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Abstract. We study approximate, that is contained and containing,
rewritings of queries using views; these rewritings produce respectively a
subset and a superset of the set of query answers. We consider conjunc-
tive queries (and views) with arithmetic comparisons (CQACs), which
capture the full expressive power of SQL select-project-join queries.
For contained rewritings, we present a sound and complete algorithm
Build-MaxCR for constructing, for CQAC queries and views, a maxi-
mally contained rewriting (MCR) whose all CQAC disjuncts have up to
a predetermined number of view literals. (This restriction on the num-
ber of view literals is due to the fact that for CQAC queries and views,
a general view-based CQAC MCR may have an unbounded number of
relational subgoals.) For containing rewritings, we present a sound and
efficient algorithm pruned-MiCR, which computes a CQAC containing
rewriting that does not contain any other CQAC containing rewriting
(i.e., computes a minimally containing rewriting, MiCR) and that has
the minimum possible number of relational subgoals. As a result, the
MiCR rewriting produced by our algorithm pruned-MiCR may be very
efficient to execute. Our experimental results indicate that both algo-
rithms have good scalability and perform well in many practical cases,
due to their extensive pruning of the search space.

1 Introduction

Rewriting queries using views and then executing the rewritings to answer the
queries is an important technique used in data warehousing, information in-
tegration, query optimization, and other applications, see [1–5] and references
therein. Previous research has focused primarily on obtaining equivalent rewrit-
ings of queries that can be used to derive the tuples that form exact query answers



(see, e.g., [6–8]) or maximally contained rewritings (MCRs) that can be used to
derive a maximal subset of the set of query answers that can be obtained using
the given views (see, e.g., [9, 3, 10–12]). When there does not exist any equiva-
lent or maximally contained rewriting of a user query in terms of the available
views, then for such a query, traditional query-processing engines will return no
answers at all. However, in many applications, such as querying the World-Wide
Web, mass marketing, or searching for clues related to terrorism suspects, users
prefer to get a superset of the query answers, rather than getting no answers at
all. Another example is peer data-management systems (see, e.g., [13, 14]) used
for decentralized data sharing, where no single peer may contain the complete
information needed to answer a query. In this scenario, the best strategy may be
to obtain an approximate query answer using the incomplete information made
available by the neighboring peers. In such cases a seriously restricted subset —
in addition to a superset — of answers to a query is also acceptable, as these
can act as upper and lower bounds [15] on the actual set of answers. (In this
paper we restrict our use of the term “approximate” to rewritings that produce
subsets (resp. supersets) of the query answers on all databases.) As yet another
example, consider a system in which security issues exist. We may want to en-
sure that a certain class of users do not obtain even a single answer to a secure
query. If there is no way for a user to produce a rewriting of a secure query by
using the available query language and the given set of views, then that set of
views can be considered secure [16] with respect to the user’s query language.
These examples show there may be several rewritings of interest, other than just
equivalent rewritings and MCRs.

In this paper we study contained and containing rewritings of queries using
views, which we refer to collectively as approximate rewritings. We focus on con-
junctive queries with arithmetic comparisons (CQACs), that is on the language
capturing the full expressive power of practically important SQL select-project-
join (SPJ) queries. (The well-understood language of conjunctive queries [17]
does not capture the in- or non-equalities that are characteristic of SQL SPJ
queries.) Specifically, we assume CQAC queries and views, and consider CQAC
rewritings, possibly with unions (UCQACs). Note that the well-studied (for con-
junctive queries and views) problems of finding equivalent rewritings and MCRs
are recognized as being significantly more complex for CQACs, with many prac-
tically important cases still unexplored [3, 12].

We now present a motivating example for some of the types of rewritings
that we consider in this paper.

Example 1. Consider a SQL query Q that asks for the agent’s name and phone
number for all homes with three or more bedrooms that are for sale for less than
$500,000.

Q: SELECT AgentName, ContactPhone FROM HomesForSale
WHERE Price < 500000 AND NumberOfBedrooms >= 3;

Suppose that V = {V1, V2, V3, V4, V5, V6} is the set of views (with straight-
forward SQL definitions) that can be used to produce rewritings of Q. We assume



that we can construct rewritings of Q in the (rewriting) language of SQL select-
project-join queries (SQL SPJ), using views in V.

V1: SELECT AgentName, ContactPhone FROM HomesForSale
WHERE Price < 300000 AND NumberOfBedrooms >= 3;

V2: SELECT AgentName, ContactPhone FROM HomesForSale
WHERE Price < 250000 AND NumberOfBedrooms >= 3;

V3: SELECT AgentName, ContactPhone FROM HomesForSale
WHERE Price > 400000 AND Price < 450000 AND NumberOfBedrooms >= 3;

V4: SELECT AgentName, ContactPhone FROM HomesForSale
WHERE Price < 600000;

V5: SELECT AgentName, ContactPhone FROM HomesForSale
WHERE NumberOfBedrooms >= 2;

V6: SELECT ContactPhone FROM HomesForSale
WHERE NumberOfBedrooms >= 2;

A rewriting that uses V1 alone4 is a contained rewriting of Q using V, since it
may return a proper subset of the query answer, rather than the exact answer.
Similarly, each of V2 and V3 is also a contained rewriting. On the other hand,
each of V4 and V5 is a containing rewriting of Q using V, as it may return a
proper superset of the query answer.

Although each of V1, V2 and V3 is a contained rewriting of query Q, only V1
and V3 are maximally contained rewritings (MCRs) of Q using V in our SQL
SPJ rewriting language. In this language, V2 is not an MCR because its answers
are a subset of the answers to rewriting V1. But in the more expressive rewriting
language that would allow us to take unions of SQL SPJ queries, the union of
V1 and V3 would be the MCR of Q using V, while V1 or V3 alone would no longer
be MCRs. Similarly among containing rewritings, the intersection of V4 and V5
is a more containing rewriting than either V4 or V5 alone. Note that although
V6 is very similar to V5, it does not form a containing rewriting, because it does
not select the attribute AgentName and hence a rewriting consisting of V6 alone
would not be safe. �

We focus on the problem of finding approximate rewritings of queries using
views, that is, on finding rewritings that are contained in the given query and,
separately, rewritings that contain the given query. The approaches in the litera-
ture that address the problem of contained rewritings, specifically MCRs [10, 11],
have primarily considered conjunctive (CQ) queries without arithmetic compar-
isons (ACs), and there is very little work on more general cases (see, e.g., [12]).
The problems of finding MCRs and minimally-containing rewritings [18–20] in

4 Each rewriting of Q based on view Vi discussed in this paragraph is Vi itself, e.g.,
the rewriting based on V1 is query V1.



the presence of arithmetic comparisons remain open in the general case. The
complexity of the problems in the presence of ACs is mainly due to the more
complex containment test — the containment test is NP-complete in the case
of CQs [17] but ΠP

2 -complete [3, 21] in the case of CQACs. We illustrate the
challenge by an example from [11].

Example 2. Consider CQAC query Q and CQAC view V , both defined using
binary predicate p, as well as a CQAC query R defined in terms of V .

Q() :- p(A,B), A ≤ B.
V () :- p(X,Y ), p(Y,X).
R() :- V ().

By the containment tests of [3, 21] it holds that R is a contained rewriting of
the query Q. Observe that the containment cannot be established using a single
containment mapping [17] from Q to the expansion of R. �

The specific contributions presented in this paper are as follows:

1. Contained rewritings: Pottinger and Halevy [11] have developed algo-
rithm MiniCon IP, which efficiently finds UCQAC MCRs for special cases
of CQAC queries, views, and rewritings, specifically for those cases where
the “homomorphism property” [22, 23] holds between the expansions of the
rewritings and the query.5 At the same time, MiniCon IP cannot find the
rewriting R for the problem input of Example 2. We present a sound and
complete algorithm called Build-MaxCR, for constructing a UCQAC size-
limited MCR (that is, an MCR that has up to a predetermined number
of view literals) of arbitrary CQAC queries using arbitrary CQAC views.
Specifically, when given the query and view of Example 2, Build-MaxCR
returns the rewriting R of the example. The size-limit restriction of Build-
MaxCR is due to the fact that for CQAC queries and views, a view-based
CQAC MCR may have an unbounded number of relational subgoals, see [23]
and example 5.

2. Containing rewritings: We study the problem of deciding whether there
exists a containing rewriting of a given query using a given set of views. Ide-
ally, among the possible containing rewritings, a user would prefer one that
is minimally containing, that is, one that contains the fewest false positives.
We call such a rewriting the minimally containing rewriting (MiCR) of the
given query using the given set of views [18–20]. Intuitively, a MiCR is the
analog of an MCR — only it produces a superset rather than a subset of
the set of query answers, and so it can be thought of as approximating the
query from the other direction. A MiCR finds the answers that are in all
containing rewritings. Out of all the containing rewritings, a MiCRs gives
the highest guarantee of the quality of the answer, by minimizing the number

5 Intuitively, the homomorphism property is said to hold between a query and its
rewriting when a single mapping from the query to the expansion of the rewriting is
sufficient to establish the containment of the rewriting in the query.



of false positives. Joins in MiCRs increase the cost of their execution; thus
minimizing the number of joins in a MiCR for a given query and set of views
is important. We give a sound algorithm that finds minimal MiCRs. The al-
gorithm is complete in the special case where the “homomorphism property”
[22, 23] holds. The idea of pruned-MiCR is quite general and thus applicable
beyond containing rewritings. Specifically, a straightforward modification of
pruned-MiCR could be used to reduce the number of relational subgoals of
(and thus to provide more efficient execution options for) the outputs of our
algorithm Build-MaxCR.

