Tractable XML Data Exchange via Relations

Rada Chirkova*, Leonid Libkin*?, Juan Reutter®

#NC State University
Ichi rkova@sc. ncsu. edu

*University of Edinburgh
2l'i bki n@nf . ed. ac. uk
3juan. reutter @d. ac. uk

Abstract— We consider data exchange for XML documents: ~ The mappings rarely specify the target instance completely
given source and target schemas, a mapping between them, andthat is, for each sourcg and mapping\, there could be mul-
a document conforming to the source schema, construct a taeg tiple target instanced;, 7z, ... that satisfy the conditions of

document and answer target queries in a way that is consistén th - Such inst] Yotiitions The notion of
with source information. The problem has primarily been studied € mapping. such instances are casedutions The notion o

in the relational context, in which data-exchange systemsadve QUEry answering has to account for their non-uniquenegs-: Ty

also been built. cally, one tries to computeertain answersERTAIN (@, S),
Since many XML documents are stored in relations, it is je., answers independent of a particular solution cholen.

natural to consider using a relational system for XML data Q produces relations, these are usually defineqﬂg@(Ti).

exchange. However, there is a complexity mismatch between . ;
query answering in relational and XML data exchange, which Certain answers must be produced by evaluating some query

indicates that restrictions have to be imposed on XML schemm — Not necessarily) but perhaps itgewriting Qrewr Over a

and mappings, and on XML shredding schemes, to make the use particular solution7, so thatQew(7) = CERTAINM(Q, S).

of relational systems possible. Thus, the key tasks in data exchange are: (a) choosing
We isolate a set of five requirements that must be fulfilled in 5 particular solutionZ7 among {T1,T3,...} to materialize,

order to have a faithful representation of the XML data-exchange A :
problem by a relational translation. We then demonstrate that and (b) finding a way of producing query answers over that

these requirements naturally suggest the inlining technige for ~S0lution by running a rewritten que@ewr over it. Usually one

data-exchange tasks. Our key contribution is to provide shed- builds a so-callediniversalsolution [13], [8]; these solutions

ding algorithms for schemas, documents, mappings and quess, behave particularly nicely with respect to query answering

and demonstrate that they enable us to correctly perform XML These basics of data exchange are independent of a partic-

data-exchange tasks using a relational system. ular model of data. Most research on data exchange, however,
occurred in the relational context [13], [14], [22], [8] dight

[. Introduction extensions [33], [19]; the first paper that attempted to reckte

relational results to the XML context was [6], and a few

Data exchgnge is the problem of finding an instance of a tar%’l’iowups have since appeared [4], [3]. They all conceeteat
schema, given an msta.n.ce 9f a source sc_:hem{?l and a SCthE""algorithmic aspects of query answering and constrgictin
mapping, that s, a specification of the relationship bet&e ¢ ions, with the main goal of isolating tractable cases.

source and the target. Such a target instance should dwre%e problem these papers do not addressaw XML data
represent information from the source instance under t Qchange can be implemented

constraints imposed by the target schema, and should allows .\ ious work on algorithms for XML data exchange has
one to evaluate queries on the target instance in a way t itly assumed that one uses a native XML DBMS such as
is semantically consistent with the source data. The pmbletzo]_ However, this is not the only (and perhaps not even the
has received much attention in the past few years, with aéver, < common) route: XML documents are often stored in
surveys already available [22], [9], [8]. relational DBMSs. In fact, many ETL products claim that they

The general setting of data exchange is this: handle XML data simply by producing relational translation

. (known asshredding[23]). This leads to a two-step approach:

ﬁ mappmg/\/l. ﬁ query @ « first shred XML data into relations;

« then apply a relational data-exchange engine (and publish

- - the result back as an XML document).

We have fixed source and target schemas, an inst&ncé&he approach seems very natural, but the key gquestion is
of the source schema, and a mappifg that specifies the whether it will work correctly That is, are we guaranteed
relationship between the source and the target schemas. idédave the same result as we would have gotten had we
goal is to construct an instan@e of the target schema, basedmplemented a native XML data-exchange system?
on the source and the mapping, and answer queries againgio state this more precisely, assume that we have a transla-
the target data in a way consistent with the source data. tion o(-) that can be applied to (a) XML schemas, (b) XML

documents, (c) XML schema mappings, and (d) XML queries. As for the complexity issue, the work on the theory of XML
Then the concept aforrectnes®of such a translation is showndata exchange has identified a class of mappings for which
below: efficient query answering is possible [6], [4], [3]. The sctas
queryQ (say, DTDs), have rules of the forah — book*, book —
get7T ——— answer author® subject (we shall give a formal definition later), and
the mappings transform patterns satisfied over the soutae in
shred shred shred patte_rns sat!sf!ed over targets. . _
This restriction suggests a relational representationse u
7(Q) Going with the edge representation [15] is problematict,firs
o(T) ——— answer each edge in an XML pattern used in a mapping will result in
a join in the relational translation, making it inefficieratnd
second, enforcing even a simple schema structure under that
representation takes us out of the class of target contgrain
, that relational data-exchange systems can handle. Vdyifiab
queriesq). . . correct translations based on numerical encodings [34], [3
But now we want a relational system to do the job. S@j necessarily involve numerical and/or ordering coasits
we shredS into o(S) and then apply t@r(S) the translation ', ye|ational translations of mappings, and this is sonmethi
of the mappingo (M) to get a solution — which itself iS a 5 relational data exchange cannot handle at the moment
shredding of an XML solution — so that the answetaould [22], 8] (beyond simple ordering constraints [2]).
be reconstructed from the result of the querly?) over that ~ one transiation scheme however that fits in well with
relational solution. restrictions identified in [6], [4], [3] is thénlining scheme. It
The idea seems simple and natural on the surface, but stgftsks very well for DTDs of the “right” shape, and its output

looking challenging once we look deeper into it. Before evegthemas involve only acyclic constraints, which is perfect
attempting to show that the relational translation faillyftep- data-exchange scenarios.

resents the XML data-exchange problem, we need to address . . .
the following gep Be5|derata for the translation We now formulate some basic

requirements for the translatiom, in order to be able to

Complexity mismatchWithout restrictions, thereannot be 5chieve our goals described in the diagram above. We need
a faithful representatiorof XML data exchange by a he following:

re:agona: S?/Stim' Inde.ed, It is t\)/vellﬁknlowtr: that Ipof't'(\j/??equirement 1: translation of schemasA translations (D)
relat!onal—zgte ra qunes Cig ezg |C|gn ﬁ iva ua ef N that, when applied to a DTD of a special form, produces a
relationa’ data exchange _[]’_[] [_]’ ut EVen 1o elational schema that only has acyclic constraints, which
simple XML analogs of conjunctive queries f|nd|_ng query i be used in a relational data-exchange setting.
answers can be coNP-hard [6]. So any claim that equirement 2: translation of documents A translation
relational data-exchange system correctly performs XML op(-) for a DTD D that, when applied to documeit

gata de>t<ch;mge for avr\?ltrt?]ry dOCL('jmten_tj a?d f[qhuerles IS conforming to D, produces relational database,(T)
ound to be wrong. We thus need to identify the cases of schema (D).

Wh'thr?t (r:]andté_e han?}led b){{ a re_g;tlonal system. | that Requirement 3: translation of queries For a DTD D, a
Ich snredding scheme 1o usetiere .are several, that can translationop (Q) of (analogs of) conjunctive queries so
roughly be divided into two groups: those that do not take thataD(Q)(aD (T)) — Q(T) (that is, the result of)(T)
the schema information into account (e.g., the edge repre- can be computed by relational trar;slations)

serr:tatlon [:l)j]’ mte:jvz;\rl]codl?r?st[34], Snd %ther nuLnbermls’%equirement 4: translation of mappings For a mapping
schemes [31]), an ose that are based on schemas for M between a source DT, and a target DTDD;,

le\?/’IL,Sguch_asd vtarlanti of the mlmmg teChT'q?e {ﬁgt] its translations (M) is a mapping between(D;) and
[23]. Since in data-exchange scenarios we start with two o(D;) that preserves universal solutions. That is:

schemas, it seems more appropriate to apply schema- . . .
pprop PPY (a) Eachop,-translation of a universal solution fdf

based techniques. d) . | solution f d
Target constraintsin relational data exchange, constraints ur(‘/\j)rM Ids a universal solution forp, (T') under
o(M); an

in target schemas are required to satisfy certain acyclic- X)

ity conditions; without them, the chase procedure that (0) Each_unlversal SOIUI'O'_" fovp, (T) .undero(/\/l).
constructs a target instance does not terminate [13], contains a op,-translation of a universal solution
[22], [8]. Constraints imposed by general XML schema of T under M.
specifications need not in general be even definable fRgquirement 5: query answering For (analogs of) conjunc-
relational calculus, let alone be acyclic [21]. We thus need tive queries over trees, computing the answe@tander

to find a shredding technique that enables us to encod
9 4 ?We cannot require the equivalence, as relational solutamesopen to

targets SCh_em"?‘S by means of constraints that guararggrﬂng new tuples and thus cannot always be translationsee$;twe shall
chase termination. discuss this later.

mapping M
XML : sourceS M» tar

a(M)

Relations: o(S)

That is, suppose we start with an XML documé&htand
an XML schema mappingV. In a native system, we would
materialize some solutio? over which we could answer

M over a source tred’ is the same as computing aof exchanging XML data was also studied in [16], [28],

o(M)-solution of o (T'), followed by evaluation o&(Q)) which give translations of documents and DTDs into nested-
over that solution, as is normally done in a relationaklational schemas, and then show how to perform XML data
data-exchange system. exchange under this translation. Most RDBMSs, however, do

Satisfaction of these five requirements would guarantete tf@t provide support for nested relational schemas, and, thu
we have acorrect relational translation of an XML data- SPecific machinery has to be developed in order to implement
exchange problem, which would guarantee correct evaluatigis translation under a strictly relational setting. ltfathe
of queries. resu!ts of_this paper may aid towards the developmen_t of a

For the choice of the query language, one has to gelational implementation for both XML and nested-relatb
careful since the definition of certain answers depends en figta e€xchange.
output of the queries. We consider two classes of conjuacti@utline Key definitions are given in Section Il. Section Ill pro-
queries over trees. The first is tree patterns that outplésupvides translations of schemas and documents and shows that
of attribute values. These are the queries most commomfey fulfill Requirements 1 and 2. Section IV provides themai
considered in XML data exchange [6], [4], [3] because fafoncepts of relational and XML data exchange. Section V pro-
them we can define certain answers as the usual intersectififes translations of mappings and queries, and shows that R
CERTAINM(Q,S) =), Q(T;). The second type of queriesquirements 3, 4, and 5 are fulfilled. Section VI studies ceeeri
we use is a simple XML-to-XML query language from whosenhat output XML trees. Finally, section VIl extends the iésu
queries outputrees It is essentially the positive fragment ofto handle target constraints. Formal proofs of correctrudss
FLWR expressions of XQuery [32]. For outputs which arg|l the algorithms can be found in the full version which
XML trees, the intersection operator is no longer meanihgfis available at www.csc.ncsu.edu/research/tech/intigx.ps
for defining certain answers. Instead, we use recent restiltsechnical report TR-2010-16.

[11] that show how to define and compute certain answers for
XML-to-XML queries.

