
Bottleneck Crossing Minimization in Layered
Graphs

Matthias F. Stallmann and Saurabh Gupta

Computer Science Department, NC State University, Raleigh, NC 27695 USA
matt stallmann@ncsu.edu saurabh.gupta.7@gmail.com,

Abstract. Extensive research over the last twenty or more years has
been devoted to the problem of minimizing the total number of cross-
ings in layered directed acyclic graphs. Algorithms for this problem are
used for graph drawing, to implement one of the stages in the multi-stage
approach proposed by Sugiyama et al. In some applications, such as min-
imizing the deleterious effects of crosstalk in VLSI circuits or minimizing
the total number of crossings in subgraphs, it may be more appropri-
ate to minimize the maximum number of crossings involving any edge.
We refer to this as the bottleneck crossing problem. In this paper we
propose a new heuristic designed specifically for the bottleneck problem
and describe experimental results that demonstrate its superiority over
the barycenter method on various classes of multi-layer graphs. In some
cases, our new heuristic performs better than the barycenter heuristic
even when the total number of crossings is the measure of merit.

Software (C source) is available for the heuristics discussed here and
others.

1 Background

An `-layer graph G = (V,E) has V = V1 ⊕ ...⊕ V` and E ⊆
⋃

1≤i<`(Vi × Vi+1).
In other words, the nodes are partitioned into ` layers and all edges connect
vertices on adjacent layers. It is usually assumed that the graph is directed and
acyclic and a directed edge edge vw has v ∈ Vi and w ∈ Vi+1 for some i. We use
the notation E(v) to denote the edges incident on v.

An embedding of a layered graph G assigns the nodes of Vi to points on the
line y = i and a permutation πi to Vi so that, for each v ∈ Vi, the node v
is mapped to the point (πi(v), i). We call πi(v) the position of v (on its layer)
and use the simpler notation p(v) from here on. If each vw ∈ E is mapped
to a straight line (or arrow), an embedding induces crossings among the edges.
In particular, the edge vw crosses xy – assuming v, x ∈ Vi, w, y ∈ Vi+1 – if
p(v) < p(x) and p(w) > p(y). The crossing number of edge vw is the number of
edges xy that cross vw – denote this as c(vw). The well-known crossing number
problem is one of minimizing the total number of crossings, or

∑
e∈E c(e)/2. This

is motivated, among other contexts, by the desire to create esthetically pleasing
drawings of graphs [1, Chapter 9] and minimizing crosstalk in VLSI circuits [2].

Our focus, however, is on the bottleneck crossing problem, which is to mini-
mize maxe∈E c(e). We refer to this as simply the bottleneck problem from here
on and the original crossing number problem as the total problem. For conve-
nience in later discussion, we use the notation c(E′) to mean maxe∈E′ c(e), where
E′ ⊆ E.

It is easy to show that the bottleneck problem, like the total problem is
NP-hard. The proof by Garey and Johnson in [3] for the total problem can be
adapted to use the Bandwidth problem [4, Appendix A1.3] instead of Minimum
Linear Arrangement.

There are two key applications of the bottleneck problem, both involving
large graphs. One is the VLSI crosstalk problem as described in [2] – the real
problem is a bottleneck problem rather than a total problem: maximum delay
and probability of a defect in a circuit are both related to maximum crosstalk
along a single wire. See also [5] for a more detailed description of how wire
crossings degrade the performance of a circuit. The other application is activity-
based management (ABM): here the nodes represent products and services and
an edge vw means that v is an input to w, i.e., w makes use of v in some fashion.
The usual graph drawing techniques apply when a manager wants to get a sense
of the flow of the products and services. Sometimes, however, a smooth zoom
into a subgraph is required. Minimizing c(E) ensures that all subgraphs will have
relatively few crossings.

2 The Maximum Crossings Edge Heuristic

To minimize the maximum number of crossings of any edge, it is natural to
focus on edges that have the maximum number of crossings and attempt to
reduce their number of crossings. This requires a dynamic approach wherein the
algorithm keeps track of c(e) for all edges e throughout. Every iteration uses
sifting as described in [6, 7] on an endpoint v of the edge vw with maximum
c(vw). In contrast to regular sifting we want a position for v that minimizes
c(vw) while also keeping c(e) for edges e incident on layer(v) small.