3. Reducing runtime of containment checking: Finally, we study the
problem of reducing the runtime of containment checking between two CQAC
queries, and propose a runtime-reduction technique that takes advantage
of some attributes drawing values from disjoint domains. (Intuitively, it
does not make sense to compare the values of, e.g., attributes “price” and
“name”.) This technique can be used in a variety of algorithms. Specifically,
it is applicable to our proposed algorithms Build-MaxCR and pruned-MiCR.

Table 1 gives a summary of our results and contributions.

Contained Rewritings Containing Rewritings

Decidability UCQAC size-limited MCR for CQACs UCQACs with negation [18]

Complexity CQ: NP [6] CQAC homomorphism property: NP-complete (Sec. 4.2)

Algorithms Size-limited UCQAC MCRs for CQACs Global minimization of MiCR for CQACs

Previous Work MCR [9, 12] MiCR [18–20]

Applications Data warehousing, security, privacy Mass marketing, P2P, information retrieval

Table 1. Our contributions, previous work, and applications.

Our experimental results indicate that both proposed algorithms perform
well in many practical cases, due to their extensive pruning of the search space.
In addition, our experiments show good scalability of our algorithms.

In the remainder of this section we review related work. Section 2 reviews
the terminology and background results. In Section 3 we present our algorithm
Build-MaxCR for finding UCQAC maximally contained rewritings. Section 4 dis-
cusses our results on containing rewritings and introduces our algorithm pruned-
MiCR for finding efficient to execute formulations of CQAC minimally containing
rewritings. In Section 5 we present our proposed optimizations of the contain-
ment test for CQAC queries. Section 6 contains our experimental results on the
performance and scalability of our algorithms.

Related Work

The problem of using views in query answering [6] is relevant in applications in
information integration [3], data warehousing [9], web-site design [24], and query
optimization [5, 6, 25]. Algorithms for finding rewritings of queries using views in-
clude the bucket algorithm [19, 26], the inverse-rule algorithm [27–29], the Mini-
Con algorithm [11], and the shared-variable-bucket algorithm [10]; see [9] for a
survey. Almost all of the above work focuses on investigating MCRs or equivalent



rewritings [3, 7], as it takes its motivation mostly from information integration
and query optimization. Query-rewriting algorithms depend upon efficient al-
gorithms for checking query containment. Existing work on query containment
shows that adding arithmetic comparisons to queries and views makes these
problems significantly more challenging [30, 22, 21].

Since we consider rewritings that may return false positives or false negatives,
our work has similarities with approximate answering of queries using views,
see [31–34] and references therein. Approximate query answering is useful when
exact answers to the queries cannot be found, and the user would rather have a
good-quality approximate answer returned by the system.6 Lee et al. [35] have
considered non-equivalent query rewritings, applied to the problem of maintain-
ing view definitions using a quantitative estimation of the quality of the relaxed
query and enabling a tradeoff between performance and the quality of answers.
Rather than focusing on performance, our work considers the problem of find-
ing rewritings for the cases where computational and storage resources are not
constrained.

The problem of finding containing rewritings of queries using views has been
introduced in [19] and also addressed in [18], which deals with answering queries
using views via equivalent, contained, and containing rewritings, in the presence
of access patterns, integrity constraints, disjunction, and negation. The paper
reports complexity results, which render the problem intractable in the general
case. The language of rewritings considered in [18] is union of conjunctive queries
with negation. Our work focuses on the existence of rewritings in the language of
conjunctive queries with arithmetic comparisons (but without negation). Also, in
view of the intractability results, we identify special cases where a more efficient
algorithm exists for constructing rewritings and outline them.

Other related work includes the results of Rizvi et al. [36], where query-
rewriting techniques are used for fine-grained access control, and the work of
Miklau et al. [37], which contains a formal probabilistic analysis of information
disclosure in data exchange under the assumption of independence among the re-
lations and data in a database. Related work in security and privacy includes [38].
Calvanese et al. [39] have discussed query answering, rewriting, and losslessness
with respect to two-way regular path queries. In our work, we concentrate only
on query rewritings.

2 Preliminaries

In this section, we review some standard concepts related to answering queries
using views and introduce some notations that we will use throughout the paper.
Some of the definitions are taken from [40, 41].

6 In our work, we do not measure approximations using probabilities or uncertainty,
but the answers to the queries are approximate in the sense that the derived answers
may contain false positives.



2.1 Queries, Containment, and Views

We consider conjunctive queries with arithmetic comparisons (CQACs), that is,
select-project-join SQL queries with equality and arithmetic-comparison selec-
tion conditions. Each arithmetic comparison (AC) subgoal is of the form X θ Y
or X θ c,7 where the comparison operator θ is one of <, ≤, >,≥, 6=. We assume
that database instances are over densely totally ordered domains. A variable is
called distinguished if it appears in the query head. In the rest of the paper, for
a query Q we denote the conjunction of all relational subgoals in Q as Q0 and
the conjunction of all ACs in Q as β. We will use the term semi-interval CQAC
(SI-CQAC) to refer to conjunctive queries with arithmetic comparisons, where
each comparison in the query is either one of X < c, X ≤ c (left semi-interval)
or one of X > c, X ≥ c (right semi-interval).

Definition 1. (Query containment) A query Q1 is contained in a query Q2,
denoted Q1 v Q2, if and only if, for all databases D, the answer to Q1 on D8 is
a subset of the answer to Q2 on D, that is, Q1(D) ⊆ Q2(D).

Chandra and Merlin [17] have shown that a CQ Q1 is contained in another
CQ Q2 if and only if there exists a containment mapping from Q2 to Q1 (Con-
tainment Mapping Theorem). The mapping maps the head and all the subgoals
of Q2 to Q1; it maps each variable to a single variable or constant, and each
constant to the same constant. The containment test for CQACs however, is
more complicated. There are two ways to test the containment of CQAC Q1

in CQAC Q2 [30, 22]; we will describe them very briefly, for more details see,
e.g., [42]. The first test uses the notion of a canonical database: For each rela-
tional subgoal pi(X̄i) in Q, a canonical database for Q contains one tuple t in
the base relation pi, such that t is the list of “frozen” variables and constants
from X̄i (i.e., in forming t each variable in X̄i is “frozen” to a unique constant
except that equated variables are frozen to the same constant and each constant
in X̄i is kept as it is). We define one canonical database for each total ordering
of the variables and constants in Q1 that satisfies the ACs in Q1. The test says
that a Q1 is contained in Q2 if and only if Q2 computes, on all the canonical
databases of Q1, the same head tuple(s) as the head tuple(s) of Q1.

The second containment test is as follows:

Theorem 1. Q1 v Q2 if and only if the following logical implication φ is true:

φ : β′1 ⇒ µ1(β′2) ∨ . . . ∨ µk(β′2)

where µi’s are all containment mappings from Q′2 to Q′1 and β′i is a conjunction
of all ACs in Q′i. That is, the ACs in the normalized query9 Q′1 logically imply
7 We use uppercase letters to denote variables and lowercase letters for constants.
8 Q1(D) denotes the set of answer tuples obtained by evaluating query Q1 on database
D

9 An equivalent ‘normalized version [22, 40] of a CQAC query Q does not have con-
stants or repetitions of variable names in relational subgoals and has compensating
built-in equality conditions.



(denoted “⇒”) the disjunction of the images of the ACs of the normalized query
Q′2 under each mapping µi.

If there exists a containment mapping µi such that the right-hand side of φ
is reduced to only one µi(β′2), we say the homomorphism property holds. Afrati,
et al., [42] have shown that when the homomorphism property holds, the impli-
cation can be checked directly on queries without normalizing them. Checking
CQAC containment is less complex in that case, because we need to check for
the existence of just one mapping that satisfies the implication.

2.2 Rewriting Queries using Views

We consider the problem of finding rewritings under the closed-world assump-
tion [7] (where the views are both sound and complete, i.e., for a given database,
each view instance stores exactly the tuples satisfying the view definition), as
well as under the open-world assumption [7, 26] (where the views are sound but
not necessarily complete, i.e., a view instance might store only some of the tuples
satisfying the view definition).

Suppose that we are looking for an answer to query Q on database D and
that our access to D is defined through a set of views V = {V1, . . . , Vm}. So
instead of directly evaluating Q on D, we first rewrite Q in terms of V, and then
evaluate this rewriting on DV , that is, the database with schema V.

We consider the following types of rewritings R of query Q using views V:

Definition 2. (Rewritings)

1. a. (CWA) R is a contained rewriting of Q using V under the CWA if and
only if R(DV) ⊆ Q(D) for all databases D.
b. (OWA) R is a contained rewriting of Q using V under the OWA if and
only if R(IV) ⊆ Q(D) for all databases D and view instances IV such that
IV ⊆ DV .

2. (CWA) R is a containing rewriting of Q using V if and only if Q(D) ⊆
R(DV) for all D.

3. (CWA) R is an equivalent rewriting of Q using V if and only if Q(D) =
R(DV) for all D.

Since the result of a containing rewriting must contain all tuples that occur in
the answer to Q, containing rewritings make sense only when the views that are
used in constructing the containing rewriting are complete. Hence, containing
rewritings are considered only under the CWA and not under the OWA. The
same is true for equivalent rewritings, since an equivalent rewriting of Q is a
rewriting that is a contained as well as a containing rewriting of Q. However,
since the result of a contained rewriting is allowed to leave out some of the
answers to Q, contained rewritings make sense under the CWA and under the
OWA.