Contributions Our main contributions are as follows. First,

we introduce an architecture for XML data exchange usirfgelational schemas and constraints: A relational schema
relational vehicles, with a focus on correct evaluation fr justschemais a finite setR = {Ry,..., R} of relation
(analogs of) conjunctive queries on XML data. Second, weymbols, possibly with a set of integrity constraintiegen-
identify a class of XML schema mappings and a shreddirgtgnciey. Constraints used most often in data exchange are
mechanism that allows us to overcome the complexity miggd’s and tgd's [13], [22], [8] (equality- and tuple-gertérg
match. Third, we provide algorithms for relational tratisia dependencies), but for our purposes it will suffice to comsid
of schemas, XML documents, schema mappings, and queidsy keysandforeign keys If R is a relation over attributes

in our proposed architecture. Finally, we prove the comess U, and X is a set of attributes, theX is a key of R if

of the translations: namely, we show that they satisfy thevab no two tuples ofR coincide onX -attributes (that is, for all
five requirements, and thus enable us to use relational ditlest:,ts € R with t; # t we haverx (t1) # mx (t2)). If
exchange systems for XML data-exchange tasks. R, and R, are relations over sets of attributé§ and Uy,
Related work In recent years, significant effort has been der_espectlvely, then an inclusion constraiR[X] C Ry[YT],

voted to developing high-performance XML database systerﬁ’vﬁqhg:]eé((QRlU; zgn::(]%2)U 2V\E/ieref8:t:1heer 2231;;?:'?(3'2?3:?(2;

and to building tools for data exchange. One major directioh . . X .
of the XML effort is the “relational approach”, which uses>" the attributes oft; [X] Crx Ra[Y] holds if the inclusion

relational DBMSs to store and query XML data. Documenfonstraintit; [X] € Ry[Y] holds, fade is a key OfR?'
could be translated into relational tuples using either &DD With each set of keys and foreign keys, we associate a graph

aware” translation [30], [29] or a “schemaless” translatio @n which We_put an edge between _attributésandB if there
The latter translations include the edge [15] and the nodp [35 @ constraint? [X] Crx Ry[Y] with A € X andB e Y.
representations of the data. Indexes could be prebuilt en # thiS graph is acyclic, we say that the set of constraints is

data to improve performance in relational query processi yclic A schema is acyclic if its constraints are acyclic. In
see, e.g., [31], [34]. Constraints arising in the trantaare ata exchange, one often uses a more technical notion of weak

sometimes dealt with explicitly [7], [24]. See [18] for a say acyclicity: it include; some cyclic schemas for Wh_ich thasd
of the relational approach to answering XML queries. procedure still terminates. For us, however, the simpleeph

The work on data exchange concentrated primarily o(ﬂ acyclicity W.i|| suffice,.as our translations of schemagyon
relations, see [8], [22] for surveys and [27], [28] for syste produce acyclic constraints.
descriptions. Mappings for the XML data exchange probleXML documents and DTDs Assume that we have the
were studied in [6], [4]; it was noticed there that the confollowing disjoint countably infinite setdz! of element names,
plexity of many tasks in XML data exchange in higher tharltt of attribute names, andtr of possible values of string-
for their relational analogs, which suggests that resbrist valued attributes. All attribute names start with the symbo
must be imposed for a relational implementation. The prbleQ.

[l. Preliminaries

1:r

2: book 3: book

“ Al gorithm Design’ “ Al gebra’ r — book’

/ \\ / \ book — author™ subject
. . author — name aff

4: author 5: author 6: subject 7: author 8: subject Ap (book) — Qtitle

/ \ / \ s / \ Mat h Ap(subject) = Qsub

9: name 10: aff 11: name 12: aff 13: name 14: aff Ap(name) = Qnam

Kl ei nberg CU Tardos CU Hungerford SLU Ap(aff) = Qaff

(a) TreeT
(b) DTD D

Fig. 1. The XML treeT" conforms toD

An XML treeis a finite rooted directed treé€ = (N,G), tree. In the Figure, the node identifiers precede the cooresp
whereNN is the set of nodes ar@ is the set of edges, togetheiing labels of each node ifi; we omit the attribute names and
with only show the attribute values of each node. In additiony &g

1) a labeling function\ : N — EI; 1(b) shows an example of a nested relational DTD. Moreover,

2) attribute-value assignments, which are partial fumstiog's easy to see that the trdeof Figure 1(a) conforms td.

paq : N — Str for each@Qaq € Att; and
3) an ordering on the children of every node.

A DTD D over El with a distinguished symbol (for the
root) and a set of attributett consists of a mappinffp, from
El to regular expressions oveil — {r}, usually written as We now review thenlining technique [29], provide a precise
productions/ — e if Pp(¢) = e, and a mappinglp from El definition of the translation, and show that it satisfies Ber
to 24! that assigns a (possibly empty) set of attributes to eaghirements 1and2. The main idea of inlining is that separate
element type. For notational convenience, we always assuregations are created for the root and each element type that
that attributes come in some order, just like in the relaionappears under a star, and other element types are inlinkd in t
case: attributes in tuples come in some order so we can Wiiggations corresponding to their “nearest appropriatesioc”.
R(ai,...,a,). Likewise, we shall describe ahlabeled tree Each relation for an element type has an ID attribute that is
node withn attributes ad(ay, ..., an). a key, as well as (for non-root) a “parent-ID” attribute tfeat

A tree T' conforms to a DTDD (written asT' |= D) if its a foreign key pointing to the “nearest appropriate ancéstor
root is labeledr, the set of attributes for a node labeléds of that element in the document. All the attributes of a given
Ap(¢), and the labels of the children of such a node, readement type in the DTD become attributes in the relation
from left to right, form a string in the language &% (¢). corresponding to that element type when such a relationsexis

A class of DTDsIn this paper we consider a restriction orP’ otherwise become attributes in the relation for the “asar

DTDs callednested-relational DTD§L], [6], a class of DTDs appropriate ancestor” of the given element type.

that naturally represent nested relational schemas sutieas e begin with a formal definition of theearest appropriate

ones used by the Clio data-exchange system [27]. The readbgestorfor the element types used iP. Given a nested-

for using them is that outside of this class, it is very eadglational DTDD = (Pp, Ap,r), we “mark” in G(D) each

to construct instances of XML data-exchange problems ttlement type that occurs under a star fip. In addition,

will exhibit coNP-hardness of answering conjunctive gegri We mark the root element type (D). Then, for a given

(which are known to be tractable in practically all instasmceelement type/, we define thenearest appropriate ancestof

of relational data exchange), see [6]. ¢, denoted byu(¢), as the closest marked element tyfyen
A DTD D is non-recursiveif the graphG(D) defined as the path from the root element toin the graphG/(D). The

{(¢,)] ¢ is mentioned inP(¢)} is acyclic. A non-recursive inlining schema generation is formally captured by means of

DTD D is nested-relationalf all rules of D are of the form the procedureNLSCHEMA below.

I —1lo...ln where all thel;'s are distinct, and each is one ExampLE 3.1. Consider again DT in Figure 1(b). The

of [; and!l}. From now on, unless otherwise noted, all DTDgelational schemaNL SCHEMA(D) is as follows:

are assumed to be nested-relational. We also assume, withou R,.(r | D)

loss of generality, that the graggh(D) is not a directed acyclic =~ Rpook(bookI D, @i tle, ri D, subl D, @ub)

graph (DAG) but a tree. (One can always unfold a DAG into Rguthor (aut hl D, bookl D, nanel D, af | D, @iam @af f)

a tree by tagging occurrences of element types with the type§ceys are underlined; we also have the following foreign
of their predecessors.) Keys: Ryoor(rID) Cpi R, (rID) and Ryuthor (bookID) C pic
ExAMPLE 2.1. Figure 1(a) shows an example of an XMLR},.;(bookID). [

[l1l. Translations of schemas and documents

Procedure INLSCHEMA(D)

Procedure INLDOC(T, D)

Input : A nested relational DTDD.
Output: A relational schem®&p and a set of integrity
constraintsA p

SetSp =0 andAp =0

for each marked element typé of D:
add toSp a relationR,, with attributes:

’Ldg
Ap(¢)
attr(Ry) = ¢ id,e) | ifLAET
ide | w()=¢, ¢ is not marked,
Ap(¢) | w()=¢, ¢ is not marked.
endfor

for each relation R, in Sp:
add toAp the constraint stating thatl, is key of R,

and, if ¢ # r, the foreign key
Rylidye)] Srr Ry lidup)]-

endfor

Input : A nested relational DTOD and an XML treeT’
that conforms taD.

Output: A relational instance of the schema
INLSCHEMA(D).

for each marked node: of T':
Let ¢ be the label ofz; Add to the relationRk, of I a

tuple that contains elements

idy,

paa(n) | @Qa € Ap(¢)

idy | w(n’) =mn,n"is not marked.
paa(n’) | wn')=n,Qaec Ap(A(n')) and

n' is not marked
where the identifiers and attributes values for each of

the elementsd,,, id,(,) andpaq(n’) coincide with
the position of the attributes fatly ./, id,) and
Ap(A(n')) of Ry.

endfor

add toAp the dependency (stating the uniqueness of the yetyrn 1

root)
VgVZR (2, 9) A Rp(2',2) — o = 2.

return (Sp,Ap)

The following shows that ouRequirement 1is satisfied.

Proposition 3.2: For every nested relational DT, the
output of INLSCHEMA(D) is an acyclic relational schema.

Shredding of XML documents: We now move to the
shredding procedure. Given the inliningUSCHEMA(D) =
(Sp,Ap) ofaDTD D, and an XML tre€l’ conforming toD,
we use the algorithmNLDoOC to shredT into an instance of
the relational schem8 that satisfies the constraints inp.

Let us first explain this translation by means of an exampl

ExampLE 3.3. Recall tred” from Figure 1(a) and DTD
from Figure 1(b). Figure 2 shows relatiof& ook and R aythor
in the shredding of". O

To present the algorithm, we define thearest appropriate
ancestoru(n) of a noden of an XML documentl” = (N, G)
that conforms to a DTDD, as follows. Mark each node of
T such that\(n) is starred inD, as well as the root of .
Thenu(n) is the closest marked nodé that belongs to the
path from the root tar. In the following algorithm, and for
the remainder of the paper, we denote iy, the relational
element representing the nodeof a treeT'.

The following proposition shows ouRequirement 2 is
satisfied.

Proposition 3.4:Let D be a DTD, andl’ an XML tree

e.

IV. Relational and XML Data Exchange

We now quickly review the basics of relational data exchange
and introduce XML schema mappings that guarantee tractable
query answering.

Relational Data Exchange A schema mapping is a triple
(S, T,%), whereS is a source schemd = (T,Ar) is a
target schema with a set of constraints, and ¥ is a set

of source-to-target dependencitsat specify how the source
and the target are related. Most commonly these are given as
source-to-target tuple generating dependencies (s}:tgds

p(z) — Fz29(z, 2), ey

where ¢ and ¢ are conjunctions of relational atoms over
andT, respectively.
In data-exchange literature, one normally considers in-
stances with two types of values: constants and nulls.host
S of the source schenfaconsist only of constant values, and
nulls are used to populate target instan€¢eshen some values
are unknown.

An instanceZ of T (which may contain both constants and
nulls) is called asolutionfor an instanceS of S under M,
or an M-solution if every st-tgd (1) fromY is satisfied by
(8,7) (that is, for each tupl@ such thatp(a) is true in S,
there is a tuplé such that)(a, b) is true in7).The set of all
M-solutions forS is denoted by 8L (S) (or SoL(S) is M
is understood).

Certain answers and canonical universal solutionThe main
difficulty in answering a query) against the target schema is
that there could be many possible solutions for a given sourc
Thus, for query answering in data exchange one normally uses

such thatT" = D. Then NLDoc(T, D) is an instance of the the notion of certain answers, that is, answers that do not

schema computed byLSCHEMA(D).

depend on a particular solution. Formally, for a souscand

authl D | bookI D | nanel D | af I D @am @f
idy 1do ’idg idlo " Kl ei nber g' [eV]
ids ids idi1 id12 " Tar dos’ CcuU
id7 idg id13 td1a ! Hungerf ord’ SLU

(a) RelationRyythor in INLDOC(T, D)
bookl D @itle rID| subl D | @ub
ids " Al gorithm Design’ idq 1dg CS
ids " Al gebra’ idy ids Mat h

(b) Relation Rpp0k in INLDOC(T, D)

Fig. 2. Shredding of” into INLSCHEMA(D)

a mappingM, we defineCERTAINA(Q, S) as[{Q(T) | T € distinct) so that(7', v;) = m;(a;) for everyi < k.