A pass of our heuristic, the maximum crossings edge (mce) heuristic,1 sifts
every node exactly once, as described in Fig 1. An important point in the sifting
process, see Fig 2, is the interpretation of best position. The presumed best
position of x for edges incident on layer(x) is updated locally, considering only
the edges incident on the two nodes being swapped. So the EdgeSift algorithm
may not find the real position of minimum bottleneck. Fig 3 illustrates this.
Suppose edge 1, 6 is chosen and node 6 on the upper level is being sifted. When
we swap node 6 with 5, the number of crossings for edge 1, 5 increases by 2 to
become 6, i.e., the value of c5 becomes 6. Later, when 6 is swapped with 3, the
value of c3 is 3, because that is the maximum number of crossings among the

1 The heuristic is inspired by and takes its name from a similar dynamic sifting algo-
rithm for minimizing total crossings, the maximum crossings node heuristic, reported
by Gupta [8].

edges incident to 3 and 6 and the resulting best position p = 3, even though it
induces 6 bottleneck crossings, not the true minimum.

One might consider the failure to find the true minimum position a drawback
of the heuristic. It turns out, however, to be an advantage. The true best position
in Fig 3 is the starting position, a common phenomenon when there are many
crossings to start with. Insisting on a true bottleneck minimum for the current
sift is therefore likely to trap the heuristic in a local optimum. It is desirable to
promote movement of nodes, especially in the early stages. Our implementation
of sifting takes this one step further: we choose a position farthest away from
the starting position when breaking ties.

while there is an edge with at least one unmarked endpoint do
let e = vw be an edge with c(e) = c(E)
if v is not marked then EdgeSift(v)
if w is not marked then EdgeSift(w)
mark both v and w

end do

Fig. 1. A pass of the maximum crossings edge algorithm.

EdgeSift(x) is
let y1, . . . , yk be the nodes on layer(x) sorted by position
maintain c = the best number of bottleneck crossings so far

and p = the position at which c occurred
for i = p(x)− 1 downto 1 do

swap x with yi and update c(e) for e ∈ E(x) ∪ E(yi)
let ci = c(E(x) ∪ E(yi))
if ci < c then let c = ci and p = i

end do
repeat the preceding sift loop for i = 1 to k
if p < p(x) then move x before yp

else if p > p(x) then move x after yp

Fig. 2. Sifting a node to minimize the crossings of its edges.

We turn now to the problem of updating c(e) for e ∈ E(x)∪E(yi) when x and
yi are swapped. To simplify the discussion, consider a generic swap between two
nodes v and w in adjacent positions on the same layer: let p(v) < p(w) before
the swap and p(v) > p(w) after it. The algorithm is essentially the same as the
O(|E| + |C|) inversion-counting algorithm of Barth et al. [9]. However, instead

1 42 3

2 3 4 5 61

4

1 42 3

2 3 4 561

3 3
6

Fig. 3. The minimum position for a node is not optimal.

of merely counting inversions among the relevant edges, we need to update c(e)
for each one.

Let us restrict our attention to the subset of E(v) ∪ E(w) incident on the
layer above that of v, w. The same procedure is applied (separately) for the
edges incident on the layer below. To reflect the fact that v will no longer be
to the left of w, we decrement c(e) and c(f) if e crosses f when p(v) < p(w).
Conversely, we increment c(e) and c(f) if e crosses f when p(v) > p(w). The
swapping algorithm (for one of the two neighboring layers) is described in Fig 4.

Swap(v, w) is
let v1, . . . , vdeg(v) be the nodes adjacent to v, sorted by position
let w1, . . . , wdeg(w) be the nodes adjacent to v, sorted by position
do an insertion sort by position,

starting with the order v1, . . . , vdeg(v), w1, . . . , wdeg(w):
whenever there is an inversion between vi and wj do

decrement c(vvi) and c(wwj)

repeat the sort, starting with w1, . . . , wdeg(v), v1, . . . , vdeg(v),
and incrementing instead of decrementing the c’s

Fig. 4. Updating edge crossing counts when swapping two nodes.

