended use. This burden of proof is 

provided through the multi-faceted, scientific, and objective process of software metrics 

validation. Over the last 40 years, however, researchers have debated what constitutes a “valid” 

metric. 

Aim: The debate over what constitutes a “valid” metric centers on software metrics validation 

criteria. The objective of this paper is to guide researchers in making sound contributions to the 

field of software engineering metrics by providing a practical summary of the metrics validation 

criteria found in the academic literature. 

Method:  We conducted a systematic literature review that began with 2,288 papers and ultimately 

focused on 20 papers. After extracting 47 unique validation criteria from these 20 papers, we 

performed a comparative analysis to explore the relationships amongst the criteria. 

Results: Our 47 validation criteria represent a diverse view of what constitutes a valid metric. We 

categorized each validation criterion into three categories and nine sub-categories. We present an 

analysis of the conflicts, common themes, and philosophical motivations behind the validation 

criteria. 

Conclusions: Although the 47 validation criteria are not conflict-free, the diversity of motivations 

and philosophies behind the validation criteria indicates that metrics validation is complex. We 

have determined in this paper that, rather than arbitrarily choosing validation criteria for each 

metric, researchers should choose criteria that confirm that the metric is appropriate for its 

intended use. Researchers proposing new metrics should consider the applicability of the 

validation criteria in terms of our categorization and analysis.  

Keywords: software metrics, validation criterion, systematic literature review 
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1. Introduction 

Practitioners and researchers alike use software metrics to both improve and understand software 

products and the software development process. The field of software metrics has a variety of 

applications including quality assessment, prediction, task planning, and research. Researchers 

proposing a new metric have the burden of proof to demonstrate to the research community that 

the metric is truly representative of the attribute it is intended to represent. But how do we, as a 

community, ensure that a metric is suitable and acceptable for its intended purpose? Without some 

formal system of rules for the merits of a metric, the software engineering community will find 

itself flooded with metrics that lend no understanding to the state of the art. This system of rules 

for ensuring the worthiness of a metric is known as software metrics validation, and software 

engineering researchers have debated what constitutes validation for almost half a century.    

The community has not yet reached a consensus on this system of rules. Instead, software metrics 

researchers have often been proposing their own, specialized means of validation. This ad hoc 

approach to validation leads to results that cannot be generalized and to contributions that are not 

stated in a manner consistent with a standard form of metric validation. 

Before we look at where metric validation must go, we must look at where it has been. The metrics 

validation community has likely not reached a consensus because no researcher has provided a 

"proper discussion of relationships among the different approaches [to metric validation]" 

(Kitchenham, Pfleeger et al. 1995). The objective of this paper is to guide researchers in making 

sound contributions to the field of software engineering metrics by providing a practical summary 

of the metrics validation criteria found in the academic literature. We performed a systematic 

literature review, beginning with 2,288 potential peer-reviewed publications and ultimately 

focusing on 20 publications that propose or indicate software metrics validation criteria. Our 

review is a useful guide for two audiences: 1) metrics researchers: software engineering 

researchers who propose, use, and validate new metrics; and 2) metric validation researchers: 

software engineering researchers seeking to propose methodologies, criteria, or frameworks for 

validating metrics. 

Metrics researchers will want to use this review as: 

• A reference guide. We have compiled a list of the unique criteria presented in the literature 

with definitions and examples. Additionally, metrics researchers can see where authors 

discuss the same criteria but with different vocabulary. 

• A source for threats to metric validity. Metrics researchers can consult our survey to 

enumerate the issues a given metric may encounter. Furthermore, this source acts as a guide 

on issues where the community disagrees or published criteria contradict each other. 

• A big picture. We present a hierarchical relationship among the criteria that can be used to 

gain an understanding of how a given criterion relates to the "big picture" of software 

engineering metric validation. Our analysis of the philosophical motivations behind a 
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validation criterion is helpful for understanding not only the criteria themselves, but the 

“spirit” of the criteria.  

• Inspiration. The criteria that have been proposed can act as a set of guidelines to help inspire 

a new way of thinking about currently-existing metrics. Our comparative analysis of the 

criteria introduces underlying, tacit concepts that all researchers should be aware of when 

thinking about metrics. 

Software metrics validation researchers will want to use this review as: 

• A roadmap for current criteria. We provide the validation criteria that researchers can use 

to view how their proposals fit into the overall body of work on metric validation. 

• A call for discussion. In summarizing the validation criteria, we have summarized the 

discussion surrounding metric validation. We found that this discussion has not concluded and 

wish to re-invigorate the discussion amongst the top minds in our field to help reach a 

consensus on what is meant by metric validity. 

• A direction for a standard. Understanding the categorization and the motivation of the 

validation criteria assists the metrics validation community in deciding on a standard set of 

criteria for validating a metric. 

• A guide for future criteria. The hierarchical relationship we discovered when comparing the 

criteria can serve as a tool for generating new metrics validation criteria. Certain holes and 

weaknesses exist in the overall hierarchy, and new criteria could be proposed that address 

these holes and weaknesses. 

This paper is organized as follows. In Section 2, we present the terms specific to this review and 

their definitions. Next, in Section 3, we present the process we used to conduct the review. In 

Section 4, we present the sources from our review. We present the extracted criteria in Section 5 

and the mapping of their relationships in Section 6. Next, we present the common themes and 

conflicts we discovered in Section 7. Finally, we conclude by outlining the opposing philosophies 

we have identified in the literature in Sections 8 and 9. 

2. Terms and Definitions  

During our review, we found many different usages and definitions for the same words. We define 

our usage of the following words here in Section 2.1. Next, we define examples that we refer to 

throughout the paper in Section 2.2. 

2.1 Metric Terminology 

• Attribute: The specific characteristic of the entity being measured (IEEE 1990). For example, 

the attribute for a Lines of Code metric is "size".  

o Internal attribute:  Attributes that to the product itself exhibits, for example, the 

size of code (ISO/IEC 1991) (Fenton 1991).  
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o External attribute: Attributes that are dependent on the behavior of the system, for 

example, the reliability of a system an external attribute (ISO/IEC 1991). 

• Component: One of the parts that make up a software system. A component may be hardware 

or software and may be subdivided into other components (IEEE 1990). 

• Failure: an event in which a system or system component does not perform a required 

function within specified limits (ISO/IEC 1991). 

• Fault: an incorrect step, process, or data definition in a computer program (ISO/IEC 1991).  

• Metric: A metric is a "quantitative scale and method which can be used to determine the 

value a feature takes for a specific software product" (IEEE 1990). Fenton (Fenton and Neil 

2000), (Fenton 1994) explains that essentially any software metric is an attempt to measure or 

predict some attribute (internal or external) of some product, process, or resource. Fenton 

(Fenton 1991) points out that metric has been used as: 

o a number derived from a product, process or resource; 

o a scale of measurement 

o an identifiable attribute (see above).  

Also, a metric measures the degree to which a system, component or process possesses a 

given attribute (see above) (IEEE 1990). An internal metric measures an internal 

attribute, and an external metric measures an external attribute. 

• Quality Factor: an attribute of software that contributes to the degree to which software 

possesses a desired combination of characteristics (Schneidewind 1992). 

• Statistical correlation: we use the term "statistical correlation" in the broad sense of one 

variable "co-relating" with another, not to be confused with the correlation coefficients that 

are specific statistical tests used to estimate the correlation between two variables.  

• Validation: the ISO/IEC of definition of validation is "confirmation, through the provision of 

objective evidence, that the requirements for a specific intended use or application have been 

fulfilled" (ISO/IEC 1991). However, the results of this review indicate that the community 

does not agree on a universal definition of metric validation. We include the ISO/IEC 

definition for clarity and general understanding. Metric validation, as we view it, is the 

ensuring that a metric is acceptable by the community in both interpretation and use because it 

is well-grounded, relevant, meaningful and logically correct.  

2.2 Examples 

In our discussions throughout this paper, we use several examples of metrics to illustrate concepts 

found in the criteria. We list the referenced definitions for these metrics here:  

• Lines of Code (LOC) metric: the general notion of counting the number of lines 

of source code in a program, without adhering to one specific standard. 
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• Cyclomatic Number: McCabe's cyclomatic complexity (McCabe 1976), which is based on 

the number of edges, nodes, and components in a program flow graph.  

• Code Churn: a measure of how much a unit of code has changed over a period of time, 

usually measured by the number of lines of code added/deleted at each revision in the version 

control system (Elbaum and Munson 1998).  

• Static Analyzer: a tool that performs automated static analysis on source or binary code, such 

as FindBugs (N. Ayewah, D Hovemeyer et al. 2008). An automated static analysis tool is a 

program that analyzes another program's source code and reveals possible faults in the form of 

"warnings".  

• Code Coverage: the percentage of a structural entity that is executed by a given test set. For 

example statement coverage is the percentage of statements executed by the test suite.  

3. Methodology and Process 

Kitchenham recommends a procedure for conducting systematic literature reviews (Kitchenham 

2004), which we follow for this review. One goal of a systematic literature review is "to provide a 

framework/background in order to appropriately position new research activities" (Kitchenham 

2004). Additionally, we consider the following three critical aspects of the literature review: 

foundation in the literature, abstraction, and backwards informative. Figure 1 illustrates the 

conceptual structure of our review as a pyramid, with the tiers of the pyramid representing the 

steps we performed in the study. 

 

Figure 1: Building a review with foundation in literature 

The structure of our review in Figure 1 has the following characteristics: 

• Foundation in literature: Our foundation is in the concrete evidence of proposed metrics 

validation criteria and surrounding discussion; we achieved these conceptual ideas through 

synthesis and analysis of these sources available in the literature. We have intentionally not 

projected our own ideas onto what previous researchers have said. 

• Abstraction: The review began at the concrete stage of gathering papers. As the review 

proceeded, we traveled into increasingly higher layers of abstraction until reaching the 

conceptual stage of deriving opposing philosophies. 
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• Backwards Informative: Occasionally, a more abstract process would give us new insight 

into a more concrete process after its completion, and we would revisit these ideas to help 

solidify the foundation. For example, once we had settled on a set of sources to be the basis of 

our review, we decided to consider the sources that were cited by our original set in the review 

process. 