SoLm(S)}- We write T = «(a) if (T,r) E =(a), that is, the pattern is
Building all solutions is impractical (or even impossibled witnessed at the root.

itis impprtant to find a particular soluticfy € SoL ,(S), and EXAMPLE 4.1. Consider tred from Figure 1(a), and the

a rewrltmgQrewr Qf Q,so tha.tCER_T'.O‘INM(Q’ S) = Qrew(To). tree patternt(z,y) = r[book(z)[authorname(y)]]], which
Universalsolutions were identified in [13] as the preferreginys hooks together with the names of their authors. Then it

solutions in data exchange. Over them, every positive qUEYeasy to see thar = 7(" Al gori t hm Desi gn’ , Tar dos).

can be answered, with a particularly simple rewriting: e |, tact evaluation ofw(z,y) over T’ returns the tuples
is evaluated on a universal solutidj, tuples containing null (Al gorithm Design’, Tardos), (' Al gorithm Desi gn’

values are discarded. Even among universal solutions #rere | oi nper g), and (Al gebra’ , Hunger ford). [J
ones that are most commonly materialized in data-exchang
systems, such as tteanonical solutionCANSOL x((S), com-
puted by applying the chase procedure with constraingsmd
A to the source instanc8. If all the constraints iMAt are . L . .
acyclic (in fact, even a weaker notions suffices), such amha%eneral, checking compatibility of patterns with DTDs is-NP

terminates and computesa@SoL ,((S) in polynomial time complete [1(.)]’ but for t_he PTDS we consider here it can be
[13]. easily done in polynomial time.

Note that ourRequirement 4relates universal solutions in EXAMPLE 4.2.[Example 4.1 continued] The patter(w,)
relational and XML data exchange; in particular, we do nét compatible W'tt‘ the DTDD of Figure 1(b). On the other
insist on working with the canonical solutions, and otherfand, the pattern’(x) = r[author(x)] is not, because no tree

such as the core [14] or the algorithmic constructions of [2§0nSistent withD can have a child of labeled asauthor, or
can be used as well. an authorlabeled node with an attributel]

Towards XML schema mappings: patternsTo define XML RemarkMore general patterns have been considered in the
schema mappings, we need the notions of schemas and sodi@éf"ture [51 [25]’ [_10]' [4_]; in particular, they may mWe
to-target dependencies. The notion of schema is well ungdpscendant navigation, wild cards fo_r labels, and horaont
stood in the XML context. Our dependencies, as in [6], [4], [3axes. However, [6], [4] showed that with these features ddde

will be based ornree patternsPatterns are defined inductivelyquery answering in .data exchange becprr_]es mtractab!e even
as follows: for very simple queries. In fact, the restrictions we useun o

definiti identified in [6 tial for tractalgilof
« ¢(Z) is a pattern, wheré is a label, and: is a (possibly efinition were identified in [6] as essential for tractapi

. . . guery answering.
empty) tuple of variables (listing attributes of a node); . .
e U(Z)[m,...,m] is a pattern, wherer,, ..., are pat- XML schema mappings As our descriptions of XML
terns a;nc%’anda’: are as above Y schemas we shall use DTDs (since for complex schemas, query

. N _ _ answering in data exchange is known to be intractable [&], an
We Wr_'teﬁ(@ to indicate that: |s_the_ tuple_of all the variables prps il suffice to capture all the known tractable cases).
used in a pattern. The semantics is defined with respect t%@urce-to-target constraints will be given via patterns.
node of a tree and to a valuation of all the variables of a patte Formally, an XML schema mappinds a triple M —
as _atFrlbgte values. For[n.aIIIYT,v) = ”(d)f means thabr IS (Ds, D, ¥), whereDg is the source (nested relational) DTD,
satisfied in node whenz is interpreted ag. It is defined as Dy is the target (nested relational) DTD, addis a set of

follows: XML source-to-target dependenci€g, or XML stds, that are
o (T,v) E {(a) if v is labeled? and its tuple of attributes expressions of the form

%iven a DTD D and a tree patterm, we say thatr is
compatiblewith D if there exists a tred’ that conforms to
D and a tuple of attribute values such thatT" = «(a). In

is a; _ i
. (T,U)):f(d)[ﬂ'l(dl),...,ﬂ‘k(dk)] if () ~>7rl(1'7z), (2)
1) (T,v) = ¢(a) and wherer andz’ are tree patterns compatible withg and D,

2) there exist children, ..., v, of v (not necessarily respectively.

As in the relational case, target trees may contain nulls toHowever, even for a patterm(z) compatible with a DTD
account for values not specified by mappings. Given aTreeD, we may not be able to define its inlining as the inlining
that conforms taDs, a treel” (over constants and nulls) is anof 7'z, becausé’ ;) need not conform td. For example,
M-solution forT if T’ conforms toDr, and the pai(7,7’) if a DTD has a ruler — ab and we have a patterria], it
satisfies all the dependencies (2) fram The latter means is compatible withD, but7,.,; does not conform td), as it
that for every tuple: of attribute values fronT', if T' satisfies is missing a-node. Hence, the proceduneLDoc cannot be
n(a), then there exists a tuple of attribute values fron’ used ‘as-is’ in our algorithm.
such thatl” satisfiesr’(a,). The set of allM-solutions for ~ Nevertheless, we can still mark the nodesZf;) with
T is denoted by 8L (7). respect toD and define the nearest appropriate ancestor

EXAMPLE 4.3. Consider the data-exchange scenarfXactly as it has been done previously. Intuitively, thecpro
(D, D7, M) given by the DTDsD and Dr of Figures 1(b) dure INLPATTERN shreds each node @tz into a different
and 3(b), respectively, and whet#! is specified by the predicate, and then joins these predicates using the reares
dependency appropriate ancestor.

rlbook(x)[authorname(y)]]] — Procedure INLPATTERN(7, D)

Input : A DTD D, a tree pattermr(z) compatible with
D.
Output: Conjunctive query overNLSCHEMA(D).

rlwriter[name(y), work(x)]],

that restructures book-author pairs as writer-work. It ba&n
shown that the XML tred” in Figure 3(a) is anM-solution
forT. O for each nodev of T’z of form((z,):

Construct a query), (z,) as follows:

V. XML data exchange using relations if v is markedthen

We now provide algorithms for implementing XML data
exchange via relational translations. Since we have ajread
shown how to translate DTDs and documents, we need to
present translations of stds of mappings and queries. Both
of them are based on translating patterns into relational
conjunctive queries. We first concentrate on that trarsiati
Then we show how to extend it easily to mappings and
queries, and prove the correctness of the translations Thi
will complete our program of using a relational system for
XML data exchange in a semantically correct way.

Inlining tree patterns: The key ingredient in our al-
gorithms is a translation of patterns compatible with a
DTD D into aconjunctive queryNLPATTERN(7, D) over the
relational schemaNLSCHEMA(D). Very roughly, it can be
viewed as this:
1) View a patternt(z) as a tre€l’; in which some attribute
values could be variables;

endfor
return /\ueT,,@ Qu(Ty)-

Q. (i’v) = Hidvﬂid#(v) EZRg(idv, Ty, ’id#(v), 2),

wherez is a tuple of fresh variables, and the
positions of variablesd,, , andid,, ., are
consistent with the attributeigl,, Ap(¢) and
id,,) respectively inattr(R,).

If £=r, thenQ, does not uséd,,,).

else (v is not marked):

setv”:=u(v), £:=\(v'), and letQ,(z,) be
did,, ﬂidu(v/)ﬂidvﬂiRw (idv/ , ’id#(vr), idy, Ty, Z),

wherez is a tuple of fresh variables, and the
positions of the variablesl,, id,), id, andz,
are consistent with the attributés, id,), id,
and Ap(£) respectively inattr(Ry). If ¢/ =,

then@, does not uséd,,,).

2) Compute the relational database Doc(T, D) (which
may have variables as attribute values);

Note that the compatibility ofr with D ensures that

3) View INLDoC(T,,D) as a tableau of a conjunctiveINLPATTERN is well defined. That is, (1) every attribute

query; the resulting query isNLPATTERN(7, D).

formula of the form¢(z) only mentions attributes it (¢),

The algorithm is actually more complicated becausand (2) for all nodes), v’ € Tz, if v’ is a child ofwv, then
INLDOC cannot be used in Step 2; we shall explain shorth(v') € Pp(A(v)).

why.

Towards defining ML PATTERN, observe that each tree pat-Correctness:

Given a patternr(z), the evaluation ofr on

tern 7(z) can be viewed as an XML documefit.;), in atreeT isw(T) = {a|T = m(a)}. The following proposition
which both values and variables can be used as attribgtgows the correctness ofill PATTERN.

values. It is defined inductively as followgy ;) is a single-

Proposition 5.1: Given a nested relational DT, a pat-

node tree labeled, with z as attribute values, and if is tern s« compatible withD, and a tre€l’ that conforms taD,
U(z)[m1(Z1), ..., mk(Zx)], then the root ofT, is labeled/ we haver(T) = INLPATTERN(m, D)(INLDOC(T, D)).
and hast as attribute values. It also haschildren, with the That is, the inlining ofr, applied to the inlining ofl’, returns

subtrees rooted at them beifiy T,

1(531),. cey

ﬂ'k(fk) 7T(T)

r
/ \\ r writer*
: . . writer name work*

writer writer writer Ap(name) @nam

n/ \ / \ rr/ \ Ap(work) Qtitle

name work name work nanie work
Tardos 'Algorithm Design’ Hungerford 'Al gebra’ Kleinberg *Al gorithm Design’
(a) Target Treel”

Fig. 3. TreeT” is an M-solution forT

iy

(b) Target DTD D~

Conjunctive queries over trees: We use the language that Procedure INLMAP(M, Dg, D7)
is essentially conjunctive queries over trees [6], [170][1 Input : An XML mapping M from a source DTDDg

with navigation along the child axis. The langua@g Q is to a target DTDD.
obtaiqu by closing patterns under conjunction and existen Qutput: A relational mapping fromNLSCHEMA(Ds)
quantification: to INLSCHEMA(D7).
Q =7|QAQ| I Q, Set NLMAP(M, Dg, Dr) =)
for dependencyt(z) — 3z7'(z,z) in M do

wherer is a fully specified tree-pattern formula. The semantics
is straightforward, given the semantics of patterns defined 'NtMAP(M, Ds, Dr) :=7|NLMAP(M’1/)S’DT)7U7
above:Q(a) A Q'(b) is true iff bothQ(a) and Q' (b) are true, ~ UNLQUERY(m, Ds)(Z) — 37 INLQUERY(w', Dr)(7, 2)}
and 3z Q(a,z) is true iff Q(a,c) is true for some value. end
The output of@ on a treeT is denoted byQ(T). return INLMAP(M, Dg, Dr)

We say that a query) is compatible with the DTDD if
every pattern used in it is compatible wifh.

The inlining of queries) compatible withD is given by
the recursive algorithmNLQUERY below.

