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Abstract— We consider data exchange for XML documents:
given source and target schemas, a mapping between them, and
a document conforming to the source schema, construct a target
document and answer target queries in a way that is consistent
with source information. The problem has primarily been studied
in the relational context, in which data-exchange systems have
also been built.

Since many XML documents are stored in relations, it is
natural to consider using a relational system for XML data
exchange. However, there is a complexity mismatch between
query answering in relational and XML data exchange, which
indicates that restrictions have to be imposed on XML schemas
and mappings, and on XML shredding schemes, to make the use
of relational systems possible.

We isolate a set of five requirements that must be fulfilled in
order to have a faithful representation of the XML data-exchange
problem by a relational translation. We then demonstrate that
these requirements naturally suggest the inlining technique for
data-exchange tasks. Our key contribution is to provide shred-
ding algorithms for schemas, documents, mappings and queries,
and demonstrate that they enable us to correctly perform XML
data-exchange tasks using a relational system.

I. Introduction

Data exchange is the problem of finding an instance of a target
schema, given an instance of a source schema and a schema
mapping, that is, a specification of the relationship between the
source and the target. Such a target instance should correctly
represent information from the source instance under the
constraints imposed by the target schema, and should allow
one to evaluate queries on the target instance in a way that
is semantically consistent with the source data. The problem
has received much attention in the past few years, with several
surveys already available [22], [9], [8].

The general setting of data exchange is this:

queryQ
sourceS targetT

mappingM

We have fixed source and target schemas, an instanceS
of the source schema, and a mappingM that specifies the
relationship between the source and the target schemas. The
goal is to construct an instanceT of the target schema, based
on the source and the mapping, and answer queries against
the target data in a way consistent with the source data.

The mappings rarely specify the target instance completely,
that is, for each sourceS and mappingM, there could be mul-
tiple target instancesT1, T2, . . . that satisfy the conditions of
the mapping. Such instances are calledsolutions. The notion of
query answering has to account for their non-uniqueness. Typi-
cally, one tries to computecertain answersCERTAINM(Q,S),
i.e., answers independent of a particular solution chosen.If
Q produces relations, these are usually defined as

⋂

iQ(Ti).
Certain answers must be produced by evaluating some query
– not necessarilyQ but perhaps itsrewriting Qrewr over a
particular solutionT , so thatQrewr(T ) = CERTAINM(Q,S).

Thus, the key tasks in data exchange are: (a) choosing
a particular solutionT among {T1, T2, . . .} to materialize,
and (b) finding a way of producing query answers over that
solution by running a rewritten queryQrewr over it. Usually one
builds a so-calleduniversalsolution [13], [8]; these solutions
behave particularly nicely with respect to query answering.

These basics of data exchange are independent of a partic-
ular model of data. Most research on data exchange, however,
occurred in the relational context [13], [14], [22], [8] or slight
extensions [33], [19]; the first paper that attempted to extend
relational results to the XML context was [6], and a few
followups have since appeared [4], [3]. They all concentrate on
the algorithmic aspects of query answering and constructing
solutions, with the main goal of isolating tractable cases.
The problem these papers do not address ishow XML data
exchange can be implemented?

Previous work on algorithms for XML data exchange has
tacitly assumed that one uses a native XML DBMS such as
[20]. However, this is not the only (and perhaps not even the
most common) route: XML documents are often stored in
relational DBMSs. In fact, many ETL products claim that they
handle XML data simply by producing relational translations
(known asshredding[23]). This leads to a two-step approach:

• first shred XML data into relations;
• then apply a relational data-exchange engine (and publish

the result back as an XML document).
The approach seems very natural, but the key question is
whether it will work correctly. That is, are we guaranteed
to have the same result as we would have gotten had we
implemented a native XML data-exchange system?

To state this more precisely, assume that we have a transla-
tion σ(·) that can be applied to (a) XML schemas, (b) XML



documents, (c) XML schema mappings, and (d) XML queries.
Then the concept ofcorrectnessof such a translation is shown
below:

XML : sourceS
mappingM

- targetT
queryQ

- answer

Relations : σ(S)

shred

? σ(M)
- σ(T )

shred

? σ(Q)
- answer

shred

?

That is, suppose we start with an XML documentS and
an XML schema mappingM. In a native system, we would
materialize some solutionT over which we could answer
queriesQ.

But now we want a relational system to do the job. So
we shredS into σ(S) and then apply toσ(S) the translation
of the mappingσ(M) to get a solution – which itself is a
shredding of an XML solution – so that the answer toQ could
be reconstructed from the result of the queryσ(Q) over that
relational solution.

The idea seems simple and natural on the surface, but starts
looking challenging once we look deeper into it. Before even
attempting to show that the relational translation faithfully rep-
resents the XML data-exchange problem, we need to address
the following.

Complexity mismatch. Without restrictions, therecannot be
a faithful representationof XML data exchange by a
relational system. Indeed, it is well known that positive
relational-algebra queries can be efficiently evaluated in
relational data exchange [13], [22], [8], but even for
simple XML analogs of conjunctive queries finding query
answers can be coNP-hard [6]. So any claim that a
relational data-exchange system correctly performs XML
data exchange for arbitrary documents and queries is
bound to be wrong. We thus need to identify the cases
that can be handled by a relational system.

Which shredding scheme to use?There are several, that can
roughly be divided into two groups: those that do not take
the schema information into account (e.g., the edge repre-
sentation [15], interval codings [34], and other numbering
schemes [31]), and those that are based on schemas for
XML, such as variants of the inlining technique [29],
[23]. Since in data-exchange scenarios we start with two
schemas, it seems more appropriate to apply schema-
based techniques.

Target constraints. In relational data exchange, constraints
in target schemas are required to satisfy certain acyclic-
ity conditions; without them, the chase procedure that
constructs a target instance does not terminate [13],
[22], [8]. Constraints imposed by general XML schema
specifications need not in general be even definable in
relational calculus, let alone be acyclic [21]. We thus need
to find a shredding technique that enables us to encode
targets schemas by means of constraints that guarantee
chase termination.

As for the complexity issue, the work on the theory of XML
data exchange has identified a class of mappings for which
efficient query answering is possible [6], [4], [3]. The schemas
(say, DTDs), have rules of the formdb → book∗, book →
author∗ subject (we shall give a formal definition later), and
the mappings transform patterns satisfied over the source into
patterns satisfied over targets.

This restriction suggests a relational representation to use.
Going with the edge representation [15] is problematic: first,
each edge in an XML pattern used in a mapping will result in
a join in the relational translation, making it inefficient,and
second, enforcing even a simple schema structure under that
representation takes us out of the class of target constraints
that relational data-exchange systems can handle. Verifiably
correct translations based on numerical encodings [31], [34]
will necessarily involve numerical and/or ordering constraints
in relational translations of mappings, and this is something
that relational data exchange cannot handle at the moment
[22], [8] (beyond simple ordering constraints [2]).

One translation scheme however that fits in well with
restrictions identified in [6], [4], [3] is theinlining scheme. It
works very well for DTDs of the “right” shape, and its output
schemas involve only acyclic constraints, which is perfectfor
data-exchange scenarios.

Desiderata for the translation We now formulate some basic
requirements for the translationσ, in order to be able to
achieve our goals described in the diagram above. We need
the following:

Requirement 1: translation of schemasA translationσ(D)
that, when applied to a DTD of a special form, produces a
relational schema that only has acyclic constraints, which
can be used in a relational data-exchange setting.

Requirement 2: translation of documents A translation
σD(·) for a DTD D that, when applied to documentT
conforming toD, produces relational databaseσD(T )
of schemaσ(D).

Requirement 3: translation of queries For a DTD D, a
translationσD(Q) of (analogs of) conjunctive queries so
thatσD(Q)

(

σD(T )
)

= Q(T ) (that is, the result ofQ(T )
can be computed by relational translations).

Requirement 4: translation of mappings For a mapping
M between a source DTDDs and a target DTDDt,
its translationσ(M) is a mapping betweenσ(Ds) and
σ(Dt) that preserves universal solutions. That is:

(a) EachσDt
-translation of a universal solution forT

underM is a universal solution forσDs
(T ) under

σ(M); and
(b) Each universal solution forσDs

(T ) under σ(M)
contains1 a σDt

-translation of a universal solution
of T underM.

Requirement 5: query answering For (analogs of) conjunc-
tive queries over trees, computing the answer toQ under

1We cannot require the equivalence, as relational solutionsare open to
adding new tuples and thus cannot always be translations of trees; we shall
discuss this later.



M over a source treeT is the same as computing a
σ(M)-solution ofσ(T ), followed by evaluation ofσ(Q)
over that solution, as is normally done in a relational
data-exchange system.

Satisfaction of these five requirements would guarantee that
we have acorrect relational translation of an XML data-
exchange problem, which would guarantee correct evaluation
of queries.

For the choice of the query language, one has to be
careful since the definition of certain answers depends on the
output of the queries. We consider two classes of conjunctive
queries over trees. The first is tree patterns that output tuples
of attribute values. These are the queries most commonly
considered in XML data exchange [6], [4], [3] because for
them we can define certain answers as the usual intersection
CERTAINM(Q,S) =

⋂

i Q(Ti). The second type of queries
we use is a simple XML-to-XML query language from whose
queries outputtrees. It is essentially the positive fragment of
FLWR expressions of XQuery [32]. For outputs which are
XML trees, the intersection operator is no longer meaningful
for defining certain answers. Instead, we use recent resultsof
[11] that show how to define and compute certain answers for
XML-to-XML queries.

Contributions Our main contributions are as follows. First,
we introduce an architecture for XML data exchange using
relational vehicles, with a focus on correct evaluation of
(analogs of) conjunctive queries on XML data. Second, we
identify a class of XML schema mappings and a shredding
mechanism that allows us to overcome the complexity mis-
match. Third, we provide algorithms for relational translation
of schemas, XML documents, schema mappings, and queries
in our proposed architecture. Finally, we prove the correctness
of the translations: namely, we show that they satisfy the above
five requirements, and thus enable us to use relational data
exchange systems for XML data-exchange tasks.

Related work In recent years, significant effort has been de-
voted to developing high-performance XML database systems,
and to building tools for data exchange. One major direction
of the XML effort is the “relational approach”, which uses
relational DBMSs to store and query XML data. Documents
could be translated into relational tuples using either a “DTD-
aware” translation [30], [29] or a “schemaless” translation.
The latter translations include the edge [15] and the node [34]
representations of the data. Indexes could be prebuilt on the
data to improve performance in relational query processing,
see, e.g., [31], [34]. Constraints arising in the translation are
sometimes dealt with explicitly [7], [24]. See [18] for a survey
of the relational approach to answering XML queries.

The work on data exchange concentrated primarily on
relations, see [8], [22] for surveys and [27], [28] for system
descriptions. Mappings for the XML data exchange problem
were studied in [6], [4]; it was noticed there that the com-
plexity of many tasks in XML data exchange in higher than
for their relational analogs, which suggests that restrictions
must be imposed for a relational implementation. The problem

of exchanging XML data was also studied in [16], [28],
which give translations of documents and DTDs into nested-
relational schemas, and then show how to perform XML data
exchange under this translation. Most RDBMSs, however, do
not provide support for nested relational schemas, and, thus,
specific machinery has to be developed in order to implement
this translation under a strictly relational setting. In fact, the
results of this paper may aid towards the development of a
relational implementation for both XML and nested-relational
data exchange.

Outline Key definitions are given in Section II. Section III pro-
vides translations of schemas and documents and shows that
they fulfill Requirements 1 and 2. Section IV provides the main
concepts of relational and XML data exchange. Section V pro-
vides translations of mappings and queries, and shows that Re-
quirements 3, 4, and 5 are fulfilled. Section VI studies queries
that output XML trees. Finally, section VII extends the results
to handle target constraints. Formal proofs of correctnessof
all the algorithms can be found in the full version which
is available at www.csc.ncsu.edu/research/tech/index.php, as
technical report TR-2010-16.