The following sub-sections focus on the bottom two tiers: gathering the literature and analyzing 

the literature. The process is broken down into two parts: planning the review (Section 3.1) and 

conducting the review (Section 3.2). 

3.1 Planning the Review 

Based upon Kitchenham’s systematic review process (Kitchenham 2004), the first phase of 

planning a systematic literature review is to identify the research objective that should be satisfied 

by conducting the review. The objective of our review was to provide a practical summary of the 

metrics validation criteria found in the academic literature. 

The second step for planning a systematic literature review is to develop the search strategy, as a 

part of developing the review protocol (Kitchenham 2004). As recommended in Brereton, et al. 

(Brereton, Kitchenham et al. 2007), we used the following search engines to conduct our review:  

Google Scholar (http://scholar.google.com) CiteSeerX (http://citeseerx.ist.psu.edu/) 

IEEExplore (http://ieeexplore.ieee.org) ACM Portal (http://portal.acm.org/portal.cfm) 

After narrowing our research objective to focus on the criteria for validating metrics, we decided 

on the following queries: 

• software AND engineering AND metrics 

• software AND metrics AND validation 

• software AND metrics AND evaluation 

These search criteria capture a wide range of publications, so an overwhelming number of results 

were obtained with each search. Since reviewing all of the results was infeasible, we developed a 

stopping heuristic. We used our searches using the following method: 

1. For both of the search strings, run the search on all four search engines.  

2. Record the bibliographic information for any source not previously recorded that 

appeared to be about the validation (or evaluation) of software engineering metrics. This 

step was mostly based on title and type of publication. 

3. Continue through the search results until reaching 10 consecutive, irrelevant results. 

4. Otherwise, continue to the next set of 10 results (step 3). 

Since the search engines we used rank the results by relevance, we found this procedure to be 

effective at producing useful results. In most cases, the density of relevant titles steadily decreased 

as we examined each source.  
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We created the form shown in Figure 2 to assess the quality of our primary sources and identify 

sources that fit our research objective. 

 Question Answer 
1. Are there clearly identifiable metrics validation criteria?  

• Does the paper contain one or more criteria that can be extracted?  
• Is this paper an examination of what should be required to make a 

software engineering metric valid? (See Desired vs. Necessary 
Criteria in Section 7.4)  

• Does this paper exhibit scientific objectiveness, or is it a "position 
paper"? If the paper is a position paper, reject it.  

Yes/No 

2. If the answer to 1 is No, then why should this paper be excluded from 
the study? List reasons. 

3. What are the metrics validation criteria or groups of criteria this paper 
describes? 

• Summarize each criterion into a single bullet point. 
• What is the motivation for this criterion? 
• Is this a single criterion, or a group of criteria? 
• Do the authors indicate this criterion as being necessary for 

validation or a desirable property? 

List the criteria. 

4. How is this criteria related to other criteria?    
• List the related criterion and its source.  
• Explain the rationale for the conflict  

o Establish why these criteria are related.  
o Establish that these criteria indeed are indeed opposing, or 

the same.  
o If these criteria conflict, do these criteria just oppose each 

other, or are they truly mutually exclusive? 
o If these criteria are similar, are they synonyms or is there a 

strong enough difference in their definition to warrant a new 
criterion?  

List the 
criterion, 

source, and 
explanation 

Figure 2:  Primary Source Full-Text Review Form.  

3.2 Conducting the Initial Search 

The initial search consisted of a “first pass” (Section 3.2.1) through the titles, then a “second pass” 

(Section 3.2.2) through the abstracts of the given titles. The “third pass” was through the full texts 

of the chosen sources (Section 3.2.3). 

3.2.1 First Pass: Authors and Titles 

In the first pass through the search results, we were as inclusive as possible because we did not 

read abstracts; we tracked only titles and authors. The procedure resulted in the data presented in 

Table 1. The total results column in Table 1 comes from the search engine's self-reported total 

number of results upon executing the query. The reviewed results column comes from executing 

the procedure in Section 3.1. The researchers are given code names: here, the first author is 

Researcher A and the second author is Researcher B. For example, Researcher B searched 

IEEExplore for "software AND metrics AND evaluation" and found a total of 1,836,783 

results. Researcher B iterated through each set of 10 results and collected the relevant titles and 

authors for these sources. Then, after 90 sources, the researcher saw a set of 10 results (numbers 

90-100) with no relevant titles, and the researcher stopped. Out of the 3 million sources returned 
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by the search engines, we examined 2,288 sources. We accepted only 536 of the 2,288 sources we 

saw in the search of step one. 

Table 1: Search engines, queries, and results for the first pass. 

Index / Search 
Engine 

Search String (Query) Total 
Results 

Reviewed 
Results 

Researcher 

Google Scholar software AND engineering AND metrics 125,000 270 B 
IEEExplore software AND engineering AND metrics 1,492 125 B 

CiteSeerX software AND engineering AND metrics 539,029 170 B 
ACM software AND engineering AND metrics 7,640 100 B 

Google Scholar software AND metrics AND validation 50,400 510 A 
IEEExplore software AND metrics AND validation 223 223 A 

ACM software AND metrics AND validation 2,430 300 A 
CiteSeerX software AND metrics AND validation 548,575 150 B 

Google Scholar software AND metrics AND evaluation 118,000 150 B 
IEEExplore software AND metrics AND evaluation 1,836,783 100 B 
CiteSeerX software AND metrics AND evaluation 26,953 90 B 

ACM software AND metrics AND evaluation 6,898 100 A 
Total  3,263,423 2,288 A & B 

Several types of sources came up after completing the first pass of the initial search. Of the sources 

found, 47% were conference proceedings and 38% were journal papers the remaining 15% were 

books, technical reports, standards, presentations, and unknown. Since books are hard to locate, 

and are likely to present a review of literature themselves, we eliminated books from our review. 

CiteSeerX does not indicate the type of source in its results, and these sources did not warrant 

further collection of bibliographic information, as they were all eliminated from the review in a 

later phase. The next few phases of the search are summarized by Figure 3. 

 

Figure 3: Overall view of the source-gathering procedure used in initial literature review 
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Next, we voted to confirm the 536 titles for relevance. As prescribed by Brereton, et al. (Brereton, 

Kitchenham et al. 2007), Researcher A voted on whether the results found by Researcher B were 

relevant to the review, and vice versa. Researcher A collected 176 unique titles, of which 

Researcher B accepted 64 (thus eliminating 112). Researcher B collected 360 sources, of which 

Researcher A accepted 92 (thus eliminating 268). Thus, we accepted a total of 156 titles from the 

voting confirmation to proceed to the next phase of the review. 

3.2.2. Second Pass: Confirming the Abstracts. 

After confirming the titles, we gathered the abstracts for the 156 titles and each researcher voted 

whether the abstract was relevant or not with the revised criteria as shown in Table 2. Researcher 

A voted yes to 46 of 156 abstracts and Researcher B voted yes to 59 of 156 abstracts. The 

researchers agreed on 102 abstracts and disagreed on 54. A meeting was held to form consensus on 

the 54 contested abstracts. We voted 40 abstracts as irrelevant and vote 14 as relevant. This result, 

combined with the other consensus obtained by both researchers independently agreeing on the 

status of the abstracts resulted in 51 relevant abstracts total and 105 irrelevant abstracts. 

Table 2: Second pass voting results 

Voter Yes (Keep) No (Discard) 
Researcher A 46 110 
Researcher B 59 97 

Researchers A & B Agreed 102 54 
Meeting Votes 14 40 

Overall Consensus 51 105 

The overall consensus on the abstracts, as determined above, was passed on to the Arbiter, the 

third author in this paper. As shown in Table 3, the Arbiter voted on the relevance of the 156 

abstracts and indicated that 38 were relevant and 118 were irrelevant. The Arbiter agreed with the 

researchers' consensus for 121 abstracts and disagreed with the researchers on 35 abstracts. 

Another meeting was held to form overall consensus on the abstracts. Out of the 35 abstracts 

discussed at the meeting, the full research team (consisting of Researcher A, Researcher B, and the 

Arbiter) accepted 17 abstracts and rejected 18 abstracts. We accepted 44 abstracts total (rejecting 

112), and proceeded to the next phase of the review. 

Table 3: Second pass voting with arbiter results 

Voter Yes (Keep) No (Discard) 
Researchers 51 105 

Arbiter 38 118 
Agreed 121 35 

Meeting Votes 17 18 
Overall Consensus 44 112 

3.2.3 Third Pass: Full Texts. 

The next phase of the search was to gather the full text for each of the 44 sources whose abstract 

the research team agreed upon as shown in Table 4. Researcher A and Researcher B then voted on 

whether the source matched the criteria for the systematic literature review by completing the form 

shown in Figure 1 for each source. 
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In this phase, the researchers agreed on 29 full texts, and disagreed on 15. The researchers held 

another meeting to discuss the full list of all 44 full texts. After forming consensus, 27 full texts 

were rejected, and 17 were accepted (note: we added three sources in the follow-up search 

described in section 3.3). The notes gathered during the establishment of the chosen sources were 

used to develop the full list of 47 metrics validation criteria. 

Table 4: Full text third pass voting results 

Voter Yes (Keep) No (Discard) 
Researcher A 17 27 
Researcher B 16 28 

Agreed 29 15 
Overall Final Consensus 17 27 

In summary, we searched a population of over 3 million sources, examined 2,288 titles, and 

selected 536 sources. Of those 536 sources, we voted to confirm the relevance and were left with 

156 relevant titles. Those 156 titles were confirmed for their abstract content by each researcher, 

and then the arbiter. We formed consensus on 44 relevant abstracts. The researchers then used the 

full texts of each of the 44 sources to decide on a consensus of 17 sources that were used to 

construct this review, and are listed in the next section.  