Given a query Q and a set of views V, for deciding whether there exists a
contained (or containing) rewriting of Q using V, we need to know the language



in which we are allowed to construct rewritings. In the rest of the paper, we
will assume, unless otherwise stated, that the language of the rewritings for the
existence problem is UCQACs.

We define the expansion of a rewriting as follows:

Definition 3. (Expansion of a rewriting) For a CQAC rewriting R that is
expressed in terms of CQAC views V, an expansion Rexp of R is obtained by
replacing each view subgoal in R by the all the subgoals in the definition of that
view. Each existentially quantified variable in the definition of a view in R is
replaced by a unique variable in Rexp. For a UCQAC rewriting, the expansion is
the union of the expansions of the CQACs that occur in that UCQAC.

The evaluation of contained rewritings cannot return false positives, the eval-
uation of containing rewritings cannot return false negatives, and the evaluation
of equivalent rewritings cannot return either false positives or false negatives.
We will use the term rewriting to mean a contained or a containing rewriting;
we will specify the type whenever it is not obvious from the context.

Theorem 2 is based on definitions 2 and 3 and gives the tests for determining
whether a CQAC rewriting R is contained (or containing) rewriting of a CQAC
query Q using CQAC views V..

Theorem 2. Let Q,V1, . . . , Vm be CQAC views that are expressed in terms of
the base relations, and let R be a CQAC rewriting of a CQAC query Q, such
that R is expressed in terms of V1, . . . , Vm. Then

1. R is a contained rewriting of Q iff Rexp v Q.
2. R is a containing rewriting of Q iff Q v Rexp.

Contained rewritings are defined under the CWA as well as the OWA. But
ascertaining whether a given rewriting is a contained rewriting or not, involves
only taking the expansion of the rewriting and then checking whether or not this
expansion is contained in the query. Since the expansion is the same under the
CWA and the OWA, we have the following proposition:

Proposition 1. For queries and views that are CQACs, a UCQAC rewriting
is a contained rewriting under the open-world assumption (OWA) iff it is a
contained rewriting under the closed-world assumption (CWA).

2.3 Canonical Databases

Next, we introduce some definitions that are necessary for the description of the
Build-MaxCR algorithm that we present in Section 3. We begin by recalling the
notion of the expansion of a safe CQAC query. (All the queries that we consider
in the paper are safe, i.e., each of their head variables and each variable used
in the query ACs also appears in at least one relational subgoal of the query.)
Let V be a set of CQAC views defined on a database schema P, and let Q be a
CQAC query defined on schema V. The expansion of Q is a CQAC query Qexp

that is obtained from Q as follows. For each subgoal v(x1, . . . , xr) of Q, such that



v(x1, . . . , xr) corresponds to view V (y1, . . . , yr) ∈ V, replace v(x1, . . . , xr) in the
body of Q by the definition of V . In each replacement, (i) if r > 0 then each yi,
1 ≤ i ≤ r, is replaced by xi, and (ii) all nonhead variables in the definition of
V are renamed consistently into fresh variables. By construction, query Qexp is
defined on the database schema P.

Definition 4. (Consistent) assignment mapping) Let Q be a CQ query
defined on a database schema P, and let D be a database with schema P. A
mapping λ is an assignment mapping from Q to D if λ maps each variable or
constant in the body of Q to a stored value in D. (We refer to stored values in
databases as constants.) An assignment mapping λ from Q to D is consistent if
(i) for each variable X of Q, λ maps all occurrences of X into the same constant
in D, and λ maps each constant in Q into the same constant in D, and (ii) λ
induces a mapping from the relational subgoals of Q to the tuples stored in D in
such a way that for each relational subgoal p(. . .) of Q with relation name P , the
image of p(. . .) under λ is a tuple in relation P in D.

For the next definition (Definition 5), we will need the notion of a canonical
database DQ for a safe CQ query Q. DQ is defined as the result of “freezing”
the body of Q, which turns each subgoal of Q into a fact in the database. That
is, the “freezing” procedure replaces each constant in the body of Q by the
same constant, and each variable in the body of Q by a distinct constant that
is different from all constants in the body of Q. The resulting subgoals are the
only tuples in the canonical database DQ.

Definition 5. (Canonical databases for a safe CQAC query; total order
on a canonical database for a CQAC query) The set DQ of canonical
databases for a conjunctive query with arithmetic comparisons (CQAC) Q is
constructed by taking the following steps.

1. Treat all the relational subgoals and all the equality ACs of Q as a conjunctive
query Q̄, and then build the canonical database DQ̄ of Q̄, with the modifi-
cation that each variable in the body of Q̄ is replaced by the same variable,
to be replaced by numerical constants at the stage of outputting individual
canonical databases of the CQAC Q. (That is, we use DQ̄ as a template for
constructing the canonical databases of Q, by instantiating the variables in
DQ̄ by numerical constants.)

2. To produce each canonical database of Q, consider the set W of constants and
variables in the body of Q (with the exception of all non-numerical constants
coming from the body of Q) as belonging to a totally ordered set, e.g., the
integers or reals. The set DQ of canonical databases of Q is constructed
(starting from the empty set, DQ = ∅) in two stages.
The first stage generates the set S of all total orders on W , where each
total order S ∈ S is constructed as follows:
(a) partition all of W into “sets of equal value” (e.g., can the values of

variables X ∈ W and Y ∈ W be equal in a canonical database), making
sure that no set of equal value contain two or more distinct numerical
constants from W ; then



(b) to each set s of equal value that contains a single numerical constant
c ∈W , pre-assign to s the value c; then

(c) among the sets of equal value in the partition, determine the relative
order O of their values, by using the less-than operator and by taking the
above pre-assignments into account (i.e., if set s1 has been pre-assigned
value w1 and set s2 has been pre-assigned value w2 > w1, then the relative
order in O of the values of s1 and s2 must imply the inequality “value
of s1 is less than the value of s2”); finally,

(d) based on the relative order O of the sets of equal value in the partition, to
each set of equal value in the partition assign a numerical (real-number)
value that agrees with the relative order O and such that for each set
that has been pre-assigned a value, the final assignment retains the pre-
assigned value.

The above assignment of numerical values to the sets in the partition of
W induces a (consistent) mapping M from the variables of Q (and thus
from the variables in the canonical-database template DQ̄) to the set of these
numerical values. We call each such mapping M a total-order mapping on
a canonical database for query Q.
The total order S associated with M is a set of ACs involving all and only the
variables and constants of W , such that S expresses exactly the conjunction
of all the facts (I) and (II) about O, as follows: (I) For each (unordered) pair
(w1, w2) of variables and/or constants within each set of equal values in O,
we have that w1 = w2, and (II) For each pair (w1, w2) of variables and/or
constants where w1 and w2 belong to different sets of equal value in O, we
have that w1 < w2 if and only if the respective sets of equal value are in the
less-than relationship in O.
The second stage of constructing the canonical databases of Q adds to
DQ one database DS for the association of each total order S ∈ S with the
canonical-database template DQ̄. Specifically, canonical database DS results
from applying the mapping M associated with S to the variables in DQ̄. To
retain the association between the variables of the query Q and the constants
in DS, we assume that each canonical database DS of Q is associated explic-
itly both with the total-order mapping M and with its associated total order
S. (Note that applying the total-order mapping M for DS to the total order
S for DS results in a conjunction of true ACs on the constants of DS.)

Definition 6. (Homomorphism property) [23] Let Q2, Q1 be two classes
of CQAC queries. We say that containment testing on the pair (Q2, Q1) has
the homomorphism property if for any pair of queries (Q2,Q1) with Q2 v Q2

and Q1 v Q1, the following holds: Q1 v Q2 iff there is a homomorphism µ from
core(Q2) to core(Q1) such that AC(Q1)⇒ (AC(Q2)).

Although the homomorphism property is defined for two classes of queries,
it is often referred to in the context of holding for two queries, that is, the
case in which each of the two classes contain exactly one query. For testing the
containment of CQAC Q1 in CQAC Q2, if the homomorphism property holds,



then the mapping (homomorphism) from Q2 to Q1 is the containment mapping,
say µ, and the right-hand side of the implication in Theorem 1 is reduced to
µ(β′2). In such a case, the normalization step in the CQAC containment test is not
necessary, and for this special case, the problem of checking CQAC containment
is in NP.

Definition 7. (Single-mapping contained rewriting) A CQAC contained
rewriting R of a CQAC query Q using a set of CQAC views V is a single-
mapping contained rewriting iff the homomorphism property holds for the con-
tainment of Rexp in Q.

Definition 8. (Multiple-mapping contained rewriting) A CQAC contained
rewriting R of a CQAC query Q using a set of CQAC views V is a multiple-
mapping contained rewriting iff the homomorphism property does not hold for
the containment of Rexp in Q.

The rewriting R in Example 3 below is a single-mapping MCR of Q using V ,
while the R in Example 4 is a multiple-mapping MCR.

Example 3.
Q() :- p(A), A > 3.
V () :- p(X), X > 3.
R() :- V ().

Example 4.
Q() :- p(A,B), A ≤ B.
V () :- p(X,Y ), p(Y,X).
R() :- V ().