II. Preliminaries

Relational schemas and constraints: A relational schema,
or just schema, is a finite setR = {R1, . . . , Rk} of relation
symbols, possibly with a set of integrity constraints (depen-
dencies). Constraints used most often in data exchange are
egd’s and tgd’s [13], [22], [8] (equality- and tuple-generating
dependencies), but for our purposes it will suffice to consider
only keysand foreign keys. If R is a relation over attributes
U , and X is a set of attributes, thenX is a key ofR if
no two tuples ofR coincide onX-attributes (that is, for all
tuplest1, t2 ∈ R with t1 6= t2 we haveπX(t1) 6= πX(t2)). If
R1 andR2 are relations over sets of attributesU1 and U2,
respectively, then an inclusion constraintR1[X ] ⊆ R2[Y ],
whereX ⊆ U1 andY ⊆ U2 are of the same cardinality, holds
whenπX(R1) ⊆ πY (R2). We further say that a foreign key
on the attributes ofR1[X ] ⊆FK R2[Y ] holds if the inclusion
constraintR1[X ] ⊆ R2[Y ] holds, andY is a key ofR2.

With each set of keys and foreign keys, we associate a graph
in which we put an edge between attributesA andB if there
is a constraintR1[X ] ⊆FK R2[Y ] with A ∈ X andB ∈ Y .
If this graph is acyclic, we say that the set of constraints is
acyclic. A schema is acyclic if its constraints are acyclic. In
data exchange, one often uses a more technical notion of weak
acyclicity: it includes some cyclic schemas for which the chase
procedure still terminates. For us, however, the simple concept
of acyclicity will suffice, as our translations of schemas only
produce acyclic constraints.

XML documents and DTDs Assume that we have the
following disjoint countably infinite sets:El of element names,
Att of attribute names, andStr of possible values of string-
valued attributes. All attribute names start with the symbol
@.



1: r

2: book
‘Algorithm Design’

4: author

9: name
Kleinberg

10: aff
CU

5: author

11: name
Tardos

12: aff
CU

6: subject
CS

3: book
‘Algebra’

7: author

13: name
Hungerford

14: aff
SLU

8: subject
Math

(a) TreeT

r → book∗

book → author ∗ subject
author → name aff
AD(book) = @title
AD(subject) = @sub
AD(name) = @nam
AD(aff ) = @aff

(b) DTD D

Fig. 1. The XML treeT conforms toD

An XML tree is a finite rooted directed treeT = (N,G),
whereN is the set of nodes andG is the set of edges, together
with

1) a labeling functionλ : N → El;
2) attribute-value assignments, which are partial functions

ρ@a : N → Str for each@a ∈ Att; and
3) an ordering on the children of every node.

A DTD D overEl with a distinguished symbolr (for the
root) and a set of attributesAtt consists of a mappingPD from
El to regular expressions overEl − {r}, usually written as
productionsℓ→ e if PD(ℓ) = e, and a mappingAD from El
to 2Att that assigns a (possibly empty) set of attributes to each
element type. For notational convenience, we always assume
that attributes come in some order, just like in the relational
case: attributes in tuples come in some order so we can write
R(a1, . . . , an). Likewise, we shall describe anℓ labeled tree
node withn attributes asℓ(a1, . . . , an).

A tree T conforms to a DTDD (written asT |= D) if its
root is labeledr, the set of attributes for a node labeledℓ is
AD(ℓ), and the labels of the children of such a node, read
from left to right, form a string in the language ofPD(ℓ).

A class of DTDs In this paper we consider a restriction on
DTDs callednested-relational DTDs[1], [6], a class of DTDs
that naturally represent nested relational schemas such asthe
ones used by the Clio data-exchange system [27]. The reason
for using them is that outside of this class, it is very easy
to construct instances of XML data-exchange problems that
will exhibit coNP-hardness of answering conjunctive queries
(which are known to be tractable in practically all instances
of relational data exchange), see [6].

A DTD D is non-recursiveif the graphG(D) defined as
{(ℓ, ℓ′) | ℓ′ is mentioned inP (ℓ)} is acyclic. A non-recursive
DTD D is nested-relationalif all rules of D are of the form
l → l̃0 . . . l̃m where all theli’s are distinct, and each̃li is one
of li and l∗i . From now on, unless otherwise noted, all DTDs
are assumed to be nested-relational. We also assume, without
loss of generality, that the graphG(D) is not a directed acyclic
graph (DAG) but a tree. (One can always unfold a DAG into
a tree by tagging occurrences of element types with the types
of their predecessors.)

EXAMPLE 2.1. Figure 1(a) shows an example of an XML

tree. In the Figure, the node identifiers precede the correspond-
ing labels of each node inT ; we omit the attribute names and
only show the attribute values of each node. In addition, Figure
1(b) shows an example of a nested relational DTD. Moreover,
it is easy to see that the treeT of Figure 1(a) conforms toD.
�

III. Translations of schemas and documents

We now review theinlining technique [29], provide a precise
definition of the translation, and show that it satisfies ourRe-
quirements 1and2. The main idea of inlining is that separate
relations are created for the root and each element type that
appears under a star, and other element types are inlined in the
relations corresponding to their “nearest appropriate ancestor”.
Each relation for an element type has an ID attribute that is
a key, as well as (for non-root) a “parent-ID” attribute thatis
a foreign key pointing to the “nearest appropriate ancestor”
of that element in the document. All the attributes of a given
element type in the DTD become attributes in the relation
corresponding to that element type when such a relation exists,
or otherwise become attributes in the relation for the “nearest
appropriate ancestor” of the given element type.

We begin with a formal definition of thenearest appropriate
ancestorfor the element types used inD. Given a nested-
relational DTDD = (PD, AD, r), we “mark” in G(D) each
element type that occurs under a star inPD. In addition,
we mark the root element type inG(D). Then, for a given
element typeℓ, we define thenearest appropriate ancestorof
ℓ, denoted byµ(ℓ), as the closest marked element typeℓ′ in
the path from the root element toℓ in the graphG(D). The
inlining schema generation is formally captured by means of
the procedure INLSCHEMA below.

EXAMPLE 3.1. Consider again DTDD in Figure 1(b). The
relational schema INLSCHEMA(D) is as follows:

Rr (rID)
Rbook(bookID,@title,rID,subID,@sub)
Rauthor (authID,bookID,nameID,afID,@nam,@aff)

Keys are underlined; we also have the following foreign
keys:Rbook(rID) ⊆FK Rr(rID) andRauthor(bookID) ⊆FK

Rbook(bookID). �



Procedure INLSCHEMA(D)
Input : A nested relational DTDD.
Output : A relational schemaSD and a set of integrity

constraints∆D

SetSD = ∅ and∆D = ∅
for each marked element typeℓ of D:

add toSD a relationRℓ, with attributes:

attr(Rℓ) =























idℓ

AD(ℓ)
idµ(ℓ) | if ℓ 6= r.
idℓ′ | µ(ℓ′) = ℓ, ℓ′ is not marked,
AD(ℓ′) | µ(ℓ′) = ℓ, ℓ′ is not marked.

endfor
for each relationRℓ in SD:

add to∆D the constraint stating thatidℓ is key ofRℓ

and, if ℓ 6= r, the foreign key

Rℓ[idµ(ℓ)] ⊆FK Rµ(ℓ)[idµ(ℓ)].

endfor
add to∆D the dependency (stating the uniqueness of the
root)

∀ȳ∀z̄Rr(x, ȳ) ∧Rr(x
′, z̄) → x = x′.

return (SD,∆D)

The following shows that ourRequirement 1 is satisfied.

Proposition 3.2:For every nested relational DTDD, the
output of INLSCHEMA(D) is an acyclic relational schema.

Shredding of XML documents: We now move to the
shredding procedure. Given the inlining INLSCHEMA(D) =
(SD,∆D) of a DTDD, and an XML treeT conforming toD,
we use the algorithm INLDOC to shredT into an instance of
the relational schemaSD that satisfies the constraints in∆D.
Let us first explain this translation by means of an example.

EXAMPLE 3.3. Recall treeT from Figure 1(a) and DTDD
from Figure 1(b). Figure 2 shows relationsRbook andRauthor

in the shredding ofT . �

To present the algorithm, we define thenearest appropriate
ancestorµ(n) of a noden of an XML documentT = (N,G)
that conforms to a DTDD, as follows. Mark each noden of
T such thatλ(n) is starred inD, as well as the root ofT .
Thenµ(n) is the closest marked noden′ that belongs to the
path from the root ton. In the following algorithm, and for
the remainder of the paper, we denote byidn the relational
element representing the noden of a treeT .

The following proposition shows ourRequirement 2 is
satisfied.

Proposition 3.4:Let D be a DTD, andT an XML tree
such thatT |= D. Then INLDOC(T,D) is an instance of the
schema computed by INLSCHEMA(D).

Procedure INLDOC(T,D)

Input : A nested relational DTDD and an XML treeT
that conforms toD.

Output : A relational instance of the schema
INLSCHEMA(D).

for each marked noden of T :
Let ℓ be the label ofn; Add to the relationRℓ of I a
tuple that contains elements






























idn

ρ@a(n) | @a ∈ AD(ℓ)
idµ(n) | if ℓ 6= r
idn′ | µ(n′) = n, n′ is not marked.
ρ@a(n′) | µ(n′) = n , @a ∈ AD(λ(n′)) and

n′ is not marked
where the identifiers and attributes values for each of
the elementsidn′ , idµ(n) andρ@a(n′) coincide with
the position of the attributes foridλ(n′), idµ(ℓ) and
AD(λ(n′)) of Rℓ.

endfor
return I

IV. Relational and XML Data Exchange

We now quickly review the basics of relational data exchange
and introduce XML schema mappings that guarantee tractable
query answering.

Relational Data Exchange A schema mappingM is a triple
(S,T,Σ), where S is a source schema,T = (T,∆T) is a
target schema with a set of constraints∆T , and Σ is a set
of source-to-target dependenciesthat specify how the source
and the target are related. Most commonly these are given as
source-to-target tuple generating dependencies (st-tgds):

ϕ(x̄) → ∃z̄ ψ(x̄, z̄), (1)

whereϕ and ψ are conjunctions of relational atoms overS

andT, respectively.
In data-exchange literature, one normally considers in-

stances with two types of values: constants and nulls. Instances
S of the source schemaS consist only of constant values, and
nulls are used to populate target instancesT when some values
are unknown.

An instanceT of T (which may contain both constants and
nulls) is called asolution for an instanceS of S underM,
or anM-solution, if every st-tgd (1) fromΣ is satisfied by
(S, T ) (that is, for each tuplēa such thatϕ(ā) is true inS,
there is a tuplēb such thatψ(ā, b̄) is true inT ).The set of all
M-solutions forS is denoted by SOLM(S) (or SOL(S) is M
is understood).

Certain answers and canonical universal solutionThe main
difficulty in answering a queryQ against the target schema is
that there could be many possible solutions for a given source.
Thus, for query answering in data exchange one normally uses
the notion of certain answers, that is, answers that do not
depend on a particular solution. Formally, for a sourceS and



authID bookID nameID afID @nam @af
id4 id2 id9 id10 ’Kleinberg’ CU
id5 id2 id11 id12 ’Tardos’ CU
id7 id3 id13 id14 ’Hungerford’ SLU

(a) RelationRauthor in INLDOC(T, D)

bookID @title rID subID @sub
id2 ’Algorithm Design’ id1 id6 CS
id3 ’Algebra’ id1 id8 Math

(b) RelationRbook in INLDOC(T, D)

Fig. 2. Shredding ofT into INLSCHEMA(D)

a mappingM, we defineCERTAINM(Q,S) as
⋂

{Q(T ) | T ∈
SOLM(S)}.

