
1

Governance in Sociotechnical Systems: Addressing
Stakeholder Concerns In-Band

Munindar P. Singh
1
, Emilia Farcas

2
, Kartik Tadanki

1
, Ingolf Krueger

2
, Matthew Arrott

2
,

Michael Meisinger
2

1
North Carolina State University, Raleigh

2
Calit2, University of California, San Diego

Abstract

We address the challenge of administering sociotechnical systems, which inherently

involve a combination of software systems, people, and organizations. Such systems have

a variety of stakeholders, each in essence autonomous and contributing distinct concerns.

Traditional architectural approaches assume that stakeholder concerns are fixed in

advance and addressed out-of-band with respect to the system. In contrast, sociotechnical

systems of interest have long lifetimes with changing stakeholders and concerns. We

propose addressing stakeholders’ concerns in-band during the operation of the system,

thus supporting flexibility despite change. Our approach is based on contracts among

stakeholders; the contracts are streamlined through a formal notion of organizations. We

demonstrate our approach on a large sociotechnical system we are building as part of the

Ocean Observatories Initiative.

Keywords

Governance; system administration; policies; model-driven architecture; requirements

engineering

Introduction

We define governance as the administration of collaborations among autonomous and

heterogeneous peers by themselves. Because each participant is independently

implemented and operated, governance must be captured in terms of high-level normative

relationships that characterize the expectations that each participant may place on the

others.

Further, our interest lies in sociotechnical systems, which arise in a variety of domains

such as scientific investigation, healthcare and public safety, defense and national

security, global business and finance. Sociotechnical systems are systems-of-systems

(SoS) and their value and complexity arise from the combination of capabilities provided

by their (heterogeneous) constituent systems.

2

An excellent example of such a system is the NSF-funded Ocean Observatories Initiative

(OOI), a thirty-year $400 million project [1]. OOI provides novel capabilities for data

acquisition, distribution, modeling, planning and control of oceanographic experiments,

with the main goal of supporting long-term oceanographic and climate research. The OOI

stakeholders include ocean scientists, resource providers, technicians, operators, policy

makers, application developers, and the general public.

The OOI presents system requirements that involve supporting thousands of stakeholders,

tens of thousands of physical resources such as autonomous underwater vehicles (AUVs),

and potentially millions of virtual resources such as datasets. The resources are

independently owned and operated. Moreover, OOI facilitates virtual collaborations

created on demand to share access to ocean observatory resources, including instruments,

networks, computing, storage, databases, and workflows.

Stakeholder concerns in this setting are not simply generic ones such as performance, but

how they can benefit from their (and others’) resources, monitor their health, control their

functioning, and administer their usage. Additional concerns include entering into

scientific collaborations, managing resource conflicts, achieving and enforcing

accountability of colleagues and staff. Importantly, the specifics can differ for each

stakeholder individual or organization, and are influenced by whom the stakeholder

interacts with. Such concerns are not readily enumerated during design, especially when

dealing with long-lived sociotechnical systems. Not treating them would waste

opportunities for improving social and scientific value of oceanographic research. Indeed,

this is the current situation and its weakness has motivated the creation of the OOI.

Claims and Contributions

Addressing stakeholder concerns motivates software architecture. In contrast with

existing approaches, we consolidate the above interaction-oriented stakeholder concerns

into a single metaconcern, governance, or how stakeholders administer their

collaborations.

Existing IT or SOA approaches treat governance primarily as a slow, ponderous out-of-

band activity, whereby stakeholders and negotiate their concerns only during the design

of a system, not during its operation. Such approaches are ill-suited for specific concerns

arising during collaboration. In contrast, automation is essential to improve the quality

(such as the precision, timeliness, productivity, and comprehensibility) and scale of

governance. For this reason, we approach governance as a central endeavor carried out

in-band in a sociotechnical system.

3

We propose a novel approach that gives first-class status to stakeholders as principals of

the resulting system and to their concerns expressed via contracts and policies. Our

approach is compatible with traditional approaches, and thus helps leverage existing tools

and experience where appropriate.

