
High-Contrast Algorithm Behavior: Observation,
Conjecture, and Experimental Design

Matthias F. Stallmann∗ Franc Brglez∗

ABSTRACT
After extensive experiments with two algorithms, CPLEX
and our implementation of all-integer dual simplex, we ob-
served extreme differences between the two on a set of de-
sign automation benchmarks. In many cases one of the
two would find an optimal solution within seconds while
the other timed out at one hour.

We conjecture that this contrast is accounted for by the
extent to which the constraint matrix can be made block di-
agonal via row/column permutations. The actual structure
of the matrix without the permutations is not important.

Our conjecture is made more precise in two steps: (a) cross-
ing minimization is used on a derived graph to achieve desir-
able permutations of rows and columns; and (b) the degree
of randomness (lack of structure) is measured using diffu-
sion, a measure that approximates what a human perceives
as lack of structure.

Additional experiments on synthetic instances related to
the benchmarks add validity to our conjecture. We observe
unexpectedly sharp thresholds where, with only slight vari-
ation of our measure, the dominance of the algorithms re-
verses dramatically. The nature of and explanation for this
threshold behavior is left for future research as are many
other questions. As far as we are aware the approach taken
here is unique and, we hope, will inspire other research of
its kind.

Software for the algorithms and experiments discussed
here (along with scripts for generating input data and gath-
ering results) is available at
people.engr.ncsu.edu/mfms/Software/index.html,
or contact matt_stallmann@ncsu.edu.

1. INTRODUCTION
The objects of the study in this paper are two extremely

different algorithms, each too complex to be treated as much
more than a black box. The industrial benchmarks on which
∗Department of Computer Science, North Carolina State
University, {matt stallmann,brglez}@ncsu.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the behavior of these algorithms has been observed fall into
three categories: (a) both algorithms find the optimal solu-
tion within a few seconds; (b) both fail to find the optimum
after one hour or longer; and (c) one algorithm clearly dom-
inates the other when runtime is used as a measure of merit.
This discussion considers category (c) only.

The benchmarks represent generalized set cover problems
arising in logic synthesis for design automation. One of the
algorithms is CPLEX 9.0 [12]1, a general-purpose solver for
integer programs, including set cover. The other, called int-
dual, is our implementation of all-integer dual simplex —
see [7, Sec. 5.9], specialized for this problem domain.

The focus is on methodology. Ideally, we could profile
problem instances and choose the better algorithm. Our
study is a limited step in that direction. Observations in
the form of experimental data from the benchmark set —
we only show those relevant to category (c) — lead to a
conjecture about the structure of instances that work better
for int-dual. We then design extensive experiments to build
a case for our conjecture. Though there are several limi-
tations to our results, both the experimental evidence and
a rudimentary understanding of the algorithms support the
conjecture.

Now that we have presented an outline of the story to
be told, the remainder of the paper is organized as follows.
Section 2 gives a brief description of the background leading
to this study. In Section 3 we give an overview of both
algorithms. Section 4 describes the benchmark instances
and the results that make up our observations. Section 5 is
the turning point where we lead up to our main conjecture.
In Section 6 the details of additional experiments supporting
our conjecture are explained. Some final thoughts conclude
the paper in Section 7.

2. BACKGROUND
The (unate) set cover problem has input consisting of a

family C = {C1, . . . , Cn} and a set S ⊆ C1 ∪ · · · ∪ Cn. The
goal is to find a sub-family C′ = {C′

1, . . . , C
′
k} of C so that

S ⊆ C′
1 ∪ · · · ∪ C′

k and k is minimized. Binate cover is set
cover with additional constraints, usually ones that ensure
mutual exclusivity or inclusiveness among some of the C′

j .
Both are special cases of minimum cost satisfiability [5],

also known as min-ones satisfiability [13], where a cnf for-
mula is to be satisfied in such a way as to minimize the
number of true variables (or, more generally, their cost).

1We subsequently use the lower case “cplex” except when
referring to specific releases.

As an example of a unate instance, consider four employ-
ees, each possessing a subset of three skills: financial (f),
managerial (m), and computer (c). The skill set for em-
ployee 1, C1, is {f, c}, financial and technical; C2 = {m, c};
C3 = {m}; and C4 = {f, m, c}. The employer has to down-
size the enterprise, retaining a minimum number of employ-
ees while ensuring that each skill is still represented. The
obvious solution with cost = 1 is to keep employee 4.

If xi is a 0/1 variable that is 1 iff employee i is retained, the
constraints of the problem are given by three inequalities,
one for each skill:

x1 + x4 ≥ 1 (f)

x2 + x3 + x4 ≥ 1 (m)

x1 + x2 + x4 ≥ 1 (c)

A binate instance arises when employee 4 decides to stay
only if the other employees are kept as well (not a smart
decision, but noble). Now the best solution has cost = 2:
the employer can retain employee 1 and either of 2 or 3. The
additional constraints are

−x4 + x1 ≥ 0 x4 → x1 ∼ x4 ∨ x1

−x4 + x2 ≥ 0 x4 → x2 ∼ x4 ∨ x2

−x4 + x3 ≥ 0 x4 → x3 ∼ x4 ∨ x3

The instance is called binate because the coefficients in the
inequalities can be either +1 or −1. The connection with
satisfiability is illustrated in the comments to the right of
each constraint. Each constraint, whether unate or binate,
has 1 − cn on the right hand side, where cn is the number
of negative coefficients.