Building all solutions is impractical (or even impossible), so
it is important to find a particular solutionT0 ∈ SOLM(S), and
a rewritingQrewr of Q, so thatCERTAINM(Q,S) = Qrewr(T0).

Universalsolutions were identified in [13] as the preferred
solutions in data exchange. Over them, every positive query
can be answered, with a particularly simple rewriting: after Q
is evaluated on a universal solutionT0, tuples containing null
values are discarded. Even among universal solutions thereare
ones that are most commonly materialized in data-exchange
systems, such as thecanonical solutionCANSOLM(S), com-
puted by applying the chase procedure with constraintsΣ and
∆T to the source instanceS. If all the constraints in∆T are
acyclic (in fact, even a weaker notions suffices), such a chase
terminates and computes CANSOLM(S) in polynomial time
[13].

Note that ourRequirement 4 relates universal solutions in
relational and XML data exchange; in particular, we do not
insist on working with the canonical solutions, and others,
such as the core [14] or the algorithmic constructions of [26]
can be used as well.

Towards XML schema mappings: patternsTo define XML
schema mappings, we need the notions of schemas and source-
to-target dependencies. The notion of schema is well under-
stood in the XML context. Our dependencies, as in [6], [4], [3]
will be based ontree patterns. Patterns are defined inductively
as follows:

• ℓ(x̄) is a pattern, whereℓ is a label, and̄x is a (possibly
empty) tuple of variables (listing attributes of a node);

• ℓ(x̄)[π1, . . . , πk] is a pattern, whereπ1, . . . , πk are pat-
terns, andℓ and x̄ are as above.

We writeπ(x̄) to indicate that̄x is the tuple of all the variables
used in a pattern. The semantics is defined with respect to a
node of a tree and to a valuation of all the variables of a pattern
as attribute values. Formally,(T, v) |= π(ā) means thatπ is
satisfied in nodev when x̄ is interpreted as̄a. It is defined as
follows:

• (T, v) |= ℓ(ā) if v is labeledℓ and its tuple of attributes
is ā;

• (T, v) |= ℓ(ā)[π1(ā1), . . . , πk(āk)] if

1) (T, v) |= ℓ(ā) and
2) there exist childrenv1, . . . , vk of v (not necessarily

distinct) so that(T, vi) |= πi(āi) for every i ≤ k.

We write T |= π(ā) if (T, r) |= π(ā), that is, the pattern is
witnessed at the root.

EXAMPLE 4.1. Consider treeT from Figure 1(a), and the
tree patternπ(x, y) = r[book(x)[author[name(y)]]], which
finds books together with the names of their authors. Then it
is easy to see thatT |= π(’Algorithm Design’, Tardos).
In fact, evaluation ofπ(x, y) over T returns the tuples
(’Algorithm Design’, Tardos), (’Algorithm Design’,
Kleinberg), and (’Algebra’, Hungerford). �

Given a DTDD and a tree patternπ, we say thatπ is
compatiblewith D if there exists a treeT that conforms to
D and a tuple of attribute values̄a such thatT |= π(ā). In
general, checking compatibility of patterns with DTDs is NP-
complete [10], but for the DTDs we consider here it can be
easily done in polynomial time.

EXAMPLE 4.2.[Example 4.1 continued] The patternπ(x, y)
is compatible with the DTDD of Figure 1(b). On the other
hand, the patternπ′(x) = r[author(x)] is not, because no tree
consistent withD can have a child ofr labeled asauthor, or
an author-labeled node with an attribute.�

RemarkMore general patterns have been considered in the
literature [5], [25], [10], [4]; in particular, they may involve
descendant navigation, wild cards for labels, and horizontal
axes. However, [6], [4] showed that with these features added,
query answering in data exchange becomes intractable even
for very simple queries. In fact, the restrictions we use in our
definition were identified in [6] as essential for tractability of
query answering.

XML schema mappings As our descriptions of XML
schemas we shall use DTDs (since for complex schemas, query
answering in data exchange is known to be intractable [6], and
DTDs will suffice to capture all the known tractable cases).
Source-to-target constraints will be given via patterns.

Formally, an XML schema mappingis a triple M =
(DS , DT ,Σ), whereDS is the source (nested relational) DTD,
DT is the target (nested relational) DTD, andΣ is a set of
XML source-to-target dependencies[6], or XML stds, that are
expressions of the form

π(x̄) → π′(x̄, z̄), (2)

whereπ andπ′ are tree patterns compatible withDS andDT ,
respectively.



As in the relational case, target trees may contain nulls to
account for values not specified by mappings. Given a treeT
that conforms toDS , a treeT ′ (over constants and nulls) is an
M-solution forT if T ′ conforms toDT , and the pair(T, T ′)
satisfies all the dependencies (2) fromΣ. The latter means
that for every tuplēa of attribute values fromT , if T satisfies
π(ā), then there exists a tuplēb of attribute values fromT ′

such thatT ′ satisfiesπ′(ā, b̄). The set of allM-solutions for
T is denoted by SOLM(T ).

EXAMPLE 4.3. Consider the data-exchange scenario
(D,DT ,M) given by the DTDsD andDT of Figures 1(b)
and 3(b), respectively, and whereM is specified by the
dependency

r[book(x)[author[name(y)]]] →

r[writer[name(y), work(x)]],

that restructures book-author pairs as writer-work. It canbe
shown that the XML treeT ′ in Figure 3(a) is anM-solution
for T . �

V. XML data exchange using relations

We now provide algorithms for implementing XML data
exchange via relational translations. Since we have already
shown how to translate DTDs and documents, we need to
present translations of stds of mappings and queries. Both
of them are based on translating patterns into relational
conjunctive queries. We first concentrate on that translation.
Then we show how to extend it easily to mappings and
queries, and prove the correctness of the translations. This
will complete our program of using a relational system for
XML data exchange in a semantically correct way.

Inlining tree patterns: The key ingredient in our al-
gorithms is a translation of patternsπ compatible with a
DTD D into aconjunctive queryINLPATTERN(π,D) over the
relational schema INLSCHEMA(D). Very roughly, it can be
viewed as this:

1) View a patternπ(x̄) as a treeTπ in which some attribute
values could be variables;

2) Compute the relational database INLDOC(Tπ, D) (which
may have variables as attribute values);

3) View INLDOC(Tπ, D) as a tableau of a conjunctive
query; the resulting query is INLPATTERN(π,D).

The algorithm is actually more complicated because
INLDOC cannot be used in Step 2; we shall explain shortly
why.

Towards defining INLPATTERN, observe that each tree pat-
tern π(x̄) can be viewed as an XML documentTπ(x̄), in
which both values and variables can be used as attribute
values. It is defined inductively as follows:Tℓ(x̄) is a single-
node tree labeledℓ, with x̄ as attribute values, and ifπ is
ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root ofTπ is labeled ℓ
and has̄x as attribute values. It also hask children, with the
subtrees rooted at them beingTπ1(x̄1), . . . , Tπk(x̄k).

However, even for a patternπ(x̄) compatible with a DTD
D, we may not be able to define its inlining as the inlining
of Tπ(x̄), becauseTπ(x̄) need not conform toD. For example,
if a DTD has a ruler → ab and we have a patternr[a], it
is compatible withD, but Tr[a] does not conform toD, as it
is missing ab-node. Hence, the procedure INLDOC cannot be
used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the nodes ofTπ(x̄) with
respect toD and define the nearest appropriate ancestor
exactly as it has been done previously. Intuitively, the proce-
dure INLPATTERN shreds each node ofTπ(x̄) into a different
predicate, and then joins these predicates using the nearest
appropriate ancestor.

Procedure INLPATTERN(π, D)
Input : A DTD D, a tree patternπ(x̄) compatible with

D.
Output : Conjunctive query over INLSCHEMA(D).

for each nodev of Tπ(x̄) of form ℓ(x̄v):
Construct a queryQv(x̄v) as follows:

if v is markedthen

Qv(x̄v) := ∃idv∃idµ(v)∃z̄Rℓ(idv, x̄v, idµ(v), z̄),

wherez̄ is a tuple of fresh variables, and the
positions of variablesidv, x̄v and idµ(v) are
consistent with the attributesidℓ, AD(ℓ) and
idµ(ℓ) respectively inattr(Rℓ).
If ℓ = r, thenQv does not useidµ(v).

else (v is not marked):
setv′:=µ(v), ℓ′:=λ(v′), and letQv(x̄v) be

∃idv′∃idµ(v′)∃idv∃z̄Rℓ′(idv′ , idµ(v′), idv, x̄v, z̄),

wherez̄ is a tuple of fresh variables, and the
positions of the variablesidv′ , idµ(v′), idv and x̄v

are consistent with the attributesidℓ′ , idµ(ℓ′), idℓ

andAD(ℓ) respectively inattr(Rℓ′). If ℓ′ = r,
thenQv does not useidµ(v′).

endfor
return

∧

v∈Tπ(x̄)
Qv(x̄v).

Note that the compatibility ofπ with D ensures that
INLPATTERN is well defined. That is, (1) every attribute
formula of the formℓ(x̄) only mentions attributes inAD(ℓ),
and (2) for all nodesv, v′ ∈ Tπ(x̄), if v′ is a child ofv, then
λ(v′) ∈ PD(λ(v)).

Correctness: Given a patternπ(x̄), the evaluation ofπ on
a treeT is π(T ) = {ā | T |= π(ā)}. The following proposition
shows the correctness of INLPATTERN.

Proposition 5.1:Given a nested relational DTDD, a pat-
tern π compatible withD, and a treeT that conforms toD,
we haveπ(T ) = INLPATTERN(π,D)

(

INLDOC(T,D)
)

.
That is, the inlining ofπ, applied to the inlining ofT , returns
π(T ).
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Fig. 3. TreeT ′ is anM-solution forT

Conjunctive queries over trees: We use the language that
is essentially conjunctive queries over trees [6], [17], [10]
with navigation along the child axis. The languageCT Q is
obtained by closing patterns under conjunction and existential
quantification:

Q := π | Q ∧Q | ∃x Q,

whereπ is a fully specified tree-pattern formula. The semantics
is straightforward, given the semantics of patterns defined
above:Q(ā)∧Q′(b̄) is true iff bothQ(ā) andQ′(b̄) are true,
and ∃x Q(ā, x) is true iff Q(ā, c) is true for some valuec.
The output ofQ on a treeT is denoted byQ(T ).

We say that a queryQ is compatible with the DTDD if
every pattern used in it is compatible withD.

The inlining of queriesQ compatible withD is given by
the recursive algorithm INLQUERY below.

Procedure INLQUERY(Q, D)
Input : A DTD D, a queryQ compatible withD.
Output : A conjunctive query over INLSCHEMA(D).

if Q = π then
return INLPATTERN(π,D)

else ifQ = Q1 ∧Q2 then
return INLQUERY(Q1, D) ∧ INLQUERY(Q2, D)

else ifQ = ∃xQ1 then
return ∃x INLQUERY(Q1, D)

Now we show that every queryQ in CT Q can be computed
by its inlining on the inlining of its input (assuming, of course,
compatibility with a DTD). In other words,Requirement 3
is satisfied.

Theorem 5.2:Given a DTDD, a treeT that conforms to
it, and a compatible queryQ, we have

Q(T ) = INLQUERY(Q,D)
(

INLDOC(T,D)
)

.
Inlining XML schema mappings We use our transformation
of tree patterns to define the procedure INLMAP, that, given
source and target DTDsDS and DT , transforms an XML
mappingM into a relational mapping INLMAP(M,DS,DT )
specified with a set of source-to-target tuple generating depen-
dencies.
CorrectnessWhile one could be tempted to ask for a transla-
tion that preserves all solutions, such a result need not hold.
The relational mapping INLMAP uses null values to represent
the shredded nodes of XML trees, and thus we should only
consider solutions whose null values have not been renamed.
However, relational solutions are open to renaming of nulls.