Architectural Treatment of Governance

User Stories

We describe important OOI use cases for governance, which highlight the autonomy of

the participants and the business relationships among them.

Collaboration. The stakeholders of OOI include research scientists or investigators as

well as educators from middle and high schools. Consider a situation where a teacher in a

school near Chesapeake Bay would like to present some information about the students’

local environment. This data could be as simple as acidity levels in the Bay. Clearly, the

teacher would need to access data that a researcher with the appropriate sensors would

have gathered. The researcher may have entirely different interests from the teacher; for

example, she may be interested in multiyear trends. To this end, the researcher would

participate in a resource-sharing community where she would have shared the data

streams being generated by her sensors. The teacher would also authenticate with OOI,

discover the appropriate community, and enroll in it. Therein the teacher would discover

the desirable data stream and extract the information he needs.

Affiliation. The stakeholders of OOI include not only investigators but also research

institutions and laboratories. Two institutions may decide to share their resources on a

reciprocal basis, and thus enter into a suitable contract. A researcher at one of those

institutions would be able to discover with which institutions her institution is affiliated.

She would then be able to access an affiliate institution and further discover a research

laboratory based at the second institution. Lastly, she would be able to take advantage of

resources belonging to the laboratory. Either institution may decide to end the affiliation

but even its exit could be subject to the existing contract, e.g., that ongoing experiments

not be aborted.

Basic Concepts

Our conceptual model is centered on the concept of principal. Principals include users,

resources, and organizations (termed Orgs in our model). Each principal possesses a

unique identity within OOI. Governance is achieved through interactions among

principals: realized through their local policies and constrained by their contracts with

each other. Each principal may adopt roles in one or more Orgs. In essence, each role

corresponds to a contract between a principal who adopts it and the Org (also a principal).

This contract constrains the further interactions between two principals present in the

4

same Org. In general, a contract may arise as the result of a successful negotiation or may

be implicitly imposed due to the parties adopting complementary roles in the same Org.

Each contract references an Org that serves as its context.

Each principal is represented in the computational system by an agent. Each principal’s

agent supports bookkeeping regarding the contracts in which the principal participates.

The agent helps determine if its principal is complying with its contracts and if others

with whom it deals are complying as well. The agent continually tracks the state of each

contract by updating the state for each observable action, such as sending or receiving a

message (including making an observation of the environment).

Orgs serve multiple purposes in our architecture, specifically providing a backstop for

contracts, a locus for identity, and a venue to share resources. Each Org defines the rules

for adopting each of its roles. Joining an Org means adopting at least one role in that Org.

Adopting a role means accepting the rules of the Org for that role. Thus, we understand

enrollment in an Org as involving the creation of a contract and treat the subsequent

interactions of the participants as arising within the scope of the given Org. An example

of enrollment is someone joining eBay; an example of additional contracts is when two

eBay members carry out a transaction. The members are subject to eBay’s rules such as

accepting the price announced by eBay at the end of an auction.

The above interactions, including enrollment, inherently involve the creation and

manipulation of contracts and can potentially be operationalized in multiple ways. For

example, for enrollment, (1) the prospective enrollee may request membership; (2) the

prospective enroller may invite the enrollee; (3) a third party may introduce the enrollee

and enroller; or (4) a third party may require the enrollee and enroller to carry out the

enrollment. Such flexibility facilitates separating stakeholder concerns from each other

and from the implementation, thereby improving how stakeholders comprehend the

architecture and enhancing the confidence they can place in it.

Each principal applies its own policies to determine what actions to take. Thus, a

principal can decide whether to adopt a role in an Org and, conversely, the Org can

decide whether to admit a principal to a role. Each principal’s decisions are subject to

constraints such as the requirements imposed by the roles that it has adopted.