3 The Build-MaxCR Algorithm: Finding MCRs for
CQACs

In this section we present a sound and complete algorithm called Build-MaxCR,
for constructing a UCQAC size-limited MCR (that is, an MCR that has up to
a predetermined number of view literals) of arbitrary CQAC queries using arbi-
trary CQAC views. We present and discuss the pseudocode and then formulate
the correctness (i.e., soundness and completeness) results for the algorithm.

3.1 The Setting and Definitions

Why Look at k-Bounded Rewritings

In the general case, for CQAC queries and views, the MCR is a union of
CQACs. So the next natural question, is whether the number of CQACs in such
a UCQAC answer is always bounded? Example 5 below (based on the ideas
from [23]) shows, that the UCQAC-MCR may sometimes have an unbounded
number of CQACs in it.



Example 5.
Q() :- p(X,Y ), p(Y,Z), s(Y ), X ≥ 2, Z ≤ 7
V1(L,M) :- p(L,M), L ≥ 2, M ≤ 7
V2(A,C) :- p(A,B), p(B,C), s(A), s(C)

R3() :- V1(L1, A1), V2(A1, C1), V1(C1,M2)

Rexp
3 () :- p(L1, A1), p(A1, B1), s(A1), p(B1, C1), p(C1,M2),

s(C1), L1 ≥ 2, A1 ≤ 7, C1 ≥ 2, M2 ≤ 7

R4() :- V1(X,T1), V2(T1, T2), V2(T2, T3), V1(T3, Z)

Rexp
4 () :- p(X,T1), p(T1, U1), s(T1), p(U1, T2), p(T2, U2), s(T2),

p(U2, T3), p(T3, Z), s(T3), X ≥ 2, T1 ≤ 7, T3 ≥ 2, Z ≤ 7

For Example 5, the rewriting R3 is a multiple-mapping contained rewriting
of Q using views V1 and V2. However, it is also possible to have another rewriting
R4 which is a contained rewriting of Q. In fact, starting with R3, which has 3
relational subgoals – the two V1’s at the two ends with one V2 between them –
we can obtain R4 by introducing an additional V2 in the middle. Similarly, we
can also construct R5, R6, and so on, by repeatedly pumping copies of V2 in
the chain of V2’s enclosed between the two V1’s at the two ends. In general, for
any n ≥ 3, Rn is not contained in Ri for any 3 ≤ i < n. Therefore, a UCQAC
contained rewriting of Q must include every Rn.

Thus Example 5 shows that the number of CQACs in the UCQAC-MCR
of a CQAC Q using CQAC V may not be bounded. Hence an algorithm for
finding the UCQAC-MCR may not terminate on some inputs. To ensure that our
algorithm Build-MaxCR always terminates, we needed to introduce the concept
of size-limited MCRs i.e., k-limited MCRs for a user-specified k. If UCQAC R
is a k-limited MCR of Q using V, then any CQAC contained rewriting of Q
using V that has up to k subgoals in it, is guaranteed to be contained in some
rewriting in the union R. In Example 5, a 5-limited MCR of Q using V would
contain R3

⋃
R4

⋃
R5. For any user-specified k, the Build-MaxCR algorithm is

guaranteed to find the k-limited MCR.
We begin by defining the problem of constructing a UCQAC size-limited

MCR for a CQAC query using CQAC views. We use the following definition:

Definition 9. (A k-bounded (CQAC, UCQAC) query) Given a database
schema V and a positive integer number k. (1) A CQAC query Q defined on V is
a k-bounded (CQAC) query using V if, for the number n of relational subgoals
of Q, we have n ≤ k. (2) Q =

⋃
iQi is a k-bounded UCQAC query using V if

each CQAC component Qi of Q is a k-bounded query using V.

Now, for the problem of constructing a UCQAC size-limited (specifically k-
bounded) MCR for a CQAC query using CQAC views,

– the problem input is a triple (Q,V, k), where Q is a CQAC query, V is a finite
set of CQAC views, and k is a natural number;



– the problem output is a UCQAC query P =
⋃

j P
′
j defined in terms of V,

such that P exp is contained in Q, and such that P is a k-bounded (UCQAC)
query in terms of V.

Our proposed algorithm Build-MaxCR solves the above problem for arbi-
trary inputs (Q,V, k) as defined in the preceding paragraph. Our soundness and
completeness results for Build-MaxCR, Theorems 3 and 4, establish that for each
such input (Q,V, k), Build-MaxCR returns a maximally contained rewriting of
Q in the language of k-bounded UCQAC queries over V, if such a rewriting ex-
ists. Examples 2 and 6 provide specific illustrations of this general description
of how the algorithm works.

3.2 Algorithm Build-MaxCR: The Pseudocode and Description

We now discuss the pseudocode for Build-MaxCR, please see Algorithm 1. The
general idea of the algorithm is to do a complete enumeration of the CQ parts,
call them P̄j , of k-bounded CQAC queries defined on schema V. (For a CQAC
query R, we use the term “CQ part of R” to refer to the join of all relational sub-
goals of R, taken together with all the equality ACs implied by R.) For each such
P̄j , the algorithm associates with P̄j a minimum set S′j of inequality/nonequality
ACs on the variables and constants of P̄j ,10 such that S′j ensures containment
of P̄ exp

j &S′j in Q. The output for Build-MaxCR is the union P of all the CQAC
queries P̄j&S′j for which the containment holds. (By [22], P̄ exp

j &S′j v Q for each
j ensures P exp v Q, where P =

⋃
j P̄j&S′j .)

We now provide a detailed discussion of the pseudocode. Algorithm Build-
MaxCR uses an efficient way of enumerating the CQ queries P̄j : The algorithm
first enumerates all cross products, call them Pi, of up to k relational subgoals in
terms of V. We call each Pi, with t ≤ k subgoals, a “CQAC-rewriting template
(for Q) of size t”. Note that each Pi = vi1(x̄1)× . . .× vit(x̄t), t ≤ k, is associated
with exactly one multiset {{vi1, . . . , vit}} of names of views in V, where we
consider the set MS of all such multisets whose sizes do not exceed k, and vice
versa (i.e., 1:1 association) from MS to {Pi = vi1(x̄1)× . . .× vit(x̄t), t ≤ k}.

For the remaining discussion, we will need the notion of a MaxCR canonical
database, and a generative assignment mapping from a CQAC query to MaxCR
canonical database.

Definition 10. (MaxCR canonical database for CQAC query Q and
CQAC-rewriting template P ) The set DQ

P of MaxCR canonical databases
for Q and P is constructed in the same way as the set D(P exp) of canonical
databases of the expansion P exp of P . The only difference is that the set W of
constants and variables in the body of P exp (W is used in the construction of

10 In this paper we use the term “minimum set of ACs”, for a given objective (such
as ensuring containment of a query in another query), to refer to any set S of ACs
such that the closure of S under composition is a minimum-size set that meets the
objective.



Algorithm 1: Algorithm Build-MaxCR
Input : CQAC query Q; set of CQAC views V; k ∈ N

Output : k-bounded UCQAC query P =
⋃

j P
′
j in terms of V s. t. P exp v Q

1. P ← ∅; //P is a union of CQACs in the output of Build-MaxCR
2. for t = 1 to k do

3. Pt ← set of all CQAC-rewriting templates of size t;
4. while Pt 6= ∅ do

5. Pi ← one template from Pt; Pt ← Pt− {Pi};
6. Di ← the set of all MaxCR canonical databases for Pi and Q that
make the head of P exp

i true;
7. M← set of all mappings µij from relational
subgoals of Q to same-name subgoals of P exp

i ;
8. if M = ∅ then continue;
//Single-mapping processing:
9. for j = 1 to |M| do

10. produce Dij ⊆ Di, where each D ∈ Di

is included in Dij iff embedding Q in
D using µij makes the head of Q true;

11. Sij ← set of summary ACs for Dij ; //Sij is
//the logical OR of all total orders for Dij ;

12. x̄ij ← µ̃ij(headV ars(Q)); // µij induces µ̃ij

13. if all variables of Sij also occur in Pi then
| 14.P ← P

⋃
(P ′

ij(x̄ij) :- Pi&Sij);

//Multiple-mapping processing:
15. if for some set J = {j(1), . . . , j(r), . . . , j(m)} of the j’s above, s.t.
m > 1, all the x̄ij(r) ’s are the same, call them x̃i, then

16. D̃i ←
⋃m

r=1Dij(r) ; S̃i ← summary ACs for D̃i;

17. if all variables used in S̃i also occur in Pi then
| 18.P ← P

⋃
(P ′

i (x̃i) :- Pi&S̃i);

19. Return P .



D(P exp)) is extended, for the construction of DQ
P , to include also all the numerical

constants of the query Q.

Definition 11. (Generative assignment mapping from CQAC query to
MaxCR canonical database) Given a CQAC-rewriting template P for CQAC
query Q; let P exp be the expansion of P . A generative assignment mapping from
P exp to a MaxCR canonical database D for Q and P is the total-order mapping
M (from the body variables of P exp to numerical constants in D) associated with
D. (See Definition 5 for the details on the mapping M .)

Intuitively, we call M a generative assignment mapping because it induces a
“generative” mapping µ from the relational subgoals of P exp to the tuples in D.
That is, µ associates each relational subgoal p of P exp with the tuple t of D such
that t was generated from p when database D was generated from P exp.