This intuition can be formalized by means of the universal
solutions, which are the most general among all solutions,
and thus do not permit null renaming. Furthermore, one
typically materializes a universal solution, as these tsmhs
contain all the information needed to compute certain arswe
of conjunctive queries. This motivates the restriction of o

Procedure INLQUERY(@, D)
Input : A DTD D, a query@ compatible withD.
Output: A conjunctive query overNLSCHEMA(D).

if @ == then Requirement 4 to universal solutions.
return INLPATTERN(m, D) The theorem below shows that parts (a) and (b)Ref
else ifQ = Q1 A Q2 then quirement 4 hold. Note that in part (b), relational universal
return INLQUERY(Q1, D) A INLQUERY(Q2, D) solutions are only required to contain a shredding of an XML
else if Q@ = Jz@1 then universal solution. This is because relational soluticresadso
return 3z INLQUERY(Q1, D) open to adding arbitrary tuples, which need not reflect a tree

structure of an XML document.
Now we show that every quer in C7 Q can be computed Theorem 5.?_>:a) Let M = (Ds,Dr,X) be an XML
by its inlining on the inlining of its input (assuming, of ame, Schema mapping anéi an XML document that conforms to
compatibility with a DTD). In other wordsRequirement 3 Ds. If 7" is an M-universal solution fofT’, then its inlining

is satisfied. INLDOC(T”, Dr) is an NLMAP(M, Dg, Dr)-universal solu-
Theorem 5.2:Given a DTD D, a treeT that conforms to tion for INLDOC(T, Dg).
it, and a compatible querg, we have b) Let M = (Dg,Dr,X) be an XML schema mapping,
and T an XML document that conforms td)g. Then
Q(T) = INLQUERY(Q, D)(INLDOC(T, D)). for every INLMAP(M, Dg, Dr)-universal solution R for

Inlining XML schema mappings We use our transformation |\, poc(7, D) there exists aivi-universal solutiorf” such

of tree patterns to define the procedure MAP, that, given 4+ INLDOC(T”, Dr) is contained inR.

source and target DTD®g and D, transforms an XML

mapping M into a relational mappingNLMAP(M,Dg,D7)

specified with a set of source-to-target tuple generatipgde Answering XML queries using relational data exchange:
dencies. The semantics of query answering in data exchange, both
CorrectnessWhile one could be tempted to ask for a translaelational and XML [13], [22], [8], [6], [4], is defined by
tion that preserves all solutions, such a result need nat. haineans of certain answers. That is, given a schema mapping
The relational mappingNLM AP uses null values to representM = (Dg, D7, Y), a treeT that conforms taDg, and a con-

the shredded nodes of XML trees, and thus we should onynctive tree query) that is compatible withDr, the certain
consider solutions whose null values have not been renamadswers of) for 7' under M, denoted byCERTAIN((Q,T'),
However, relational solutions are open to renaming of nulls the set of tuples that belong to the evaluation(pbfover

every possibleM-solution forT, that is,{Q(T") | T" is an We shall not need additional details of the construction;
M-solution forT'}. Note that our queries return sets of tuplesnstead we shall use a result from [11] that tells us how aerta
so we can talk about the intersection operator. answers can be computed for a specific XML-to-XML query

It was shown in [6], [4] that, for conjunctive tree querieslanlanguage. The language, called TQL (to be defined shordy), i
mappings using nested-relational DTDs, computing certaimspired by XQuery's FLWR expressions, and is restricted to
answers for a given source tréeis solvable in polynomial positive features (i.e., no negation). The key result frdry [
time. Thus, for the classes of mappings and queries wgethe following:
consider, there is no complexity mismatch between relation Proposition 6.1 ([11]): Let M = (Dg, D7,3) be an XML
and XML data exchange. The next theorem shows that asghema mapping® a TQL query, andl’ a tree that con-
translation is correct with respect to query answeringt ifla forms to Dg. If T’ is an M-universal solution forT’, then
our Requirement 5is satisfied. CERTAINM(Q, T) = Q(T").

Theorem 5.4:Let M = (Dg, Dr,X) be an XML schema Given this result, we now do the following. We provide
mapping. Then, for every XML tre& that satisfiesDs and a formal definition of the TQL language of [11], which
for every conjunctive tree quer, the certain answers @ can express XML-to-XML analogs of relational conjunctive
for T'underM and the certain answers aillQUERY(Q, D7) queries. We then show how to adapt the machinery we have

for INLDOC(T, Dg) over INLMAP(M, Dg, Dr) coincide: previously developed for evaluating certain asnwers over a
universal solution. Note that for this new translation, aL.TQ
CERTAINA(Q,T) = query) returning trees needs to be translated intsetof

CERTAINiy e (1) (INLQUERY(Q, D), INLDOC(T, D). relational queries generating views that define the shneddi

. . . of the treeQ(T).
This result, combined with the standard procedure of evalua

ing conjunctive queries in relational data exchange, aigesg
us an algorithm for computing certain answers. A. TQL queries
CEC;(;LOII,\IIary(5"2;)%2?1866 :)hbetaiﬁggdbltn:rr:: f(ﬁ{ov;::eorrirge di‘:le"_I'QL queries [11] are inspired by the FLWR (for-let-where-
MU y gp return) expressions of XQuery [32], but they only use pesiti
1) run INLQUERY(Q, D7) on an NLMAP(M, Ds, Dr)- features. The key construct fsr (z) return ¢(z), where
universal solution for NLDOC(T, Ds); 7(Z) is a pattern andy(z) is a query that defines a forest
2) discard all tuples that contain null values. expression. Formally, the syntax of forest expressions is

-to- i q(z) = e
VI. XML-to-XML Quenes | E(d,iz’)[q’(i")]
Up to now, we have only considered XML queries that output | q(@),q"(z")
tuples of attribute values. In this section, we shall focns o | for (a,z,y) return ¢'(z,y)

proper XML-to-XML query languages, that is, queries thavtvheref ranges over node labelg, over constant attribute
output XML trees.

. values, andc etc are tuples of variables.
Some immediate questions arise when dealing with these b

formalisms in a data exchange context. Adt= (Dg, Dr, 3) A TQL query @ is an expression of the form(g], where

be an XML schema mapping, be a tree conforming tds, q is a forest expression without variables. To define the

and O be an XML-to-XML query. Since the evaluation &f semantics of this language, we first define inductively the
query. forest [¢(7)],,, for a valuationv of all variables inz as

overT returns an XML tree, we cannot define certain answers - o
, . ; : ; attribute values. We use the notatié(a)[f] for a tree whose
as({Q(T")) | T' is a solution forT'}, since the meaning of : . S .
/ . : root is labeled? and carries a tuple of attributes and f is
the intersection operator for XML documents is not clear.
the forest of subtrees below the root.

To overcome this problem, we use recent results from

[11] which showed how to define certain answers for queries [elz, = € (empty forest
returning XML trees, and how to use them in the data @ 2 g @)y, = @v@)|ldr.,]
exchange context. The key idea of [11] is to tree patterngo ld@).q" @y, = [d1r,Y1d 7.

define information contained in documents, and to use them to

represent compactly the certain knowledge from the catlact [for 7(a,z,y) return ¢'(z,9)],
{Q(T")) | T' is a solution forT'}. More precisely, ifiT is a set

of tree patterns which are matched by every @), we | J {77, | v" extendsy and T |= 7 (a,'(z),v' (7))}

look for a small sell of patterns that is equivalent i as a)

description of certain answers. By equivalence we mearethdf®” @ treel” and a quen = rlg], the evaluationQ(T’) of

tree matches every patternIihiff it matches every pattern in @ Over 7' is defined as the tregf[q]], i.e., the fores{q],

I, If the setll, is finite, then its patterns can be put togethefnder rootr.

to create a tree with nulls, which we then view as the certain EXAMPLE 6.2. Recall the tree T from figure 1(a). The tree
answer. T' from figure 3(a) can also be obtained as the transformation

Q(T) resulting from the evaluation of a TQL quefy over the treeQ(T) (for example, when creating views for relation
T, where@ = r[q], andq is defined as Ruork, We would input the identifief (z, y) of the parent node
labelledwriter). This is illustrated by the example below.

EXAMPLE 6.4.[Example 6.3 continued] Assume that query
writer[name(y), work(z)] (3) Q@ = r[q] of examples 6.2 and 6.3 is posed ovErunder
schemaD. The following views define the translation g

for r/book(x)/author /name(y) return

For the sake of readability, we use tlieoperator to denote

the child axis in tree patternd.] R.(fr) = true

Rw'rite'r(fwriter (x7 y)7 f7) =
INLQUERY(7/book (x) / author /name(y), D)

B. Inlining TQL queries Runame (frame (2, 9); furiter (@),) =

If Q is a TQL query, then, to be able to define its inlining INLQUERY(r/book(x)/ author /name(y), D)
translation, we need to specify a DTD for tre@$7"). Note Ruwork(fwork (2,), furiter (z,y),) =
that TQL queries define the shape of their outputs, and at the INLQUERY(r/book (z)/ author /name(y), D)

same time do not put restrictions on the number of appeasan
of labels. Hence it is natural to define the DTD for outputs q
@ as astarred DTD Dg, whose shape is determined B,

and where each element type except the root occurs under the

otice how each tuple in relationg,, ;e and Ry iS set
reference the correct tuple in relatiéty,,;zc.. O

Kleene star. Procedure TQLSTER @, D, ¢,)
More precisely, for a forest expressignwe define a forest Input : A forest expression(z), a DTD D, a
F, inductively as follows:F. is the empty forestFy, is conjunctive queryp(z) and a skolem term.

UFyl; Fyugr = Fy U Fyr, and Fior « retum ¢ = Fyr. FOr Output: A set of views over NLSCHEMA(Dg).

Q =rlq] we letT = r[Fy]. if ¢(Z) ::= e then

Then Dg is a non-recursive DTD that has a rute — return
c;---c; for each nodep in Tq with chlldren_ labelled gj5e if (z) = ¢'(7'), ¢ (z") then
c1,...,cn. As usual, we require thabg be acyclic and we return TQLSTER(', D, ,t) UTQLSTER(”, D, ¢, 1)
assume without loss of generality thafDg) is a tree. else if ¢(z) == £(a, @)[¢'(z")] then

EXAMPLE 6.3.[Example 6.2 continued] Recall query Let f be a fresh skolem function. Define vieW as
Q = r[g]. Then, Tp is the XML tree given by Ry(f(2),t,a,2') := INLQUERY(p, D), or just
rlwriter[name, work]], and thus Dy contains productions Re(f(),t,a) = true if ¢ = 0.
r — writer™, writer — name*work”®, name — e and return {V} UTQLSTER{, D, ¢, f(Z))
work — e. O else if¢(z) :=for n(a, z, y) return ¢'(Z, y) then

Let ©'(a,7,9) = ¢(T) A7 (a,Z,7).

Before showing the algorithm NLTQL, we need to return TQLSTER(', D, &, 1)

introduce some features that will be used in the alge
rithm. Consider again query (3) and DTDg in exam-
ples 6.2 and 6.3. For each pair of attributes that satisfy To define the inlining translatiorNLTQL, we simply need
r/book (x) / author /name(y), the queryQ creates a subtree@ Skolem term for the root of the tree, as the basis for the
writer[name(y), work(z)] in the treeQ(T). Thus, the re- inductive procedure TQETEP

lational translation would need to create one tuple in the

relations corresponding tariter, name and work for each Procedure INLTQL(@Q, D)

pair of attributesz,y that satisfy the relational translation |npyt : A TQL queryQ = r[¢] and a DTDD.

of the patternr/book(x)/author /name(y) in the instance Qutput: A set of views over NLSCHEMA(Dg).
INLDOC(T).