If we maintain a priority queue of the edges, the time bound for choosing
an edge with maximum c(e) is O(|E| log |E|) per pass. The remaining dominant

component of the time bound is the total number of update (increment/decrement)
operations during swapping. A sifting operation with node x will swap x with
each node on layer(x) at most twice. The total number of updates per itera-
tion is therefore some constant times deg(x)

∑
y∈layer(x) deg(y). For a pass, this

translates to
∑

1≤i≤`

∑
x,y∈E`

deg(x)deg(y) or |E|2. Thus the total time for a
pass is O(|E|2). Based on [9] the total time for a barycenter sweep is |E| log |V |
– assuming we need to update the total number of crossings at the end of every
iteration to determine the minimum so far. For a fair comparison we need to
count the time per iteration amortized over a pass/sweep. This gives us O(d|E|)
for mce versus O((|E| log |V |)/`) for barycenter, where d is the average degree
of a node. In almost all situations this analysis favors the barycenter heuristic,
since there are likely to be more than log |V | layers.

3 Experiments

What follows is a description of the experiments we use to demonstrate the
effectiveness of the mce heuristic on the bottleneck problem, and, in some cases,
the total crossings problem.

3.1 Problem Instances

The instances we use are of three kinds. First there are instances that have
exactly 100 nodes from the set of Rome graphs [10], a total of 140 of them.
Layering for these graphs was accomplished using the heuristic of Gansner et
al. [11], as extracted from the outputs of experiments conducted by Chimani et
al. [12]2 Dummy nodes were added to ensure true layered graphs. Table 1 gives
the important characteristics of our versions of the Rome graphs.

nodes/layer
nodes edges density max deg layers min max

mean 144.79 180.01 1.24 7.81 8.09 1.69 43.84
stdev 16.91 21.31 0.05 1.12 2.19 1.49 7.69

min 115 144 1.13 6 4 1 21
median 140 176 1.25 8 7 1 44
max 192 244 1.41 11 14 11 69

Table 1. Statistics for 100-node Rome graphs.

Next there are random trees that are generalizations of those proposed by
Stallmann et al. in [13]. The basic idea is to compute a minimum spanning tree
on a random set of points in the unit square and partition it into k layers. With
2 Obviously we are not using the layer-free drawings of that paper but the Sugiyama

drawings used for comparison of crossing numbers.

only two layers this is easy: just assign each point a random layer and make sure
the tree alternates between them (you can also control the number of points in
each layer). With ` > 2 layers we take a different approach. We compute the
tree and assign layers as we go, ensuring that the layer sequence for each path is
a subsequence of 1, 2, . . . , `, `− 1, . . . , 1, 2, Nodes are reasonably distributed
over the layers but there is no guarantee on how many will appear in each layer.
A tree class is denoted by tn,`, where n is the number of nodes and ` the number
of layers.

Finally, there are random layered dags designed to approximate those of the
ABM application (as used in [14]). We choose ` = number of layers, k = number
of nodes per layer, and P = the probability that a specific edge will be included.
There are (`−1)k2 potential edges, so the expected number of edges is P (`−1)k2.
To make these dags more interesting and realistic we ensure that every node has
at least one predecessor. This adds (` − 1)k(1 − P)k to the expected number
of edges – an edge is added if none of the k potential predecessors of a node
is chosen in the usual way. The number of nodes per layer also varies a lot in
ABM, but we chose not to deal with this additional complication. Nomenclature
for these random layered dags is d`,k,d, where ` is the number of layers, k the
number of nodes per layer, and d the density, i.e., number of edges divided by
number of nodes.

Aside from the 140 Rome graphs, all other graph classes in our experiments
consisted of 100 independent random instances. Our approach for tree and ran-
dom dag classes was to focus on ones that have the same density as the Rome
graphs (except for trees) and the same ratio of number of layers to nodes per
layer. We chose graphs with four times as many nodes as the Rome graphs: the
basic tree class was t560,14 and the basic dag class was d14,40,1.25 – statistics for
these are shown in Table 2 and Table 3, respectively.

nodes/layer
nodes edges density max deg layers min max

mean 560 559 1.0 4.0 14 18.8 51.5
stdev 0 0 0 0 0 2.8 3.2

min 560 559 1.0 4.0 14 9 46
median 560 559 1.0 4.0 14 19 51
max 560 559 1.0 4.0 14 25 63

Table 2. Statistics for the class t560,14.