Procedure INLMAP(M, DS , DT)
Input : An XML mappingM from a source DTDDS

to a target DTDDT .
Output : A relational mapping from INLSCHEMA(DS)

to INLSCHEMA(DT ).

Set INLMAP(M, DS , DT ) := ∅
for dependencyπ(x̄) → ∃z̄π′(x̄, z̄) in M do

INLMAP(M, DS, DT ) := INLMAP(M, DS , DT )
⋃

{INLQUERY(π,DS)(x̄) → ∃z̄ INLQUERY(π′, DT )(x̄, z̄)}

end
return INLMAP(M, DS , DT )

This intuition can be formalized by means of the universal
solutions, which are the most general among all solutions,
and thus do not permit null renaming. Furthermore, one
typically materializes a universal solution, as these solutions
contain all the information needed to compute certain answers
of conjunctive queries. This motivates the restriction of our
Requirement 4 to universal solutions.

The theorem below shows that parts (a) and (b) ofRe-
quirement 4 hold. Note that in part (b), relational universal
solutions are only required to contain a shredding of an XML
universal solution. This is because relational solutions are also
open to adding arbitrary tuples, which need not reflect a tree
structure of an XML document.

Theorem 5.3:a) Let M = (DS , DT ,Σ) be an XML
schema mapping andT an XML document that conforms to
DS . If T ′ is anM-universal solution forT , then its inlining
INLDOC(T ′, DT ) is an INLMAP(M, DS , DT )-universal solu-
tion for INLDOC(T,DS).
b) Let M = (DS , DT ,Σ) be an XML schema mapping,
and T an XML document that conforms toDS . Then
for every INLMAP(M, DS , DT )-universal solutionR for
INLDOC(T,DS) there exists anM-universal solutionT ′ such
that INLDOC(T ′, DT ) is contained inR.

Answering XML queries using relational data exchange:
The semantics of query answering in data exchange, both

relational and XML [13], [22], [8], [6], [4], is defined by
means of certain answers. That is, given a schema mapping
M = (DS , DT ,Σ), a treeT that conforms toDS , and a con-
junctive tree queryQ that is compatible withDT , thecertain
answers ofQ for T underM, denoted byCERTAINM(Q, T ),
is the set of tuples that belong to the evaluation ofQ over



every possibleM-solution forT , that is,
⋂

{Q(T ′) | T ′ is an
M-solution forT }. Note that our queries return sets of tuples,
so we can talk about the intersection operator.

It was shown in [6], [4] that, for conjunctive tree queries and
mappings using nested-relational DTDs, computing certain
answers for a given source treeT is solvable in polynomial
time. Thus, for the classes of mappings and queries we
consider, there is no complexity mismatch between relational
and XML data exchange. The next theorem shows that our
translation is correct with respect to query answering, that is,
our Requirement 5 is satisfied.

Theorem 5.4:Let M = (DS , DT ,Σ) be an XML schema
mapping. Then, for every XML treeT that satisfiesDS and
for every conjunctive tree queryQ, the certain answers ofQ
for T underM and the certain answers of INLQUERY(Q,DT )
for INLDOC(T,DS) over INLMAP(M, DS , DT ) coincide:

CERTAINM(Q, T ) =
CERTAININLMAP(M)(INLQUERY(Q,DT ), INLDOC(T,DS)).

This result, combined with the standard procedure of evaluat-
ing conjunctive queries in relational data exchange, also gives
us an algorithm for computing certain answers.

Corollary 5.5: Under the conditions of Theorem 5.4,
CERTAINM(Q, T ) can be obtained by the following procedure:

1) run INLQUERY(Q,DT ) on an INLMAP(M, DS, DT )-
universal solution for INLDOC(T,DS);

2) discard all tuples that contain null values.

VI. XML-to-XML Queries

Up to now, we have only considered XML queries that output
tuples of attribute values. In this section, we shall focus on
proper XML-to-XML query languages, that is, queries that
output XML trees.

Some immediate questions arise when dealing with these
formalisms in a data exchange context. LetM = (DS , DT ,Σ)
be an XML schema mapping,T be a tree conforming toDS,
andQ be an XML-to-XML query. Since the evaluation ofQ
overT returns an XML tree, we cannot define certain answers
as

⋂

{Q(T ′)) | T ′ is a solution forT }, since the meaning of
the intersection operator for XML documents is not clear.

To overcome this problem, we use recent results from
[11] which showed how to define certain answers for queries
returning XML trees, and how to use them in the data
exchange context. The key idea of [11] is to usetree patternsto
define information contained in documents, and to use them to
represent compactly the certain knowledge from the collection
{Q(T ′)) | T ′ is a solution forT }. More precisely, ifΠ is a set
of tree patterns which are matched by every treeQ(T ′), we
look for a small setΠ0 of patterns that is equivalent toΠ as a
description of certain answers. By equivalence we mean thata
tree matches every pattern inΠ iff it matches every pattern in
Π0. If the setΠ0 is finite, then its patterns can be put together
to create a tree with nulls, which we then view as the certain
answer.

We shall not need additional details of the construction;
instead we shall use a result from [11] that tells us how certain
answers can be computed for a specific XML-to-XML query
language. The language, called TQL (to be defined shortly), is
inspired by XQuery’s FLWR expressions, and is restricted to
positive features (i.e., no negation). The key result from [11]
is the following:

Proposition 6.1 ([11]): Let M = (DS , DT ,Σ) be an XML
schema mapping,Q a TQL query, andT a tree that con-
forms toDS . If T ′ is an M-universal solution forT , then
CERTAINM(Q, T ) = Q(T ′).

Given this result, we now do the following. We provide
a formal definition of the TQL language of [11], which
can express XML-to-XML analogs of relational conjunctive
queries. We then show how to adapt the machinery we have
previously developed for evaluating certain asnwers over a
universal solution. Note that for this new translation, a TQL
queryQ returning trees needs to be translated into aset of
relational queries generating views that define the shredding
of the treeQ(T ).

A. TQL queries

TQL queries [11] are inspired by the FLWR (for-let-where-
return) expressions of XQuery [32], but they only use positive
features. The key construct isfor π(x̄) return q(x̄), where
π(x̄) is a pattern andq(x̄) is a query that defines a forest
expression. Formally, the syntax of forest expressions is

q(x̄) ::= ǫ
| ℓ(ā, x̄′)[q′(x̄′′)]
| q′(x̄′), q′′(x̄′′)
| for π(ā, x̄, ȳ) return q′(x̄, ȳ)

where ℓ ranges over node labels,̄a over constant attribute
values, and̄x etc are tuples of variables.

A TQL queryQ is an expression of the formr[q], where
q is a forest expression without variables. To define the
semantics of this language, we first define inductively the
forest [[q(x̄)]]T,v, for a valuationv of all variables in x̄ as
attribute values. We use the notationℓ(ā)[f ] for a tree whose
root is labeledℓ and carries a tuple of attributes̄a, andf is
the forest of subtrees below the root.

[[ǫ]]T,v = ǫ (empty forest)
[[ℓ(ā, x̄′)[q′(x̄′′)]]]T,v = ℓ(ā, v(x̄′))

[

[[q′]]T,v

]

[[q′(x̄), q′′(x̄′′)]]T,v = [[q′]]T,v ∪ [[q′′]]T,v

[[for π(ā, x̄, ȳ) return q′(x̄, ȳ)]]T,v =

⋃

{

[[q′]]T,v′ | v′ extendsv andT |= π(ā, v′(x̄), v′(ȳ))
}

For a treeT and a queryQ = r[q], the evaluationQ(T ) of
Q over T is defined as the treer[[[q]]T ], i.e., the forest[[q]]T
under rootr.

EXAMPLE 6.2. Recall the tree T from figure 1(a). The tree
T ′ from figure 3(a) can also be obtained as the transformation



Q(T ) resulting from the evaluation of a TQL queryQ over
T , whereQ = r[q], andq is defined as

for r/book(x)/author/name(y) return

writer [name(y),work (x)] (3)

For the sake of readability, we use the/ operator to denote
the child axis in tree patterns.�

B. Inlining TQL queries

If Q is a TQL query, then, to be able to define its inlining
translation, we need to specify a DTD for treesQ(T ). Note
that TQL queries define the shape of their outputs, and at the
same time do not put restrictions on the number of appearances
of labels. Hence it is natural to define the DTD for outputs of
Q as astarred DTD DQ, whose shape is determined byQ,
and where each element type except the root occurs under the
Kleene star.

More precisely, for a forest expressionq, we define a forest
Fq inductively as follows:Fε is the empty forest;Fℓ[q′] is
ℓ[Fq′ ]; Fq′∪q′′ = Fq′ ∪ Fq′′ , and Ffor π return q′ = Fq′ . For
Q = r[q] we let TQ = r[Fq ].

Then DQ is a non-recursive DTD that has a rulep →
c∗1 · · · c

∗
n for each nodep in TQ with children labelled

c1, . . . , cn. As usual, we require thatDQ be acyclic and we
assume without loss of generality thatG(DQ) is a tree.

EXAMPLE 6.3.[Example 6.2 continued] Recall query
Q = r[q]. Then, TQ is the XML tree given by
r[writer [name,work ]], and thusDQ contains productions
r → writer

∗, writer → name
∗
work

∗, name → ǫ and
work → ǫ. �

Before showing the algorithm INLTQL, we need to
introduce some features that will be used in the algo-
rithm. Consider again query (3) and DTDDQ in exam-
ples 6.2 and 6.3. For each pair of attributes that satisfy
r/book(x)/author/name(y), the queryQ creates a subtree
writer [name(y),work (x)] in the treeQ(T ). Thus, the re-
lational translation would need to create one tuple in the
relations corresponding towriter, name and work for each
pair of attributesx, y that satisfy the relational translation
of the patternr/book(x)/author/name(y) in the instance
INLDOC(T ).

Thus, in the relational translation we need a way to associate
each particularwriter wih a particularnameand work. One
possible way of doing this is by creating a (Skolem) functionf
that associates with each pair(name,work ) a unique identifier
for the correspondingwriter. Thus, the functionf must be
defined in such a way thatf(book ,name) is different for each
different pair(name,work). We enforce this requirement by
letting each termf(ā) represent a distinct constantcf(ā).

We will define our translation algorithm inductively. The
key procedure TQLSTEP for the inductive step is described
below. Its inputs, in addition to a query and a DTD, include a
conjunctive query corresponding to the conjunction of patterns
in the query, and a function term corresponding to the parentin

the treeQ(T ) (for example, when creating views for relation
Rwork , we would input the identifierf(x, y) of the parent node
labelledwriter). This is illustrated by the example below.

EXAMPLE 6.4.[Example 6.3 continued] Assume that query
Q = r[q] of examples 6.2 and 6.3 is posed overT under
schemaD. The following views define the translation forQ:

Rr(fr) := true
Rwriter (fwriter(x, y), fr) :=

INLQUERY(r/book (x)/author/name(y), D)
Rname(fname(x, y), fwriter(x, y), y) :=

INLQUERY(r/book (x)/author/name(y), D)
Rwork(fwork(x, y), fwriter(x, y), x) :=

INLQUERY(r/book (x)/author/name(y), D)

Notice how each tuple in relationsRname andRwork is set
to reference the correct tuple in relationRwriter . �

Procedure TQLSTEP(Q, D, ϕ, t)

Input : A forest expressionq(x̄), a DTDD, a
conjunctive queryϕ(x̄) and a skolem termt.