5

Principal

Rule-Based

Communicating

Agent

Policy

applies

1..*Message

(Communicative

Act)

exchanges

*

engages in

maps to

QualificationLiability Privilege

Contract

Facade

realizes

Organization

Individual

Org

Specification

defines

instantiates

Org Role

imposes requiresgrants

plays

represents

Knowledge

Base

Interaction

(Conversation)

Interaction

Specification

instantiates

Interaction

Role

involves

supports

implements

*

Alice

Must return AUV if

asked Join any group

Enrollment

PhD

OOI

Alice

Researcher

Figure 1 Overview of Governance Model

The model from Figure 1 relates an Org specification with a contract. Each clause of a

contract involves two or more Org roles. In effect, each Org role partitions its view of the

relevant parts of the contract. We model the role-relevant parts of each contract as

consisting of three components, assembled into a contract façade:

 Qualifications, which specify eligibility requirements for a principal to take on a

role. For example, a professor must have a university identity to join a PhD

committee.

 Privileges, which specify what authorizations and powers a principal gains in

adopting the role. A professor as committee member is authorized to review the

student’s lab notebook and empowered to determine if the student passes.

 Liabilities, which specify what a principals becomes subject to in adopting the

role. A committee member must attend a PhD defense.

Each principal applies its policies, to determine whether to enroll, potentially to take

advantage of its privileges, and ideally to satisfy its liabilities. In general, we cannot

guarantee compliance, but we address compliance in two main ways:

 Conservatively, ensure that the actions taken by a principal are compliant. This

can work where the principal is not autonomous and heterogeneous. We can

6

subject the principal to a guard that allows only the policy-compliant (attempted)

actions of the principal to proceed.

 Optimistically, recognize that a principal may proceed as it would, but detect and

handle noncompliant behavior. We can accomplish detection either by

introducing a monitor in the architecture or through the principals monitoring

each other. We can respond to detected violations by escalating them to the

nearest scoping Org.

Contract Conceptual Model

Our contract conceptual model has roots in recent research into software engineering and

agents [7]. We model a contract recursively as a set of contracts with the recursion

bottoming out as a set of clauses (see Figure 2). Our taxonomy of clauses is based on the

study of real-life contracts:

 The Main Clauses deal with the main ―business‖ reason for having a contract in

the first place. Of particular interest are the following types:

o A Service clause states the kind of service a party of the contract shall

provide.

o A Quality of Service clause states additional requirements. Example: will

provide a 128kbps flow rate.

 The Scoping Clauses specify the purpose and scope of a contract. These are

crucial in typical business contracts because of their potential effect on legal

rights of the parties involved. We expect these might be rather straightforward in

most OOI governance settings, although the main OOI membership would have a

description of the scoping requirements for when users sign up for an OOI

account.

 The Visibility Clauses deal with how much access the parties have to the internal

implementations of each other. Computer scientists would naively treat the parties

to a contract as black boxes. However, this is usually not the case for business

contracts of any importance or complexity. In general, each party would rely upon

visibility clauses to make sure that the work product is of an adequate quality, that

the effort is robust, and does not violate any laws or regulations to which the

parties might be subject.

o An Implementation clause imposes restrictions on how a service is to be

implemented, typically in a manner that would not be apparent from the

service or quality of service clauses. Example: the data must be archived

in at least three separate physical stores.

o A Monitoring clause provides privileges to monitor the progress of a

service being delivered, verify its quality, audit the books for usage, or

examine the implementation.

7

 The Normative Clauses deal with matters that are important to the regulations and

policies that apply on the interactions among the parties to the contract. Thus, the

normative clauses are of special importance to our proposed use of contracts for

governance.

o A Prohibition clause imposes restrictions upon the services that each party

may perform for another. Example: the information being provided by the

data stream may only be used for noncommercial purposes.

 The Resolution Clauses deal with how to respond to failures in a contract,

including the possibility of sanctions (of violators) and compensations (by

violators). The most likely forms of sanctioning will be through the somewhat

amorphous means of reputation and via escalation of complaints to the Org that

provides the scope for a contract. An Org may sanction a principal that it judges

to be malfeasant by ejecting the principal and possibly escalating a complaint

further. At the top level, OOI may eject and disbar a malfeasant principal.