Consider a fixed CQAC-rewriting template Pi, with t ≤ k subgoals. (Build-
MaxCR considers all the Pi’s exhaustively in the increasing order of t.) Build-
MaxCR uses Pi to generate all t-bounded CQAC queries P ′j = Pj&S′j in terms
of V, such that the CQ part (P̄j) of each P ′j corresponds to the same multiset
of names of views as Pi’s multiset. (The difference between the CQ parts of the
different P ′j ’s for a fixed Pi is in the equality ACs that are associated with each P ′j
and that equate some or all of the variables in the cross product Pi.) Moreover,
Build-MaxCR generates all the P ′j ’s for Pi by considering only once and only
one set of essentially canonical databases for P exp

i . This set of databases, which
we call “MaxCR canonical databases for Pi and Q” (Definition 10), is used by
Build-MaxCR to compute the (both equality and inequality/nonequality) ACs
in the definition of each rewriting P ′j that Build-MaxCR outputs based on Pi.
More precisely, Build-MaxCR uses the MaxCR canonical databases both for
computing the ACs for each P ′j (each set of computed ACs is the total order
for one of the MaxCR databases, see Definitions 5 and 10) and for ensuring
the positive outcome for the containment test for (P ′j)exp v Q. The containment
test, which is implicit in the algorithm (i.e., the outcome of the test is positive by
construction of P ′j , under certain conditions, which are all that Build-MaxCR
needs to check to ensure the outcome of the containment test; checking the
conditions takes linear time in the size of P ′j), is based on the same (MaxCR)
canonical databases as for the above AC computation. We now consider the
entire construction in detail.

We begin by specifying the set, call it Ci, of MaxCR canonical databases for Pi

and Q, where Pi is a CQAC-rewriting template for Q of size t ≤ k. (For a formal
specification, see Definition 10.) The basis for the definition of MaxCR canonical
databases is the (standard) notion of the set C′i of canonical databases for P exp

i ,
see Definition 5. By definition, each database C ′ ∈ C′i is constructed using one
total order, S′, on the set V arsConsts(P exp

i ) of variables and constants in the
body of P exp

i . When generating the set Ci of MaxCR canonical databases for
Pi and Q, we use exactly the same (i.e., the standard) database-construction
process as for C′i, except that we generate all the total orders based on the set
MaxCrV ars = V arsConsts(P exp

i )
⋃
Consts(Q), where Consts(Q) is the set



of all constants in the definition of the input query Q. A total order associated
with each C ∈ Ci is the set of ACs on MaxCrV ars that yields database C
in the construction of Ci. As illustrated in Example 6 and as shown in the
proof of Theorem 4, using the constants of Q in the construction of Ci ensures
completeness of the algorithm Build-MaxCR.

Algorithm Build-MaxCR works with a specific subsetDi of all MaxCR canon-
ical databases Ci for Pi and Q. Let us treat the CQAC-rewriting template Pi as a
CQ query without nondistinguished variables. Then Di is defined as the largest
subset of Ci such that each D ∈ Di makes the head of the query P exp

i true – that
is, P exp

i returns a nonempty answer on D. As shown in Example 6, the presence
of ACs in the body of P exp

i may prevent P exp
i from returning a nonempty answer

on some databases in Ci, thus rendering Di a proper subset of Ci. (The presence
of ACs in the body of P exp

i is due to the expansion of the view literals when
building P exp

i from Pi, recall that the views in V in the Build-MaxCR input are
defined in the language of CQAC queries.)

Once Build-MaxCR has computed the set Di of MaxCR canonical databases
for Pi and Q such that each D ∈ Di makes the head of P exp

i true, the algorithm
next determines which of the databases in Di also make true the head of the
input query Q, under specific restrictions to be detailed in the next paragraph.
The purpose of this stage is as follows. Suppose some subset Dij of Di makes
true, in the above sense, the heads of both P exp

i and Q. Algorithm Build-MaxCR
comes up with a set Sij of summary ACs for this set Dij of MaxCR canonical
databases for Pi and Q. That is, Sij is a set of ACs that characterizes exactly the
databases in Dij , in the sense that Sij is the logical OR of the total-order ACs
for the set Dij . (Please see Example 6 for an illustration.) Then Build-MaxCR
considers the CQAC conjunction P ′ij = Pi&Sij . Suppose P ′ij satisfies the safety
condition, that is, all the variables that are used in Sij are head variables of Pi.
In this case, by Theorem 3 we have that (P ′ij)exp is contained in Q. (The head
variables of P ′ij are determined by Build-MaxCR in the process of constructing
Dij .) Thus, Build-MaxCR adds P ′ij to the union P of k-bounded CQAC queries
that (P ) will be eventually output by the algorithm.

We now provide the details, by explaining the restrictions under which Build-
MaxCR produces the sets Dij of MaxCR databases for Pi and Q, such that
each set Dij makes the heads of both P exp

i and Q true. Recall that Di is the
set of MaxCR canonical databases for Pi and Q such that each database in
Di makes the head of P exp

i true. For each database D ∈ Di, let us denote
by ι the mapping that associates each relational subgoal r of P exp

i with the
stored tuple t ∈ D such that t is generated from r by construction of database
D. Let us call ι the “generative” mapping from P exp

i to D. (See Definition 11
and its discussion.) Note that ι induces a (consistent, in fact generative, see
Definition 11) assignment mapping ι̃ from the variables of P exp

i to the stored
values in D, with the property that ι̃(headV ars(P exp

i )) is always an answer to
P exp

i on the database D, by construction of the MaxCR canonical database D for
Pi and Q. (Here, by headV ars(R) we denote the list of head variables of query
R.) Recall that the head variables of P exp

i are the same as the head variables of



(CQ query) Pi, which we have defined as all the variables in the cross product
defining Pi.

Now let M be the set of all mappings µij from the relational subgoals of
query Q to same-name subgoals of P exp

i ; algorithm Build-MaxCR associates
one set of databases Dij with each µij ∈M. (Example 6 provides an illustration
of mappings µij .) Fix an arbitrary mapping µij ∈M and an arbitrary database
D ∈ Di. The question that Build-MaxCR addresses at this point is “Does em-
bedding the input query Q in database D using mapping µij make the head of
Q true on D”? That is, when one composes the mapping µij from Q to P exp

i

with the generative mapping ι from P exp
i to D, does the resulting mapping in-

duce a (consistent) assignment mapping νij : Q→ D, with the property that νij

generates an answer to query Q on database D.
Note that in case such an answer to Q on D exists, this answer is the tuple

νij(headV ars(Q)). Moreover, νij happens to be the composition of two map-
pings: (i) µ̃ij , which is the mapping from the variables and constants of the
query Q to the variables and constants of P exp

i , such that µ̃ij is induced by µij ,
and (ii) the generative assignment mapping ι̃ induced by the generative mapping
ι from P exp

i to D.
Now we show the steps that algorithm Build-MaxCR takes to produce for

each mapping µij (i) its associated set Dij ⊆ Di, as well as (ii) the associated
query P ′ij = Pi&Sij . This is the so-called single-mapping processing stage in the
pseudocode of Algorithm 1.

For a fixed Pi and for a fixed mapping µij ∈ M, Build-MaxCR considers
all the databases in the set Di of databases that make the head of P exp

i true.
Whenever, for a database D ∈ Di, embedding Q in D using µij makes the head
of Q true on D, in the sense discussed above, algorithm Build-MaxCR classifies
D as belonging to the set of databases Dij for Pi and µij .

By construction, each database in the set Dij makes the head of P exp
i true,

via the generative assignment mapping ι̃, and makes the head of Q true, via the
assignment mapping ι̃ ◦ µ̃ij . Now Build-MaxCR uses each such Dij to output, if
possible, a single CQAC query P ′ij = Pi&Sij , such that (P ′ij)exp v Q and such
that Sij is the logical OR of the total order of exactly the databases in Dij . Let
x̄ij be the list of variables (of Pi) defined as µ̃ij(headV ars(Q)), where µ̃ij , a
mapping on the variables and constants (as opposed to the relational subgoals)
of Q, is induced by µij . We now fully define CQAC query P ′ij = Pi&Sij , by
making x̄ij its head variables.

Suppose all the variables that are used in Sij are variables of Pi (or, in other
words, are distinguished variables of P exp

i ); that is, P ′ij is a safe query. In this
case, Build-MaxCR outputs P ′ij(x̄ij). The basis for this decision is our proof of
Theorem 3, where we show that (P ′ij)exp is contained in Q. By this theorem,
the containment is by construction of P ′ij(x̄ij) and thus does not require any
containment test to be conducted by Build-MaxCR, once the safety condition is
satisfied. That is, the only “containment test” that Build-MaxCR performs to
ensure (P ′ij)exp v Q is the above safety test for Sij w.r.t. P ′ij ; it is easy to see
that the complexity of the safety test is linear in the size of P ′ij .



We conclude our discussion of how Build-MaxCR works by outlining the
multiple-mapping processing stage (lines 15-18) in the pseudocode of Algorithm
1. This stage covers problem inputs for which MiniCon IP [11] cannot return a
correct rewriting. Example 2 provides an illustration of a problem input requiring
multiple-mapping processing. (Given the problem input of Example 2, Build-
MaxCR returns correctly the rewriting R of the example.) Essentially, even
when some P ′ij ’s (see line 13 of the pseudocode) fail the safety test in the single-
mapping processing stage of Build-MaxCR, several of the P ′ij ’s can be “put
together”, to ensure that in the resulting CQAC query, the summary ACs Sij

do satisfy the safety condition. The algorithm does efficient enumeration of the
sets J outlined in the pseudocode, by using bitmaps that encode whether the
answer to the input query Q was empty or not “under” each mapping µij on
each database D in the set Di of databases that make the head of the query
P exp

i true.