Output : A set of views over INLSCHEMA(DQ).

if q(x̄) ::= ǫ then
return ∅

else if q(x̄) ::= q′(x̄′), q′′(x̄′′) then
return TQLSTEP(q′, D, ϕ, t)∪ TQLSTEP(q′′, D, ϕ, t)

else if q(x̄) ::= ℓ(ā, x̄′)[q′(x̄′′)] then
Let f be a fresh skolem function. Define viewV as
Rℓ(f(x̄), t, ā, x̄′) := INLQUERY(ϕ,D), or just
Rℓ(f(), t, ā) := true if ϕ = ∅.
return {V } ∪ TQLSTEP(q′, D, ϕ, f(x̄))

else if q(x̄) ::= for π(ā, x̄, ȳ) return q′(x̄, ȳ) then
Let ϕ′(ā, x̄, ȳ) = ϕ(x̄) ∧ π(ā, x̄, ȳ).
return TQLSTEP(q′, D, ϕ′, t)

To define the inlining translation INLTQL, we simply need
a Skolem term for the root of the tree, as the basis for the
inductive procedure TQLSTEP.

Procedure INLTQL(Q, D)

Input : A TQL queryQ = r[q] and a DTDD.
Output : A set of views over INLSCHEMA(DQ).

Create a 0-ary functionfr.
return TQLSTEP(Q,D, ∅, fr())

A TQL query Q is compatible with a DTDD if all the
patterns used inQ are compatible withD. The following
proposition shows that INLTQL satisfies an analog ofrequire-
ment 3 for queries that outputs trees.

Proposition 6.5:Given a DTDD, a TQL queryQ compat-
ible withD, and and a treeT that conforms toD, we have that
INLDOC(Q(T ), DQ) = INLTQL(Q,D)(INLDOC(T )), up to
renaming of nulls.

That is, the set of views INLTQL(Q,D) applied to the
inlining of T yields the same answer as the inlining ofQ(T ).



Translating relations back into XML
To complete the translation, we need an algorithm to publish

back the relational data as an XML document. This is done
by means of the algorithm PUBREL. We say that an instance
I of INLSCHEMA(D) D-representsa treeT that conforms to
D if I = INLDOC(T,D).

Procedure PUBREL(D,I)
Input : A DTD D and an instanceI thatD-represents

some tree.
Output : An XML tree T that isD-represented byI.

for each nodeℓ of G(D), traversed as Depth-first-search
do

for each tuple t of Rℓ in I with elementsn, ā andn′

corresponding to attributesidn, AD(ℓ) and idµ(n).
do

Add to T a noden labelledℓ, with attributesā,
whose parent isn′ (no parent ifℓ = r);
for every non-starred nodeℓ′ of G(D) such that
µ(ℓ′) = ℓ, and elementsn′′ and b̄ in t
corresponding to attributesidℓ′ andAD(ℓ′) do

Create a noden′′ in T labelledℓ′, with
attributes̄b, in a parent-child scheme that
resemblesG(D).

endfor
endfor

endfor
return T

This algorithm will only work for relational instances
that represent shredded documents. The following proposition
shows its correctness.

Proposition 6.6:Given a DTD D and a relational
instance I of INLSCHEMA(D), it is the case that
INLDOC(PUBREL(D, I)) = I.

C. TQL queries in XML data exchange

Combining the previously mentioned result in [11] with the
correctness of the algorithms we presented we conclude that
requirements 1-5are satisfied for data exchange with XML-
to-XML queries:

Theorem 6.7:Let M = (DS , DT ,Σ) be an XML schema
mapping. Then, for every XML treeT that satisfiesDS and
for every TQL queryQ, the certain answers ofQ for T
under M and the certain answers of INLTQL(Q,DT ) for
INLDOC(T,DS) over INLMAP(M, DS , DT ) coincide:

INLDOC(CERTAINM(Q, T ), DQ) =
CERTAININLMAP(M)(INLTQL(Q,DT ), INLDOC(T,DS)).

Remark: The notion of certain answers naturally (component-
wise) extends to queries computing multiple relations.

Theorem 6.7 and Proposition 6.6 give us a way
of computing CERTAINM(Q, T ). First, compute
CERTAININLMAP(M)(INLTQL(Q,DT ), INLDOC(T,DS)) by
materializing views INLTQL(Q,DT ) over the canonical

solution for INLDOC(T,DS) and then use the procedure
PUBREL to output it as the treeCERTAINM(Q, T ).

VII. Adding XML constraints
So far, we assumed that target schemas consist of DTDs
only; now we extend them withtarget constraints. Constraints
have been studied and used extensively in the XML context.
Analogs of keys and foreign keys such asID andIDREF are
very common. Thus, it is natural to ask whether our procedures
continue to work when target schemas are augmented with
such constraints. Here we look atkeysand foreign keysthat
naturally extend the functionality ofID andIDREF:

• A keyℓ.@a→ ℓ states that the value of the attribute@a
uniquely determines anℓ-labeled node;

• a foreign keyℓ1[@a] ⊆FK ℓ2[@b] states that each value
of the @a attribute of anℓ1-node must occur as a value
of the @b attribute of anℓ2-node, and the latter is a key
for ℓ2.

We now show how to translate XML keys and foreign keys
into relational integrity constraints in a way that preserves the
satisfaction of the key requirements. Recall that we use the
assumption that graphs of DTDs are trees.

Procedure INLCONSTR(∆,D)
Input : A DTD D, a set of keys and foreign keys∆.
Output : A set of relational keys and foreign keys.

Set INLCONSTR(∆, D) = ∅
for each key@a→ ℓ in ∆:

add to INLCONSTR(∆, D) the key@a→ Rℓ if ℓ is
marked, or the key@a→ Rµ(ℓ) if ℓ is not marked.

endfor
for each foreign keyℓ1[@a] ⊆FK ℓ2[@b] in ∆

Add to INLCONSTR(∆, D) the foreign key
Rℓ1 [@a] ⊆FK Rℓ2 [@b], replacingRℓi

for Rµ(ℓi) if ℓ1
or ℓ2 are not marked.

endfor
return INLCONSTR(∆, D)

Using INLCONSTR, we extend the procedure INLMAP for
the case of schema mappings withtarget constraints∆T in a
way that retains its good properties. This is formalized in the
procedure EXT INLMAP below.

Procedure EXT INLMAP(M, DS , DT ,∆T)
Input : An XML mappingM from a source DTDDS

to a target DTDDT with a set of target
constraints∆T .

Output : A relational mapping from INLSCHEMA(DS) to
INLSCHEMA(DT ) with a set of target
constraints.

return INLMAP(M, DS , DT ), and the set of constraints
INLCONSTR(∆T , DT )



Proposition 7.1:For XML data-exchange settings that in-
clude a set∆ of XML keys and foreign keys, the extensions of
procedure INLMAP and INLQUERY using INLCONSTR(∆, D)
satisfy ourRequirement 4 andRequirement 5, respectively.

Unlike in other results in the paper, the restriction to DTDs
whose graphs are trees is essential here: Without such a
restriction, a foreign key can be translated into a disjunctive
tgd, and those are known to lead to intractability in data-
exchange scenarios [12].

VIII. Concluding Remarks

Our technique provides a relational approach to solve two of
the most important problems of XML data-exchange settings:
materializing solutions and answering queries. The diagram
below summarizes this. In a pure XML setting, we can start
with a documentT and use a mappingM to find a (universal)
solutionT ′

univ, over which we can then answer a queryQ to
produce certain answers.

T
M

- T ′
univ

Q
- certain answer

R

INLDOC

? INLMAP(M)
- R′

univ

INLDOC

? INLQUERY(Q)
- certain answer

w

w

w

w

w

w

w

w

w

w

Using the translation INLDOC of documents, we generate a
relational instanceR, on which the translation of the mapping
INLMAP(M) generates a universal solutionR′

univ. This solu-
tion is a shredding, via INLDOC, of a universal XML solution,
and also conforms to the shredding of source DTD. Finally, we
apply the standard technique [13] for evaluating queries inre-
lational data exchange to the query translation INLQUERY(Q)
or INLTQL(Q) to produce the correct answers, in the latter
case with the possibility of using PUBREL to publish back the
results into XML.

We finish with a remark about the possibility of allowing
operators? and + in DTDs, as well as a choice operator
for representing multiple choices. We say that a non-recursive
DTD D is anextended nested relationalDTD if all rules of
D are of the formℓ→ ℓ̃0 . . . ℓ̃m, or ℓ→ ℓ0 + . . .+ ℓm, where
all the ℓi’s and ℓ̃i’s are distinct, and each̃ℓi is one ofℓi, ℓi?,
ℓ∗i or ℓ+i (as usualℓ? stands forℓ|ǫ andℓ+ for ℓℓ∗).

The procedure INLSCHEMA can be extended to these DTDs.
For each elementℓ that is under the operator?, the transfor-
mation creates a special relationℓ that references the relation
of the nearest appropriate ancestor ofℓ. Furthermore, the
transformation for a rule of the formℓ1 → ℓ+2 can be defined
by including a dependency that ensures that there is at least
one tuple in the relationRℓ2 for each tuple inRℓ1 . Finally, for
the choice operatorℓ→ ℓ0+. . .+ℓm the transformation would
create one relationRℓ for each possible choice ofℓ0, . . . , ℓm.
Then, it is possible to extend all the procedures in a way
that still satisfiesrequirements 1-5 under extended nested
relational DTDs.
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APPENDIX

A. Preliminary Definitions

Below are some technical definitions that will be used through
the remainder of the appendix.

Homomorphisms and tree homomorphisms: LetK1 and
K2 be instances of the same schemaR. A homomorphismh
fromK1 toK2 is a functionh defined from the domain ofK1

to the domain ofK2 such that: (1)h(c) = c for every constant
elementc in K1, and (2) for everyR ∈ R and every tuple
ā = (a1, . . . , ak) in the relationR in K1, it holds thath(ā) =
(h(a1), . . . , h(ak)) belongs to the relationR in K2. Notice
that this definition of homomorphism slightly differs from the
usual one, as the additional constraint that homomorphisms
are the identity on the constants is imposed.

Given a conjunctive queryQ(x̄) over a schemaR, we
denote byIQ(x̄) the instance ofR constructed as follows:
for every relational symbolR ∈ R and relational atomR(b̄)
occurring inQ(x̄), we include tuplēb in the relationR of
IQ(x̄). We define all variables in̄x to be constant elements in
IQ(x̄), whereas every existentially quantified variable ofQ is
a null element.

It is now straightforward to prove the following lemma:
Lemma 1.1:Let I be an instance of schemaR, and Q

a conjunctive query.Then, a tuplēa of constant elements
belongs to the evaluation ofQ over I if and only if there
is a homomorphism fromIQ(ā) to I.

We also need to introduce the equivalent definition of
homomorphisms for XML trees, ortree homomorphism[6].
Let T = (N,G) and T ′ = (N ′, G′) be XML trees, let
nr and n′

r be the roots ofT and T ′, respectively, and let
Str(T ) = {s ∈ Str | there existsn ∈ N and@a ∈ Att such
that ρ@a(n) = s}, Str(T ′) defined correspondingly. Then,
h : N ∪ Str(T ) → N ′ ∪ Str(T ′) is a homomorphism fromT
to T ′, if:

• for everyn ∈ N , h(n) ∈ N ′;
• for every constant elements ∈ Str(T ), h(s) = s, and

for every nulls ∈ Str(T ), h(s) ∈ Str(T ′);
• h(nr) = n′

r;
• for every n1, n2 ∈ N , if G(n1, n2), then
G′(h(n1), h(n2));

• for everyn ∈ N , λT (n) = λT ′(h(n)); and
• for every n ∈ N and @a ∈ Att such thatρ@a(n) is

defined,h(ρ@a(n)) = ρ@a(h(n)).