3.3. Conducting the Follow-Up Search 

After extracting data from the final 17 primary sources from the first search, we determined that in 

the interest of thoroughness we should conduct a second search based upon the references of our 

sources. The 17 sources for our study contained 548 unique references, which we used to conduct 

what is referred to as the "follow-up search". The titles were easier to exclude in the follow-up 

review because the research questions had been more solidly formulated, and the researchers had 

experience with knowing what papers were needed for the study. The pass through the titles 

resulted in 22 publications. We then examined the abstracts for those 22 publications and found 

eight relevant sources. After reviewing the full text for these eight sources, we selected three 

sources that were relevant, bringing the total number papers included in our study to 20. None of 

the sources from the follow-up review contained new metrics validation criteria. We did, however, 

find additional support for metrics validation criteria we had already discovered. 

4.0 Sources and Metadata 

Our review revealed 20 sources regarding metrics validation criteria. An empirical analysis of the 

years of the publications (see Figure 4) reveals that a large number of writings were conducted on 

the topic of software engineering metrics validation criteria between the years of 1987-1995, and 

since that time the publicized research on metrics validation has declined.  
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Figure 4: Number of sources over time 

Furthermore, the papers involved significant cross-referencing, discussion, and disagreement, 

which we present visually using a citation network (see Figure 5), which is a directed graph of our 

sources. Each source is represented by a node, where the name is comprised of the first five letters 

of the first author’s name along with the year. A node is connected to another node if the two 

nodes cite each other. Upon visual inspection, the majority of the sources cite a paper published a 

year or two prior.  

 

Figure 5: Citation network for the 20 sources in our study. 
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Additionally, we provide the number of Google Scholar "cited by" values1 for the 20 sources in 

Figure 6. These "cited by" values offer a rough approximation of how often the sources in our 

survey have been cited since their publication. The median number of citations for the sources in 

our study was 54.5, and the standard deviation was 132.4. 

 

Figure 6: Number of Google Scholar citations, sorted chronologically 

Also, we find that insight can be gained by looking at the tag cloud for the raw text of the 20 

sources, as shown in Figure 7. A tag cloud2 is a graphical representation of words in which the size 

of the word is relative to the frequency of occurrence in the text. The larger a word, the more 

frequently it appears in the text. The text for the source of this cloud was not altered in any way, so 

page numbers, references, and copyright information are included in the cloud.  

 

                                                             

1 Citation counts gathered on 9/24/2009 

2 Generated by <http://tagcrowd.com/> 
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Figure 7: A tag cloud generated from the full text of the 20 sources in review 

This tag cloud helps demonstrate some salient points about the sources included in our study: 

1. The words "software", "measure", "metrics", and "model" are the four largest words, 

indicating that the concatenation all the text of our review is on point with the objective of our 

research. 

2. The word "complexity" is inordinately large, which corroborates an observation we made 

anecdotally: many authors writing about metrics validation are also writing about complexity 

metrics. A deeper discussion of code complexity can be found in Section 7.2. 

3. The word “quality” appears prominently, implying that many of the papers included a 

discussion of a metrics being related to software quality. 

4. The word “validation” is not as large as one might expect. However, since the sources we 

included in our review are writing about validation, and specifically what it comprises, the 

papers usually do not need to repeatedly mention it by name. 

5.	
  Extracting	
  the	
  Validation	
  Criteria	
  

We read each of the 20 sources and recorded all of the validation criteria presented by each source. 

After extracting all criteria from all sources, we combined identical criteria together, resulting in a 

list of 47 unique criteria. If two criteria were closely related but discussed slightly different 

concepts, we left them separate.  
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Our intention is not to indicate to the reader that validating a metric requires the satisfaction of all 

47 validation criteria, nor that the reader can freely select which criteria apply to a specific 

situation. Rather, we intend the list presented in Figure 10 to act as a) a reference point for this 

paper and for future research; and b) an invitation the research community to continue the 

discussion of what should be required to designate a metric as valid. Therefore, this list is not 

conflict-free (i.e. some criteria contradict each other).  

We first summarize the 47 criteria in Figure 10 in alphabetical order. We further synthesize the 

resultant criteria in Section 6. 

 

Figure 10: List of all 47 validation criteria found in the review 

In the following list, the sentence after the name, in italics, is our definition of the criterion, as 

combined from each of the cited papers. Then, after the definition is a brief discussion of that 

specific criterion. For the rest of this paper, a reference to a number with a pound sign denotes a 

reference to one of these criteria (e.g. #30 refers to predictability). 

1. A priori validity. A metric has a priori validity if the attributes in association are specified in 

advance of finding a correlation (Fenton 1994), (Courtney and Gustafson 1993), (Briand, 

Emam et al. 1995), (Baker, Bieman et al. 1990). A priori validity is often referred to in the 

converse as a "shotgun correlation" (Courtney and Gustafson 1993) where a correlation 

between a metric and a quality factor is found in a data set, then explained post hoc. If one 

examines enough metrics (discarding any lack of correlation), one could eventually find a 

statistically significant, yet fortuitous correlation. Instead, the authors point out that the 

hypothesis of a metric's meaning ought to precede finding a correlation.  

25. Monotonicity  
26. Metric Reliability  
27. Non-collinearity  
28. Non-exploitability  
29. Non-uniformity  
30. Notation validity  
31. Permutation validity  
32. Predictability  
33. Prediction system validity  
34. Process or Product Relevance  
35. Protocol validity  
36. Rank Consistency  
37. Renaming insensitivity  
38. Repeatability  
39. Representation condition  
40. Scale validity  
41. Stability  
42. Theoretical validity  
43. Trackability  
44. Transformation invariance  
45. Underlying theory validity  
46. Unit validity  
47. Usability  
 

1. A priori validity 
2. Actionability 
3. Appropriate Continuity 
4. Appropriate Granularity 
5. Association 
6. Attribute validity 
7. Causal model validity 
8. Causal relationship validity 
9. Content validity 
10. Construct validity 
11. Constructiveness 
12. Definition validity  
13. Discriminative power  
14. Dimensional consistency  
15. Economic productivity  
16. Empirical validity 
17. External validity  
18. Factor independence  
19. Improvement validity  
20. Instrument validity  
21. Increasing growth validity  
22. Interaction sensitivity  
23. Internal consistency  
24. Internal validity  
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2. Actionability:  A metric has actionability if it allows a software manager to make an 

empirically informed decision based on the software product's status. (Fenton and Neil 2000), 

(Roche 1994) The metric should reflect some property of the software in a way that enables 

managers to make decisions during the software development lifecycle. Roche uses the terms 

"interpretative guidelines" and "recommendations for action" when discussing the 

actionability of a metric. We introduce the word "actionability" as our interpretation of the 

idea discussed by the authors.  

3. Appropriate Continuity: A metric has appropriate continuity if the metric is defined (or 

undefined) for all values according to the attribute being measured (Kitchenham, Pfleeger et 

al. 1995). Kitchenham et al. phrase this criterion as "the metric should not exhibit any 

unexpected discontinuities". This issue arises typically from fraction calculations where the 

denominator can be zero. For example, if one used the metric F/LOC (faults per line of code), 

one would need to define F/LOC for LOC=0, since the equation is discontinuous.  

4. Appropriate Granularity. A metric has appropriate granularity if the mapping from 

attribute to metric is not too finely- or coarsely-grained (Kitchenham, Pfleeger et al. 1995), 

(Weyuker 1988). This criterion is a grouping of three of Weyuker's complexity criteria. 

Kitchenham et al. also discuss these three criteria, but in terms of all metrics (not just 

complexity). The three criteria could be grouped as fine, medium, and coarse granularity.   

a. A metric has fine granularity if there are only finitely many programs that can 

achieve a given measure (Weyuker's Property 2). For example, the cyclomatic 

number is not finely grained as one can create an infinite number of programs 

that have the same cyclomatic number. 

b. A metric has medium granularity if there are two programs that compute the 

same function, but have different measures (Weyuker's Property 4). This 

property is based on the idea that different programs can perform identical 

functionality with differing implementations and, therefore, result in different 

complexities. For example, cyclomatic complexity has medium granularity 

because one can write two programs that have different complexities, but still 

perform the same functionality. 

c. A metric has coarse granularity if two different programs can result in the same 

measure (Weyuker's Property 3). That is, not every measurement needs to be 

unique to a specific program. The two programs can represent two different 

implementations altogether (not just renamings of each other) and can still have 

the same complexity value.  

5. Association:  A metric has association validity if it has a direct, linear statistical correlation 

with an external quality factor (Schneidewind 1991), (Schneidewind 1992), (Fenton 1994). 

We use the term "direct" to imply that the metric is measured without the use of a model. 

Measurement of this criterion is typically done by the Pearson correlation coefficient or the 

coefficient of determination (e.g. R2) in a linear regression. Fenton uses the term "external 
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correlation" when discussing association validity. Note that Schneidewind and Fenton 

explicitly differentiate this term from "prediction" validity (#32). Association validity differs 

from predictability in that association does not separate training sets from test sets (e.g. using 

cross-validation), nor does association involve using a model.   

6. Attribute validity:  A metric has attribute validity if the measurements correctly exhibit the 

attribute that  the metric is intending to measure (Kitchenham, Pfleeger et al. 1995), (Baker, 

Bieman et al. 1990). Kitchenham's discussion of attribute validity focuses on the actual 

measurements of a metric. For example, if one were measuring the attribute validity of the 

"psychological complexity" of code, one might poll a group of developers and empirically 

evaluate their agreement. Kitchenham makes the point that the attributes being measured need 

to be aspects of software that have both intuitive and well-understood meanings.  

7. Causal model validity: A metric has causal model validity if it can be used in a causal model 

that explains a quality factor (Fenton and Neil 2000). If a metric can be used as a variable in a 

model of causality (e.g. Bayesian Belief Networks), then more credence can be given to the 

metric's ability to cause changes in an external quality factor. Note that a metric functioning as 

a variable within a causal model does not imply a causal relationship, but indicates a stronger 

possibility of a causal relationship. We note the distinction between causal model validity and 

causal relationship validity (see #8).     

8. Causal relationship validity:  A metric has causal relationship validity if it has a causal 

relationship to an external quality factor (Roche 1994), (Curtis 1980). Rather than having 

only a statistical correlation with an external quality factor, the attribute measured by a metric 

must be shown to cause changes in the quality attribute by a properly designed and controlled 

experiment. For example, warnings from a perfect static analyzer that finds null dereferences 

could be used as a metric to predict null reference failures in a system because executing a 

fault causes a failure. Causal relationship validity is different from causal model validity (#7) 

because a causal model does have to dictate a relationship.  