3.3 Examples illustrating Build-MaxCR

We now illustrate the work of Build-MaxCR using two examples. Example 6
illustrates the flow of the Build-MaxCR algorithm as described in Section 3.2 and
in Algorithm 1 . We use Example 2 to show how Build-MaxCR finds a multiple-
mapping rewriting, which would not have been discovered by an algorithm that
considers only single-mapping rewritings.

Single-Mapping Example

Example 6. Consider query Q and views U , V , and W :

Q(X) :- p(X), s(X), X < 3.
U(A) :- p(A), s(A).
V (N) :- p(N), N < 3.
W (L) :- s(L).
P ′(A) :- U(A), A < 3.
P ′′(N) :- V (N),W (N).

In Example 6 suppose we are trying to find the k-bounded UCQAC MCR
P of Q using V = {U, V,W} for k = 2. Initially, the outermost loop of Build-
MaxCR sets t = 1, and P1 = {U(A), V (N),W (L)}. When U(A) is the CQAC-
rewriting template Pi, the set MaxCrV ars = V arsConsts(P exp

i )
⋃
Consts(Q)

isMaxCrV ars = {A}
⋃
{3}= {A, 3}. Each possible total order onMaxCrV ars

yields exactly one canonical database in the set Ci of MaxCR canonical databases
for Pi and Q. Thus, Ci = {DA<3, DA=3, DA>3}, where the total order A < 3
yields the MaxCR canonical database DA<3, A = 3 yields DA=3, and A > 3
yields DA>3. Since the body of view U does not contain any ACs, each database
in Ci makes the head of P exp

i true. Hence the corresponding set Di is the same as
set Ci, that is, Di = {DA<3, DA=3, DA>3}. Build-MaxCR also determines the set
M of all mappings from the relational subgoals of Q to the same-name subgoals



of P exp
i . In this case, M = {µ}, where µ = {p(X) → p(A), s(X) → s(A)},

and it induces µ̃ = {X → A}. Next, Build-MaxCR produces Dij ⊆ Di for each
µj ∈ M. When µj is the µ in the example, Dij = {DA<3}. This is because, for
canonical database DA<3, embedding Q in DA<3 using µ makes the head of Q
true, whereas for the remaining two canonical databases DA=3 and DA>3 from
Di, embedding them in Q using µ does not make the head of Q true. The total
order associated with DA<3 is A < 3, and hence Build-MaxCR sets the set Sij

of summary ACs to {A < 3}. (Note that if we had |Dij | > 1, then Build-MaxCR
would have taken the logical OR of all total orders for Dij to come up with Sij ,
as illustrated in Section 3.3 in the description of Example 2.) Also Build-MaxCr
sets x̄ij = µ̃ij(headV ars(Q)) = µ(X) = A. Sij contains only one variable A,
and this variable is present in Pi. Since all variables of Sij also occur in Pi, the
CQAC P ′ij(x̄ij) :- Pi&Sij , that is the CQAC P ′(A) :- U(A), A < 3, is added to
the union P .

Note that for this definition of P ′, we have (P ′)exp v Q while (Pi)exp /v Q.
The difference is in the AC A < 3 that Build-MaxCR has conjoined with Pi to
get P ′. In the AC A < 3, the presence of the constant 3 from Q is an illustration
of the need for the algorithm to use MaxCR canonical databases, as opposed to
“standard” canonical databases for the CQAC-rewriting templates. Also, note
that in Example 6, it turns out that (P ′)exp ≡ Q. Build-MaxCR detects this
and hence outputs P ′(A) :- U(A), A < 3 as its final answer and terminates all
further processing. This is an illustration of Build-MaxCR terminating before
the outermost t-loop goes all the way up to k. Since iterations for lower values
of t are faster than iterations for higher values of t, the main t-loop of MaxCR
runs from 1 to k, rather than going in the other direction from k down to 1.

Now suppose Example 6 is modified so that view U is not available and we
have with us only V ′ = {V,W}. Then for the t = 1 iteration, Build-MaxCR
sets P1 = {V (N),W (L)}. However, the body of V does not have any s-subgoal,
and the body of W does not have any p-subgoal. So M = ∅ in both cases,
and so for t = 1, there is no rewriting that Build-MaxCR can add to P . Now
for the t = 2 iteration, P2 = {P1, P2, P3}, where P1 is the CQAC-rewriting
template V (N1), V (N2), P2 is V (N),W (L), and P3 is W (L1),W (L2). Again,
M = ∅ for P1 as well as P3, so in these cases, there is no rewriting that
Build-MaxCR can add to P . However, when P2 is the CQAC-rewriting tem-
plate Pi, M = {µ′}, where µ′ = {p(X) → p(N), s(X) → s(L)}, and it in-
duces µ̃′ = {X → N, X → L}. The set MaxCrV ars = V arsConsts(P exp

i )⋃
Consts(Q) is MaxCrV ars = {N,L}

⋃
{3} = {N,L, 3}. There are in all

thirteen possible total orders on {N,L, 3}. Out of these there are exactly five
total orders whose canonical databases make the head of P exp

i true. Hence, Di

is set to {DL<N<3, DL=N<3, DN<L<3, DN<3=L, DN<3<L}. (Note that the body
of view V has the AC N < 3, and the remaining eight canonical databases
from Ci that are not included in Di are exactly those whose total orders have
either N = 3 or N > 3. This illustrates how the presence of ACs in the
body of P exp

i may prevent P exp
i from returning a nonempty answer on some

databases in Ci and thus make Di a proper subset of Ci.) Furthermore, out



of the five canonical databases in Di, there is only one canonical database,
such that embedding Q in that database using µ′ makes the head of Q true.
Hence the set Dij which corresponds to mapping µj = µ′ contains only that
one canonical database DL=N<3. Thus for Dij = {DL=N<3}, Build-MaxCR
finds the set of summary ACs Sij = {L = N,L < 3, N < 3}. Since all vari-
ables of Sij also occur in Pi, the CQAC P ′′ij(x̄ij) :- Pi&Sij , that is the CQAC
P ′′(N) :- V (N),W (L), L = N,L < 3, N < 3 with expansion P ′′exp(N) :-
p(N), s(L), L = N,L < 3, N < 3, can be added to the union P . However, note
that L = N is an equality AC. Hence all occurrences of L can be replaced by N ,
resulting in the CQAC P ′′(N) :- V (N),W (N) which is added to the union P .

Multiple-Mapping Example

In Example 2 suppose we are trying to find the k-bounded UCQAC MCR P of
Q using V = {V } for k = 1. For the t = 1 iteration of the outermost loop, Build-
MaxCR sets P1 = {V ()}. When V () is the CQAC-rewriting template Pi, the set
MaxCrV ars = V arsConsts(P exp

i )
⋃
Consts(Q) is MaxCrV ars = {X,Y }

⋃
∅

= {X,Y }. Each possible total order on MaxCrV ars yields exactly one canonical
database in the set Ci of MaxCR canonical databases for Pi and Q. Thus, Ci =
{DX<Y , DX=Y , DX>Y }. Since the body of view V does not contain any ACs,
each database in Ci makes the head of P exp

i true. Hence the corresponding set
Di is the same as set Ci, that is, Di = {DX<Y , DX=Y , DX>Y }. Build-MaxCR
also determines the set M of all mappings from the relational subgoals of Q
to the same-name subgoals of P exp

i . In this case, M = {µ1, µ2}, where µ1 =
{p(A,B) → p(X,Y )} and µ2 = {p(A,B) → p(Y,X)}. µ1 and µ2 induce µ̃1 =
{A → X,B → Y } and µ̃2 = {A → Y,B → X}, respectively. Next, Build-
MaxCR produces Dij ⊆ Di for each µj ∈ M. For µ1, Di1 = {DX<Y , DX=Y }.
This is because, for canonical databases DX<Y and DX=Y , embedding Q in them
using µ1 makes the head of Q true, but for the remaining canonical database
DX>Y from Di, embedding DX>Y in Q using µ1 does not make the head of
Q true. Similarly, Build-MaxCR also constructs Di2 = {DX>Y , DX=Y } for µ2.
The total order associated with DX<Y is X < Y , and the total order associated
with DX=Y is X = Y . Hence for j = 1, Build-MaxCR determines the set Sij

(of summary ACs that characterize exactly the canonical databases in Dij) as
Si1 = {X ≤ Y }. Thus for the j = 1 case, this is an illustration of Build-
MaxCR finding the set Sij by taking the logical OR of the total order ACs for
the set Dij . Similarly, for j = 2, since Di2 = {DX>Y , DX=Y }, Build-MaxCR
determines Si2 = {X ≥ Y } by taking the logical OR of X > Y and X = Y that
are associated with DX>Y and DX=Y , respectively. Note that in this example,
for j = 1 and for j = 2, Sij contains variables X and Y , which do not occur
in Pi. Thus Pi&Si1 cannot be used to form a safe query P ′i1 which can be
added to the union P . Similarly Pi&Si2 too cannot be used to form a safe query
P ′i2 which can be added to P . However, Build-MaxCR finds set J = {1, 2},
|J | > 1, for which x̄i1 = µ1(headV ars(Q)) and x̄i2 = µ2(headV ars(Q)) are the
same. This is an illustration of the multiple-mapping processing done by Build-



MaxCR. For this set J , Build-MaxCR finds D̃i = Di1

⋃
Di2 = {DX<Y , DX=Y }⋃

{DX>Y , DX=Y } = {DX<Y , DX=Y , DX>Y }, and S̃i = ∅ is the corresponding
set of summary ACs for D̃i. Now, for this S̃i, it is true (trivially, since S̃i has
no variables) that all variables used in S̃i also occur in Pi = V (). Hence Build-
MaxCR adds the CQAC P ′i () :- Pi&S̃i, that is, the CQAC P ′() :- V () to the
union P . This completes the Build-MaxCR processing for k = 1. �

In the rest of this Section, we formulate theorems that establish the sound-
ness and completeness of Build-MaxCR. In Section 3.4 we develop the theory
of total-order CQAC queries. This is a contribution of independent interest to
any work that considers all canonical databases of a CQAC query. In our case,
this contribution has direct application in developing the proofs of soundness
and completeness of Build-MaxCR, which are presented in Section 3.5 and Sec-
tion 3.6, respectively.