See [16] for a further discussion of unate cover, binate
cover, and min-cost sat. Applications of these problem for-
mulations to design automation (logic synthesis) are pre-
sented in [5] and [11].

This work began with an earlier branch and bound algo-
rithm, eclipse [16, 15], which outperformed cplex on most
of the unate benchmarks. The binate benchmarks, how-
ever, were more challenging: eclipse either did not do as
well as cplex or neither algorithm was able to find a solution
within an hour2. The biggest challenge, as we saw it, was
to develop a better mechanism for obtaining lower bounds.
An all-integer dual simplex algorithm seemed promising be-
cause (a) it had already been tried successfully on small
set cover instances [18], and (b) any intermediate step pro-
vided a lower bound even if it did not prove optimality. To
our surprise, consideration (b) turned out to be superfluous
— int-dual, when used to compute a lower bound, actually
proved optimality, and made branching unnecessary.

This surprising success applied only to the hard binate
benchmarks. Int-dual performed very poorly on the unate
ones. The many attempts to explain this dichotomy, and
also why cplex performed poorly on benchmarks where int-
dual did well, led to the current work. We proceed by giving
a (slightly) more detailed description of the two algorithms.

3. INTEGER PROGRAMMING FORMULA-
TION AND ALGORITHMS

2This was CPLEX 7.5 on a slower processor (by about a
factor of two).

The constraints of a unate or binate set cover instance
have an integer programming (IP) formulation

min cT x subject to Ax ≥ b, x ∈ {0, 1}

where c is the cost vector, all 1’s in this setting; the con-
straint matrix A and bound vector b are determined as fol-
lows. Each row in A is the left side of a constraint, each
entry of b the right side. When the instance is unate the A
entries are either 0 or 1 and b is all 1’s.

When the xi are allowed to be fractional, the formulation
is called the linear-program (LP) relaxation of the IP and
can be solved using a simplex algorithm. Suppose, for ex-
ample, that there are three variables and three constraints
(this is the vertex cover instance for a triangle):

x1 + x2 ≥ 1

x2 + x3 ≥ 1

x1 + x3 ≥ 1

The optimal solution, allowing fractions, is x1 = x2 = x3 =
1/2 with cost 3/2. However, the optimal integer solution
must have two of the three variables = 1 for a cost of two.
After the fractional solution is found by a simplex method,
one approach is to apply a Gomory cut [9, 10], a new con-
straint that eliminates the fractional solution but keeps all
optimal integer solutions of the original instance. Such a cut
is also called a fractional cut.

The all-integer dual algorithm, int-dual, anticipates each
cut before a fractional solution arises. All of the tableau
entries 3 at each step are integers and the numerical issues
associated with floating point computations are avoided.4

Int-dual begins with a tableau based directly on the con-
straint matrix A. Every step of int-dual (and any simplex
method) is a pivot — a variable is swapped for a constraint
and some rows of the tableau are added to others. A pivot
entry of the tableau determines the row and column to be
swapped. The only changes to the tableau involve rows that
have a nonzero in the pivot column.

The dual simplex method is used because it is easier to
implement and appears to be more promising for set cover
problems — see [18].

To give a rough idea of how the algorithm works, consider
Table 1 which illustrates the solution of the three-variable
instance above. The initial tableau has costs, all 1’s here,
across the top. Each row is the negative of a constraint, writ-
ten with the b-vector entry on the left. The top left corner
represents the negative of a lower bound on the solution.

Success with all-integer dual simplex algorithms has only
been reported a few times in the literature [18, 4], and, as
is the case with our work, in a limited domain.

The other algorithm, cplex, uses branch and bound —
see, e.g. [14, Ch. 10]. The basic algorithm starts with a root
node that represents the initial instance. Every node has two
children, one representing the reduced instance that arises
when a given variable is set to 0, the other representing a

3A tableau keeps track of the current step in the simplex
algorithm; the idea is attributed to Beale, but its first known
publication is in [8]. Any linear programming textbook has
more details — see, e.g., [20].
4The C++ implementation is available by request and will
be posted on the web as soon as it is properly documented.
Scripts for running experiments, instances, instance genera-
tors and instance classes, and detailed results, are also avail-
able.

Table 1: Initial tableau and sequence of pivots for the vertex cover problem of a triangle

−x1 −x2 −x3

−sol 0 1 1 1

s1 −1 -1 −1 0
s2 −1 −1 0 −1
s3 −1 0 −1 −1

=⇒

−s1 −x2 −x3

−sol −1 1 0 1
x1 1 −1 1 0
s2 0 −1 1 −1

s3 −1 0 -1 −1

=⇒

−s1 −s3 −x3

−sol −1 1 0 1
x1 0 −1 1 −1

s2 −1 −1 1 -2
x2 1 0 −1 1

=⇒

−s1 −s3 −x3

−sol −1 1 0 1
x1 0 −1 1 −1
s2 −1 −1 1 −2
x2 1 0 −1 1

scut −1 −1 0 -1

value of 1 for that variable. The implied exhaustive search
of the solution space is mitigated in several ways.

• The solution to the LP-relaxation at a node may give a
lower bound that is no better than the cost of an already-
identified solution; the node can be discarded and no
children are generated.

• A local search algorithm applied to the instance at a
node may give a solution that has cost no greater than
lower bounds of nodes still under consideration. Those
nodes can be eliminated.