9. Content validity: A metric has content validity if it applies "thoroughly to the entire domain 

of interest" (Curtis 1980). A metric must capture the entire notion of an attribute to be 

considered valid. For example, McCabe's cyclomatic complexity number might be considered 

content invalid in the domain of "complexity" as it does not account for psychological 

complexity because obfuscating variable names does not affect cyclomatic complexity but 

does affect psychological complexity. Curtis uses the term "face valid" to refer to a metric 

broadly sampling a domain. Interestingly, we did not encounter an example that the authors 

presented that had content validity.  

10. Construct validity: A metric has construct validity if the gathering of a metric’s 

measurements is suitable for the definition of the targeted attribute. (Curtis 1980). The word 

“construct” in this sense refers to the tool, instrument, or procedure used to gather 

measurements. Curtis refers to construct validity as when “the operational definition yields 



17 

data related to an abstract concept”. Showing that a metric does not have construct validity 

means showing that a specific implementation of a metric is not valid. 

11. Constructiveness: A metric is constructive if it helps the researcher understand software 

quality (Cavano and McCall 1978). For example, if a metric measures the attribute of “size”, 

but is not correlated with quality (e.g. there are an equal number of high quality large 

components, and low quality small components), then the metric is not constructive. 

12. Definition Validity: A metric has definition validity if the metric definition is clear and 

unambiguous such that its collection can be implemented in a unique, deterministic way 

(Lincke and Lowe 2006) (Cavano and McCall 1978) (Roche 1994) (Bush and Fenton 1990; El 

Emam 2000). We use the term “deterministic” from Lincke et al. to mean that, given a 

definition of a metric, the measurement made would be consistent across all who implement 

the definition, implying full clarity and a lack of ambiguity. The term “unique” implies that, 

given a definition and an artifact, the metric result should be unique from all other 

measurements. Cavano calls this kind of definition “consistent” and “detailed”; Roche calls it 

“clear” and “unambiguous”; Bush calls this a “precise” definition.  

13. Discriminative Power:  A metric has discriminative power if it can show a difference 

between high-quality and low-quality components by examining components above/below a 

pre-determined critical value (Schneidewind 1991), (Schneidewind 1992). The discriminative 

power criterion is used to establish sets of metric values that should be considered “too 

dangerous” or “off limits”. For example, if the LOC metric has discriminative power for 

number of faults with a critical value of 100, then components with over 100 lines of code are 

more likely to have a dangerous number of faults than files with fewer than 100 lines of code.  

14. Dimensional Consistency: A metric has dimensional consistency if  the formulation of 

multiple metrics into a composite metric is performed by a scientifically well-understood 

mathematical function (Kitchenham, Pfleeger et al. 1995), (Henderson-Sellers 1996). For 

example, converting from a vector to a scalar loses vital information about the entity. 

Kitchenham uses the example of multiplying the X,Y position coordinates on a Cartesian 

plane is meaningless because, while we would obtain a value, we would not know what 

attribute is being measured. 

15. Economic Productivity: A metric has economic productivity if using the metric quantifies a 

relationship between cost and benefit (Jones 1994). That is, a metric is considered invalid if it 

does not result in saving money in the long run. Jones stipulates that gathering and collecting 

a metric must not be cost-prohibitive. Furthermore, achieving “good” scores of the metric 

must not also be cost-prohibitive. For example, removing all known faults in a software 

system may be cost-prohibitive, even if it would improve a “number of known faults” metric. 

We introduce the term "economic productivity" as an interpretation of Jones' arguments 

against commonly-used metrics.  

16. Empirical validity: A metric has empirical validity if experimentation and/or observation 

corroborates either a) the intended measurement of a metric; or b) the relationship between 
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the metric and an external software quality factor. Empirical validation is typically performed 

with statistical analysis of data obtained via experiments or project history. 

17. External validity:  A metric has external validity if it is related in some way (e.g. by 

prediction, association or causality) with an external quality factor (El Emam 2000), (Briand, 

Emam et al. 1995), (Baker, Bieman et al. 1990), (Fenton 1994). External validity is a broad 

category of validation criteria. For example, if one showed that files with a high LOC is 

associated with having many faults, then LOC would be considered externally valid. 

However, correlating LOC with another internal metric, such as code churn, would not be 

considered external validation. El Emam equates the term “external” with “empirical” 

validation, and we distinguish the two terms. For an in-depth discussion on the difference, see 

Section 6.1.  

18. Factor Independence: A metric has factor independence if the individual measurements used 

in the metric formulation are independent of each other (Roche 1994). Roche describes factor 

independence as an “analytical principle” that applies when a metric is composed of several, 

individual measurements.  

19. Improvement validity: A metric has improvement validity if the metric is an improvement 

over existing metrics (El Emam 2000). The term “improvement” that El Emam uses denotes a 

broad range of possible improvements that a metric could have. Examples of improvements 

include ease of measurement, stronger association with a quality factor, or a closer 

representation to the attribute being measured.  

20. Instrument validity: A metric has instrument validity if the underlying measurement 

instrument is valid and properly calibrated (Kitchenham, Pfleeger et al. 1995). For example, 

consider a tool has been improperly implemented the definition for branch coverage; this tool, 

as an instrument, would be invalid. As a result, the data gathered from that tool (in this case, 

the poorly defined branch coverage) would also be considered invalid. 

21. Increasing Growth validity: A metric has increasing growth validity if the metric increases 

when concatenating two entities together (Weyuker 1988). Said another way, a metric should 

never go down if one is concatenating code together. Note that this criterion requires a 

specific scale type, which is why Kitchenham et al. explicitly reject this criterion. For 

example, the code coverage for different program bodies should never decrease by 

concatenating two components together.    

22. Interaction Sensitivity:  A metric has interaction sensitivity if two components of a program 

result in different metrics depending on how they interact with one another (Weyuker 1988). 

Weyuker's Property 6 uses this criterion to discuss how components interact with one another, 

which can be specific to complexity, but might be a property that applies to other software 

metrics. For example, cyclomatic number is not concatenation sensitive as the cyclomatic 

number of a concatenation of program bodies is always equal to the sum of the individual 

cyclomatic numbers of each body. In other words, cyclomatic number does not take into 

account the interaction between components, only individual components. The term 
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“concatenation sensitive” is not used explicitly by Weyuker, but is our interpretation based on 

the author's mathematical definition.  

23. Internal consistency: A metric has internal consistency if "all of the elementary 

measurements of a metric are assessing the same construct and are inter-related" (Curtis 

1980). Curtis also argues that a lack of internal consistency results in losing the ability to 

interpret the metric. 

24. Internal validity: A metric has internal validity if the metric correctly measures the attribute 

it purports to measure (El Emam 2000) (Baker, Bieman et al. 1990). Internal validity is a 

broad category of validation criteria that is solely concerned with the metric itself, regardless 

of being associated with an external quality factor. Most authors of our sources discuss some 

form of internal validity, however, many will use the term "theoretical" synonymously with 

"internal". For a deeper discussion on this issue, see Section 6.1. 

25. Monotonicity: A metric has monotonicity if the components of a program are no more 

complex than the entire program (Weyuker 1988). For example, if a module has one highly 

complex method, then the entire module should be at least as complex as that method. This 

notion applies to other metrics as well, not just complexity metrics.  

26. Metric Reliability: A metric has reliability if the measurements are "accurate and 

repeatable" (Curtis 1980). Curtis argues that a "reliable" metric ought have little random 

error. Curtis explicitly states that metric reliability is a super-category for internal consistency 

(#23) and stability (#39). 

27. Non-collinearity: A metric has non-collinearity if it is still correlated with an external quality 

factor after controlling for confounding factors (El Emam 2000). For example, if a 

complexity metric was highly influenced by code size to the point where no extra variance is 

explained once code size was included, then the complexity metric is collinear (and therefore 

does not pass this criterion). 

28. Non-exploitability: A metric exhibits non-exploitability if developers cannot manipulate a 

metric to obtain desired results (Cavano and McCall 1978). We introduce use the term 

“exploitability” to describe the phenomenon where people can manipulate a metric's 

measurements without changing the attribute being measured. For example, if LOC is being 

used as an effort metric, then a developer could start writing exceedingly verbose code to look 

more productive. Cavano uses the term “stability” when referring to non-exploitability, which 

is not to be confused with our use of stability (#39). 

29. Non-uniformity: A metric has non-uniformity if it can produce different values for at least 

two different entities (Weyuker 1988). As Weyuker states, "A metric which rates all programs 

as equal is not really a measure".    

30. Notation validity: A metric has notation validity if the metric is reasoned about 

"mathematically with precise, consistent notation" (Henderson-Sellers 1996). Henderson-

Sellers argues that a metric cannot be validated by other researchers if the metric is not 
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properly defined with correct, consistent, and unambiguous mathematical notation. 

Furthermore, a metric with an unclear definition could mislead other researchers to draw 

wrong conclusions about a metric. 

31. Permutation validity: A metric has permutation validity if the metric values are responsive 

to the order of the statements. (Weyuker 1988). Weyuker argues this criterion for complexity. 

Her argument is that the interaction of statements in a program affects the notion of 

complexity, so permuting the statements in a program ought to affect the complexity of a 

program. 

32. Predictability:  A metric has predictability if it can be shown to predict values of an external 

quality factor with an acceptable level of accuracy (Fenton 1994), (Fenton 1991),  

(Schneidewind 1991), (Schneidewind 1992), (Curtis 1980), (Roche 1994), (Bush and Fenton 

1990), (El Emam 2000). Most of the authors in our sources allude to some form of prediction 

as one way to validate a metric with an external quality factor. In each discussion, the authors 

imply that showing a metric to be predictive implies that, historically, a metric could have 

been used to assess quality in the system. The "acceptable" level of accuracy would change 

from process to process and must be interpreted according to the domain of interest. Note that 

the Fenton and Schneidewind specifically differentiate predictability from association (#5). 