Principal

Contract
Contract

Clause

Contract

Duration

Capability

Clause

Quality of

Service

Clause

Monitoring

Clause

Scoping

Clause

Authorization

Clause

Provide best effort

access to AUV

Provide a service,

e.g., control AUV

If something

changes, I will tell

you

You may use

this resource

on weekends

Resolution

Clause

provides context for

Main clause

Penalty

Clause

Compensation

Clause

Implementation

Clause

Insurance

Clause

Termination

Clause

You must deploy the

service on a hot

backup system

Service Type

Normative

Clause

Visibility

Clause

Auditabiliity

Clause

You can verify that my

operations are

sufficiently redundant

Power Clause

1..*

Meta Clause

I may delegate

this contract to a

subsidiary

Definitional

Clause

A timeout

counts as a

cancellation

Only for

research

Till May

2020
Until

cancelled

Qualification

Clause

Contract here includes both

templates and instances.

Sanction

Clause

Prohibition

Clause

Contract Model

Org

participates in

Privacy

Clause

You must be a

faculty member

to be a PI

The PI

determines if an

AUV is shared

You must not

reboot a sensor

midstream

You must

not share

project data

Figure 2 Contract Model

8

Contract Lifecycle

The lifecycle of contracts includes the following key phases depending on the actions of

two or more participants [7]:

 Negotiation or when the contract comes into being. The contract is created

through a series of communicative acts. A negotiation is initiated when one party

proposes to another party. The parties may make zero or more counterproposals to

each other. The negotiation ends when one of the parties rejects the last proposal

or all the parties accept. It is presumed that the proposer accepts its proposal, so in

two-party settings, only one party (the recipient of the last propose or

counterpropose) needs to accept.

 Execution or when a contract is activated. Contracts often include standing

commitments and activated only when there is demand for a service. Example: A

researcher agrees to provide a dataset when another one requests it. But there is

nothing for anyone to do until the first request comes in. The service requests may

require actions by more than one party in order to be fulfilled and, thus, cannot be

accurately modeled in client-server terms.

 Monitoring or determining progress during execution. In almost all cases, the

parties to the contract have to agree that the desired service was performed. Thus,

they must assess the outcomes if only to declare success. However, we think of

more elaborate forms of monitoring of the contract execution, which would be

specified by the monitoring clauses in the contract (see the contract model).

 Resolution or addressing the violation of any contract clauses during contract

execution. This involved applying the resolution clauses from the contract

specification—imposing penalties or offering compensations to the aggrieved

parties, including potentially renegotiating the terms or otherwise injecting

additional contract clauses. Upon successful resolution, the contract resumes

execution; otherwise it terminates in failure.

 Termination or bringing a contract to a closure, after either fulfillment or failure.

A terminated contract may be archived or analyzed. If a contract ends in failure,

one or more of the parties may escalate matters: by complaining to a designated

authority such as a higher Org.

Case Study
OOI enables its primary stakeholders (scientists) the opportunity to seamlessly

collaborate with other scientists across institutions, projects, and disciplines and to access

and compose resources as needed.

To address complexity, mitigate risks, and accommodate requirement changes, OOI uses

a spiral development process, a variant of the Incremental Commitment Model (ICM) [3].

9

ICM includes iterative development cycles focusing on incremental refinement of system

definition and stakeholder commitment and satisfaction. We have adopted selected

architectural views from the Department of Defense Architecture Framework (DoDAF)

[5] to document the OOI architecture.

OOI resources are distributed both physically and virtually among different

organizations, each with their own policies for resource access and data delivery or

consumption. We model OOI itself as an Org that is the highest scope for all OOI users

and their interactions. The OOI Org serves as the root Org for the identities for all OOI

principals and helps monitor and enforce contracts among them.