Thus, in the relational translation we need a way to asseciat
each particulamriter wih a particularnameand work. One
possible way of doing this is by creating a (Skolem) functfon
that associates with each pé&irame, work) a unique identifier A TQL query Q is compatible with a DTDD if all the
for the correspondingvriter. Thus, the functionf must be patterns used inQ are compatible withD. The following
defined in such a way th&i(book, name) is different for each proposition shows thanlLTQL satisfies an analog oéquire-
different pair (name, work). We enforce this requirement byment 3 for queries that outputs trees.
letting each termf(a) represent a distinct constant). Proposition 6.5:Given a DTD D, a TQL query@ compat-

We will define our translation algorithm inductively. Theible with D, and and a tre&' that conforms td), we have that
key procedure TQETEP for the inductive step is describedINLDOC(Q(T"), Dg) = INLTQL(Q, D)(INLDOC(T')), up to
below. Its inputs, in addition to a query and a DTD, include eenaming of nulls.
conjunctive query corresponding to the conjunction ofgrats That is, the set of viewsNLTQL(Q, D) applied to the
in the query, and a function term corresponding to the panentinlining of 7" yields the same answer as the inlining@fT").

Create a 0-ary functioff,.
return TQLSTERQ, D, 0, f,())

Translating relations back into XML solution for INLDoOC(T, Ds) and then use the procedure
To complete the translation, we need an algorithm to publi$fuBREL to output it as the tre€ERTAINA((Q, T).
back the relational data as an XML document. This is done

by means of the algorithmUBREL. We say that an instance
I of INLSCHEMA(D) D-representsa treeT that conforms to
D if I =INLDOC(T, D).

Procedure PUBREL(D,I)
Input : A DTD D and an instancé that D-represents
some tree.
Output: An XML tree T that is D-represented by.

for each node? of G(D), traversed as Depth-first-search
do
for each tuplet of R, in I with elements:, a andn’
corresponding to attributesd,,, Ap(¢) andid
do
Add to T a noden labelled?, with attributesa,
whose parent i’ (no parent if¢ = r);
for every non-starred node’ of G(D) such that
(") = ¢, and elements” andb in t
corresponding to attributesd,, and Ap(¢') do
Create a node” in T labelled?’, with
attributesb, in a parent-child scheme that
resembles(D).
endfor
endfor
endfor
return T

n(n)-

This algorithm will only work for relational instances
that represent shredded documents. The following prdpasit
shows its correctness.

Proposition 6.6:Given a DTD D
instance I of INLSCHEMA(D), it
INLDOC(PUBREL(D,I)) =I.

and a relational
is the case that

C. TQL queries in XML data exchange

Combining the previously mentioned result in [11] with thé
correctness of the algorithms we presented we conclude th

requirements 1-5are satisfied for data exchange with XML
to-XML queries:

Theorem 6.7:Let M = (Dg, D7,X) be an XML schema
mapping. Then, for every XML tre& that satisfiesDg and
for every TQL query(@, the certain answers of) for T
under M and the certain answers oNUTQL(Q, Dr) for
INLDOC(T, Dg) over INLMAP(M, Dg, Dr) coincide:

INLDOC(CERTAINA(Q, T, Dg)
CERTAIN;y map(a1) (INLTQL(Q, Dr), INLDOC(T, Ds)).

Remark The notion of certain answers naturally (component-

wise) extends to queries computing multiple relations.

Theorem 6.7 and Propositon 6.6 give us a way return INLMAP

of computing CERTAINM(Q,T). First, compute
CERTAINjymar (1) (INLTQL(Q, D), INLDOC(T', Ds)) by
materializing views WLTQL(Q,Dr) over the canonical

VII. Adding XML constraints

So far, we assumed that target schemas consist of DTDs
only; now we extend them wittarget constraintsConstraints
have been studied and used extensively in the XML context.
Analogs of keys and foreign keys suchla3 and| DREF are
very common. Thus, it is natural to ask whether our procesiure
continue to work when target schemas are augmented with
such constraints. Here we look ktysand foreign keysthat
naturally extend the functionality dfD and| DREF:

o A keyl.Qa — ¢ states that the value of the attribute:
uniquely determines aftlabeled node;

- aforeign keyl,[Qa] Crx ¢2[@b] states that each value
of the @q attribute of an¢;-node must occur as a value
of the @b attribute of anés-node, and the latter is a key
for /5.

We now show how to translate XML keys and foreign keys
into relational integrity constraints in a way that presarthe
satisfaction of the key requirements. Recall that we use the
assumption that graphs of DTDs are trees.

Procedure INLCONSTR(A, D)
Input : A DTD D, a set of keys and foreign keys.
Output: A set of relational keys and foreign keys.

Set INLCONSTR(A, D) = ()
for each key@a — ¢ in A:
add to NLCONSTR(A, D) the key@a — Ry if £ is
marked, or the keyaa — R,y if £ is not marked.
endfor
for each foreign key(; [Qa] Crx ¢2[@Qb] in A
Add to INLCONSTR(A, D) the foreign key
Ry, [Qa] Cri Ry, [@D], replacingRy, for R, if 41
or /5 are not marked.
endfor
return INLCONSTR(A, D)

aIEJsing INLCONSTR we extend the procedurailMap for
the case of schema mappings withiget constraintsAr in a

way that retains its good properties. This is formalizedhia t

procedure ETINLMAP below.

Procedure EXTINLMAP(M, Dg, D7,A7)

Input : An XML mapping M from a source DTDDg
to a target DTDDr with a set of target
constraintsAp.

Output: A relational mapping fromNLSCHEMA(Dg) to

INLSCHEMA(D7) with a set of target
constraints.

(M, Dg, Dr), and the set of constraints
INLCONSTR(Ap, Dr)

Proposition 7.1: For XML data-exchange settings that infReferences

clude a set\ of XML keys and foreign keys, the extensions of o
procedure NLMAP and INLQUERY using INLCONSTR(A, D)
satisfy ourRequirement 4 and Requirement 5 respectively. [2]
Unlike in other results in the paper, the restriction to DTDS[3
whose graphs are trees is essential here: Without such :L
restriction, a foreign key can be translated into a disjwact [4]
tgd, and those are known to lead to intractability in datats]
exchange scenarios [12].
(6]

VIIl. Concluding Remarks (7]

Our technique provides a relational approach to solve two d#l
the most important problems of XML data-exchange setting%]
materializing solutions and answering queries. The diagra

below summarizes this. In a pure XML setting, we can st
with a documenf” and use a mapping to find a (universal) [11]

solution T, over which we can then answer a quépyto

produce certain answers. [12]
13]

M Q _ [
T > Tiniv certain answer

1
INLDOC INLDOC 1l
[16]

INLMAP(M) , INLQUERY(Q)

> certain answer[17]

univ

Using the translationNLDoc of documents, we generate g18]
relational instance?, on which the translation of the mapping[19]
INLMAP(M) generates a universal solutidtj,,,. This solu-
tion is a shredding, viaNLDoOC, of a universal XML solution, [20]
and also conforms to the shredding of source DTD. Finally, we
apply the standard technique [13] for evaluating querie®in 21]
lational data exchange to the query translatisnQUERY(Q)
or INLTQL(Q) to produce the correct answers, in the lattdf?]
case with the possibility of usingdBREL to publish back the 3
results into XML.

We finish with a remark about the possibility of allowing?4!
operators? and + in DTDs, as well as a choice operatof,s
for representing multiple choices. We say that a non-réeirs
DTD D is anextended nested relationaDTD if all rules of [26]
D are of the forn¥ — 570 ik, 0Tl — lo+ ...+ {m, where [27]
all the ¢;'s and¢;'s are distinct, and each is one of?;, ¢;7,
¢x or ¢ (as usuak? stands forf|e and ¢+ for £¢*). (28]

The procedureNL SCHEMA can be extended to these DTDsy,q;
For each element that is under the operat@r the transfor-
mation creates a special relatiérihat references the relation
of the nearest appropriate ancestor fofFurthermore, the
transformation for a rule of the formfy — @ can be defined
by including a dependency that ensures that there is at Ie[%ﬁ
one tuple in the relatio®,, for each tuple inR,, . Finally, for
the choice operatdr — ¢y+. . .+, the transformation would [32]
create one relatiof, for each possible choice @f, ..., ¢, 33]
Then, it is possible to extend all the procedures in a wayy
that still satisfiesrequirements 1-5 under extended nested
relational DTDs.

(30]

S. Abiteboul, L. Segoufin and V. Vianu. Representing angkrging
XML with incomplete information. TODS 31(1) (2006), 208-254

F. Afrati, C. Li, V. Pavlaki. Data exchange in the preseraf arithmetic
comparisons. IFEEDBT 2008 pages 487-498.

S. Amano, C. David, L. Libkin, F. Murlak. On the tradeofetween
mapping and querying power in XML data exchange.|@DT 2010
S. Amano, L. Libkin, F. Murlak. XML schema mappings. RODS
2009 pages 33-42.

S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava. eTpattern
query minimization.VLDB J. 11 (2002), 315-331.

M. Arenas, L. Libkin. XML data exchange: consistency aqdery
answering.J. ACM55(2): (2008).

A. Balmin and Y. Papakonstantinou. Storing and queryXigL data
using denormalized relational databas¥&DB J, 14:30-49, 2005.

P. Barceld. Logical foundations of relational data lesxage. SIGMOD
Record38(1): 49-58 (2009).

P. A. Bernstein, S. Melnik. Model management 2.0: malaiting richer
mappings.SIGMOD’07, pages 1-12

H. Bjorklund, W. Martens, T. Schwentick. Conjunctiggiery contain-
ment over trees. IMBPL 2007 pages 66-80.

C. David, L. Libkin, F. Murlak. Certain answers for XMLugries. In
PODS 2010 pages 191-202.

A. Deutsch, V. Tannen. Reformulation of XML queries az@hstraints.
In ICDT'03, pages 225-241.

R. Fagin, P. G. Kolaitis, R. Miller, L. Popa. Data exclgan semantics
and query answeringTCS336(1): 89—-124 (2005).

R. Fagin, P. G. Kolaitis, and L. Popa. Data exchangdirggto the core.
ACM TODS30(1):174-210, 2005.

D. Florescu, D. Kossman. Storing and querying XML dating a
RDBMS IEEE Data Engineering Bulleti22(3): 27-34, 1999.

A. Fuxman, M. Hernandez, H. Ho, R. Miller, P. Papotti,Ropa. Nested
mappings: schema mapping reload&LDB’06, pages 67-78.

G. Gottlob, C. Koch, K. Schulz. Conjunctive queries otrees.JACM
53(2): 238-272, 2006.

G. Gou and R. Chirkova. Efficiently querying large XML tdareposi-
tories: A survey.lEEE TKDE 19:1381-1403, 2007.

M. Hernandez, H. Ho, L. Popa, A. Fuxman, R. Miller, T.Keda, P.
Papotti. Creating nested mappings with Clio.IGDE 2007

H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. LakshmapA. Nierman,
S Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y, @/uvYu.
TIMBER: A native XML databaseVLDB J.11 (2002).

N. Klarlund, T. Schwentick, D. Suciu. XML: model, scham types,
logics, and queries. |hogics for Emerging Appl. of Databases 2003
Ph. Kolaitis. Schema mappings, data exchange, anddetetananage-
ment. INnPODS 2005 pages 61-75.

R. Krishnamurthy, R. Kaushik, J. F. Naughton. XML-tQE query
translation literature: the state of the art and open probldn XSym’03
R. Krishnamurthy, R. Kaushik, and J. Naughton. XML vieas integrity
constraints and their use in query translation.|ODE’05.

L. Lakshmanan, G. Ramesh, H. Wang, Z. Zhao. On testitigfisdoility
of tree pattern queries/LDB 2004 pages 120-131.

G. Mecca, P. Papotti, S. Raunich. Core schema mappingSIGMOD
2009 pages 655-668.

R. Miller, M. Hernandez, L. Haas, L. Yan, H. Ho, R. Fagin Popa.
The Clio project: managing heterogeneiSiIGMOD Record30 (2001).
L. Popa, Y. Velegrakis, R. Miller, M. Hernandez, R. FagTranslating
Web data. InVLDB 2002 pages 598-609.