• A fractional cut can be used to eliminate potential so-
lutions for all nodes simultaneously.

Cplex uses all of these standard devices plus other heuris-
tics determining the choice of a variable at each node, the
choice of a node to explore next, how often to apply local
search, etc.

4. OBSERVATIONS: BENCHMARKS AND
RESULTS

Table 2 shows profile data for a subset of some well-known
benchmark problems based on logic synthesis. These were
originally contributed to a 1991 workshop at MCNC in Re-
search Triangle Park, NC – see [22] – and have been the
subject of intense experimentation since, mostly with branch
and bound algorithms. Up to a point, optimal solutions out-
weigh runtime considerations. Recent results with pointers
to previous ones can be found in [15] and [17]. The cho-
sen subset omits instances that are too easy — runtimes are
less than a second for most recent algorithms — and one
that is hard mainly because it is considerably larger than
the others.5

Instance sizes differ from those reported in other sources
because these are reduced versions of the instances, modified
using essentiality (eliminating unit constraints and assign-
ing the appropriate variables), row dominance (removing
redundant rows), and column dominance (removing redun-
dant columns). See [11] for more details. Since our algo-
rithms — including int-dual — preprocess instances to re-
duce them, the use of reduced instances levels the playing
field with respect to other algorithms.

In some cases the reduced instance has a smaller-valued
optimum solution because some variables are forced to have

5The optimal solution cost for this benchmark, test4.pi, is
known only to be ≤ 92 (using stochastic search) and ≥ 82
(using cplex).

a value of 1 during the reduction. This accounts for the
differences in optima. The LP lower bounds (relative to
known optima) are not affected by reduction.

The columns marked row-diff and col-diff will be dis-
cussed later — they are an essential part of our main con-
jecture.

Table 3 shows results for the two algorithms on the six
benchmarks under consideration. Cplex is run using default
settings and int-dual is as described earlier.

All reported results give runtime on a dedicated Intel(R)
Xeon(TM) 3.20GHz processor with 2048 MB cache. Runs
were terminated after one hour if the instance was not solved
by then. For int-dual, there was also the possibility of an
overflow when the integers in the tableau became too large..

In these tables we only report runtime because that is the
only measure that can be compared meaningfully. Runtime
for cplex usually correlates well with the total number of
simplex iterations if normalized for the size of the instance
but it may also be affected by the number of cuts. There
are multiple factors influencing the time taken by int-dual,
no one of which is a reliable indicator.

As we noted in [3] it can be drastically misleading to com-
pare results of different algorithms on single benchmark in-
stances. For statistically significant results, we ran each al-
gorithm on 33 instances: the original benchmark as posted
(and reduced) and 32 isomorphs obtained by randomly per-
muting rows and columns of the constraint matrix.

On five of the instances one of cplex or int-dual so clearly
dominates the other that detailed statistics are hardly rele-
vant — the maximum time taken by one is less the minimum
time of the other.

Remark: The four overflows observed in the int-dual runs
for e64.b can be discounted. The maximum time it takes to
encounter an overflow is 497 seconds.6 When an overflow
occurs, int-dual can randomly permute the matrix and run
again. Even in the worst case, at least seven such repeated
runs can be accomplished in an hour — the probability that
all seven encounter overflows is infinitesimal.

Cplex dominates on bench1 and max1024, while int-dual
performs significantly better than cplex on saucier, e64.b,
and alu4. The only controversial benchmark is rot.b where
the distribution for cplex is exponential — standard devi-
ation close to the mean — and that for int-dual is near
exponential. Whether cplex dominates in this case or we

6The other three are 75, 146, and 167 seconds, respectively.

Table 2: Benchmark problems, original and reduced.

The benchmarks used here are reduced versions of ones that were originally contributed
to a 1991 workshop at MCNC in Research Triangle Park, NC – see [22]. Optima were
computed using umbra, our branch-and-bound algorithm that uses int-dual to obtain
lower bounds, setting a limit on the number of iterations performed before branching.

Unate benchmarks
Benchmark Cols Rows nonzeros −1’s Opt LP LB row-diff col-diff

bench1 4676 398 9563 0 121 119.9
bench1 reduced 866 355 2821 0 113 111.9 25.9 20.7

max1024.pi 1278 1087 6974 0 259 256.8
max1024 reduced 904 916 5368 0 209 206.8 29.2 28.9

saucier 6207 171 500632 0 6 5.0
saucier reduced 6203 116 340223 0 6 5.0

Binate benchmarks
Benchmark Cols Rows nonzeros −1’s Opt LP LB row-diff col-diff

e64.b 607 1022 8200 863 47 36.4
e64.b reduced 571 920 6795 826 47 36.4 1.4 4.8

alu4 807 1823 36259 1732 50 46.3
alu4 reduced 481 592 9866 526 32 28.3 3.0 12.5

rot.b 1451 2932 40755 2629 115 110.5
rot.b reduced 887 1257 13742 1085 84 79.5 9.7 22.5

Table 3: Runtimes for the benchmarks.

Time is on a dedicated Intel(R) Xeon(TM) 3.20GHz processor with 2048 MB cache. Runs were
terminated after an hour if the algorithm had not achieved optimality by then. For int-dual, there is
also the possibility of an overflow when the integers in the tableau get too large.
Statistics (min, median, mean, max, and standard deviation) are based on 33 runs with isomorphs.
The second column indicates how many of the 33 instances ran to completion versus time outs and
overflows. The third column, marked “orig.”, refers to the original unpermuted benchmark. A 16 hour
limit on wall-clock time meant that, in some cases, less than 33 instances were executed.