33. Prediction System validity: A metric has prediction system validity if the metric is part of an 

model with procedures on how to use the model, which both must be specified before the study 

takes place (Baker, Bieman et al. 1990), (Fenton 1991), (El Emam 2000). The authors define a 

prediction system as involving "a mathematical model and prediction procedures for it". A 

prediction system has metrics in addition to models, and a prediction system can be validated. 

However, the authors emphatically stress that a metric does not always need to be part of a 

prediction system to be validated. 

34. Process or Product Relevance: A metric has product or process relevance if it can be 

“tailored to specific products or processes” (Roche 1994), (Briand, Emam et al. 1995), 

(Schneidewind 1991), (Schneidewind 1992). Roche argues that metrics validated in one 

domain ought to be transferable to other domains. 

35. Protocol validity: A metric has protocol validity if it is measured by a widely accepted 

measurement protocol (Kitchenham, Pfleeger et al. 1995). The example that Kitchenham et al. 

provides is measuring a person's height: the agreed-upon protocol is from the feet to the head, 

and not including an upstretched arm. 

36. Rank Consistency:  A metric has rank consistency if it shares the same ranking as a quality 

factor (Schneidewind 1991), (Schneidewind 1992). For example, if code churn were to have 

rank consistency with number of faults, then the ranking of files by code churn would match 

the ranking of files by number of faults. The rank consistency validation criterion is meant for 

direct relationships.  

37. Renaming Insensitivity: A metric has renaming insensitivity if renaming parts of a program 

does not affect the metric's measurement (Weyuker 1988). For example, if one were to rename 
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all of the variables in a program, the complexity value should not change. Although Weyuker 

specified this property for complexity, the metric can be generalized to other metrics. 

38. Repeatability: A metric has repeatability if the metric is shown to be empirically valid for 

multiple different projects or throughout the lifetime of one projects (Schneidewind 1991), 

(Schneidewind 1992), (El Emam 2000) Schneidewind defines the repeatabilty criterion so that 

one cannot make a claim of validation on simply one or two project case studies. While 

Schneidewind does not provide a concrete number, he implies that the number of projects 

required to obtain repeatability might differ from person to person depending on what they use 

the metric for. El Emam states "only when evidence has accumulated that a particular metric 

is valid across systems and across organizations can we draw general conclusions."  

39. Representation Condition: A metric satisfies the Representation Condition if the attribute is 

a numerical characterization that preserves properties of both the attribute and the number 

system it maps to. (Fenton 1991), (Kitchenham, Pfleeger et al. 1995), (Fenton 1994), (Bush 

and Fenton 1990), (Harman and Clark 2004), (Baker, Bieman et al. 1990). Under the 

Representation Condition, any property of the number system must appropriately map to a 

property of the attribute being measured (and vice versa). Fenton (Fenton 1994) describes the 

Representation Condition as a two-way correspondence between a metric and an attribute. 

Kitchenham (Kitchenham, Pfleeger et al. 1995) states that "intuitive understanding" of an 

attribute is preserved when mapping to a numerical system. All of the authors cite the 

Representation Condition from Measurement Theory, a scientific discipline not specific to 

software engineering. 

40. Scale validity: A metric has scale validity if it is defined on an explicit, appropriate scale 

such that all meaningful transformations of the metric are admissible (Briand, Emam et al. 

1995), (Fenton 1991), (Kitchenham, Pfleeger et al. 1995), (Fenton 1994), (El Emam 2000). 

The scales discussed are typically: nominal, ordinal, interval, ratio, and absolute. Each scale 

type denotes a specific set of transformations that dictate how the metric can be used. As one 

example, adding two values of a metric of nominal scale "Yes/No" is not admissible. As 

another example, the temperature Farenheit is of interval scale which has subtraction as an 

admissible transformation, meaning that the difference in temperature between 50 to 60 

degrees and 60 to 70 degree are the same. Ratios, however, are not admissible on the interval 

scale, meaning that 50 degrees is not twice as hot as 25 degrees. Many of the sources also 

denote specific statistical tests that ought to be run in validating metrics of different scale 

types.  

41. Stability: A metric has stability if it produces the same values "on repeated collections of data 

under similar circumstances" (El Emam 2000), (Curtis 1980), (Cavano and McCall 1978). 

One example of a metric that might not be fully stable is the number of failures in a system. 

Since the existence of a failure is ultimately a decision made by humans (especially in the case 

of validation failures), two humans may disagree on whether specific system behavior is a 

failure or not due to an ambiguous requirements specification. Cavano calls this “fidelity”. 
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42. Theoretical validity: A metric has theoretical validity if it does not violate any necessary 

properties of the attribute being measured (Kitchenham, Pfleeger et al. 1995), (Briand, Emam 

et al. 1995), (Briand, Emam et al. 1995). Theoretical validity is a broad category of validation 

criteria that involve making arguments about the properties of a metric. Theoretical validation 

is usually performed using formal logic. Many authors use the term “theoretical” synonymous 

with “internal” validity (#24), however we differentiate the two. For a deeper discussion on 

this issue, see Section 6.1. 

43. Trackability: A metric has trackability if the metric changes as the external quality factor 

changes over time (Schneidewind 1991), (Schneidewind 1992). A metric should reflect the 

external quality factor in such a way that if the external quality factor changes, then the metric 

also changes in the same direction. For example, if a high cyclomatic number is shown to be 

trackable with the number of faults, then reducing the number of faults in a program (e.g. 

fixing the faults) should, in turn, reduce the complexity. Schneidewind discusses using 

trackability to assess whether a component is improving, degrading, or stagnating in quality 

over time. 

44. Transformation Invariance. A metric has transformation invariance if it results in the same 

measurement for two semantically-equivalent programs (Harman and Clark 2004). We use the 

term "semantically equivalent" to mean that a compiler could potentially interpret two 

syntactically-different programs as the same. Harman et al. claim that if one were to make 

semantics-preserving changes to a program, then the value of the metric should not change. 

Weyuker's Renaming (#36) is one special case of semantic equivalence. However, two 

different implementations with indistinguishable results are not necessarily semantically 

equivalent. Note that the term “transformation” here is not to be confused with the admissible 

transformations mentioned in scale validity (#38); admissible transformations are 

transformations of numbers, and this criterion refers to transforming a program. 

45. Underlying theory validity: A metric has underlying theory validity if it its construction is 

based upon an underlying theory that has validity within the domain of the application (El 

Emam 2000), (Roche 1994), (Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990), 

(Roche 1994). To consider a metric to be valid, there must be a valid theory that describes 

how the metric measures what it is supposed to measure. For example, the underlying theory 

behind code churn is that if code has been shown to change substantially in the version control 

system, then the project itself has undergone a substantial amount of change. We note here 

that underlying theory validity applies to both internal and external validity; but the difference 

in these cases is in how the theory is used. On the internal side, the underlying theory required 

for validity must state why the metric in question is worth measuring or why the metric is an 

accurate representation of the attribute being measured from a theoretical standpoint. On the 

external side, the underlying theory is why a metric would be statistically associated with an 

external software quality factor (or external attribute).  

46. Unit validity: A metric has unit validity if the units used are an appropriate means of 

measuring the attribute (Kitchenham, Pfleeger et al. 1995), (Fenton 1994).  For example, fault 
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rate may be used to measure program correctness or test case effectiveness (Kitchenham, 

Pfleeger et al. 1995).   

47. Usability: A metric has usability if it can be cost-effectively implemented in a quality 

assurance program (Cavano and McCall 1978). A metric must be feasibly collected within a 

process. For example, a metric that requires several months of computation might not be 

considered usable. 

6. Mapping the Validation Criteria 

The spectrum of metrics validation criteria presented in Section 5 indicate that software 

engineering metrics researchers have not converged on what constitutes a valid metric.  In this 

section, we describe how we mapped our criteria into a single categorization. 

Our approach to mapping the validation criteria was a bottom-up process. We first noticed several 

similarities and differences amongst the criteria. For example, many criteria dealt with relating to a 

quality factor, while others dealt with the meaning of a metric. Whenever we found criteria with 

similarities, we grouped the criteria together. In other cases, we noticed that some validation 

criteria are not atomically satisfiable criteria, but broad categories that can contain many criteria. 

Whenever we determined that one criterion was a specific instance of a separate, broader criterion, 

we marked the broad criterion as a category. A specific criterion, conversely, is presented as 

atomic and concretely satisfiable by its sources.  

In the mapping process, we found that all of our criteria groupings could be described by 

categories we had already discovered. Thus, we did not introduce new categories of validation 

criteria, we used only the categories referred to in the literature in our mapping process.  

The result of our mapping process was a categorization of the 47 criteria, as presented in Figure 

11. An arrow between a criterion and a category indicates that the criterion is a part of or specific 

instance of that group. Specific criteria are represented as boxes, categories of criteria are 

represented as ovals. The number in parentheses refers to the number of references that directly 

discussed the criterion. A more detailed presentation of this map including a tracing to the original 

sources can be found in Appendix A. 

Our mapping represents the validation criteria and categories we found in the literature. We do not 

view this mapping to be a complete list of all possible criteria. Thus, in for any given category, a 

criterion may be presented in the future. For example, (shown in Figure 11) attribute validity may 

not be the only kind of empirical, internal validity, but is the only kind we have come across in our 

review. Additionally, two criteria required multiple categorizations, including empirical (#16) and 

theoretical (#42), which are described in detail in the following section. 
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Figure 11: The 47 criteria, categorized with number of references in parentheses 

In the following sections, we describe our reasoning behind some of the major decisions we made 

in the mapping process. 

6.1 Internal/External vs. Theoretical/Empirical 

Beneath our top-level categories are THEORETICAL validity (#42), and empirical validity (#16). 

While many of the authors equate the terms "internal" with "theoretical" and "empirical" with 

"external", we distinguish the ideas. We view internal and external validation as dealing with what 

is being validated, while theoretical and empirical validation deal with how a metric is validated. 

Specifically, internal validation deals with how well a metric measures an attribute, whereas as 

external validation relates a metric to a quality factor (i.e., another metric). Theoretical validation 

uses logic to argue formally whether a metric is valid or not, while empirical validation employs 
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analysis of data from experimentation or observation. The authors equate the terms because, as we 

have seen in our review, researchers typically perform internal validation theoretically and external 

validation empirically. One exception, however, is attribute validity (#6) which is an empirical 

way to validate a metric internally. 