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. iDeW
J.F. Naughton. Relational databases for querying XML densi
limitations and opportunities. IWLDB 1999 pages 302-314.

J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Kaislunthy, S. Vi-
glas, J. Naughton, and I. Tatarinov. A general techniquesjéerying
XML documents using a relational database syst&hi&MOD Record
30:20-26, 2001.

I. Tatarinov, et al. Storing and querying ordered XMlingsa relational
database system. BIGMOD’02 pages 204-215.

XQuery 1.0: An XML Query Language. http://www.w3.0T@R/xquery.
C. Yu, L. Popa. Constraint-based XML query rewritingr fdata
integration. InSIGMOD 2004 pages 371-382.

C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohmam <Dip-
porting containment queries in relational database manegesystems.
In SIGMOD'0], pages 425-436.

APPENDIX Universal Solutions: By means of homomorphisms, we
give a precise definition of universal solutions in relatibn
A. Preliminary Definitions or XML data exchange settings. Formally, I&, T, M) be
) o _ a relational data exchange setting. Then, given an instance
Below are some technical definitions that will be used througy¢ S, we say that anM-solution J for I is an M-universal
the remainder of the appendix. solution for I if for every otherM-solution J’ for I, there
exists an homomorphism fronf to J’ [13]. The definition

) i _ for the case of XML data exchange setting is analogously
Homomorphlsms and tree homomorphisms: ~ Let Kl_and formulated using the notion of tree homomorphism [6].
K, be instances of the same scheRaA homomorphisni

from K to K5 is a functionh defined from the domain ok; »
to the domain of, such that: (1):(c) = ¢ for every constant B- Proof of Proposition 3.2
elementc in K3, and (2) for everyR € R and every tuple | et D be a DTD over a set of element typ@d. Notice
a = (ay,...,ax) in the relation in K, it holds thath(a) = that all the foreign key constraints created with the pro-
(h(as),..., h(ax)) belongs to the relatior? in k. Notice cequre NLSCHEMA(D) are of the form Rylid,)] Crix
that this definition of hqmomorphism _slightly differs fr0|1net_ Ry, lid,,)], for some marked labef € EI; that is, each
usual one, as the additional con.str.alnt that homomorphis@$;tion R, references the relatioR,,;, that corresponds to
are Fhe |dent|ty_0n the constants_ is imposed. the nearest appropriate ancestarf /. Thus, the graph asso-
Given a conjunctive query)(z) over a schemaR, we ciated with the constraints ofNL SCHEMA(D) only contains
denote byl the instance ofR constructed as follows: edges from the attributil,,) of relation R, to attributeid,,)
for every relational symbokz € R and relational atonf(b) relationR,,). The proof then follows from the fact thét(D)
occurring inQ(z), we include tupleb in the relationR of s acyclic, and thus the labels d® cannot form a cycle of
IQ(Q?) We define all variables i to be constant elements innearest appropriate ancestdrs.
Ig(z), whereas every existentially quantified variable(pfis
a null element.
It is now straightforward to prove the following lemma:
Lemma 1.1:Let I be an instance of schen®, and Q Let D andT as stated in the Proposition, atélp, Ap) be
a conjunctive query.Then, a tuple of constant elements the output of NLSCHEMA(D). That INLDoc(T,, D) satisfies
belongs to the evaluation af over I if and only if there the key constraints o\, is trivial since the identifier of each
is @ homomorphism frondg) to 1. node ir_1T is unique. Same applies for the dependency stating
We also need to introduce the equivalent definition dfi€ uniqueness of the root; sindeconforms toD, the root
homomorphisms for XML trees, dree homomorphisn]. Of T (anq only the root) must be labelled Moreover, for
Let T = (N,G) and 7' = (N’,G’) be XML trees, let €ach foreign key in\ of the form R[id,,)] S Ry [idyo)),
n, andn/. be the roots of7' and 7", respectively, and let Notice that, sinc&/(D) is a tree, for each € El—{r}, thereis
Str(T) = {s € Str | there exists» € N and@a € Att such €xactly one element’ such that’’ = p(¢). SinceT" conforms
that paq(n) = s}, Str(T") defined correspondingly. Then !0 D, every (-labelled node inl" must be a descendant of

h:NUStr(T) — N'UStr(T") is a homomorphism fror” an ¢ labelled node. This guarantees that the interpretation of
to T, if: relationsR, and R, in INLDoOC(T, D) satisfy the constraint

Rylid,)] € Ry)lid,], each tuple in the interpretation of
R, over INLDoOC(T, D) corresponds to a node in 7' that
must be a descendant of &nlabelled node:’ in T, and thus
there must be a tuple in the interpretation ®f identified
with the elementd,,,. O

C. Proof of Proposition 3.4

. for everyn € N, h(n) € N’;

« for every constant element € Str(T), h(s) = s, and
for every nulls € Str(T), h(s) € Str(T");

o h(ny)=mnl;

o for every ni,no € N, if G(ni,n2), then
G'(h(n1), h(n2));

o for everyn € N, Ar(n) = Ap/(h(n)); and

o for everyn € N and @Qa € Att such thatpaq(n) is To prove that
defined,h(paq(n)) = paa(h(n)).

Given a tree patternt(z), we construct the tred ;)
inductively: if 7(z) = £(Z)[r1(Z1), . .., 7 (Zx)], then the root let 7(z), D and T as defined, so thal’ conforms to D.
of Ty(z) is a node labelled, with attributesz, andk children Assume now that is a tuple of attribute values such that
corresponding tol’:, (z,), - - -, I, (z,)- AS for the relational g e 7(T'), and leth be the homomorphism froff, ;) to T
case, it is easy to prove the following lemma: (by lemma 1.2}, is guaranteed to exist).

Lemma 1.2:Let T be an XML tree,n(z) a tree pattern, We now show how to construct a homomorphignfrom
ands a tuple of values inStr. Then,s € «(T) if and only if Ijy.querv(x, D)@ 10 INLDOC(T, D) (this, by Lemma 1.1,
there is @ homomorphism froffi; ;) to 7. suffices for the proof). Defineg as follows:

D. Proof of Proposition 5.1

m(T) C INLPATTERN(m, D)(INLDOC(T, D)),

o For each variable of the form id, in id,, a,andid,,) coincide with the attributesi,, Ap(¢) and
INLPATTERN(7, D)(a), where v is a node of T, id,) in attr(Ry).
defineg(id,) = idp (), Further, we now that the homomorphigimmaps the node
« for eacha € a, let g(a) = h(a), and v of Ty to some nodeh(v) in T, and thus, from the
. for each other existentially quantified variable in properties of tree homomorphisms, we also know th@at)
INLPATTERN(7, D)(a) not of formid,,, assume that be- has the element typ& and that for every. € a, andQa €
longs to a predicat®,(z) in INLPATTERN(w, D)(a). Let Att, if paq(v) = a, then pay(h(v)) = a. Moreover, since
id, be the variable in predicat®,(z) that corresponds to homomorphisms must preserve the child relation, it is easy t
the position of the attribut&l, of relation R,, and assume see that the nearest appropriate ancestaér(of in 7 must be
that h(v) = n, for some node: € T. Then, as defined h(u(v)). Then, it is clear thatNLDoC(T', D) must contain a
in the previous itemg(id,) = id,. From the definition tuple of the forng(z‘dh(U),dv,idh(u(v)),B), for some tuplé
of the inlining procedure, we know thanlLDoc(T, D) of elements, and where the positionsaf correspond to the
contains a fact (and only one, since the attibidieis key attributes inAp(¢) of attr(R,;) wherep(v) is defined. From
for the relationiz,) of the formR(id,,, b), for some tuple the definition ofg, it is clear thatg(id., @, id, (), Z) is the
b of elements. Defing so that it maps the variableto tuple idy), idp(u(v)), @, 9(Z). The proof then follows since
the element in the position dfid,,b) that corresponds g¢(z) is defined to bé.
to the position that occupies in the predicat®,(z) in Second, assume thatis not marked, and that(v) = ¢,
INLPATTERN(7, D)(a). p(v) in Tr(5) is the nodey’, and\(v') = ¢'. Then, as defined,
We first show thay is well defined. First, it is easy to seethe queryQ,(a,) is of form:
that g is defined for every element dfy psrrern(r, D) (@) We
now prove that there is no element If, parrern (r, D) (a) that
is mapped by to two different values inNLDoc(T, D). To
see this, assume for the sake of contradiction that thera is awherez is a tuple of fresh variables not used elsewhere in
elementz in Iy parrern(,0)(a) SUCh thatg is defined to map INLPATTERN(7, D)(a), and the position of the variablés,
z to two elements ofNLDOC(T'). Then, there are three casesd,, id,,,) anda, is consistent with the attributes,, idy,
to consider: id,y and Ap(¢) in attr(Ry).
« x cannot be a variable inNLPATTERN(7, D)(a) of the Further, we now that the homomorphigimmaps the nodes
formid,, for some node of 7%), since we have definedv andv’ of T}z to some nodeé(v) andh(v’) in T'. Then,

Qv(a,) = Fidy Eidu(v/)ﬂidv 3zZRy (idy, idu(v’)v idy, Gy, Z),

x to be mapped tad,,, only; from the properties of tree homomorphisms, we obtain that
» z cannot belong t@, since we have defined evesyc a assigns the typesand?’ to h(v) andh(v’), respectively, and
to be mapped only té(a); that for everya € a, and Qa € Att, if paq(v) = a, then

« then, = is an existentially quantified variable inpg,(h(v) = a. Moreover, since homomorphisms preserves
INLPATTERN(7, D)(a) that is not of formid, (that the child relation, it is easy to see thafv’) must be the
is, it is a fresh variable generated by the procedurearest appropriate ancestoridb) in 7', and that the nearest
INLPATTERN). But notice then that: belongs only to appropriate ancestor df(v’) must beh(u(v')). Then, it is
one predicate of NLPATTERN(w, D)(@). Moreover, as clear that the inlining ofT” must contain a tuple of the
explained in the definition of, there is only one tuple form R, (idh(v’);idh(u(v’));idh(v)ydmz’) for some tupleb of
in INLDOC(T, D) to wherez is being mapped. elements, where the positionsaf correspond to the attributes

We now prove thay is indeed a valid homomorphism. Firstin Ap(¢) such thatp(v) is defined. Again, the proof follows

it is easy to see that for everyc @, g(a) = a. This follows since we have defineg(z) asb.

since we have defineg{a) ash(a), and from the construction

of T.a), everya € a is a constant, and thuga) = a.
Consider now a fact of the form Ry (w) in INLPATTERN(m, D) (INLDOC(T, D)) C =(T),

Liniparrern(r,D)(a)- We need to show thak,(g(w)) belongs B .

to INLDOC(T, D). We will assume for the sake of readability?SSUM€ that for a tuple of constants there is an homo-

that ¢ # r. The proof can be easily adapted for the cadBOTPNISMA from Ly parrern(r,0)(@) 10 INLDOC(T', D). We

when ¢ = r. From the inlining procedure for queries, ther&onstruct a homomorphism from 77 to 7'. By Lemma

must be a node of T}, such that NLPATTERN adds to 1.2, this suffices for t.he proof.