Unate benchmarks
Benchmark (solver) N (to,of)a orig. min med. mean max stdev.

bench1 (cplex) 33 (0,0) 1.7 0.2 1.9 1.8 2.5 0.7
bench1 (int-dual) 1 (12,9) t.o. 2,872.2 2,872.2 2,872.2 2,872.2 n/a
max1024 (cplex) 33 (0,0) 2.9 2.5 3.6 3.5 6.4 0.9

max1024 (int-dual) 0 (5,28) o.f. n/a n/a n/a n/a n/a
saucier (cplex) 0 (33,0) t.o. n/a n/a n/a n/a n/a

saucier (int-dual) 33 (0,0) 0.8 0.2 1.0 243.1 3,549.9 845.2

Binate benchmarks
e64.b (cplex) 0 (33,0) t.o. n/a n/a n/a n/a n/a

e64.b (int-dual) 29 (0,4) 27.5 2.6 15.9 28.4 168.0 33.0
e64.b (cm)b 31 (1,1) 55.0 1.7 19.4 34.5 105.0 34.8
alu4 (cplex) 33 (0,0) 38.6 23.1 93.6 190.6 2,166.2 369.4

alu4 (int-dual) 33 (0,0) 2.7 1.1 3.8 4.1 12.6 2.4
rot.b (cplex) 33 (0,0) 6.3 1.6 3.9 6.0 33.3 6.1

rot.b (int-dual) 33 (0,0) 67.4 3.0 14.6 21.1 67.4 15.1

aNumber completed (time outs,overflows)
bEach isomorph is subjected to crossing minimization and int-dual is run on the minimized
row/column permutation.

regard the algorithms as indistinguishable is not important
to the remainder of our discussion.

The fact that cplex and int-dual complement each other
can be useful — running the two concurrently can greatly
improve the chances of obtaining an optimal solution within
reasonable time. Our purpose here, however, is to attempt
a characterization that accounts for the extreme difference
in behavior between the two.

5. A CONJECTURE
There are some obvious contrasts here: cplex does better

on the unate instances, except for the rather stark exception
of saucier; int-dual does better on binate instances except
for a slight advantage for cplex on rot.b.

The unate/binate distinction may not be the only reason
for the differences in performance. There is no obvious rea-
son why int-dual should have an advantage in the binate
case. In fact, if the number of −1’s in the constraint matrix
becomes too large, as is the case with the test generation
benchmarks of [21], int-dual almost always times out while
cplex finds optima quickly.

Saucier is easy to dispense with as an out-lier. It is much
denser than the others and has an extremely large number of
variables with relatively few constraints. Cplex does poorly
because (a) it runs a complete simplex algorithm at every
node, and (b) it is very conservative about making cuts even
when told to do so aggressively. 7 Int-dual, on the other
hand, always reaches the optimal solution of 6 very quickly
and then spends the remaining iterations doing cuts to prove
optimality.

For the remaining benchmarks it is instructive to look at
the nonzeros of the initial constraint matrix after these have
been organized to be as “block structured” as possible. Fig-
ure 1(a) shows the first 250 rows of max1024 (reduced), one
of the unate benchmarks on which int-dual performs poorly.
Figure 1(b) shows the first 250 rows of e64.b. The contrast
is visually obvious. Figure 2 shows an “in-between” situa-
tion — 250 rows of rot.b — corresponding to the situation
where domination is less clear.

These pictures are generated using crossing minimization
on the bipartite graph induced by the constraint matrix —
more details on this below. Several important points must
be made:

1. The block structure is not evident at all in the original
benchmark — the reference e64.b, for example, looks
pretty random.

2. The block structure is present, but hidden, regardless
of how the rows and columns are permuted. What we
are observing is that, when a block structure emerges
as the result of crossing minimization, it may predict
the salutary behavior of int-dual over a whole class of
isomorphs.

3. Int-dual does not necessarily perform better if an in-
stance is rearranged into block structure first. The line
marked “e64.b (cm)” in Table 3 illustrates this point.
In fact, the restructuring improves runtime in only 14
of the 33 instances, mostly by only a few seconds.

7Only one cut was attempted in the first 4602 nodes, which,
in turn required almost 130,000 simplex iterations.

Figure 3 illustrates how crossing minimization works to
make a matrix appear more block structured. Let G =
(U, V, E) be a bipartite graph where

U = the set of constraints

V = the set of variables

E = {uv | variable v appears in constraint u}

Given a permutation π1(U) and another permutation π2(V),
put the vertices of U on a horizontal line in the order defined
by π1; do the same for V with respect to π2. If each edge
is drawn as a straight line, the number of edge crossings
is called the crossing number of G with respect to π1(U)
and π2(V). While the problem of finding permutations that
minimize crossing number is NP-hard [6], there are many
good heuristics — see, e.g., [19]. The one we use is treatment
17 from that paper.

The permutations π1(U) and π2(V) are also permutations
of the rows and columns of the matrix, respectively. Cross-
ing minimization brings the nonzeros as close to the diagonal
as possible (on average). The small employee skills example,
before and after crossing minimization as shown in Figure 3,
illustrates this dramatically.

The conjecture that underlying block structure favors int-
dual needs to be quantified further. Obvious measures re-
lated to crossings are neither good indicators of the visual
impact nor reliable predictors of algorithm performance on
even this small set of benchmarks.