We investigated the dependence of the results on several variables: (a) in-
stance size with the same layers to nodes/layer ratio (d7,20,1.25, d28,80,1.25);
(b) different ratios, inverting the ratio as in d40,14,1.25, t560,40; (c) different densi-

nodes/layer
nodes edges density max deg layers min max

mean 550.0 679.8 1.23 7.9 14 40 40
stdev 2.2 13.4 0.03 0.9 0 0 0

min 544 650 1.18 7 14 40 40
median 550 678 1.23 8 14 40 40
max 554 731 1.34 11 14 40 40

Table 3. Statistics for the class d14,40,1.25. The number of nodes is less than the
expected 560 because isolated nodes on the first layer have been deleted.

ties3 (d14,40,1.04, d14,40,1.5, d14,40,2.0); and (d) different variances in node degree4,
achieved by controlling the choice of predecessor for nodes that failed to receive
one the usual way. That choice could range from a random one among all po-
tential predecessors to no choice at all. The former yields uniform degree while
the latter may introduce a single high-degree node on each layer.

3.2 Experimental Results

The results reported here compare the mce heuristic with the well-known barycen-
ter heuristic [15]. Similar comparisons can be made with other heuristics, includ-
ing the median heuristic [16], sifting [6, 7] and some new heuristics reported in [8];
preliminary results indicate that, in our context, the barycenter heuristic does
at least as well as any of these with respect to the bottleneck problem, both with
respect to bottleneck crossings and with respect to total crossings.

We precede each heuristic with a depth-first search starting at an arbitrary
node and then sort each layer by the preorder numbers of the nodes. Results
for bottleneck and total crossings are significantly better with dfs preprocessing,
more so for barycenter than for mce.

Recall that the barycenter heuristic takes a layer sweep approach, wherein
there is an upward sweep during which πi−1 is fixed and πi altered for i = 2, . . . , `
followed by a downward sweep with πi+1 fixed and πi altered for i = `−1, . . . , 1.
When πi is altered, the positions of nodes in Vi are sorted based on the average
of the positions of their neighbors in Vi−1 (upward sweep) or Vi+1 (downward
sweep). These two sweeps constitute a pass and each sort is called an iteration.

While an mce pass consists of |V | sorting iterations, a barycenter pass con-
sists of only 2` − 2 iterations. Ordinarily, the barycenter heuristic checks for
improvement (of the best solution so far) at the end of a pass. The same holds
for the default setting of mce. In order to compare the two heuristics fairly, we
decided to let each run for the same number of iterations (10,000) and report
both the best bottleneck number and best total number over all iterations.
3 The smallest achievable density while still maintaining connectivity in our random

dag model was roughly 1.04.
4 Here we mean the difference between minimum and maximum degree.

Our basis for comparison for both bottleneck and total crossings is the min-
imum number achieved by the barycenter heuristics divided by the minimum
achieved by mce. The number of bottleneck and total crossings can vary a great
deal even within a single class and certainly among different classes, but this
ratio remains remarkably stable.

As expected, the mce heuristic consistently outperforms barycenter with re-
spect to bottleneck crossings. Mean ratios range from 1.21 for the dags having
highest density to 2.00 for the sparsest dags. The dependence on density should
not be a surprise. With dense dags there is not much scope for improvement in
number of total crossings – as already observed in [13] – nor, as observed here,
for bottleneck crossings. See Table 4 for details.

When the densest and sparsest graphs are ignored, the ratios are consistently
around 1.60, both within classes and throughout. In other words, graph size and
ratio of layers to nodes per layer have little, if any, effect. The Rome graphs have
a slightly higher ratio (1.84), as do the smallest random dags (1.72). Since the
latter are the same size as the former, it is natural to conjecture that smaller
graphs favor mce. However, the converse is not true: mce does as well on the
largest graphs as it does on the mid-range ones. Thus a correlation with graph
size is ruled out, at least if we keep aspect ratio the same. This is significant as
the dags in both applications – circuit layout and activity-based management –
are large and sparse.

bottleneck crossings total crossings
graph class bary/mce min(bary,mce) bary/mce min(bary,mce)

d14,40,1.04 2.00 (0.47) 5.7 (1.0) 0.79 (0.15) 249.5 (62.8)