6.2 Construct validity 

Construct validity (#10) differs from internal and external in that it deals with how a metric is 

implemented and studied (i.e. the construct itself). The construct validity of a metric will differ 

from research project to research project. For example, one could have a metric that was internally 

valid and was externally valid, but the analysis may be wrong because of a poor instrument (#20).  

Also in the construct validity category is definition validity (#12), which deals with providing a 

clear, unambiguous, deterministically-defined metric. Many authors (Lincke and Lowe 2006), 

(Henderson-Sellers 1996), (Baker, Bieman et al. 1990), (El Emam 2000), (Roche 1994) stress the 

importance of providing clear definitions for both the metrics and the analysis in metrics 

validation. Among the reasons for definition validity is that providing a valid metric definition 

(e.g. in a publication) allows that metric to be correctly reproduced so that it can be correctly 

studied and used by other researchers.  

6.3 Representation Condition and Internal, Theoretical Validity 

Within internal validity, theoretical validity is the Representation Condition. The Representation 

Condition is a mathematical property taken from Measurement Theory that deals with the 

relationship between a metric's attribute and the number system it maps to. Some authors (Fenton 

1994), (Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990) claim that satisfying the 

Representation Condition is the same as internal, theoretical validity. However, in our review we 

found several criteria that are not concerned directly with Representation Condition, but could still 

be considered internal and theoretical. For example, actionability (#2) can be satisfied by making a 

logical argument about the attribute being measured, but does not deal with the mathematical 

mapping between an attribute and the number system.  

Kitchenham, et al. also explain that one way of corroborating a measure (perhaps satisfying the 

Representation Condition in the process) is to perform experiments to see whether people agree 

that an attribute exists or whether mapping to a value captures their understanding of the attribute 

(#6) (Kitchenham, Pfleeger et al. 1995). Finding disagreements in such an experiment would 

underscore the importance of theoretical validity as some authors define metrics for concepts such 

as size, complexity, cohesion, coupling, but do so without providing a precise definition for the 

attribute they intend to measure. Without precise definitions, software measurement becomes a 

matter of belief. If two people disagree on the concept of, say, code size, then they will certainly 

disagree on a metric. For example, Weyuker (Weyuker 1988) highlights the difficulty in 

evaluating complexity metrics because not everybody agrees on what a complexity metric is truly 

supposed to be measuring. A more thorough discussion of complexity is provided in Section 7.2. 
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6.4 External, Empirical Validity 

The external, empirical validity category included all of the criteria that involved some sort of 

statistical analysis with a quality factor. Some of the authors (Baker, Bieman et al. 1990), (Fenton 

1994), (Schneidewind 1992) point out that external, empirical validation is not made up entirely of 

prediction. Of Schneidewind's six validation criteria (Schneidewind 1992) (all of which fall into 

external, empirical), the notion of prediction is its own category (#30).  

The notion of an underlying theory (#45) appears in both the external, empirical and internal, 

theoretical categories. In each situation, the actual theory would be different. An underlying theory 

for internal validation would be about how a metric measures a given attribute, whereas the 

underlying theory in external validation would be about how one attribute relates to another 

attribute. 

A priori validity (#1) and underlying theory (#45) are also related ideas in the context of external, 

empirical validity. The difference is that the a priori validity criterion states that the underlying 

theory must be presented before performing a correlation, and the underlying theory criterion 

merely states that a correlation must have an underlying theory.  

While Schneidewind's trackability validation criterion (#43), which was not mentioned often by 

other sources in our study, bears resemblance to the causality criterion (#8). The trackability 

validation criterion states that a metric must change as the external quality factor changes. If a 

metric's attribute truly causes change in software’s external quality, then trackability ought to be 

empirically supported (e.g. increasing quality reduces code size, and vice versa). Although a 

metric can be trackable and still lack causality, one can use the contrapositive of the causality 

implying trackability to argue that a metric lacks causality (i.e. not trackable implies not causal). 

For example, one could invalidate the claim that low test coverage causes faults by showing that 

fixing a fault in code does not change the test coverage. The fact that test coverage trackability is 

invalid causes test coverage trackability to be causally invalid.  

7.	
  Conflicts	
  and	
  Common	
  Themes	
  

As we proceeded to analyze the criteria from our study, we noticed that several ideas were 

recurrent in our sources. In some instances, such as with code complexity, the sources have 

differing views about a particular validation criterion or group of criterion. In this section, we 

outline these cases by comparing and contrasting the perspectives we observed. 

7.1 Measurement Theory 

A common line of reasoning in many of the sources in our study involves a discussion of 

measurement theory. Measurement theory is a field taken from mathematics that deals with 

developing sound measurements. Within measurement theory, there are different scales that a 

metric can take the form of, which provides a set of “admissible transformations” for that scale. 

Five major scale types are often discussed: (Briand, Emam et al. 1995), (Fenton 1994): 



27 

• Nominal: is a classification of the objects without the notion of order or distance between 

the classes. No transformations of the given nominal metric are admissible other than 

equality. Schneidewind's discriminative power (#13) is based on this measurement 

principle (Schneidewind 1992).  

• Ordinal: is a ranking of the classified objects. Equality and inequality (e.g. <, >) are 

admissible transformations. Schneidewind's ranking consistency (#36) is based on this 

measurement principle (Schneidewind 1992). 

• Interval: a metric with ordinal scale type, with the distances between the objects being 

meaningful, but the measures themselves are not. Admissible transformations include 

equality, inequality, addition, and subtraction. The Prediction (#32) criterion uses the 

interval scale to predict a factor value and the ratio scale for measuring prediction 

accuracy. Association (#5) also uses the interval scale for measuring the difference in 

component quality (Schneidewind 1992). 

• Ratio: a metric with an interval scale and a meaningful "zero" value, so that ratios 

between values are meaningful. Admissible transformations include equality, inequality, 

addition, subtraction, multiplication, and division.  

• Absolute: a metric has an exact mapping to the attribute it is measuring; all 

transformations preserve meaning.  

Curtis (Curtis 1980) explains that statistical techniques make no assumptions about the type of 

scale employed, so the problem of scale type validity is one in measurement theory rather than 

statistical theory. Curtis’s statement supports what Kitchenham, et al. (Kitchenham, Pfleeger et al. 

1995), Fenton, et al. (Fenton 1994) and other authors indicate regarding scale validity. 

Kitchenham, et al. also suggest that accuracy is an important criterion for one scale type over 

another. Furthermore, Kitchenham, et al. recommend that measures should be subject to some 

measurement error determined by the accuracy of the chosen scale type (Kitchenham, Pfleeger et 

al. 1995). Many other authors discuss measurement theory and scale types (El Emam 2000) (Bush 

and Fenton 1990) (Fenton 1991) (Briand, Emam et al. 1995) (Schneidewind 1992). 

7.2 The Complexity Controversy   

Among all of the sources we reviewed, the most frequently cited work was Weyuker's (Weyuker 

1988) complexity metrics validation criteria (#4a-c, 21, 22, 25, 29, 31, 37). Although Weyuker’s 

nine criteria are specifically defined over code complexity measures, we include Weyuker's 

criteria in this paper for three reasons:  

1. Weyuker is the only complexity-based author found in our study who proposed criteria 

for validation of complexity metrics; 

2. Her criteria have been intensely contested by other metrics validation researchers over the 

years; and  
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3. Her criteria are closely related to the Representation Condition, a property that many 

researchers cite as the most important category in internal metrics validation. 

Kitchenham, et al. (Kitchenham, Pfleeger et al. 1995) provided a thorough examination of the 

complexity metrics validation criteria, generalizing some criteria to all metrics while also rejecting 

several criteria. Kitchenham, et al. contend that Weyuker's Monotonicity (#25) and Interaction 

Sensitivity (#22) are inadmissible since they imply a specific scale type (Kitchenham, Pfleeger et 

al. 1995). Kitchenham, et al. also regard Increasing Growth (#21) as inadmissible because it 

involves the relation “less than” (i.e. “<”) and thereby excludes nominal scale units (Kitchenham, 

Pfleeger et al. 1995). Kitchenham, et al. explain that Renaming Insensitive (#37) is related to the 

Representation Condition and that accepting the Representation Condition means Renaming 

Insensitive (#37) is unnecessary. Kitchenham, et. al also explain that Weyuker's Permutation (#31) 

is incorrect because she is confusing program correctness with structural complexity (Kitchenham, 

Pfleeger et al. 1995).  

The issue of the necessary scale types in code complexity is a much-discussed topic. Briand, et al. 

(Briand, Emam et al. 1995) support Weyuker's complexity metric validation criteria by indicating 

that complexity metrics need not be additive (i.e. on an interval scale). Note that they did not to 

indicate that metrics cannot be additive, just that additivity should not be a mandatory requirement 

for complexity metrics. The statement by Briand, et al. is in direct contradiction with the argument 

presented by Fenton (Fenton 1994) which indicates that complexity metrics must be additive.  

Furthermore, transformation invariance (#43) is a specific instance of Weyuker's Renaming 

Insensitivity (#36). For example, renaming a variable preserves semantics of a program. However, 

transformation invariance can include other semantics-preserving transformations, which Harman 

and Clark provide an example of. Furthermore, Weyuker's appropriate granularity criteria (#4) are 

meant to capture the notion that different implementations of the same functionality can have 

different measurements, which is a different concept than semantically equivalent programs 

having the same metric. As a result, transformation invariance can be considered a generalization 

of renaming insensitivity, but bounded by appropriate granularity. 

Fenton (Fenton 1994) describes several weaknesses in Weyuker's approach, claiming that it 

attempts to characterize several incompatible views of complexity. Fenton also explains that 

Weyuker's granularity criteria (#4) are from “incompatible views of complexity” (Fenton 1994). 

Fenton also explains that Weyuker's axiomatic approach to complexity is prescribing necessary but 

not sufficient criteria for the validation of complexity metrics.  