Measures of block structure, as proposed in [2, 1], are
unsuitable for our purposes: they require that the matrix be
partitioned into a fixed number of blocks of roughly equal
size, rather than allowing the block number and size to be
determined by the structure of the matrix when permuted.

We need a measure to capture the idea that an already
crossing-minimized matrix “looks” block-diagonal.

Definition. The diffusion of row Ar of a matrix A, dx(Ar),
is the maximum distance between nonzeros divided by the
number of nonzeros. More formally, dx(Ar) = max{j −
i + 1 | Ari 6= 0, Arj 6= 0}/|Ar| — by abuse of notation, Ar

represents the set of nonzeros in row Ar. A similar definition
applies to columns of A. The row diffusion of A is dx(Ar)
averaged over all rows r of A. The parallel definition for
column diffusion applies to the average diffusion over all
columns of A. Diffusion is small when a matrix is structured,
large when it is random.

Remarks.

1. In practice, neither row diffusion nor column diffusion,
as just defined, completely captures the structured ver-
sus random look of the pictures. A small number of
outliers in rows or columns can add severe bias.

We adjust for this by taking the “middle half” of the
nonzeros in a row/column (sorted by increasing col-
umn/row index), computing the corresponding diffu-
sion and taking the smaller of that and the original.

2. The crossing-minimization preprocessing is essential
for our purposes since we are looking for possibly hid-
den block structure.

3. The structure revealed after crossing minimization and
the diffusion are both relatively immune to row and
column permutations of the original instance — see
Table 4 for an example.

(a) max1024.pi (b) e64.b

Figure 1: Plot of non-zero entries for reduced versions of max1024.pi and e64.b after crossing minimization;
first 250 rows.

Figure 2: Plot of non-zero entries for the reduced version of rot.b after crossing minimization; first 250 rows.

9 crossings
mf c

1 2 3 4

mf c

1 4 2 3

m
f

c

1 2 3 4

m

f
c

1 2 34

2 crossings

Figure 3: Crossing minimization illustrated using
the employee/skills example.

row/col min mean max stdev
rot.b (row-diff) 9.7 10.6 11.1 0.6
rot.b (col-diff) 19.7 21.2 22.8 1.1

Table 4: Row and column diffusion for 33 different
initial row/column permutations of rot.b.

4. Diffusion can be small even if nonzeros are far from the
diagonal as long as they are contiguous. This is not a
concern for us because of the crossing minimization.

5. Diffusion is 1.0 when all rows/columns are contiguous
and can be much larger. Ideally it should be normal-
ized to be a number between 0 and 1, but this appears
difficult.

6. Row and column diffusion can differ from each other
by wide margins. For now it does not matter whether
the appropriate statistic is minimum, maximum, or
average.

7. As will be more evident later, diffusion may need to
be scaled to account for differences in instance size or
density.

The last column of Table 2 shows row and column diffu-
sion (after crossing minimization) for the five benchmarks
where structure (or lack thereof) makes a difference. The
correlation of these numbers with algorithm performance is
striking, whether we take their minimum, maximum, or av-
erage.

We end this section with a conjecture, to be further ex-
plored in the next section.

Conjecture. Int-dual performs better than cplex on prob-
lem instances which, if permuted using crossing minimiza-
tion, exhibit small row and column diffusion.

If this is an apt characterization of instances with respect
to the performance of these algorithms, there should either
be a threshold value above which cplex begins to dominate
or a gradual transition from better performance by int-dual

blocks → 8 16 32 64

algorithm measure

cplex runtime < 0.5 3.6 t.o. t.o.
int-dual runtime < 0.5 < 0.5 1.0 5.8
int-dual iterations 56 112 224 448

Table 5: Performance of cplex and int-dual on in-
creasing numbers of pure blocks (maincont).

to better performance by cplex. The next section addresses
this issue.

6. ADDITIONAL EXPERIMENTS
The design of additional experiments to explore the con-

jecture required many arbitrary choices. Other possibilities
than those described here have also been explored, lead-
ing to similar conclusions. It must be emphasized that the
choices described here, while apparently arbitrary, are not
premeditated. We did not choose as we did to favor partic-
ular conclusions nor did we select among already-explored
variations those that would best lend credence to our conjec-
ture. The phenomena described here hold, as far as we can
tell, for a variety of methods of adding “noise” to matrices
that are purely block-diagonal.

We took a small unate instance from the same benchmark
set. This instance, maincont, in its reduced form, has 61
variables, 50 constraints, 868 nonzeros. an optimal solution
with cost 7, and is easily solved by both algorithms within
a small fraction of a second.

Maincont was then used to form multiple blocks along the
diagonal with the number of blocks being powers of 2: two
blocks of maincont were combined for a 2-block instance,
then two 2-block instances were combined into a 4-block
instance and so on. This approach led to a sequence of pure
block-structured instances.

To introduce increasing amounts of randomness, we added
random rows or a combination of both rows and columns
while combining instances at each step.

An instance with 2k blocks and r added rows (and possibly
columns) was created from two instances with 2k−1 blocks.
At k = 1 both instances are the original maincont. At every
step in the creation of 2, 4, . . . , 2k blocks, exactly the same
number of rows (and possibly columns) were added. The
choice of nonzeros in the rows and columns was completely
random, but the number of nonzeros was fixed at four,8 two
lining up with each block. Figure 4 illustrates how the extra
rows are added at each level in the case of one added row
and four blocks created from two blocks of two.