Figure 3 illustrates the use case where two research organizations (each an Org) form an

affiliation relationship with each other. Both Org A and Org B are what we term

resource-sharing Orgs, and define two main roles: owner (of a resource) and user (of a

resource). Each principal who adopts owner can contribute its resources to the Org, so

those resources can be discovered by any principal who adopts the role user. In addition,

to form affiliations, each Org supports additional roles capturing the affiliation

relationship. These roles are affiliateOrg to capture the clauses for the affiliated

community, and affiliateMember to capture the clauses for the members of the affiliated

community, which could have weaker rights than its own members.

The affiliation contract between Orgs propagates to their respective members. As a result,

a member of Org A can discover services offered by members of Org B. Once it has

discovered such services, it may negotiate with and engage them as appropriate.

Our notation is similar to message sequence charts in terms of having a swim lane for

each principal. However, instead of messages, we use horizontal lines to show joint

(governance) actions that create or modify relationships among the (two or more) parties

whose lifelines they connect. Any temporal order requirements are captured via the

dashed arrows that connect some pairs of the horizontal lines. In general, the parties

would realize a governance interaction such as enrollment by exchanging multiple

messages, e.g., propose, counterpropose, accept, or reject.

10

Researcher (as

User)

Researcher (as

Owner)
Org BOrg A

Enroll as owner

Enroll as user

Negotiate afiliation

Discover service in affiliate community

Negotiate usage

Engage service

Figure 3 Governance of resource sharing across affiliated Orgs

Realizing Governance
Rich Services. We apply the Rich Services architecture [6], a type of SOA that provides

decoupling between concerns and allows for hierarchical service composition. Rich

Services is a logical architecture that can be mapped to possible deployments such as

Enterprise Service Buses or multiagent systems.

For the affiliation use case in OOI, each Org and the User itself are modeled as a Rich

Service within the root OOI Rich Service. Infrastructure Services include identity and

policy management, logging of all conversations and actions, as well as repositories for

the community specification and the contracts already established with other parties.

Each Rich Service has its local policies and a local representation of the contracts it

participates in.

The Rich Services architecture provides a clear separation between the business logic and

its external constraints, supporting their composition at the infrastructure level through

specialized interceptors. When requirements change during the lifetime of the system,

they often change regarding to policies and not to core services; therefore, the decoupling

between them allows to update Infrastructure Services without modifying the services

that are composed.

Agents and multiagent systems. A specific implementation of governance is a rule-

based communicating agent, which maintains the applicable rules and information about

the state of the world and any ongoing interactions in a knowledge base. An agent

represents a principal in an Org as a locus of autonomy and identity. We have prototyped

11

such an agent using an agent platform (specifically, Java Agent Development Framework

(JADE)) and a rule engine (specifically, Java Expert System Shell (JESS)). An agent

platform provides a container for the execution of agents, communication infrastructure

to enable agent communication, and directory services. A rule engine maintains and

applies the facts and rules for an agent and, thus, enables reasoning and reaction.

Rules led to a simple implementation where an agent loads the rules corresponding to

each role that it adopts. The rules are generated from the contract specifications for which

we developed a domain Specification Language; its constructs are based on properties

and predicates.

Evaluating Claims and Contributions

We attribute the power of our architectural treatment of governance to the following main

principles that it respects.

 Centrality of organizations in modeling communities; modeling the OOI itself as

an entity; specifying rules of encounter; monitoring contracts; sanctioning

violators.

 Autonomy of stakeholders; representing stakeholders as runtime entities (agents)

that apply autonomous policies and are subject only to applicable organizational

rules of encounter.

 Emphasizing normative relationships and modeling them explicitly to make them

easy to inspect, share, and manipulate; accommodating openness of the system by

recognizing that autonomous parties may violate rules of encounter and, thus,

may need enforcement ex post facto, such as via sanctions.

In the OOI, policies specified in Org contracts govern the circumstances under which

resources can be discovered, accessed, and utilized. In the example, we considered two

classes of stakeholder roles: user and owner of a resource. The user is concerned with

accessing a resource, without facing any hidden obligations. The owner is concerned with

providing resources (with spare capacity) to expand impact of the resources on others and

to treat the resources as a basis for negotiating value in exchange.