7.3 “External Validation is All We Need” 

Another contested part of the literature is the metrics validation framework presented by 

Shneidewind (Schneidewind 1991) (Schneidewind 1992) (#5, #13, #32, #36, #38, #43). Most of 

the disagreements with Schneidewind's framework are not in the necessity of his six validation 

criteria, but in the initial claim that they are sufficient. That is, the claim that external (#17), 

empirical (#16) validation is enough to consider a metric valid. Central to the disagreement is the 
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following statement: “If metrics are to be of greatest utility, the validation should be performed in 

terms of the quality functions (quality  assessment, control, and prediction) that the metrics are to 

support” (Schneidewind 1992). 

Specifically, Kitchenham, et al. (Kitchenham, Pfleeger et al. 1995) explain that Schneidewind's 

method of validating software metrics  is incomplete as validating a predictive model  is different 

from validating a measure. However, Kitchenham, et al (Kitchenham, Pfleeger et al. 1995) agree 

that basic statistical techniques such as correlation analysis can be used to investigate relationships 

between attributes. Fenton (Fenton and Neil 2000) disagrees with Schneidewind by stating that 

valid metrics may be inherently poor at predicting software quality. 

None of the authors in our sources, however, seem to disagree with the correctness of any of 

Schneidewind's six validation criteria, rather, they extend his framework. Briand, et al. (Briand, 

Emam et al. 1995) explain that once a measure is valid from a theoretical point of view, the 

measures must be validated empirically as no theoretical model can guarantee truthfulness, 

supporting Schneidewind’s emphasis on external, empirical validation. Lastly, El Emam (El 

Emam 2000) presents a more detailed version of Schneidewind's (Schneidewind 1991), 

(Schneidewind 1992) approach by demonstrating various techniques to find statistical correlation. 

Roche (Roche 1994) agrees with Schneidewind (Schneidewind 1992) when he says "associated 

with the validation process is on-going validation"; that is, a metric should be validated 

continuously on various projects and through time, which Schneidewind supports in describing 

repeatability (#38). 

7.4 Necessary, Desirable, and Sufficient Criteria 

In extracting and mapping the validation criteria, we noticed that some authors presented their 

criteria with varying levels of necessity. Some of the criteria are presented as a ways to invalidate 

a metric rather than describing what is sufficient for validation. Furthermore, some authors 

presented their criteria as necessary for validation, while others treated their criteria as desirable. 

In this paper, we examine three relationships between a validation criterion and metric validity: 

“sufficient”, “necessary”, and “desirable”. 

• A sufficient validation criterion S is defined by extending the formal logic definition of  

"sufficient" (Barwise 2002):  if a metric M satisfies S, then M is valid. However, if M does 

not satisfy S, it is not necessarily invalid. Informally, satisfying a sufficient criterion is enough 

consider a metric valid, but it may not be the only criterion that exists.  

• A necessary validation criterion N is defined by extending the formal logic definition of 

"necessary" (Barwise 2002): if a metric M does not satisfy N, then M is invalid. However, if 

M satisfies N, we cannot say that M is (fully) valid. Informally, a metric must satisfy a 

necessary criterion to be considered valid, but satisfying a necessary criterion is not enough to 

consider the metric valid. 
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• A desirable validation criterion D is defined by extending the definition of (Weyuker 1988): 

if a metric M does not satisfy D, then M is not necessarily invalid, however, metric M 

satisfying D enables M to be interpreted or used in a specific way.  

For example, Kitchenham et al. (Kitchenham, Pfleeger et al. 1995) regard the Representation 

Condition (#39) as necessary, but Cavano (Cavano and McCall 1978) presents constructiveness 

(#11) as desirable. 

Furthermore, even when multiple authors discussed the same criterion, some would treat the 

criterion as necessary; others would treat the criterion as desirable. For example, (Kitchenham, 

Pfleeger et al. 1995) refers to the criteria in (Weyuker 1988) as being necessary, while Weyuker et 

al. (Weyuker 1988) refer to their criteria as desirable. 

We also noticed that the authors attempted to find conditions that are desirable and necessary, but 

nobody presents sufficient criteria. While Schneidewind presents his criteria as necessary 

(Schneidewind 1991), (Schneidewind 1992), Briand, et al. have argued that he implies his criteria 

are sufficient as well (Briand, Emam et al. 1995). Indeed, Briand, et al. have indicated that there 

should be no all-encompassing set of criteria which is to be deemed sufficient when they write 

“Measurement concepts that are different in nature should be characterized by different sets of 

properties” Briand, et al. (Briand, Emam et al. 1995). 

Ultimately, not every author explicitly stated how crucial their validation criterion was, so we 

could not assemble a full classification of "desired versus necessary" criteria without inferring 

ideas that the authors never conveyed. However, the observation warranted a deeper analysis of 

why the authors felt that certain criteria were more important than others. This deeper analysis 

brought us to collect our authors' motivations into a spectrum of philosophies, which we discuss in 

the following section. 

8. Spectrum of Philosophies 

We postulate that the reason researchers have yet to determine a sufficient set of criteria comes 

from a fundamental difference in philosophies about how a metric ought to be used. A metric 

could be used either as a pragmatic way of improving software and its surrounding processes or 

more rigorously as a window into understanding the very nature of software. We view the 

differing perspectives as being based on two opposing philosophies: 

• The goal-driven philosophy holds that the primary purpose of a metric is to use it in for 

assessment, prediction, and improvement. Validating a metric internally (#24), then, only 

serves to improve the usefulness of the metric in its application. If a metric 

is “almost” internally valid (i.e. passes many internal validation criteria, but fails a few), those 

with a goal-driven perspective would not see a major problem as long as the project benefited 

from the guidance and decision support gleaned from using the metric. 

• The theory-driven philosophy views that the primary purpose of a metric is to gain 

understanding of the nature of software. Validating a metric internally, then, is of central 
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importance. If a metric does not follow the Representation Condition (#39), for example, then 

the metric is invalid and should not be further studied. Those of the theory-driven perspective 

often denounce the use of external, empirical studies claiming that the studies do not include a 

thorough discussion of internal, theoretical validity.  

More specifically, the goal-driven philosophy can be characterized by the following ideals: 

• Specify measurement goals. Metrics should be gathered, defined and analyzed with respect 

to a specific goal; that is, how to fix a given set of problems in a given project or 

organization. For example, Fenton (Fenton 1994) and Briand et al. (Briand, Emam et al. 

1995), explain that measurement activities must always have clear objectives and in fact be 

objective-based (e.g. goal/question/metric (Basili and Weiss 1994)) also agree with this idea.  

• Goals vary with specific processes and products. Metrics can only be validated to a certain 

project, process, or environment. Schneidewind (Schneidewind 1991) and Roche (Roche 

1994) contend that metrics should be used in similar processes, products or environments.  

• Validation is a continuous process. Since metrics are validated to specific projects, a metric 

that is valid today may not be valid tomorrow, and a metric that is valid on the current project 

may not be relevant on the next project. For example, Schneidewind explains that the 

fundamental problem in software metrics validation is the following: there must be a project 

in which metrics are validated, and a different project in which the metrics are applied. There 

could be significant time lags, product differences, and process differences between these two 

projects, and these scheduling differences should signal the need to exercise care in choosing 

the two projects such that the application of the metrics is appropriate (Schneidewind 1991).  

• All theoretical analysis eventually serves a goal. Theoretical analysis, such as the 

Representation Condition, ought to be pursued, but only insofar as helping achieve the 

measurement goal. For example, Schneidewind explains that the purpose of metrics validation 

is to identify metrics that are related to software quality factors (which are typically the 

measurement goal) (Schneidewind 1991).  

• Metrics can have an ad-hoc definition. A metric can be specific to a product, process, 

environment, or technology. For example, a metric that looks for the use of a specific module 

in the code would be an ad hoc definition as it would not have meaning outside of its project. 

Those of the goal-driven perspective would view ad hoc definitions acceptable as long as the 

metric leads to fulfilling a goal. 

• Actionable metrics are the best. Actionable metrics that are associated with quality factors 

are the most desirable as they can be used to predict and improve the process. Un-actionable 

prediction is less useful, but can still fulfill specific goals and should still be pursued. 

• “Good enough” is good enough. Statistical theory is only relevant to the extent that it helps 

us to measure the association or predictability of an actionable metric; a debate on whether a 

metric is defined over the correct scale type is less important than external validation because 

an improper scale type can still be used in practice and achieve adequately effective results.  
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• No universally applicable set of criteria exists. All validation criteria serve to fulfill a 

specific goal, which can vary from project to project. The goal, then dictates which criteria 

apply to a given project.  

The theory-driven philosophy can be characterized by the following ideals: 

• Must have a theory. Metrics should be gathered based upon an underlying theory of how the 

measurement is representative of an attribute in the software. Improvement in a process-

driven sense takes a back seat to improvement of our knowledge of software. For example, 

Briand, et al. contend that internal attributes are interesting for software engineers as long as 

they are a part of software engineering theories (Briand, Emam et al. 1995).  

• Metrics should be generally applicable. A metric must be universally defined before we can 

begin to apply it. For example, Lincke (Lincke and Lowe 2006) contends that metric 

definitions should be independent of environments or project-specifics.  

• Metrics should be repeatable. Metrics should be gathered systematically by a program or 

clearly specified procedure, so as to ensure that there are no errors during measurement. The 

goal-driven philosophy would agree with this idea, too, but only to the extent that the error is 

within an acceptable range to make an acceptable prediction.  

• Theoretical, internal validation is paramount. All possible values of the metric must align 

with the assumptions of the attribute being measured. Insinuated in this idea is that a metric 

should be held to close scrutiny mathematically and analytically before it is ever tested 

empirically or applied to a process. Scale type, admissible transformations, and appropriate 

use of statistical techniques are all stressed. 

• Know the underlying reasons. Eventually, the true validation of metrics can help us 

understand the underlying forces that cause software and the software development process to 

behave the way that they do.  

• Un-actionable is not useless. Just because a metric is not actionable does not render it useless 

to understanding software. Some metrics are relevant because they help us characterize 

software for many purposes outside of prediction and other specific project goals. Therefore, 

those of theory-driven philosophy would view actionability as orthogonal to a metric’s 

validity. 

• A universally applicable set of criteria does exist. A universally-applicable set of criteria 

must exist if we are to understand and agree upon the nature of software. 