Occasionally an added row will increase the cost of the
optimal solution over what it would have been with no added
rows. An added column can decrease the cost.

The first observation, easy to verify algebraically, is that
without added rows or columns, the asymptotic performance
of int-dual is very smooth. Indeed the number of iterations,
shown in the third row of the table, exactly doubles when
the instance size is doubled.

8There are technical reasons for this choice. Fewer than
four entries in an added row give int-dual an advantage —
it processes short rows first. With more than four we run the
risk of introducing row dominance, causing the extra rows
to be reduced away.

Figure 4: An abstract view of how four blocks are
constructed with an added row at each level.

C

rows
added

number of blocks number of blocks

C means CPLEX dominates

I means int−dual dominates

X means both routinely time out

1

4

2

16

2 4 8 16

1

2

4

8

16

2 4 8 16 32

I I I

I I I

I I

C X X

C C C X

I I

I
added

rows and cols

X

CC

C

C

Figure 5: Dominance of int-dual versus cplex on var-
ious block structures with rows or both rows and
columns added.

Fact: Every step of int-dual is a pivot and a pivot element
in a given block will only affect the entries corresponding to
that block no matter how much they are interleaved through-
out the matrix via row/column permutations.

We therefore have an underlying model for the better per-
formance of int-dual on more general block-structured ma-
trices.

There is also a straightforward explanation for the poor
performance of cplex and other branch and bound solvers
on larger instances9. Branch and bound generates two new
nodes each time a branching variable is chosen, but fixing
the value of a variable makes progress only within one block.
Global information is needed to obtain good bounds and
cuts.

What happens when we add rows and columns along the
way? As predicted, and shown in Figure 5, there is a tran-
sition from dominance of int-dual to dominance for cplex.
The blank entries are cases where both algorithms routinely
find the optimum within a few seconds. The dominance is
most often characterized by time-outs on the part of one al-
gorithm and reasonable execution times on the other. This
will be examined more closely later.

We narrow our search for a threshold, and address the

9Similar results were obtained by our branch and bound
solver.

both winner row-diff col-diff

0 easy 1.8 1.9
1 easy 2.3 2.2
2 int-dual 2.7 2.5
4 cplex 3.8 3.3

16 cplex 14.5 11.5

rows winner row-diff col-diff

0 easy 1.8 1.9
1 int-dual 2.2 1.9
2 int-dual 2.8 1.9
4 int-dual 3.7 2.0
8 cplex 5.8 2.3

16 cplex 9.9 2.7

Table 6: Diffusion measures correlated with algo-
rithm behavior on 8 blocks with added rows (and
columns).

applicability of diffusion, by looking at a single column of
each rectangle, the one corresponding to 8 blocks. This is
to avoid any issues that might be related to differences in
instance size.

Table 6 makes the point that there may be a sharp thresh-
old when both rows and columns are added and possibly a
region of gradual transition when only rows are added. The
entries marked “easy” are easy for both solvers because the
number of blocks is too small for the asymptotic behavior
of cplex to emerge.

Row diffusion but not column diffusion increases notably
when only random rows are added. This is to be expected.

We have to look at the extremes — see Figure 6 — to
see differences in the visual representations, and even then
the difference is not nearly as pronounced as with some of
the industrial benchmarks. The low diffusion numbers here
are consistent with the pictures, but the crossover from int-
dual to cplex is not in the same numerical range as with the
benchmarks.

Now consider the results results from both the isomorphs
and a random class (different random choices of nonzeros in
added rows) based on 4 to 8 added rows with eight blocks,
as shown in Table 7. Given the hopelessly skewed nature of
the data distributions, we have to be cautious and regard
our explorations as just that; no definite conclusions can be
drawn.

We would expect isomorphism classes to be better be-
haved than random classes. This is always true for cplex, but
only true for int-dual in the absence of timeouts/overflows.
Both classes are included in the table for the following rea-
sons.

1. Among the random instances, we would not expect
radical differences in underlying structure. Whatever
behavior we conjecture should therefore hold, at least
in the aggregate, for both isomorphic and random classes.

2. Nontrivial variation exists in the isomorphism classes
just as it does for the benchmark instances.

3. We want to show that the original isomorph, in which
the block structure is evident, does not necessarily lead
to the best performance.

(a) One row and column added (b) 16 rows added (c) 16 rows and columns added

Figure 6: Visual differences in 8 blocks with added rows and columns.

Table 7: Threshold behavior from 4 to 8 added rows for 8 blocks of maincont.