INLPATTERN(r, D)(a) some existential quantification of the D€fineg as follows:

For the proof that

predicate R,(w) in the step that corresponds to(that is, e« For every nodev of 7%, consider the variabléd,
Ry(w) is part of Q(a,)). We have two cases. Assume first ~ defined in the procedurenLDoc, and assume that
that v is marked. Then, h(id,) = id,,, for some elementd,, of INLDOC(T, D).
_ . . _ Define g(v) = mn. Notice that this is well defined:
Qu(@y) = Jidy3id,y(w) IR (idy, G, idy(v), 2), from the definition of NLDoc, and the properties of

where z is a tuple of fresh variables not used elsewhere homomorphisms, we know that must be a node of
in INLPATTERN(7, D)(a) and the position of the variables (bothid, andid,, occur in a position of the predicates that

corresponds to the identifiers of the nodes in the schemf INLPATTERN(7, D) added in the step corresponding to

INLSCHEMA(D). Q.. Thus, from the properties of relational homomorphisms,
« For everys € Str(Tr(a)), let v be the node ofl’;; s must belong to the tuple iRy, in INLDOC(T, D) that
such thats = pas(v). Then, notice that from the containsh(id,) in its first position. Sincey mapswv to the

definition of the translation of patterns, must be a node in T identified by h(id,), it must be the case that
free variable of the query), in INLPATTERN(7, D), paas(g(v)) = h(s). For the case where is not marked,
and thusl g parrern(r,p) CONtains the variable. Define consider the nearest appropriate ancestor ai 77 5), and

g(s) = h(s) let v" be such node. Notice that singepreserves the child
We now prove thay is a valid homomorphism frorif,), relation,g(v’) is the nearest appropriate ancestopf). The
toT. proof then follows by considering the attribute corresgogd
First, as mentioned in the definition @f it is clear that to @ain Ap(¢) in the relationR,,, where!’ = A(v") and then
g(v) € N, for everyv € Tr(a)- using the same argument than in the previous dase.

Second, we prove that, i is the root of 77, then By combining this results with Lemmas 1.1 and 1.2, it is
g(v) = n,, wheren, is the root of 7. This follows since not difficult to obtain the following corollary:

w is fully specified,m must be of formr(a)[A]. Then, the Corollary 1.3: Let D be a DTD,T" an XML document that
variable id, must be mentioned in a predicate &, of conformstoD, andr a pattern compatible with. In addition,
INLPATTERN(m, D). Since h is an homomorphismi(id,) leta be a tuple of elements and variables. Then, there exists
must belong to a tuple if®,. It follows from the construction an homomorphism fronfl’; ;) to 7' if and only if there is an

of INLSCHEMA(D) and proposition 3.4 that it must be théhomomorphism fromyy, parrern(r, 0y (@) 10 INLDOC(T', D).
(unique) identifier ofR,., and thus the identifier of the root Moreover, it is not difficult to adapt this proof to show the
node ofT. following:

Next, we prove that for every nodeof T (ay, Az, (a)(v) = Lemma 1.4:Let D be a DTD, and7y, T two trees that
Ar(g(v)). Assume that for a node in Ty it is the case conformtoD. There is a tree homomorphism frdfh and 7%
that Ay, 5)(v) = £. There are two cases. The case when if and only if there is a homomorphism fromilDoc(T7, D)
is marked follows from the fact that there must be a tupte INLDOC(T5, D)
in the interpretation of the relatioR, in INLDOC(T, D) that
containsh_(z‘dv) in its ¢d,-attribute. Then., sincg mapsv 0 £ proof of Theorem 5.2
the node inT" that corresponds td(id,) in INLDOC(T, D),
it must be the case thatr(g(v)) = £. If v is not marked, let ~ Fix a DTD D and a tre€l". The proof is done by induction.
¢' be the nearest appropriate ancestor,0dnd consider the We have already proved the base case with the proof of
tuple in the interpretation of relatio®,, in INLDoc(7,D) Proposition 5.1.
that contains the elemend,, in the position that corresponds For the induction step, assume first that)
to the attributeid,. The proof follows easily using the samgs of form 3z2Q:(z,z), and that Q:(T) =
argument as for the other case. INLQUERY(Q1, D)(INLDOC(T, D)). It is now easy to

Assume now that two nodes,v; of T, ;) are such that see that Q(T) = INLQUERY(Q,D)(INLDOC(T, D)):
vy is a child of vy in Trgy.Let £; = A(v1) and/ly = A(vp), Assume first that a tuplea belongs to Q(7'). Then,
and assume that(id,,) = id,, andh(id,,) = id,,, for some there must be a tuplez of variables such that(a,Zz)
nodesn;, ne of T. Thus,g(vi) = ny, andg(ve) = ne. The belongs to @Q,(7). Thus, from the inductive hypothesis,
proof thatg(vs) is a child ofg(v;) follows easily from the fact we obtain that (a,z) belong to the evaluation of
that g preserves the labelling of the nodes, the gréfftb) is INLQUERY(Q1, D)(a, z) over INLDOC(T', D). It follows that
a tree,r is compatible withD and andl’ conforms toD: If (@, Z) belong to the evaluation ofNLQUERY(Q, D)(a, 2)
vy is a child ofvy in Tr (), then it must be that; € Pp(¢y), over INLDOC(T, D), since the algorithms defines

and that/; does not appear in the production of any othdNLQUERY(Q,D) = 3JzZINLQUERY(Q1,D). The other
label in D. Then, since\r(ny) = ¢3 andAr(ny) = ¢, andT direction is analogous.
conforms toD, it must be that, is a child ofn,. Next, assume that) = Q:(Z1) A Q2(Z2), and that

Next, it is easy to see that for evesye Str(Ty(a)), 9(s) € Q1(T) = INLQUERY(Qy, D)(INLDOC(T, D)) and Q2(T') =
Str(T). Moreover, since we have defingds) = h(s), we [INLQUERY(Q2, D)(INLDOC(T, D)). The argument is sim-
also have that thaj(s) = s for every constans. ilar to the previous case: assume first that a tuplde-

Finally, we prove that for every nodeof 77, ;) and@a € longs to Q(7'). Then, there must be sub tuplés, a, of
Att such thatpae.(v) is defined,g(paq(v)) = paa(g(v)). a such that(a;) and (a2) belong to Q1 (T) and Q2(T),
Assume that for a node of T, and for an attribute respectively. We obtain thata,) and (a») belong to the
@a € Att, it is the case thapa.(v)) = s. We must prove evaluation of NLQUERY(Q:,D) and INLQUERY(Q2, D)
thatg(s) = paa(g(v)). But we have defined(s) = h(s), and over INLDOC(T, D), and thus, sinceNLQUERY(Q, D) =
thus, we need to prove that(s) = pa.g(v). Assume first INLQUERY(Q1, D) A INLQUERY(Q2, D), a belongs to the
that v is marked. Then, notice that is the variable in the evaluation of NLQUERY(Q, D) over T. The other direction
position corresponding t@a in attr(Ry(,,)) in the predicate is also analogous.

F. Proof of Theorem 5.3 We now prove thatNLDoc(T’, Dr) is indeed universal.
. .) Assume for the sake of contradiction that it is not an unikers
For this proof, we first provide a key Iemma. I‘etsolution, that is, there exists a solutioh such that there
M = (Ds,Dr, %) be an XML schema mapping]’ joes not exists an homomorphism fromLDoc(T’, Dr)
be an XML tree that _conforms toDg, and J an to J. Construct from.J a solution.J’ as follows: For each
IN_LMAP(M’ Ds, Dr)-solution for NLDOC(T', D). For are- jgentifier position of every relatiof®, in INLSCHEMA (D7),
lation R, of INLSCHEMA(D_T)’ we deqote all the positions 5, gach tuple in the interpretation @t,, replace each
_that _c_orresp(_)r_1d to an attribut@l, or id,,,) of R, as the igentifier element: of ¢ with a fresh null element,. In this
identifier positionsof R,. Moreover, an element in a tuple case, replace also each occurrences iofthe positionid,, ;)

tin th? mter%reta.tf{on OR‘{ .|n J |\sNan 'Idené'f'fe_r elﬁmerj;f it of tuples in the interpretation of relation®,, that reference
occupies an identifier position in We also define thattribute . in a constraint in NLSCHEMA(Dr), and replace each

positions of a relation?, as the positions that correspond Qccurrence ofz in an attribute position with a fresh null. It
attributes of’ or of ¢’ | n(¢") = £in D, and define the notion of ;¢ easy to see thaf’ is an NLMAP(M, D, Dr)-solution
an attribute elemenas expected. We now present the Iemm%r INLDOC(T, Ds) as well. In fact, sinée W,e have replaced

Lemma 1.5:Let M = (Ds, Dr,) be an XML schema g, of those elements with nulls in a "cascade” fashion,
mapping, andl’ be an XML tree that conforms tDs. ;i cleqrly satisfies all dependencies INLSCHEMA(Dr).
Moreover, let.J be an NLMAP(M, Ds, Dr)-solution for ¢\, thermore, since each dependencyNonMAP(M, Dg, D)
INLDOC(T’_D) such that_(_l) ever_y_lden'qﬂereIementeroes .contains a different existentially quantified variable &ach
not appear in two identifier positions in two (not necesyanlre'ation in its right-hand side(INLDOC(T, Dg), J’) satisfy
different) tuples, and (2) no identifier element is also af o dependencies iINLMAP(M, Ds, D). Finally, there is a
attribute element. Then, there exists a tréé such that homomorphism frony’ to J: ma7p each such, to the element
INDOC(T", Dr) C J, and such thafl” is an M-solution , "2hq map each other element to itself. Thus, by composition
for T . L _ of homomorphisms, there cannot exist an homomorphism from

Lemma 1.5 formalizes the intuition that this class OFNLDOC(T’,DT) to J', as this would imply the existence of
"well behaved” NLMAP(M, Dg, Dr)-solutions contains the an homomorphism fromNLDoc(T”, D7) to .J. However, no-
correct representation of a shredded tree. The proof of tiSs that s satisfies the property of Lemma 1.5, since all iden-
Lemma constructs from/ a correct tree representation, inifing elements not satisfying it have been replaced bgtfre
which each identifier element id represents a node of thenew null elements. Let thefi;, be theM-solution forT such
tr_eeT/ such tha'_[NLDoc(T', Dr) g_J. We leave the details ¢, INLDOC(Ty, D7) C J' (Lemma 1.5 proves the existence
since the proof is lengthy and straightforward. of 7). Notice that, sinceNLDOC(Ty, D7) C J', there also

exists a homomorphism froomnLDoc(T;/, Dr) to J'. Yet

We now prove the theorem. again, by composition of homomorphisms, we conclude that

Part a: Let M = (Ds,Dr,%) be an XML schema tpere cannot exist a homomorphism fronLDoc(1”, Dy) to
mapping, andl’ an XML document that conforms td®g. INLDOC(T)/, D).