We contend that the two ends of the spectrum are counter-opposed, meaning they compete with 

one another both in theory and in practice. However, the two philosophies are not mutually 

exclusive. A given researcher or practitioner may agree or disagree with some aspects of both 

extremes and borrow motivations from both philosophies. Even within the same sources, we 

frequently discovered metrics validation criteria that seemed to emanate from both philosophies. 

As such, we contend that the two philosophies below represent the two ends of a spectrum as 

shown in Figure 12.   
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Figure 12: The spectrum of diametrically-opposed philosophies 

One may consider a relative ordering of a given validation criterion or set of criteria in terms of 

their position on the spectrum, but we find that no objective system of measurement exists for 

determining such an ordering. Thus, we do not indicate a mapping of the criteria onto the spectrum 

we propose in this paper. We do not view that one paper, author, or criterion fully adhere to one 

extreme or the other. However, we view the following as representative examples of criteria that 

are motivated by either the goal-driven philosophy or the theory-driven philosophy.  

• We view five of Schneidewind's six criteria (Schneidewind 1991), (Schneidewind 1992) to be 

primarily motivated by a goal-driven philosophy: association (#5), rank consistency (#36), 

discriminative power, (#13), predictability (#30), and trackability (#42). 

• However, we view Schneidewind's sixth criterion, repeatability (#35), as being in the middle 

of the spectrum. If a metric has been shown to be related to a quality factor on repeated 

occasions, then it is reliable for satisfying specific project goals and lends credence to a 

universal truth.  

• We view the Representation Condition (#39) and its sub-criteria to be primarily motivated by 

a theory-driven philosophy. If a metric satisfies the Representation Condition, then 

understanding the number system the metric maps to implies understanding the attribute being 

measured. 

• We view actionability (#2) to be primarily motivated by the goal-driven philosophy. 

Actionability is often discussed in terms of satisfying specific goals of a project (Curtis 1980), 

(Roche 1994), (Fenton and Neil 2000). Those of the theory-driven philosophy would view 

actionability as orthogonal to a metric's validity: if a metric is valid but is un-actionable in 

practice, it still speaks to the nature of software.  

9.	
  Choosing	
  Validation	
  Criteria:	
  A	
  Scenario	
  

Suppose a researcher, John, proposes a new metric named SuperM. In his analysis, John wishes to 

demonstrate to the audience that the metric can be used to prevent security vulnerabilities from 

being injected into the software project. In his first study, John introduces the metric with an 

underlying theory of how the metric is related to post-release vulnerabilities (A priori validity, #1). 

John shows a statistical association (Association, #5) between the metric and post-release 

vulnerabilities. This association indicates that the metric is worth investigating further, so John a 

prediction system (Prediction system validity, #33) to show that SuperM empirically predicts post-

release vulnerabilities with an acceptable amount accuracy.  

Next, John introduces SuperM to a development team, to demonstrate its usefulness in an 

industrial setting. The developers are asked to follow SuperM and use it to guide their manual 
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inspections. On the first day of the study, John notices that developers can "fool" SuperM by 

quickly copy-and-pasting dead code to inflate the metric's values (Non-exploitability, #28). To 

achieve non-exploitability and thereby protect the truthfulness of the metric's values, the developer 

creates SuperM2. 

A separate researcher, Jane, upon examining our list of metrics validation criteria, comes across 

the repeatability criterion (Repeatability, #38) and decides to test the predictability and association 

for SuperM2 with several software projects. Jane's study shows that SuperM2 is repeatable across 

all but one of the projects in the study. This result shows that while SuperM2 does extend beyond 

the context of the initial project, it may not be applicable to all projects. 

Meiyappan presents a study on SuperM2 and shows that, in the Java programming language, an 

infinite number of programs could have the same SuperM2 value. As a result, Meiyappan 

recommends not using SuperM2 in a Java context. Furthermore, the Meiyappan notices that some 

implementations of SuperM2 produce negative values, but SuperM2 does not make sense for 

negative values. Meiyappan investigates John's work and, upon confirming that SuperM2 is not 

defined in the negative range (Appropriate Continuity, #3), submits a patch to the original tool to 

fix the instrument (Instrument Validity, #20). 

Each one of the studies in this scenario was driven by one factor: a pre-determined set of 

validation criteria from this literature review. In each of the steps of the progression above, a 

researcher initially had a question about the metric he or she wished to have answered. Next, the 

researcher decided on a set of metric validation criteria that would answer the question he or she 

had about the metric. After evaluating the metric using the chosen metrics validation criteria, the 

researcher was able to provide evidence for the answer to the question he or she initially posed. 

The end result is an evolutionary process of articulating the merits and limitations of a proposed 

metric.  

10.	
  Conclusion	
  

Our systematic literature review revealed that the academic literature contains a highly diverse set 

of assertions on what constitutes a valid metric. Our review resulted in 47 distinct validation 

criteria in the published software engineering literature, coming from 20 papers and 20 distinct 

authors. Some of the authors explicitly disagree with some criteria, while other criteria subsume 

each other. Understanding the opposing motivations behind the criteria helps us take the next steps 

toward establishing software metric validation criteria. Researchers proposing new metrics should 

consider the applicability of the validation criteria in terms of our categorization and analysis. 

Establishing a set of necessary and/or sufficient criteria could bring metrics validation research 

from ad hoc analysis to a mature science of measurement and software improvement. However, 

after analyzing the criteria and the discussion among the authors of the papers, we conclude that 
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metrics validation criteria provide answers to questions that researchers have about the merits and 

limitations of a metric. 

10. Sources 

• (Kitchenham, Pfleeger et al. 1995)   B. Kitchenham, S. L. Pfleeger, and N. Fenton, 

"Towards a Framework for Software Measurement Validation," IEEE Transactions on 

Software Engineering, vol. 21, pp. 929-944, 1995.  

• (Curtis 1980).    B. Curtis, "Measurement and experimentation in Software Engineering," 

Proceedings of the IEEE, vol. 68, pp. 1144-1157, 1980.  

• (Roche 1994)  J. M. Roche, "Software metrics and measurement principles," ACM 

SIGSOFT Software Engineering Notes, vol. 19, pp. 77-85, 1994.  

• (Weyuker 1988) E. J. Weyuker, "Evaluating software complexity measures," IEEE 

Transactions on Software Engineering, vol. 14, pp. 1357-1365, 1988.  

• (Jones 1994)  C. Jones, "Software metrics: good, bad and missing," Computer, vol. 27, 

pp. 98-100, 1994.  

• (Fenton 1994) N. Fenton, "Software measurement: a necessary scientific basis," IEEE 

Transactions on Software Engineering, vol. 20, pp. 199-206, 1994.  

• (Schneidewind 1991) N. F. Schneidewind, "Validating software metrics: producing 

quality discriminators," in International Symposium on Software Reliability Engineering, 

1991, pp. 225-232.  

• (El Emam 2000) K. El Emam, "A Methodology for Validating Software Product 

Metrics," National Research Council of Canada, Ottawa, Ontario, Canada NCR/ERC-

1076, June, 2000.  

• (Fenton and Neil 2000) N. E. Fenton and M. Neil, "Software metrics: roadmap," in Future 

of Software Engineering, Limerick, Ireland, 2000, pp. 357-370.  

• (Briand, Emam et al. 1995)  L. Briand, K. E. Emam, and S. Morasca, "On the application 

of measurement theory in software engineering," International Software Engineering 

Research Network Tech Report #ISERN-95-04, 1995.  

• (Schneidewind 1992) N. F. Schneidewind, "Methodology for validating software 

metrics," IEEE Transactions on Software Engineering, vol. 18, pp. 410-422, 1992.  

• (Henderson-Sellers 1996) B. Henderson-Sellers, "The mathematical validity of software 

metrics," ACM SIGSOFT Software Engineering Notes, vol. 21, pp. 89-94, 1996.  

• {Briand, 1995 #230}  L. Briand, K. E. Emam, and S. Morasca, "Theoretical and empirical 

validation of software product measures," International Software Engineering Research 

Network, Technical Report, 1995.  
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• (Harman and Clark 2004) M. Harman and J. Clark, "Metrics are fitness functions too," in 

10th International Symposium on Software Metrics, 2004, pp. 58-69.  

• (Cavano and McCall 1978) J. Cavano and J. McCall, "A framework for the measurement 

of software quality," in Software quality assurance workshop on functional and 

performance issues, 1978, pp. 133-139.  

• (Lincke and Lowe 2006)  R. Lincke and W. Lowe, "Foundations for defining software 

metrics," in 3rd International Workshop on Metamodels, Schemas, Grammars, and 

Ontologies for Reverse Engineering (ATEM '06), Genoa, Italy, 2006.  

• (Baker, Bieman et al. 1990)  A. L. Baker, J. M. Bieman, N. Fenton, D. Gustafson, A. 

Melton, and R. Whitty, "A philosophy for software measurement," Journal of Systems 

and Software, vol. 12, pp. 277-281, 1990.  

• (Courtney and Gustafson 1993) R. E. Courtney and D. A. Gustafson, "Shotgun 

Correlations in Software Measures," Software Engineering Journal, vol. 8, pp. 5-13, 

1993.  

• (Bush and Fenton 1990) M. E. Bush and N. E. Fenton, "Software measurement: A 

conceptual framework," Journal of Systems and Software, vol. 12, pp. 223-231, 1990.  

• (Fenton 1991) N. Fenton, "Validating software measures," Journal of Software Testing, 

Verification & Reliability, vol. 1, pp. 27-42, 1991.  
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Appendix	
  A:	
  Mapping	
  Authors,	
  Criteria	
  and	
  Categories	
  	
  

We present the full mapping of our criteria, from the sources in our study in Figures 13, 14, 15, 

and 16. An arrow between a source and a criterion or a group of criteria indicates that the source 

mentioned or purported the idea or criterion. An arrow between a criterion and an idea or group 

indicates that the criterion is a part of or specific instance of that group.  

 
Figure 13: The metrics map at high level, with legend 
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Figure 14: Internal metrics validation criteria, with authors included 
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Figure 15: External metrics validation criteria, with authors included 

 

Figure 16: Construct validity criteria, with authors included 

 

 

 