Benchmark (solver) N (to,of)a orig.b min med. mean max stdev.
8 blocks, 4 rows, row-diff = 3.7, col-diff = 2.0

cplex (iso) 33 (0,0) 0.5 0.4 1.5 2.0 6.7 1.3
int-dual (iso) 33 (0,0) 0.5 0.2 0.5 0.8 5.0 0.8
cplex (rnd) 32 (0,0) n/a 0.3 1.5 9.4 130.5 24.5

int-dual (rnd) 32 (0,0) n/a 0.1 0.4 0.4 1.2 0.2
8 blocks, 5 rows, row-diff = 4.1, col-diff = 2.1

cplex (iso) 33 (0,0) 7.0 1.8 10.8 16.3 84.8 16.1
int-dual (iso) 27 (4,2) 5.1 1.1 14.0 31.6 321.5 61.3
cplex (rnd) 32 (0,0) n/a 1.6 13.4 56.0 425.9 99.0

int-dual (rnd) 30 (1,1) n/a 0.8 5.8 70.7 924.0 196.3
8 blocks, 6 rows, row-diff = 4.6, col-diff = 2.2

cplex (iso) 33 (0,0) 2.4 0.8 3.9 6.4 37.2 7.2
int-dual (iso) 33 (0,0) 1.8 0.4 2.6 3.9 12.7 3.2
cplex (rnd) 32 (0,0) n/a 0.9 29.3 121.1 1,695.2 303.7

int-dual (rnd) 31 (1,0) n/a 0.6 5.0 10.3 79.8 15.4
8 blocks, 7 rows, row-diff = 4.9, col-diff = 2.2

cplex (iso) 33 (0,0) 211.5 9.4 29.3 83.7 438.4 109.3
int-dual (iso) 6 (8,19) 63.2 11.0 56.6 85.9 203.3 70.0
cplex (rnd) 32 (0,0) n/a 0.8 16.7 66.8 833.4 158.5

int-dual (rnd) 19 (7,6) n/a 0.5 45.4 375.1 3,508.6 847.4
8 blocks, 8 rows, row-diff = 4.9, col-diff = 2.2

cplex (iso) 33 (0,0) 585.6 45.7 220.7 281.3 746.9 199.5
int-dual (iso) 0 (6,27) o.f. n/a n/a n/a n/a n/a
cplex (rnd) 32 (0,0) 137.9 29.5 222.1 493.8 3,391.3 665.6

int-dual (rnd) 0 (2,30) o.f. n/a n/a n/a n/a n/a

aNumber completed (time outs,overflows). The random classes have only 32 instances.
bOriginal reference instance (unpermuted): applies to isomorph class only.

4. Using isomorphs on a single instance of the random
class is not sufficient — the relative difficulty among
random class instances varies a great deal.

Ideally we would have a class of isomorphs for each random-
class instance, but this is impractical. The instance for
which the isomorph class is constructed is no less random
than an other.

Also important to point out is that timeouts/overflows
on the part of int-dual can no longer be dismissed as eas-
ily. In an isomorph class we can run for a fixed length of
time, stopping after that time and restarting with a different
isomorph, and doubling the time until we find an optimum
solution. But a random instance that times out may time
out for all isomorphs or just a few.

Finally, it must be remembered that both algorithms are,
at heart, exponential. Absent other circumstances their run-
time will double with the addition of just a few rows.

A closer look at the data reveals the following points of
interest.
• Int-dual exhibits two thresholds. The first, between four

and five added rows, is a transition from runtimes less
than a second to substantial runtimes accompanied by
timeouts and overflows.

The second threshold, between seven and eight rows,
leads from optimal solutions within the time bound for
most instances 10 to the complete absence of successful
solutions.

• For cplex the transition is much smoother. The gradual
increase in runtime with problem size (more rows mean
larger instance) is briefly interrupted with the transition
from 6 to 7 added rows. Figure 7 shows the behavior of
several relevant statistics as number of rows increases.
The explanation could be that 7 rows is “just random”
enough for cplex not to be handicapped by the effects of
block structure.

• Putting the previous two items together, it appears that
threshold behavior with respect to moving from struc-
tured to random is primarily the fault of int-dual. This
may no longer be trued with a larger number of blocks.
Unfortunately, 16 is already too many, as it leads to
timeouts for both algorithms in the region of most in-
terest. A possible exploration could look at 12 blocks
composed of 4 with 8.

As expected the data for random classes is more erratic
than for isomorphs. These data are important for making
our point, however.

In summary, our additional experiments have definitively
given credence to our conjecture, modulo pinning down the
exact interpretation of numerical values. Instances with low
diffusion favor int-dual while a progression toward higher dif-
fusion ultimately favors cplex. The key questions left open
are (a) at what level does the transition occur — the num-
bers in the blocks experiments suggest a different scale than
those of the original benchmarks — and (b) how sharp is
the transition — again experiments with blocks point to
an extreme contrast that does not appear to exist with the
benchmarks.11

10The seven-row instance on which isomorphs are created
appears to be harder than the median instance.

11It is also fair to say that we do not have a large enough
collection of benchmarks to draw this conclusion.

Each unit along the x-axis represents a total in-
crease of seven rows: four when the 2-blocks are
created, two for the 4-blocks, and one for the
final 8-block instance. The y-axis has logarith-
mic scale — the difference between median and
maximum is too great. Use of logarithmic scale
also reveals the almost exponential increase in
runtime with increasing instance size.

Figure 7: Behavior of cplex in the threshold region.

7. CONCLUSIONS AND FUTURE WORK
We have observed extreme contrast in the behavior of two

algorithms on a set of well-known benchmark instances. Us-
ing a carefully defined and tractable measure of randomness
versus structure underlying the constraint matrix, we then
conjectured a plausible and quantifiable explanation for the
difference. The explanation was validated with additional
experiments, but there were some unexpected results that
require further explanation. In the process we introduced
a measure of underlying block-diagonal structure that is in-
dependent of how the rows and columns of a matrix are
initially permuted. The measure correlates well with what
the human observer perceives as structure after the matrix
has been suitably permuted.

This work is only preliminary. The goal of instance pro-
filing has not been achieved, primarily because our measure
still needs to be properly scaled.