Rome 1.84 (0.30) 8.3 (2.8) 1.22 (1.17) 265.0 (118.7)

d7,20,1.25 1.72 (0.29) 6.1 (1.1) 1.11 (0.76) 186.5 (47.7)

d14,40,1.25 1.66 (0.14) 13.5 (1.1) 0.95 (0.08) 1,566.2 (210.9)

d28,80,1.25 1.62 (0.11) 35.2 (2.3) 0.87 (0.4) 14,594.3 (812.6)

d40,14,1.25 1.57 (0.22) 5.5 (0.6) 0.92 (0.08) 464.6 (57.9)

t560,14 1.56 (0.50) 13.5 (1.1) 0.57 (0.24) 74.6 (19.5)

t560,40 1.48 (0.62) 1.9 (0.4) 0.54 (0.30) 16.8 (9.1)

d14,40,1.5 1.47 (0.11) 23.0 (2.0) 0.98 (0.06) 3,715.8 (369.1)

d14,40,2.0 1.21 (0.07) 40.1 (3.4) 0.91 (0.03) 10,099.8 (691.0)

Table 4. Results for all of the standard graph classes, sorted by mean value of the
ratio of barycenter bottleneck crossings to mce bottleneck crossings. The numbers in
parentheses are standard deviations.

Surprisingly, standard deviation among different initial orderings of the same
instance from a class – different presentations [13] – is almost identical to that
of different random instances (with random presentations) from the same class.
This is especially remarkable in light of the depth-first search preprocessing,
which one would expect to smooth over presentation differences.

The behavior of the heuristics with respect to total number of crossings ex-
hibits some oddities that may be the basis for conjectures and further investiga-
tion. Much of what we observe may demonstrate weaknesses of the barycenter
heuristic rather than strengths of mce, but those weaknesses may hold with other
heuristics that, unlike mce, are static in the choice of node or layer to use for
sorting (see [8] for some dynamic alternatives).

First, it needs to be pointed out that in every class we investigated, including
many not reported here, mce outperformed barycenter with respect to total
crossings on a significant fraction (1/4 – 1/3) of the instances. In contrast, except
for the two tree classes, mce outperformed barycenter with respect to bottleneck
crossings on every instance, usually with a ratio exceeding 1.2.

That being said let us consider the classes for which the performance ratio
was worst for mce, the two tree classes and the sparsest dag class. We might
conjecture that the cause is a relatively small number of total crossings, but
this would fail to explain the good performance of mce on d7,20,1.25. Another
suggestion is that the barycenter heuristic is expected to do well on trees –
subtrees will naturally cluster as the heuristic progresses. The mce heuristic, on
the other hand spends a lot of iterations rearranging endpoints of edges with
very few crossings.

bottleneck crossings total crossings
choices max deg bary/mce min(bary,mce) bary/mce min(bary,mce)

40 6.5 (0.8) 2.00 (0.47) 5.7 (1.0) 0.79 (0.15) 249.5 (62.8)

20 7.5 (0.9) 2.07 (0.39) 6.1 (0.9) 0.84 (0.17) 264.3 (60.5)

8 10.3 (1.2) 2.16 (0.38) 6.8 (1.0) 0.90 (0.20) 253.3 (67.9)

4 14.0 (1.4) 2.02 (0.45) 8.0 (1.4) 0.99 (0.23) 229.2 (69.3)

2 20.9 (1.6) 1.97 (0.46) 8.9 (1.7) 1.10 (0.40) 265.6 (57.3)

1 32.9 (1.6) 2.39 (2.05) 8.8 (4.3) 1.16 (0.60) 78.2 (44.0)

Table 5. The effect of maximum degree on relative performance of barycenter versus
mce, based on graph classes that are degree-controlled versions of d14,40,1.04.

This leads to an interesting conjecture: As the maximum degree in a sparse
graph increases, the performance of mce for total crossings should improve. Ta-
ble 5 bears this out. Maximum degree turns out to be a significant factor, not so
much for bottleneck crossings but for total crossings. The first column in the table
represents the number of choices for predecessors of the “orphaned” nodes, those
that did not obtain predecessors via the usual random choices. The 40 means
that all possible nodes on the preceding layer were equally likely to be chosen; a
1 means that all orphaned nodes on a layer would choose the same predecessor.
When there are a small number of nodes with large degree, barycenter may not
be able to distinguish “correctly” between an average position of two nodes that

are far apart and an average of the many neighbors of a high-degree node.5 The
mce heuristic, instead, will focus immediately on edges crossing those incident
to a high-degree node. This phenomenon needs to be investigated in more detail.