Given a tree patternπ(x̄), we construct the treeTπ(x̄)

inductively: if π(x̄) = ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root
of Tπ(x̄) is a node labelledℓ, with attributesx̄, andk children
corresponding toTπ1(x̄1), . . . , Tπk(x̄k). As for the relational
case, it is easy to prove the following lemma:

Lemma 1.2:Let T be an XML tree,π(x̄) a tree pattern,
ands a tuple of values inStr. Then,s̄ ∈ π(T ) if and only if
there is a homomorphism fromTπ(s̄) to T .

Universal Solutions: By means of homomorphisms, we
give a precise definition of universal solutions in relational
or XML data exchange settings. Formally, let(S,T,M) be
a relational data exchange setting. Then, given an instanceI
of S, we say that anM-solutionJ for I is anM-universal
solution for I if for every otherM-solution J ′ for I, there
exists an homomorphism fromJ to J ′ [13]. The definition
for the case of XML data exchange setting is analogously
formulated using the notion of tree homomorphism [6].

B. Proof of Proposition 3.2

Let D be a DTD over a set of element typesEl. Notice
that all the foreign key constraints created with the pro-
cedure INLSCHEMA(D) are of the formRℓ[idµ(ℓ)] ⊆FK

Rµ(ℓ)[idµ(ℓ)], for some marked labelℓ ∈ El; that is, each
relationRℓ references the relationRµ(ℓ) that corresponds to
the nearest appropriate ancestorof ℓ. Thus, the graph asso-
ciated with the constraints of INLSCHEMA(D) only contains
edges from the attributeidµ(ℓ) of relationRℓ to attributeidµ(ℓ)

relationRµ(ℓ). The proof then follows from the fact thatG(D)
is acyclic, and thus the labels ofD cannot form a cycle of
nearest appropriate ancestors.�

C. Proof of Proposition 3.4

LetD andT as stated in the Proposition, and(SD,∆D) be
the output of INLSCHEMA(D). That INLDOC(T,D) satisfies
the key constraints of∆D is trivial since the identifier of each
node inT is unique. Same applies for the dependency stating
the uniqueness of the root; sinceT conforms toD, the root
of T (and only the root) must be labelledr. Moreover, for
each foreign key in∆ of the formRℓ[idµ(ℓ)] ⊆ Rµ(ℓ)[idµ(ℓ)],
notice that, sinceG(D) is a tree, for eachℓ ∈ El−{r}, there is
exactly one elementℓ′ such thatℓ′ = µ(ℓ). SinceT conforms
to D, every ℓ-labelled node inT must be a descendant of
an ℓ′ labelled node. This guarantees that the interpretation of
relationsRℓ andRℓ′ in INLDOC(T,D) satisfy the constraint
Rℓ[idµ(ℓ)] ⊆ Rµ(ℓ)[idµ(ℓ)]; each tuple in the interpretation of
Rℓ over INLDOC(T,D) corresponds to a noden in T that
must be a descendant of anℓ′ labelled noden′ in T , and thus
there must be a tuple in the interpretation ofRℓ′ identified
with the elementidn′ . �

D. Proof of Proposition 5.1

To prove that

π(T ) ⊆ INLPATTERN(π,D)
(

INLDOC(T,D)
)

,

let π(x̄), D and T as defined, so thatT conforms toD.
Assume now that̄a is a tuple of attribute values such that
ā ∈ π(T ), and leth be the homomorphism fromTπ(ā) to T
(by lemma 1.2,h is guaranteed to exist).

We now show how to construct a homomorphismg from
IINLQUERY(π,D)(ā) to INLDOC(T,D) (this, by Lemma 1.1,
suffices for the proof). Defineg as follows:



• For each variable of the form idv in
INLPATTERN(π,D)(ā), where v is a node ofTπ(ā),
defineg(idv) = idh(v),

• for eacha ∈ ā, let g(a) = h(a), and
• for each other existentially quantified variablez in

INLPATTERN(π,D)(ā) not of formidv, assume thatz be-
longs to a predicateRℓ(z̄) in INLPATTERN(π,D)(ā). Let
idv be the variable in predicateRℓ(z̄) that corresponds to
the position of the attributeidℓ of relationRℓ, and assume
that h(v) = n, for some noden ∈ T . Then, as defined
in the previous item,g(idv) = idn. From the definition
of the inlining procedure, we know that INLDOC(T,D)
contains a fact (and only one, since the attibuteidℓ is key
for the relationRℓ) of the formRℓ(idn, b̄), for some tuple
b̄ of elements. Defineg so that it maps the variablez to
the element in the position of(idn, b̄) that corresponds
to the position thatz occupies in the predicateRℓ(z̄) in
INLPATTERN(π,D)(ā).

We first show thatg is well defined. First, it is easy to see
that g is defined for every element ofIINLPATTERN(π,D)(ā). We
now prove that there is no element inIINLPATTERN(π,D)(ā) that
is mapped byg to two different values in INLDOC(T,D). To
see this, assume for the sake of contradiction that there is an
elementx in IINLPATTERN(π,D)(ā) such thatg is defined to map
x to two elements of INLDOC(T ). Then, there are three cases
to consider:

• x cannot be a variable in INLPATTERN(π,D)(ā) of the
form idv for some nodev of Tπ(ā), since we have defined
x to be mapped toidh(v) only;

• x cannot belong tōa, since we have defined everya ∈ ā
to be mapped only toh(a);

• then, x is an existentially quantified variable in
INLPATTERN(π,D)(ā) that is not of form idv (that
is, it is a fresh variable generated by the procedure
INLPATTERN). But notice then thatx belongs only to
one predicate of INLPATTERN(π,D)(ā). Moreover, as
explained in the definition ofg, there is only one tuple
in INLDOC(T,D) to wherex is being mapped.

We now prove thatg is indeed a valid homomorphism. First,
it is easy to see that for everya ∈ ā, g(a) = a. This follows
since we have definedg(a) ash(a), and from the construction
of Tπ(ā), everya ∈ ā is a constant, and thush(a) = a.

Consider now a fact of the form Rℓ(w̄) in
IINLPATTERN(π,D)(ā). We need to show thatRℓ(g(w̄)) belongs
to INLDOC(T,D). We will assume for the sake of readability
that ℓ 6= r. The proof can be easily adapted for the case
when ℓ = r. From the inlining procedure for queries, there
must be a nodev of Tπ(ā) such that INLPATTERN adds to
INLPATTERN(π,D)(ā) some existential quantification of the
predicateRℓ(w̄) in the step that corresponds tov (that is,
Rℓ(w̄) is part ofQ(āv)). We have two cases. Assume first
that v is marked. Then,

Qv(āv) = ∃idv∃idµ(v)∃z̄Rℓ(idv, āv, idµ(v), z̄),

where z̄ is a tuple of fresh variables not used elsewhere
in INLPATTERN(π,D)(ā) and the position of the variables

idv, āv andidµ(v) coincide with the attributesidℓ, AD(ℓ) and
idµ(ℓ) in attr(Rℓ).

Further, we now that the homomorphismh maps the node
v of Tπ(ā) to some nodeh(v) in T , and thus, from the
properties of tree homomorphisms, we also know thath(v)
has the element typeℓ, and that for everya ∈ av and@a ∈
Att, if ρ@a(v) = a, then ρ@a(h(v)) = a. Moreover, since
homomorphisms must preserve the child relation, it is easy to
see that the nearest appropriate ancestor ofh(v) in T must be
h(µ(v)). Then, it is clear that INLDOC(T,D) must contain a
tuple of the formRℓ(idh(v), āv, idh(µ(v)), b̄), for some tuplēb
of elements, and where the positions ofāv correspond to the
attributes inAD(ℓ) of attr(Rℓ) whereρ(v) is defined. From
the definition ofg, it is clear thatg(idv, āv, idµ(v), z̄) is the
tuple idh(v), idh(µ(v)), āv, g(z̄). The proof then follows since
g(z̄) is defined to bēb.

Second, assume thatv is not marked, and thatλ(v) = ℓ,
µ(v) in Tπ(ā) is the nodev′, andλ(v′) = ℓ′. Then, as defined,
the queryQv(āv) is of form:

Qv(āv) = ∃idv′∃idµ(v′)∃idv∃z̄Rℓ′(idv′ , idµ(v′), idv, āv, z̄),

wherez̄ is a tuple of fresh variables not used elsewhere in
INLPATTERN(π,D)(ā), and the position of the variablesidv′

idv, idµ(v′) and āv is consistent with the attributesidℓ′ , idℓ,
idµ(ℓ′) andAD(ℓ) in attr(Rℓ′).

Further, we now that the homomorphismh maps the nodes
v andv′ of Tπ(x̄) to some nodesh(v) andh(v′) in T . Then,
from the properties of tree homomorphisms, we obtain thatλ
assigns the typesℓ andℓ′ to h(v) andh(v′), respectively, and
that for everya ∈ av and @a ∈ Att, if ρ@a(v) = a, then
ρ@a(h(v) = a. Moreover, since homomorphisms preserves
the child relation, it is easy to see thath(v′) must be the
nearest appropriate ancestor ofh(v) in T , and that the nearest
appropriate ancestor ofh(v′) must beh(µ(v′)). Then, it is
clear that the inlining ofT must contain a tuple of the
form Rℓ′(idh(v′), idh(µ(v′)), idh(v), āv, b̄) for some tuplēb of
elements, where the positions ofāv correspond to the attributes
in AD(ℓ) such thatρ(v) is defined. Again, the proof follows
since we have definedg(z̄) as b̄.

For the proof that

INLPATTERN(π,D)
(

INLDOC(T,D)
)

⊆ π(T ),

assume that for a tuplēa of constants there is an homo-
morphismh from IINLPATTERN(π,D)(ā) to INLDOC(T,D). We
construct a homomorphismg from Tπ(ā) to T . By Lemma
1.2, this suffices for the proof.

Defineg as follows:

• For every nodev of Tπ(ā), consider the variableidv

defined in the procedure INLDOC, and assume that
h(idv) = idn, for some elementidn of INLDOC(T,D).
Define g(v) = n. Notice that this is well defined:
from the definition of INLDOC, and the properties of
homomorphisms, we know thatn must be a node ofT
(bothidv andidn occur in a position of the predicates that



corresponds to the identifiers of the nodes in the schema
INLSCHEMA(D).

• For everys ∈ Str(Tπ(ā)), let v be the node ofTπ(ā)

such that s = ρ@a(v). Then, notice that from the
definition of the translation of patterns,s must be a
free variable of the queryQv in INLPATTERN(π,D),
and thusIINLPATTERN(π,D) contains the variables. Define
g(s) = h(s)

We now prove thatg is a valid homomorphism fromTπ(ā)

to T .
First, as mentioned in the definition ofg, it is clear that

g(v) ∈ N , for everyv ∈ Tπ(ā).
Second, we prove that, ifv is the root of Tπ(ā), then

g(v) = nr, wherenr is the root ofT . This follows since
π is fully specified,π must be of formr(ā)[λ]. Then, the
variable idv must be mentioned in a predicate ofRr of
INLPATTERN(π,D). Since h is an homomorphism,h(idv)
must belong to a tuple inRr. It follows from the construction
of INLSCHEMA(D) and proposition 3.4 that it must be the
(unique) identifier ofRr, and thus the identifier of the root
node ofT .

Next, we prove that for every nodev of Tπ(ā), λTπ(ā)(v) =
λT (g(v)). Assume that for a nodev in Tπ(ā) it is the case
that λTπ(ā)(v) = ℓ. There are two cases. The case whenv
is marked follows from the fact that there must be a tuple
in the interpretation of the relationRℓ in INLDOC(T,D) that
containsh(idv) in its idℓ-attribute. Then, sinceg mapsv to
the node inT that corresponds toh(idv) in INLDOC(T,D),
it must be the case thatλT (g(v)) = ℓ. If v is not marked, let
ℓ′ be the nearest appropriate ancestor ofℓ, and consider the
tuple in the interpretation of relationRℓ′ in INLDOC(T,D)
that contains the elementidv in the position that corresponds
to the attributeidℓ. The proof follows easily using the same
argument as for the other case.