What follows is a list of cautionary remarks that should
stimulate future research.

1. We have no easy way to explore the threshold versus
gradual transition question with industrial instances.
There are no in-between cases for a gradual morphing
from e64.b to alu4. The transition from alu4 to rot.b
appears smoother and is more difficult to interpret.

2. The threshold and/or gradual transition predicted by
the diffusion measure may depend on the type and
size of the instance. There is no question of the corre-
spondence between visually identifiable structure and

diffusion. The issue is whether either one can predict
algorithm behavior.

The number of optimal solutions and their relative po-
sition in the space of all variable assignments both play
a nontrivial role, albeit one that is difficult to verify in
controlled experiments.

3. There is no “natural” example of a unate instance
on which int-dual outperforms cplex (except saucier,
which is anomalous). The unate instances in the logic
synthesis domain, for whatever reason, are less struc-
tured than the binate ones. It would help if we could
identify unate instances that favor int-dual to clarify
whether a smooth transition, such as that between
alu4 and rot.b, occurs only for binate instances, only
for industrial instances, or only in special circumstances.
More binate benchmarks in the interesting range of
difficulty are needed as well.

All of these and many other issues need to be addressed.
Characterizing the performance of complex algorithms, even
in a limited domain, is challenging. We hope this case study
inspires similar work.

Acknowledgments
The setting in which this work arose is joint work with Xiao
Yu Li, whose earlier contribution to the umbra solver (then
called eclipse) are much appreciated. Thanks also go to the
staff of the NCSU High Performance Computing (HPC) fa-
cility for providing a hardware platform with fast dedicated
processors and access to CPLEX, version 9.0. Eric Sills, in
particular, dealt with many issues in a timely fashion.

8. REFERENCES
[1] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek.

Permuting sparse rectangular matrices into
block-diagonal form. SIAM J. Sci. Comput.,
25:1860–1879, 2004.

[2] R. Borndörfer, C. E. Ferreira, and A. Martin.
Decomposing matrices into blocks. SIAM J.
Optimization, 9:236–269, 1998.

[3] F. Brglez, X. Y. Li, and M. F. M. Stallmann. On SAT
instance classes and a method for reliable performance
experiments with SAT solvers. Ann. Math. Artif.
Intell., 43(1):1–34, 2005.

[4] M. J. Brusko. Solving personnel tour scheduling
problems using the dual all-integer cutting plane. IIE
Transactions, 30:835–844, 1998.

[5] Giovanni De Micheli. Synthesis and Optimatization of
Digital Circuits. McGraw-Hill, 1994.

[6] M. R. Garey and D. S. Johnson. Crossing number is
NP-complete. SIAM J. Algebraic and Discrete
Methods, pages 312–316, 1983.

[7] Robert S. Garfinkel and George L. Nemhauser. Integer
Programming. John Wiley and Sons, 1972.

[8] Samuel I. Gass. Linear Programming: Methods and
Applications. McGraw-Hill, 1958.

[9] R.E. Gomory. Outline of an algorithm for integer
solution to linear programs. Bulletin of the American
Mathematical Society, 64:275, 1958.

[10] R.E. Gomory. An algorithm for the mixed integer
problem. RM-2537. Santa Monica California: Rand
Corporation, 1960.

[11] Gary Hachtel and Fabio Somenzi. Logic Synthesis and
Verification Algorithms. Kluwer Academic Publishers,
1996.

[12] ILOG. CPLEX Homepage, 2004. Information on
CPLEX is available at
http://www.ilog.com/products/cplex/.

[13] S. Khanna, M. Sudan, L. Trevisan, and D. P.
Williamson. The approximability of constraint
satisfaction problems. SIAM J. Computing,
30:1863–1920, 2001.

[14] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys, editors. The Traveling Salesman
Problem: A Guided Tour of Combinatorial
Optimization. John Wiley, 1985.

[15] X. Y. Li, M. F. Stallmann, and F. Brglez. Effective
Bounding Techniques For Solving Unate and Binate
Covering Problems. In Proceedings of the 42nd Design
Automation Conference, June 2005.

[16] Xiao Yu Li. Optimization Algorithms for the
Minimum-Cost Satisfiability Problem. PhD thesis,
Computer Science, North Carolina State University,
Raleigh, N.C., August 2004.

[17] V.M. Manquinho and J. Marques-Silva. On using
cutting planes in pseudo-boolean optimization.
Journal on Satisfiability, Boolean Modeling and
Computation, 2:209–219, 2006.

[18] H. M. Salkin and R. D. Koncal. Set covering by an all
integer algorithm: Computional experience. JACM,
20:189–193, 1973.

[19] M. Stallmann, F. Brglez, and D. Ghosh. Heuristics,
Experimental Subjects, and Treatment Evaluation in
Bigraph Crossing Minimization. Journal on
Experimental Algorithmics, 6(8), 2001.

[20] Robert J. Vanderbei. Linear Programming:
Foundations and Extensions. Kluwer Academic
Publishers, 2nd edition, 2001.

[21] V.M. Manquinho and J.P. Marques-Silva. Search
pruning techniques in sat-based branch-and-bound
algorithms for the binate covering problem. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21, 2002.

[22] S. Yang. Logic synthesis and optimization benchmarks
user guide. Technical Report 1991-IWLS-UG-Saeyang,
MCNC, Research Triangle Park, NC, January 1991.