Consider an arbitraryv{-universal solutiori” for 7. We need On the other hand. the XML tre@ is an M-universal

! H ’
to ,ShOW that 'N,LDOC(T ’D_T), IS an I'_\'LMAP(M’ Ds, DT)_' solution, and thus there is an homomorphisms fibhto 1';..
universal solution fofl". This is split into two parts, proving But then, by Lemma 1.4, there exists an homomorphism from

, 5 . . s
Ernsif/;:‘:;l INLDOC(T", Dr) is a solution, and then that it is |\ poc(77, Dr) to INLDOC(T, D). This is a contradic-

As stated, we first prove thatNnLDoc(7”,Dr) is an

INLMAP(M, Dg, Dr)-solution for INLDOC(T, Ds). From part b: Assume thatR is an INLMAP(M, Dg, Dr)-
Proposition (3.4), it is clear thatNLDoC(T", Dr) satis- yniversal solution for NiLDOC(T, D). For this proof we use
fies the dependencies inp. We now show that the pair the fact that GNSoL(INLDOC(T, D)) satisfies the condi-
(INLDOC(Dss, T), INLDOC(D,, T")) satisfy all the dependen-tions of Lemma 1.5, that is, that every identifier element in
cies inX. Assume that for a dependency of the form CANSoOL(INLDOC(T, Ds)) does not appear in two tuples in
two different identifier positions; this can be easily prdve
from the properties of the chase procedure (see [13]). Eyrth
there is a tuple?, such that NLDoc(Dg,T) | sinceR is universal, there must be an homomorphism from
INLPATTERN(7 (%), D). From Proposition 5.1, it must be R to CANSoL(INLDOC(T, Ds)), and thus it also must be
the case thatl” | w(f,). Thus, sinceT’ is a so- the case thaR satisfies the conditions of Lemma 1.5. Then,
lution for T, there must be a tuplef, of constant from Lemma 1.5, letl” be anM-solution for7" such that
and/or null elements such that’ = ='(f,,t.). Again, INLDOC(T',Dr) C R.

from Proposition 5.1, we obtain thanlLDoc(Dr,T') E To prove thatT’ is an M-universal solution forT', let
INLPATTERN(7 (t4,t.), D). This finishes the proof that7” be an.M-solution for ', we need to prove that there
INLDOC(T”, Dr) is an INLMAP(M, Dg, Dr)-solution for is a homomorphism froni” to 7. From the part a) of
INLDOC(T, Dg). this Theorem,NLDoc(T"”, Dr) is an NLMAP(M, Dg, Dr)-

tion.

INLPATTERN(7(Z), Dg) — JZINLPATTERN(7' (%, 2), D)

solution for NLDoOC(T, Dg), and, sinceR is universal, there
is a homomorphism from R to INLDoOc(T", Dr). Moreover,

since NLDoc(T”, Dr) C R, h is also a homomorphism from

INLDOC(T’, Dr) to INLDOC(T”, Dr). Thus, from Lemma
1.4, there is a homomorphism frof to 7. This concludes
the proof.(]

G. Proof of Theorem 5.4

Assume first that a tuplebelongs to the certain answers of

a query@ over a treel’ under a mapping{ = (Dg, Dr,X).
Then, clearly,z belongs to the evaluation of) over the
canonical solution @NSoL(T) for T' (that, in this case,
is guaranteed to exists [6]) undevl. Then, from proposi-
tion 5.2, ¢ belongs to the evaluation oNLQUERY(Q, Dr)
over INLDOC(CANSOL(T), Dr). Moreover, from proposition
5.3, INLDOC(CANSOL(T), D7) is an INLMAP(M, Dg, Dr)-
universal solution for MLDoOC(T, Dg). From results in

[13], we obtain thatt belongs to the certain answers of

INLQUERY(Q, D) over INLDocC(T,Dg) under M. The
other direction is symmetricall

H. Proof of Proposition 6.5
We begin by proving thatNLTQL(Q, D)(INLDOC(T)) C

INLDOC(Q(T), Dg). Let Dg be the DTD corresponding

to @. Assume that there exists a tuple that is part
of a view V in INLTQL(Q, D), with view V of form
Ri(f(Z),g(Z"),a,z’) := INLQUERY(p(Z), D) (we do not
prove the case whef = r since it is very similar). Thus,
t must be of form(c;), ¢y, a,b'), wherec and b’ are
contained inb, and it must be the case thatbelongs to
INLQUERY(¢p, D)(INLDOC(T, D). By Theorem 5.2,b be-
longs top(T'). Denote byv the valuation that assigns asb

(and obviouslyé to '), and assume that the forest query th

created view/ in the inlining of @ is of form ¢(a, z')[¢' (Z")].
It can be proved by induction thdy(z)], , must contain a
node of formé(a, b')([¢'(z"]). Thus, the inlining ofQ(T")

¢ (y) the forest queries that gave rise to the creation of

functions f and f’ in INLTQL. In this casen; must be

the common ancestor of bofa(z)] -, and[¢'(2)] 1,

and thus it follows that = ¢/, because the same skolem

term must have been passed on by algoritnnTIQL.

Let now ¢’ (Z) be the forest query that gave rise to the

creation of functiong in INLTQL, and thusv be the

valuation such that, is the root node of[¢"(2)] -

According to our renaming procedure, both and Va

must be extensions af, and thus it must be that= e,

as they are both replaced under
o For two tuples(c); Co(): @:b'), (¢pr(ay, cqe), @ d),

id,, must be renamed as) andcy (¢). Using the same

arguments presented in the previous cases, we conclude

that f = ¢/, the skolem terms that producedb) and

g'(e) are the same, and that the valuation that assigns

to the free variables of the skolem term corresponding to

f(b) must then be an extension of valuation that assigns

d to the skolem term off’(d), that assigns in tura to

the term corresponding tg/(¢); it must be thath = e.

The last remaining case is completely symmetric.
Next, we show that NLDoc(Q(T),Dg)
INLTQL(Q, D)(INLDOC(T)).

Since every element oD¢ is under a star, it is easy to
see that relatio?, will contain only attributesdy, id,, and
Ap, (£). We first rename all elements that are in a position
corresponding to attributeigl, as follows:

Let ¢ be a tuple of relatiorR, in INLDOC(Q(T'), Dg), and
assume thatd,, is the element that corresponds to attribute
idy of Ry. If £ =r, renameid,, by the O-ary termf,.() used
in procedure NLTQL. For the case wheh=# r, it is easy to
see from the definition of the procedureLIDoc that Q(T)
must contain arf-labelled noden. Thus, from the semantics
of TQL queries, there must be a sub-foresbf @ of form

C

aqt(f) = {(a,v(Z'))[¢’(z")] and a valuatiorv such thatn is

the top node of foresly(z] ,. Let f be the function created
by procedureNLTQL in the step corresponding tp Finally,
let m1(Z1),...,m(Zk) be the sequence of patterns present in

must contain a tuple ik, of form (idy,, i), a,b); the for_return constructs in@ from the root untilg, and letz be
proof follows by renaming as ;) and cy) the nullsid, the union ofz,, ..., 7. Then, renamed, ascy(,(z)). Notice

andid,, (), respectively. We only need to show that no nully4t this procedure is well defined, sincenust apply to each
has to be renamed as two different constants. Assume now thataple of .

there is a nodew, in Q(T) that requires to be named twice | gt ys denote by/ the instance resulting of renaming all
according to the above procedure. We consider all possiigments of MLDOC(Q(T), Dg) accordingly. We show that
cases: - - J CINLTQL(Q, D)(INLDOC(T, D)), up to renaming of nulls
o For two tuples(cs) cye), @, b'), (¢ cqe)@'5d'), in attribute positions (that is, nulls in positiods, (¢) in tuples
id, must be renamed as;; and cs (. But then, on R,.
since every view of INLTQL(Q, D) is created with a Let ¢ be a tuple of relationR, in .J, and assume that
different function symbol, it must be the case tifat f' the elements int corresponding to attributesl,, id,¢) and
(if not, these two tuples correspond to a different forestp,, (¢) arecy), ¢y), a-
query in Q(T)). Let now v, and vy be the valuation We need to show that such tuple is in fact
that mapsz to b and d, respectively. It follows that INLTQL(Q, D)(INLDOC(T')). Let n andn’ be the nodes in
b = d, becausen; cannot belong to botfy(z)],, and Q(T) such thatid, andid, where replaced by and
la(@)]1,, at the same time. B cq(i), respectively, and(z), ¢'(z') the forest queries that give
o For two tuples(cs s cye), @, b'), (cp(ay cqe), @, d'), rise to the creation off and respectivelyy by procedure
id, must be renamed as,;) andcy ;). Let ¢(z) and INLTQL. Moreover, letp(z) = 71(21),...,m(2) be the

in

sequence of patterns presenfanreturn constructs inQ from Finally, since the views created by the procedure
the root untilq, where z is the union ofzy,...,Z;. In the INLTQL are essentially conjunctive queries using skolem
same fashion, we sele¢t’ (') = 71,(2}),..., 7, (Zw) and terms, and (by theorem 5.3)NLDoc(I’,Dr) is an

z' for forest queryq’. As a remark, since’ is the parent of INLMAP(M, Dg, Dr)-universal solution for MLDoc, it

n, observe that each patterrj corresponds to a patterr;, can be proved thatNLTQL(Q, Dr)(INLDOC(T”, Dr)) =

for some;j < k. Finally, it is easy to see that there is no otheCERTAIN|y map (1) (INLTQL(Q, D7), INLDOC(T, Ds)), us-
query of form/(g,a)[q"(g')] in betweeng and ¢’. Thus, the ing standard tools from data exchange literature (see [@B],
step of NLTQLcorresponding tg(z) must have received the

termg(2') as input. K. Proof of Theorem 7.1

By following these remarks, one notices that procedure .
INLTQL creates the following view for the step ofg(z): ~ In [6], a chase procedure was defined to compute the
Ry(f(2),9(2),d,) := INLQUERY(p, D). canon_lcal unlversgl solution for a treg und_er an XML

All that remains to see is that, sindd’,v) = (z), it MappingM. If we include a set of XML integrity constraints

must be that NLDOC(T, D) = INLQUERY(yp(v(2)), D). Ar in M, it is possible to extend this chase procedure so
This ensures the existence of a fact of forrfhat it correctly computes the canonical solution ¥ounder

Re(Crio(m)s Cow(z)) o v(E)) = Re(cppys oy @) i the e_xtens.ion ofM,_ assuming that the constraintsmflare
INLTQL(Q, D)(INLDOC(T, D)). acyclic (this restriction, as we have discussed, can bedwgat
to consider more weaker notions of acyclicity [13], [22],
[8]). Moreover, the procedureX& INLMAP(M, Dg, Dr, Ar)
produces a mapping with acyclic relational constraintshia t
Let T be a tree such thanLDoc(T, D) = I. We construct target schema if and only i\r is acyclic. Thus, using this
a mappingh betweenT and RIBREL(I) as follows: results, it is possible to adapt the proofs of theorems 58, 5
« For each node of T that is marked, let be it's label, and @nd 6.7 for the case stated in this theorem (that is, consgler
id,, be the identifier off = INLDOC(T,, D) that belongs intégrity constraints in target schemas).
to the attributeid, of the tuplet created by procedure
INLDocC from noden. Then, defineh so it mapsn to
the node of BBREL(I) created by procedureUBREL
from tuplet of R,.
« For each node: that is not marked, let’ = p(n), and
t the corresponding tuple inNLDoC that corresponds
to noden’. Let ¢ and ¢’ be the label ofn and rn/,
respectively, and assume thd,, id, are the identifiers
of t in positionsid, andid, of tuple ¢t in R,. Then,
procedure BBREL will create from¢ a noden; labelled
¢ and a noden; labelled with?¢, such thatu(n:) = n;}
in PUBREL(I). Defineh so it mapsn to n;.

It is clear that this mapping is one to one, sinfe=
INLDOC(T, D). Furthermore, sincé&/(D) is a tree, it is also
clear that this mapping preserves the relatjorof nearest
appropriate ancestors, as the way in which procedumsRgL
creates the parent-child relation of nodes is always unifiie
nally, from the definition of proceduresuBREL and INLDOC
it must be the case that for everyin T labelled?, the set
{paa(n) | @a € Ap(¢)} is the same agpa.(h(n)) | Qa €
Ap ()} in PUBREL(T).

It is now an easy exercise to prove that Doc creates the
same relations (up to renaming of nulls) fov#ReEL(I) and
(T, since for every marked nodeof T' the procedure creates
exactly the same tuple as marked ndde) of PUBREL(I).

I. Proof of Proposition 6.6

J. Proof of Theorem 6.7

Fix an M-universal solution7” for T. By theorem 6.1,
CERTAINAM(Q,T) = Q(T"), whereT” is an universal solution.
Furthermore, by proposition 6.5NLDOC(Q(T"),Dg) =
INLTQL(Q, Dr)(INLDOC(T”, Dr)).