Assume now that two nodesv1, v2 of Tπ(ā) are such that
v2 is a child of v1 in Tπ(ā).Let ℓ1 = λ(v1) and ℓ2 = λ(v2),
and assume thath(idv1) = idn1 andh(idv2) = idn2 , for some
nodesn1, n2 of T . Thus,g(v1) = n1, andg(v2) = n2. The
proof thatg(v2) is a child ofg(v1) follows easily from the fact
that g preserves the labelling of the nodes, the graphG(D) is
a tree,π is compatible withD and andT conforms toD: If
v2 is a child ofv1 in Tπ(ā), then it must be thatℓ1 ∈ PD(ℓ1),
and thatℓ1 does not appear in the production of any other
label inD. Then, sinceλT (n2) = ℓ2 andλT (n1) = ℓ1 andT
conforms toD, it must be thatn2 is a child ofn1.

Next, it is easy to see that for everys ∈ Str(Tπ(ā)), g(s) ∈
Str(T ). Moreover, since we have definedg(s) = h(s), we
also have that thatg(s) = s for every constants.

Finally, we prove that for every nodev of Tπ(ā) and@a ∈
Att such thatρ@a(v) is defined,g(ρ@a(v)) = ρ@a(g(v)).
Assume that for a nodev of Tπ(ā) and for an attribute
@a ∈ Att, it is the case thatρ@a(v)) = s. We must prove
thatg(s) = ρ@a(g(v)). But we have definedg(s) = h(s), and
thus, we need to prove thath(s) = ρ@ag(v). Assume first
that v is marked. Then, notice thats is the variable in the
position corresponding to@a in attr(Rλ(v)) in the predicate

of INLPATTERN(π,D) added in the step corresponding to
Qv. Thus, from the properties of relational homomorphisms,
s must belong to the tuple inRλ(v) in INLDOC(T,D) that
containsh(idv) in its first position. Sinceg mapsv to the
node in T identified by h(idv), it must be the case that
ρ@a(g(v)) = h(s). For the case wherev is not marked,
consider the nearest appropriate ancestor ofv in Tπ(ā), and
let v′ be such node. Notice that sinceg preserves the child
relation,g(v′) is the nearest appropriate ancestor ofg(v). The
proof then follows by considering the attribute corresponding
to @a in AD(ℓ) in the relationRℓ′ , whereℓ′ = λ(v′) and then
using the same argument than in the previous case.�

By combining this results with Lemmas 1.1 and 1.2, it is
not difficult to obtain the following corollary:

Corollary 1.3: LetD be a DTD,T an XML document that
conforms toD, andπ a pattern compatible withD. In addition,
let ā be a tuple of elements and variables. Then, there exists
an homomorphism fromTπ(ā) to T if and only if there is an
homomorphism fromIINLPATTERN(π,D)(ā) to INLDOC(T,D).

Moreover, it is not difficult to adapt this proof to show the
following:

Lemma 1.4:Let D be a DTD, andT1, T2 two trees that
conform toD. There is a tree homomorphism fromT1 andT2

if and only if there is a homomorphism from INLDOC(T1, D)
to INLDOC(T2, D)

E. Proof of Theorem 5.2

Fix a DTDD and a treeT . The proof is done by induction.
We have already proved the base case with the proof of

Proposition 5.1.
For the induction step, assume first thatQ

is of form ∃zQ1(x̄, z̄), and that Q1(T ) =
INLQUERY(Q1, D)(INLDOC(T,D)). It is now easy to
see that Q(T ) = INLQUERY(Q,D)(INLDOC(T,D)):
Assume first that a tuplēa belongs to Q(T ). Then,
there must be a tuplēz of variables such that(ā, z̄)
belongs toQ1(T ). Thus, from the inductive hypothesis,
we obtain that (ā, z̄) belong to the evaluation of
INLQUERY(Q1, D)(ā, z̄) over INLDOC(T,D). It follows that
(ā, z̄) belong to the evaluation of INLQUERY(Q,D)(ā, z̄)
over INLDOC(T,D), since the algorithms defines
INLQUERY(Q,D) = ∃z̄INLQUERY(Q1, D). The other
direction is analogous.

Next, assume thatQ = Q1(x̄1) ∧ Q2(x̄2), and that
Q1(T ) = INLQUERY(Q1, D)(INLDOC(T,D)) andQ2(T ) =
INLQUERY(Q2, D)(INLDOC(T,D)). The argument is sim-
ilar to the previous case: assume first that a tupleā be-
longs toQ(T ). Then, there must be sub tuplesā1, ā2 of
ā such that (ā1) and (ā2) belong to Q1(T ) and Q2(T ),
respectively. We obtain that(ā1) and (ā2) belong to the
evaluation of INLQUERY(Q1, D) and INLQUERY(Q2, D)
over INLDOC(T,D), and thus, since INLQUERY(Q,D) =
INLQUERY(Q1, D) ∧ INLQUERY(Q2, D), ā belongs to the
evaluation of INLQUERY(Q,D) over T . The other direction
is also analogous.



F. Proof of Theorem 5.3

For this proof, we first provide a key lemma. Let
M = (DS , DT ,Σ) be an XML schema mapping,T
be an XML tree that conforms toDS , and J an
INLMAP(M, DS, DT )-solution for INLDOC(T,D). For a re-
lation Rℓ of INLSCHEMA(DT ), we denote all the positions
that correspond to an attributeidℓ or idµ(ℓ) of Rℓ as the
identifier positionsof Rℓ. Moreover, an elementa in a tuple
t in the interpretation ofRℓ in J is an identifier elementif it
occupies an identifier position int. We also define theattribute
positions of a relationRℓ as the positions that correspond to
attributes ofℓ or of ℓ′ | µ(ℓ′) = ℓ in D, and define the notion of
an attribute elementas expected. We now present the lemma:

Lemma 1.5:Let M = (DS , DT ,Σ) be an XML schema
mapping, andT be an XML tree that conforms toDS.
Moreover, let J be an INLMAP(M, DS , DT )-solution for
INLDOC(T,D) such that (1) every identifier element inJ does
not appear in two identifier positions in two (not necessarily
different) tuples, and (2) no identifier element is also an
attribute element. Then, there exists a treeT ′ such that
INLDOC(T ′, DT ) ⊆ J , and such thatT ′ is an M-solution
for T .

Lemma 1.5 formalizes the intuition that this class of
”well behaved” INLMAP(M, DS , DT )-solutions contains the
correct representation of a shredded tree. The proof of this
Lemma constructs fromJ a correct tree representation, in
which each identifier element inJ represents a node of the
treeT ′ such that INLDOC(T ′, DT ) ⊆ J . We leave the details
since the proof is lengthy and straightforward.

We now prove the theorem.
Part a: Let M = (DS , DT ,Σ) be an XML schema

mapping, andT an XML document that conforms toDS.
Consider an arbitraryM-universal solutionT ′ for T . We need
to show that INLDOC(T ′, DT ) is an INLMAP(M, DS, DT )-
universal solution forT . This is split into two parts, proving
first that INLDOC(T ′, DT ) is a solution, and then that it is
universal.

As stated, we first prove that INLDOC(T ′, DT ) is an
INLMAP(M, DS, DT )-solution for INLDOC(T,DS). From
Proposition (3.4), it is clear that INLDOC(T ′, DT ) satis-
fies the dependencies in∆D. We now show that the pair
(

INLDOC(DS , T ), INLDOC(Dt, T
′)
)

satisfy all the dependen-
cies inΣ. Assume that for a dependency of the form

INLPATTERN(π(x̄), DS) → ∃z̄INLPATTERN(π′(x̄, z̄), DT )

there is a tuple t̄x such that INLDOC(DS , T ) |=
INLPATTERN(π(t̄x), D). From Proposition 5.1, it must be
the case thatT |= π(t̄x). Thus, since T ′ is a so-
lution for T , there must be a tuplētz of constant
and/or null elements such thatT ′ |= π′(t̄x, t̄z). Again,
from Proposition 5.1, we obtain that INLDOC(DT , T

′) |=
INLPATTERN(π′(t̄x, t̄z), D). This finishes the proof that
INLDOC(T ′, DT ) is an INLMAP(M, DS , DT )-solution for
INLDOC(T,DS).

We now prove that INLDOC(T ′, DT ) is indeed universal.
Assume for the sake of contradiction that it is not an universal
solution, that is, there exists a solutionJ such that there
does not exists an homomorphism from INLDOC(T ′, DT )
to J . Construct fromJ a solutionJ ′ as follows: For each
identifier position of every relationRℓ in INLSCHEMA(DT ),
and each tuple in the interpretation ofRℓ, replace each
identifier elementa of t with a fresh null elementza. In this
case, replace also each occurrences ofa in the positionidµ(ℓ′)

of tuples in the interpretation of relationsRℓ′ that reference
Rℓ in a constraint in INLSCHEMA(DT ), and replace each
occurrence ofa in an attribute position with a fresh null. It
is easy to see thatJ ′ is an INLMAP(M, DS, DT )-solution
for INLDOC(T,DS) as well. In fact, since we have replaced
each of those elementsa with nulls in a ”cascade” fashion,
J ′ clearly satisfies all dependencies in INLSCHEMA(DT ).
Furthermore, since each dependency in INLMAP(M, DS , DT )
contains a different existentially quantified variable foreach
relation in its right-hand side,(INLDOC(T,DS), J ′) satisfy
the dependencies in INLMAP(M, DS , DT ). Finally, there is a
homomorphism fromJ ′ to J : map each suchza to the element
a, and map each other element to itself. Thus, by composition
of homomorphisms, there cannot exist an homomorphism from
INLDOC(T ′, DT ) to J ′, as this would imply the existence of
an homomorphism from INLDOC(T ′, DT ) to J . However, no-
tice thatJ ′ satisfies the property of Lemma 1.5, since all iden-
tifying elements not satisfying it have been replaced by fresh
new null elements. Let thenTJ′ be theM-solution forT such
that INLDOC(TJ′ , DT ) ⊆ J ′ (Lemma 1.5 proves the existence
of TJ′ ). Notice that, since INLDOC(TJ′ , DT ) ⊆ J ′, there also
exists a homomorphism from INLDOC(TJ′ , DT ) to J ′. Yet
again, by composition of homomorphisms, we conclude that
there cannot exist a homomorphism from INLDOC(T ′, DT ) to
INLDOC(TJ′ , DT ).

On the other hand, the XML treeT ′ is an M-universal
solution, and thus there is an homomorphisms fromT ′ to TJ′ .
But then, by Lemma 1.4, there exists an homomorphism from
INLDOC(T ′, DT ) to INLDOC(TJ′ , DT ). This is a contradic-
tion.

Part b: Assume thatR is an INLMAP(M, DS , DT )-
universal solution for INLDOC(T,DS). For this proof we use
the fact that CANSOL(INLDOC(T,DS)) satisfies the condi-
tions of Lemma 1.5, that is, that every identifier element in
CANSOL(INLDOC(T,DS)) does not appear in two tuples in
two different identifier positions; this can be easily proved
from the properties of the chase procedure (see [13]). Further,
sinceR is universal, there must be an homomorphism from
R to CANSOL(INLDOC(T,DS)), and thus it also must be
the case thatR satisfies the conditions of Lemma 1.5. Then,
from Lemma 1.5, letT ′ be anM-solution for T such that
INLDOC(T ′, DT ) ⊆ R.