3.4 Theoretical Results on Total-Order CQAC Queries

Note that the Build-MaxCR algorithm does not have to do containment check-
ing, either during the construction of the outputs or (as final containment test)
to test that the MaxCR outputs are contained in the input query.

In the formal statements below, for a Build-MaxCR problem input (Q,V, k),
P denotes a CQAC-rewriting template for Q, of some size t ≤ k. When we
consider P as a query (rather than just as a cross product), we define P as a
CQ query without nondistinguished variables.

Proposition 2. Let D be a MaxCR canonical database for P and Q, such that
S is the total order for D. Then under set semantics, query P ′ : − P exp&S has
exactly one tuple t in the answer on D, regardless of the choice of head variables
of P ′.11 Further, t can be obtained by applying to the head variables of P the
generative assignment mapping (see Definition 11) from P exp to D.

Proof. On the n variables of P ′, total order S enforces a fixed number of m ≤ n
distinct values. The database D, which is associated with S, by construction also
has m distinct stored values. That means that the association between the vari-
ables of P ′ and the stored values of D is 1:1. Let M be the total-order mapping
associated with D and S. Observe that M , when treated as an assignment map-
ping from the relational subgoals of P ′ (i.e., of P exp) to D, (1) provides exactly
this 1:1 association, and (2) produces an answer tuple to P ′ on D. Recall that
by Definition 11 M is indeed the generative assignment mapping from P exp to
D.

Proposition 3. Let D be a MaxCR canonical database for P and Q, such that
S is the total order for D. Let S enforce m distinct values on the contents of D.
Denote by P ′ the CQAC query whose body is P exp&S′, where S′ is a total order
on a MaxCR database for P and Q, and whose head variables are an arbitrary
11 Note that by construction of MaxCR canonical databases, queries P ′ are safe in the

context of Propositions 2 through 5.



subset of the body variables of P .12 Then query P ′ has an empty answer on D
whenever S′ enforces m′ > m distinct values on the variables of P ′.

The proof of Proposition 3 is an immediate variation on the observations in
the proof of Proposition 2.

Note that when m′ < m, in the terminology of Proposition 3, and even when
m′ = m (while S′ is still not the same as S), then it is also possible that we get
an empty answer to query P ′ on database D. At the same time, in some cases
we can get one or even more than one nonempty answers to P ′.

Here are two examples that illustrate this point. In Example 7, the total
order that defines P ′ enforces the same number of distinct values as the total
order on the given MaxCR canonical database D. In this case, even though the
total orders of P ′ and D are not the same, the answer to P ′ on D is not empty.
Example 8, on the other hand, shows that more than one answer tuples to P ′ can
be obtained on a MaxCR canonical database D, in case where the total order of
D enforces strictly more distinct values than the total order defining P ′.

Example 7. Consider a CQAC-rewriting template P defined in terms of a single
view V :13

P (X,Y ) : − V (X,Y ).
V (X,Y ) : − s(X,Y ), s(Y,X).
P exp(X,Y ) : − s(X,Y ), s(Y,X).

Let the total order S′ be S′ : X < Y , and define P ′ as

P ′(X,Y ) : − s(X,Y ), s(Y,X), X < Y.

That is, the body of P ′ is P exp&(X < Y ).
Let D be the MaxCR canonical database for P and for the input query Q,

such that D is associated with total order S : Y < X. (Note that S and S′

are not the same.) Suppose D = {s(1, 2), s(2, 1)}. (When constructing D, we
arbitrarily assigned the stored values as 1 = Y < X = 2.) Then the answer
(1, 2) to query P ′ on D can be obtained by using the assignment mapping from
P exp to D that maps X into 1 and Y into 2.

Example 8. Consider a CQAC-rewriting template P defined in terms of a single
view V :

P (X,Y, Z, T ) : − V (X,Y, Z, T ).
V (X,Y, Z, T ) : − s(X,Y ), s(Y,Z), s(Z, T ).
P exp(X,Y, Z, T ) : − s(X,Y ), s(Y, Z), s(Z, T ).

12 Recall that all variables of both P and P exp are distinguished, and that the sets of
body variables of P and P exp are the same.

13 In all the examples in this section, we assume that the query Q, in the Build-MaxCR
problem input, does not use constants. As a consequence, each MaxCR canonical
database for P and Q is a (standard) canonical database for P exp. Thus the definition
of Q is, in a sense, irrelevant to the examples in this section.



Let the total order S′ be X = Y = Z = T , and define P ′ as

P ′(X,Y, Z, T ) : − s(X,Y ), s(Y,Z), s(Z, T ), X = Y = Z = T.

That is, the body of P ′ is P exp&(X = Y = Z = T ).
Let D be the MaxCR canonical database for P and for the input query Q,

such that D is associated with total order S : X = Y < Z = T . (Note that S and
S′ are not the same.) Suppose D = {s(1, 1), s(1, 2), s(2, 2)}. (When constructing
D, we arbitrarily assigned the stored values as 1 = X = Y < Z = T = 2.) Then
there are two answers, (1, 1, 1, 1) and (2, 2, 2, 2), to query P ′ on D.

Proposition 4. Let D be a MaxCR canonical database for P and Q, such that
S is the total order for D. Let S enforce m distinct values on the contents of D.
Denote by P ′ the CQAC query whose body is P exp&S′, where S′ is a total order
on a MaxCR database for P and Q, and whose head variables are an arbitrary
subset of the body variables of P . Then under set semantics query P ′ has at most
one answer on D whenever the total order S′ of P ′ enforces m′ = m distinct
values on the variables of P ′.

Proof. There are two cases:
Case 1 is S = S′; the claim of Proposition 4 for this case holds by Proposi-

tion 2.
Case 2 is S 6= S′. In this case, suppose the answer to P ′ on D is not empty.

Then we use the reasoning in the proof of Proposition 2 to argue that there is a
1:1 association between all the body variables of P ′ and the stored values in D,
thus P ′ has exactly one answer tuple, say t, on D under set semantics.

Note that, unlike Case 1 of this proof, t cannot be obtained by applying the
generative assignment mapping from the body of P ′ to the stored values in the
database D. Instead, consider an isomorphism ν on the set of body variables
of P ′, such that ν maps the smallest-value variable w.r.t. total order S′ to the
smallest-value variable w.r.t. total order S, and so on, in the increasing order of
variable values according to the two total orders. Note that ν is a 1:1 mapping.
(It is easy to construct counterexamples to the existence of the answer to P ′ on
D whenever m′ = m but ν is not a 1:1 mapping.)

Then the assignment mapping that generates the tuple t is the composition
of the isomorphism ν with the total-order mapping M for the database D. For
instance, in Example 7, the assignment mapping that generates tuple (1, 2) is a
composition of ν = {X → Y, Y → X} with M (for D and S) where M = {Y →
1, X → 2}.

Proposition 5. Let D be a MaxCR canonical database for P and Q, such that
S is the total order for D. Let S enforce m distinct values on the contents of D.
Denote by P ′ the CQAC query whose body is P exp&S′, where S′ is a total order
on a MaxCR database for P and Q, and whose head variables are an arbitrary
subset of the body variables of P . Suppose the total order S′ of P ′ enforces
m′ < m distinct values on the variables of P ′, and suppose the answer to query
P ′ on D includes tuple t. Then there exists a MaxCR canonical database D′ for
P and Q, such that:



1. D′ can be obtained by using a subset of the tuples in D, and
2. the answer t to P ′ on D can be obtained by applying the generative mapping

from P ′ to D′.

Proof. From the existence of tuple t in the answer to P ′ on D, there exists an
assignment mapping λ̃ from P ′ to D, such that t can be obtained by using λ̃.
Let λ be the mapping from the relational subgoals of P ′ to the stored tuples of
D, such that λ is induced by λ̃. Consider the set T of those stored tuples of D
that are in the image of all the relational subgoals of P ′ under λ. Because S′ is
a total order on P ′, from the existence of tuple t it follows that (i) the tuples
in T have a total of m′ distinct values, and (ii) there is a 1:1 mapping, which
happens to be λ̃, between the variables of P ′ and the m′ distinct values in the
tuples of T . (See proof of Proposition 2 for the details of this reasoning.)

We now prove Claims 1 and 2 of the Proposition, by showing that the set T
can be used to form a MaxCR canonical database D′ for P and Q. Indeed, it is
easy to see that λ̃ is a generative assignment mapping from P ′ to the database
T .

Corollary 1. In the setting of Proposition 5, the answer to (P ′)exp on D′ has
exactly one answer tuple, under set semantics for query evaluation.

The claim of Corollary 1 follows immediately from Proposition 2 and from
the construction of D′ as outlined in the proof of Proposition 5.