Our governance approach addresses stakeholder (user and owner) concerns as follows:

 The resource sharing community provides access to needed resources and clarifies

what restrictions are imposed on the user as a result; guarantees that the user will

not subject to the whims of the resource owner once the user begins an allowed

interaction with a resource.

 The affiliation community expands resource sharing to external organizations and

provides access to remote resources on a reciprocal basis.

12

 The user and owner can negotiate detailed contractual terms beyond the clauses

imposed by being members of a community

 The user and owner can accommodate changing needs, renegotiate the contract,

or may decline to renew a contract

 In deployment, policies are separated from the business functionality, allowing

them to be changed easily over time according to stakeholder needs.

Our work builds upon methodologies such as Model-Driven Architecture (MDA) and

goal-oriented requirements engineering, and goes beyond them by providing a systematic

treatment of governance from the modeling level to implementation.

Addressing the inherent complexities of sociotechnical systems involves going beyond

traditional Service-Oriented Architecture (SOA), specifically in accommodating multiple

ownership domains [4]. Following [8], we view services as analogous to real-life

services, not computational objects. We identify principals as the participants in service

engagements described in terms of the contractual relationships, and define patterns on

the creation, propagation, and manipulation of such contracts.

Our approach coheres with recent advances in goal-oriented methodologies, specifically

Tropos [9]. Tropos includes concepts of actors with goals and capabilities, which agrees

with our conceptualization. Tropos emphasizes the goals of the actors whereas we

emphasize their contracts and would capture their goals both in what contracts they enter

and how they choose to perform them.

Recently, ultra-large-scale systems (ULSSIS) have garnered attention [2]. ULSSIS

inherently involve multiple stakeholders who not only use the system, but may also

contribute resources, form virtual communities, and determine the rules that govern their

interactions. We understand sociotechnical systems to be ULSSIS. Our approach applies

naturally to ULSSIS because it dynamically captures stakeholder concerns by (1)

defining patterns of interaction based on Orgs; (2) enabling stakeholders to select roles in

desirable Orgs; and (3) supporting the specification and application of policies potentially

customized to each stakeholder.

References
1. Ocean Observatories Initiative – CyberInfrastructure (OOI-CI) http://www.oceanobservatories.org/

2. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R., Klein, M.,

Schmidt, D., Sullivan, K. and Wallnau, K. Ultra-Large-Scale Systems: The Software Challenge of the Future.

Software Engineering Institute, 2006.

3. Boehm, B., Lane, J.: Using the Incremental Commitment Model to Integrate System Acquisition, Systems

Engineering, and Software Engineering. CrossTalk, 19(10):4–9, 2007.

4. MacKenzie, C., Laskey, K., McCabe, F., Brown, P., Metz, R.: OASIS Reference Model for Service Oriented

Architecture 1.0, (2006), http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

13

5. DoD Architecture Framework v1.5, Department of Defense, 2007. http://www.defenselink.mil/cio-

nii/docs/DoDAF_Volume_I.pdf

6. Arrott, M., Demchak, B., Ermagan, V., Farcas, C., Farcas, E., Krueger, I.H., Menarini, M.: Rich Services:

The integration piece of the SOA puzzle. Proc. IEEE International Conference on Web Services (ICWS), pp.

176–183, 2007.

7. Nir Oren, Sofia Panagiotidi, Javier Vazquez-Salceda, Sanjay Modgil, Michael Luck, Simon Miles, Towards a

Formalisation of Electronic Contracting Environments. Proc. Workshop on Coordination, Organizations,

Institutions and Norms, LNCS 5428, pages 156–171, Springer-Verlag, 2009.

8. M. Singh, A. Chopra, N. Desai, Commitment-Based Service-Oriented Architecture. IEEE Computer, 42(11):

72–79, 2009.

9. P. Bresciani, A, Perini, P. Giorgini, F. Giunchiglia, J. Mylopoulos, Tropos: An Agent-Oriented Software

Development Methodology, Journal of Autonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf
http://www.csc.ncsu.edu/faculty/mpsingh/papers/mas/computer-09.pdf