4 Summary

We have presented a new crossing-minimization heuristic whose primary pur-
pose is to minimize the maximum number of crossings induced by any edge,
i.e., the bottleneck crossing number. Experimental results demonstrate that the
performance of the new maximum crossings edge heuristic is superior to that of
barycenter on a large variety of graph classes encompassing several thousand in-
dividual graphs. The mce heuristic appears to achieve better results with respect
to total crossings on some graphs. The reason for this is not completely clear,
but further investigation may lead to better crossing minimization heuristics for
both problems and methods for instance profiling, i.e., using easily computable
(usually static) information about a graph to determine which of several heuris-
tics is likely to achieve the best results.

Software for the heuristics described in this paper, other heuristics, and mul-
tiple versions of preprocessing combined with other options, is available from the
first author (contact matt_stallmann@ncsu.edu). The usage description for the
main program looks like

Usage: min_crossings [opts] file.dot file.ord
where opts is one or more of the following
-h (bary | mod_bary | mcn | sifting | mce) [main heuristic]
-p (bfs | dfs | mds) [preprocessing - default none]
-i max_iterations [default heuristic stopping criterion]
-c iteration [capture the order after this iteration in a file]
-w (none | avg | left) [adjust weights in barycenter, default avg]
-s (layer | degree | random) [sifting variation - see paper]
-e (nodes | edges | early) [mce variation]
-t if trace printout is desired

An ord file (with .ord extension) gives the order of the nodes on each layer.
The input order may be random or come from another heuristic. The program
produces an output ord file named using the base name of the input file with
suffixes indicating the heuristic(s) used.

Also available are a variety of scripts for generating input files, running mul-
tiple experiments, and gathering data.

Acknowledgments The authors would like to thank Hoi-Ming Wong at the
University of Dortmund, Germany, for providing GML representations of layouts
of the Rome graphs.
5 The relationship between barycenter performance and maximum degree is considered

on a theoretical level by Li and Stallmann [17] and is related.

References

1. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

2. Bhatt, S., Leighton, F.: A framework for solving VLSI graph layout problems.
JCSS 28 (1984) 300–343

3. Garey, M.R., Johnson, D.S.: Crossing Number is NP-complete. SIAM J. Algebraic
Discrete Methods 4 (1983) 312–316

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman (1979)

5. Takahashi, H., Keller, K., Le, K., Saluja, K., Takamatsu, Y.: A method for reducing
the target fault list of crosstalk faults in synchronous sequential circuits. IEEE
Transaction on CAD 24 (2005) 252–263

6. Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline
crossing minimization. In: Proc. Graph Drawing 1999. Number 1731 in Lecture
Notes in Computer Science (1999) 217–224

7. Schönfeld, R.: k-layer straightline crossing minimization by speeding up sifting.
In: Proc. Graph Drawing 2000. (2000)

8. Gupta, S.: Crossing minimization in k-layer graphs. Master’s thesis, North Carolina
State University (Dec 2008)

9. Barth, W., Jünger, M., Mutzel, P.: Simple and efficient bilayer cross counting. In:
Proc. Graph Drawing 2002. Number 2528 in Lecture Notes in Computer Science
(2002) 130–141

10. DiBattista, G., Garg, A., Liotta, G., Tammasia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Computational Ge-
ometry: Theory and Applications 7 (1997) 303–325

11. E.R. Gansner and E. Koutsifios and S.C. North and K.P. Vo: A Technique for
Drawing Directed Graphs. IEEE Trans. Software Engg. 19 (1993) 214–230

12. Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.M.: Layer-free upward crossing
minimization. In: Proc. 7th Int. Workshop on Experimental Algorithms. Volume
5038 of LNCS. (2008) 55–68

13. Stallmann, M., Brglez, F., Ghosh, D.: Heuristics, Experimental Subjects, and
Treatment Evaluation in Bigraph Crossing Minimization. Journal on Experimental
Algorithmics 6(8) (2001)

14. Watson, B., Brink, D., Stallmann, M., Rhyne, T.M., Devarajan, R., Patel, H.:
Visualizing very large layered graphs with quilts. Technical Report 17, North
Carolina State University (2008)

15. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Transactions on Systems, Man, and Cybernetics
11 (1981) 109–125

16. Eades, P., Wormald, N.C.: Edge Crossings in Drawings of Bipartite Graphs. Al-
gorithmica 11 (1994) 379–403

17. Li, X.Y., Stallmann, M.F.: New bounds on the barycenter heuristic for bipartite
graph drawing. Information Processing Letters 82 (2002) 293–298