To prove thatT ′ is an M-universal solution forT , let
T ′′ be anM-solution for T , we need to prove that there
is a homomorphism fromT ′ to T ′′. From the part a) of
this Theorem, INLDOC(T ′′, DT ) is an INLMAP(M, DS , DT )-



solution for INLDOC(T,DS), and, sinceR is universal, there
is a homomorphismh fromR to INLDOC(T ′′, DT ). Moreover,
since INLDOC(T ′, DT ) ⊆ R, h is also a homomorphism from
INLDOC(T ′, DT ) to INLDOC(T ′, DT ). Thus, from Lemma
1.4, there is a homomorphism fromT ′ to T ′′. This concludes
the proof.�

G. Proof of Theorem 5.4

Assume first that a tuplēt belongs to the certain answers of
a queryQ over a treeT under a mappingM = (DS , DT ,Σ).
Then, clearly, t̄ belongs to the evaluation ofQ over the
canonical solution CANSOL(T ) for T (that, in this case,
is guaranteed to exists [6]) underM. Then, from proposi-
tion 5.2, t̄ belongs to the evaluation of INLQUERY(Q,DT )
over INLDOC(CANSOL(T ), DT ). Moreover, from proposition
5.3, INLDOC(CANSOL(T ), DT ) is an INLMAP(M, DS, DT )-
universal solution for INLDOC(T,DS). From results in
[13], we obtain thatt̄ belongs to the certain answers of
INLQUERY(Q,DT ) over INLDOC(T,DS) under M. The
other direction is symmetrical.�

H. Proof of Proposition 6.5

We begin by proving that INLTQL(Q,D)(INLDOC(T )) ⊆
INLDOC(Q(T ), DQ). Let DQ be the DTD corresponding
to Q. Assume that there exists a tuplet that is part
of a view V in INLTQL(Q,D), with view V of form
Rℓ(f(x̄), g(x̄′′), ā, x̄′) := INLQUERY(ϕ(x̄), D) (we do not
prove the case whenℓ = r since it is very similar). Thus,
t must be of form(cf(b̄), cg(c̄), ā, b̄

′), where c̄ and b̄′ are
contained inb̄, and it must be the case thatb̄ belongs to
INLQUERY(ϕ,D)(INLDOC(T,D). By Theorem 5.2,̄b be-
longs toϕ(T ). Denote byv the valuation that assigns̄x as b̄
(and obviouslȳc to x̄′′), and assume that the forest query that
created viewV in the inlining ofQ is of form ℓ(ā, x̄′)[q′(x̄′′)].
It can be proved by induction that[[q(x̄)]]T,v must contain a
node of formℓ(ā, b̄′)[[[q′(x̄′′]]T,v]. Thus, the inlining ofQ(T )

must contain a tuple inRℓ of form (idn, idµ(n), ā, b̄
′); the

proof follows by renaming ascf(b̄) and cg(c̄) the nulls idn

and idµ(n), respectively. We only need to show that no null
has to be renamed as two different constants. Assume now that
there is a noden1 in Q(T ) that requires to be named twice
according to the above procedure. We consider all possible
cases:

• For two tuples(cf(b̄), cg(c̄), ā, b̄
′), (cf ′(d̄), cg′(ē), ā

′, d̄′),
idn must be renamed ascf(b̄) and cf ′(d̄). But then,
since every viewV of INLTQL(Q,D) is created with a
different function symbol, it must be the case thatf = f ′

(if not, these two tuples correspond to a different forest
query in Q(T )). Let now vb and vd be the valuation
that mapsx̄ to b̄ and d̄, respectively. It follows that
b̄ = d̄, becausen1 cannot belong to both[[q(x̄)]]T,vb

and
[[q(x̄)]]T,vd

at the same time.
• For two tuples(cf(b̄), cg(c̄), ā, b̄

′), (cf ′(d̄), cg′(ē), ā
′, d̄′),

idn must be renamed ascg(c̄) and cg′(ē). Let q(x̄) and

q′(ȳ) the forest queries that gave rise to the creation of
functionsf andf ′ in INLTQL. In this casen1 must be
the common ancestor of both[[q(x̄)]]T,vb

and[[q′(x̄)]]T,vd
,

and thus it follows thatg = g′, because the same skolem
term must have been passed on by algorithm INLTQL.
Let now q′′(z̄) be the forest query that gave rise to the
creation of functiong in INLTQL, and thusv be the
valuation such thatn1 is the root node of[[q′′(z̄)]]T,v.
According to our renaming procedure, bothvb and vd

must be extensions ofv, and thus it must be that̄c = ē,
as they are both replaced underv

• For two tuples(cf(b̄), cg(c̄), ā, b̄
′), (cf ′(d̄), cg′(ē), ā

′, d̄′),
idn must be renamed ascf(b̄) andcg′(ē). Using the same
arguments presented in the previous cases, we conclude
that f = g′, the skolem terms that producedf(b̄) and
g′(ē) are the same, and that the valuation that assignsb̄
to the free variables of the skolem term corresponding to
f(b̄) must then be an extension of valuation that assigns
d̄ to the skolem term off ′(d̄), that assigns in turn̄e to
the term corresponding tog′(ē); it must be that̄b = ē.
The last remaining case is completely symmetric.

Next, we show that INLDOC(Q(T ), DQ) ⊆
INLTQL(Q,D)(INLDOC(T )).

Since every element ofDQ is under a star, it is easy to
see that relationRℓ will contain only attributesidℓ, idµ(ℓ) and
ADQ

(ℓ). We first rename all elements that are in a position
corresponding to attributesidℓ as follows:

Let t be a tuple of relationRℓ in INLDOC(Q(T ), DQ), and
assume thatidn is the element that corresponds to attribute
idℓ of Rℓ. If ℓ = r, renameidn by the 0-ary termfr() used
in procedure INLTQL. For the case whenℓ 6= r, it is easy to
see from the definition of the procedure INLDOC thatQ(T )
must contain anℓ-labelled noden. Thus, from the semantics
of TQL queries, there must be a sub-forestq of Q of form
q(x̄) = ℓ(ā, v(x̄′))[q′(x̄′′)] and a valuationv such thatn is
the top node of forest[[q(x̄]]T,v. Let f be the function created
by procedure INLTQL in the step corresponding toq. Finally,
let π1(z̄1), . . . , πk(z̄k) be the sequence of patterns present in
for-return constructs inQ from the root untilq, and letz̄ be
the union ofz̄1, . . . , z̄k. Then, renameidn ascf(v(z̄)). Notice
that this procedure is well defined, sincev must apply to each
variable ofz̄.

Let us denote byJ the instance resulting of renaming all
elements of INLDOC(Q(T ), DQ) accordingly. We show that
J ⊆ INLTQL(Q,D)(INLDOC(T,D)), up to renaming of nulls
in attribute positions (that is, nulls in positionsAD(ℓ) in tuples
on Rℓ.

Let t be a tuple of relationRℓ in J , and assume that
the elements int corresponding to attributesidℓ, idµ(ℓ) and
ADQ

(ℓ) arecf(b̄), cg(b̄′), ā.
We need to show that such tuple is in fact in

INLTQL(Q,D)(INLDOC(T )). Let n andn′ be the nodes in
Q(T ) such thatidn and idn′ where replaced bycf(b̄) and
cg(b̄′), respectively, andq(x̄), q′(x̄′) the forest queries that give
rise to the creation off and respectivelyg by procedure
INLTQL. Moreover, letϕ(z̄) = π1(z̄1), . . . , πk(z̄k) be the



sequence of patterns present infor-return constructs inQ from
the root until q, where z̄ is the union ofz̄1, . . . , z̄k. In the
same fashion, we selectϕ′(z̄′) = π′

1, (z̄
′
1), . . . , π

′
k′(z̄k′ ) and

z̄′ for forest queryq′. As a remark, sincen′ is the parent of
n, observe that each patternπ′

i corresponds to a patternπj ,
for somej ≤ k. Finally, it is easy to see that there is no other
query of formℓ(ȳ, ā)[q′′(ȳ′)] in betweenq and q′. Thus, the
step of INLTQLcorresponding toq(x̄) must have received the
term g(z̄′) as input.

By following these remarks, one notices that procedure
INLTQL creates the following viewV for the step ofq(x̄):
Rℓ(f(z̄), g(z̄′), d̄, x̄) := INLQUERY(ϕ,D).

All that remains to see is that, since(T, v) |= ϕ(z̄), it
must be that INLDOC(T,D) |= INLQUERY(ϕ(v(z̄)), D).
This ensures the existence of a fact of form
Rℓ(cf(v(z̄)), cg(v(z̄′)), d̄, v(x̄)) = Rℓ(cf(b̄), cg(b̄′), ā) in
INLTQL(Q,D)(INLDOC(T,D)).

I. Proof of Proposition 6.6

Let T be a tree such that INLDOC(T,D) = I. We construct
a mappingh betweenT and PUBREL(I) as follows:

• For each noden of T that is marked, letℓ be it’s label, and
idn be the identifier ofI = INLDOC(T,D) that belongs
to the attributeidℓ of the tuplet created by procedure
INLDOC from noden. Then, defineh so it mapsn to
the node of PUBREL(I) created by procedure PUBREL

from tuple t of Rℓ.
• For each noden that is not marked, letn′ = µ(n), and
t the corresponding tuple in INLDOC that corresponds
to node n′. Let ℓ and ℓ′ be the label ofn and n′,
respectively, and assume thatidn, idn′ are the identifiers
of t in positions idℓ and idℓ′ of tuple t in R′

ℓ. Then,
procedure PUBREL will create fromt a noden′

t labelled
ℓ′ and a nodent labelled withℓ, such thatµ(nt) = n′

t

in PUBREL(I). Defineh so it mapsn to nt.

It is clear that this mapping is one to one, sinceI =
INLDOC(T,D). Furthermore, sinceG(D) is a tree, it is also
clear that this mapping preserves the relationµ of nearest
appropriate ancestors, as the way in which procedure PUBREL

creates the parent-child relation of nodes is always unique. Fi-
nally, from the definition of procedures PUBREL and INLDOC

it must be the case that for everyn in T labelledℓ, the set
{ρ@a(n) | @a ∈ AD(ℓ)} is the same as{ρ@a(h(n)) | @a ∈
AD(ℓ)} in PUBREL(I).

It is now an easy exercise to prove that INLDOC creates the
same relations (up to renaming of nulls) for PUBREL(I) and
(T ), since for every marked noden of T the procedure creates
exactly the same tuple as marked nodeh(n) of PUBREL(I).

J. Proof of Theorem 6.7

Fix an M -universal solutionT ′ for T . By theorem 6.1,
CERTAINM(Q, T ) = Q(T ′), whereT ′ is an universal solution.
Furthermore, by proposition 6.5, INLDOC(Q(T ′), DQ) =
INLTQL(Q,DT )(INLDOC(T ′, DT )).

Finally, since the views created by the procedure
INLTQL are essentially conjunctive queries using skolem
terms, and (by theorem 5.3) INLDOC(T ′, DT ) is an
INLMAP(M,DS , DT )-universal solution for INLDOC, it
can be proved that INLTQL(Q,DT )(INLDOC(T ′, DT )) =
CERTAININLMAP(M)(INLTQL(Q,DT ), INLDOC(T,DS)), us-
ing standard tools from data exchange literature (see [13],[8]).

K. Proof of Theorem 7.1

In [6], a chase procedure was defined to compute the
canonical universal solution for a treeT under an XML
mappingM. If we include a set of XML integrity constraints
∆T in M, it is possible to extend this chase procedure so
that it correctly computes the canonical solution forT under
the extension ofM, assuming that the constraints in∆T are
acyclic (this restriction, as we have discussed, can be improved
to consider more weaker notions of acyclicity [13], [22],
[8]). Moreover, the procedure EXT INLMAP(M, DS, DT ,∆T )
produces a mapping with acyclic relational constraints in the
target schema if and only if∆T is acyclic. Thus, using this
results, it is possible to adapt the proofs of theorems 5.3, 5.4
and 6.7 for the case stated in this theorem (that is, considering
integrity constraints in target schemas).