Proposition 6. Let D be a MaxCR canonical database for P and Q, such that
S is the total order for D. Let S enforce m distinct values on the contents of D.
Let the total order S′ 6= S of P ′ = P exp&S′ enforce m′ = m distinct values on
the variables of P ′. Then, whenever P ′ produces an answer tuple t on D, then
Q will also produce t on D.

Proof. Let λ̃ be the assignment mapping that produces the answer t to P ′ on
the database D. From m = m′, it follows that λ̃ enforces a 1:1 mapping between
the variables/constants of P ′ and the values stored in D. It follows that we can
interpret λ̃ as a “generative” mapping from P ′ to D, and thus can interpret D
as “the native” MaxCR canonical database for P ′ (and Q). (That is, we can
interpret the total order on D as the total order for P ′, by observing that λ̃(S′)
is a total order on the values stored in D.)

Now suppose, toward contradiction, that this generative assignment mapping
does not produce an answer tuple to P ′ on D. (If such an answer is produced,
then it is clear that the answer is exactly t.) But it is clear that λ̃ produces t
when we use the “original” (i.e., “non-native canonical database”) interpretation
of D w.r.t. P ′. Hence the contradiction.

By construction of Build-MaxCR, Q produces, on each MaxCR canonical
database D, whatever answer tuple t is produced by the “native” P ′ for D.
Q.E.D.



3.5 Proof of Soundness of Algorithm Build-MaxCR

Theorem 3. (Soundness of Build-MaxCR) For a Build-MaxCR problem
input (Q,V, k), let P be a CQAC-rewriting template (of some size s ≤ k). Then
for any CQAC query P ′ : − P&S that is output by Build-MaxCR, (P ′)exp is
contained in Q.

Given input (Q,V, k) to Build-MaxCR and CQAC-rewriting template P for
this input, let P ′ be a CQAC query output by Build-MaxCR. By Lemma 1,
(P ′)exp is equivalent to the union

⋃
all i P

′
i , where each P ′i has the same head

arguments as P ′ and has the body P exp&Si, for some total order Si that implies
the summary ACs S of P ′. Then it is clear that proving P ′i v Q, for all i, proves
the claim of the theorem. Thus, in the remainder of the proof we show P ′i v Q
for an arbitrary P ′i that satisfies the above conditions.

The idea of the proof is to show that on all MaxCR canonical databases D
for P and Q (and thus on all canonical – in the original sense of the term, see
Definition 5 – databases for P ′i ), the answer to Q on D is a superset of the answer
to P ′i on D. This proves P ′i v Q by the canonical-database containment test.

1. Suppose the total order Si for P ′i enforces mi distinct values on the variables
of P ′i .

2. Fix a MaxCR canonical database D for P and Q, such that S is the total
order for D. Let S enforce m distinct values on D.
There are four cases:
(a) m = mi and S = Si; then, by Proposition 2 and by construction of the

answer to Q on D, Q produces the (only) answer tuple to P ′i on D; here
we use the fact that Build-MaxCR tests the nonemptiness of the answer
to Q on D by using the composition of (i) µ̃ij for Q and P ′i , and of (ii)
the generative mapping ι̃ from P ′i to D; note that the relational subgoals
of P exp and of P ′i are the same, thus both µ̃ij and ι̃ “make sense” for P ′i
and Q)

(b) m = mi and S 6= Si; suppose that the answer to P ′i on D is not empty
(otherwise the containment P ′i v Q is obvious);
then it follows from Proposition 4 that we can treatD as a “permutation”
of the MaxCR canonical database for P ′i and Q, such that the total order
for D is Si (i.e., the same as the total order for P ′i );
let λ̃ be the assignment mapping from P ′i to D such that λ̃ produces an
answer tuple t to P ′i on D; then from the proof of Proposition 4 it follows
that (i) t is the only answer to P ′i on D, and (ii) λ̃ can be treated as the
generative mapping from P ′i to D, hence this case reduces to (a) above;

(c) m < mi; in this case, by Proposition 3, the answer to P ′i on D is empty;
(d) m > mi; then, by Proposition 5, each tuple in the answer to P ′i on D is

obtained using an assignment mapping from P ′i into a substructure D′

of D such that D′ is a MaxCR canonical database for P ′i and Q with a
total order that is the same as the total order for P ′i ;
thus, from Proposition 5 and from Corollary 1 it follows that each such
case is the same as case m = mi and S = Si above.



3. In all the four cases, we have proved that Q produces all answers to P ′i on D.
There are no other possibilities for the relationship between P ′i and MaxCR
canonical databases for P ′i and Q, thus Q.E.D.

Lemma 1. Given input (Q,V, k) to Build-MaxCR and CQAC-rewriting tem-
plate P for this input. Let P ′ = P&S, where S is a set of ACs on the head
variables of P , be a CQAC query output by Build-MaxCR based on P . Let
S1, S2, . . . , Sm be all ways of expanding S to total orders on the set V that com-
prises (i) all variables and constants of P exp, and (ii) all constants of Q. Then
(P ′)exp ≡

⋃m
i=1 P

exp&Si.

The proof of the lemma is immediate by construction of S in algorithm
Build-MaxCR.

3.6 Proof of Completeness of Algorithm Build-MaxCR

Theorem 4. (Completeness of Build-MaxCR) For a Build-MaxCR prob-
lem input (Q,V, k), let R be a UCQAC query defined in terms of V, such that
(i) in each CQAC component Ri of R, the number of relational subgoals of Ri

does not exceed k, and (ii) Rexp v Q. Then (1) the output of Build-MaxCR is
not empty, and (2) denoting by P the UCQAC output of Build-MaxCR, we have
that Rexp v Pexp.

Proof. Let D be the schema used for defining the query Q and all the views in V.
Consider an arbitrary database D with schema D, such that the answer to Rexp

on D is not empty. Suppose t is a tuple in the answer to Rexp on D. To prove
this completeness theorem, it is enough to show that there exists a CQAC Pr

that is defined in terms of V, such that on input (Q,V, k), Pr has been output
by Build-MaxCR,14 and such that t ∈ P exp

r (D).
We “expand” the UCQAC R into its CQAC components, as R = ∪m

i=1Ri for
some natural number m. Here, each Ri is a CQAC component of R. By t being
a tuple in the answer to Rexp on D, there exists a CQAC Ri in R, such that
t ∈ Rexp

i (D). (In case more than one CQAC in Rexp returns t on D, we choose
an arbitrary such CQAC Rexp

i .) We represent Rexp
i as a union of total-order

CQACs where each total order is on all the variables and constants of Rexp
i :

Rexp
i = ∪l

j=1R
∗&Sj , for some natural number l. Here, each R∗&Sj is a CQAC

in the normal form, that is Sj is a total order on all the variables and constants
of Rexp

i , and R∗ is a cross product of all the relational subgoals of Rexp
i , such that

no variable name occurs in R∗ twice and such that R∗ contains no constants.
Observe that R∗ is the relational part of (the normal forms of) all the CQACs
in the union Rexp

i = ∪l
j=1R

∗&Sj .
By t ∈ Rexp

i (D), there must exist an Sj (for some j ∈ {1, . . . , l}) such that
t ∈ (R∗&Sj)(D). We denote R∗&Sj , for this fixed j, by R∗j .

Let λ be an assignment mapping that produces the answer t to R∗j on the
database D. By definition, λ satisfies the conjunction of relational atoms R∗

14 Thus Pr is guaranteed to have at most k relational subgoals.



w.r.t. D, and applying λ to Sj produces a true conjunction of arithmetic com-
parisons on constants. Note that λ is a homomorphism from R∗ to the stored
tuples in the databaseD. (To recast an assignment mapping as a homomorphism,
we use an equivalent representation of stored tuples of a database as ground re-
lational atoms.) Now let T be the database (with schema D) containing exactly
the tuples in D that are images of all the relational atoms in R∗ under λ. In the
remainder of the proof, we show that Build-MaxCR has considered (a database
isomorphic to) database T when processing R∗, and that the algorithm output
a CQAC Pr such that t ∈ P exp

r (D).
Observe that by construction of Build-MaxCR, the algorithm has considered

R∗ when processing input (Q,V, k). Indeed, R∗ conjoined with some portion S′j
of the ACs in Sj is, by definition of Rexp

i , an expansion of a cross product, call it
V(n), of some n ≤ k subgoals, where the predicate for each subgoal corresponds
to a view name in V. Thus, Build-MaxCR has considered both R∗&S′j and all
MaxCR canonical databases for R∗&S′j .

In the remainder of the proof, we will use the following observation. In the
Sj for our fixed j, all the ACs in the portion S′′j = Sj−S′j , with “−” understood
as set difference, are either comparisons of variables of R∗ with those constants
that do not occur in the expansion of V(n), or (some of the) ACs that impose the
total order on the variables and constants in Rexp

i . That is, S′′j does not contain
any ACs that are implied by the ACs in the expansion of V(n). This observation
follows from our assumption that all (U)CQAC queries that we consider in this
paper are safe.

We now show that Build-MaxCR has considered (a database isomorphic to)
database T when processing R∗. We proceed in two steps:

(1) For each constant c occurring in S′′j but not in S′j , drop from Sj all the

ACs containing c. Denote the result of this AC removal by S
(1)
j . Observe that

the queries R∗&Sj and R∗&S(1)
j return the same set of answers on the database

T . (This follows from our results of Section 3.4 on total-order CQAC queries.)
We assume here that the heads of R∗&Sj and of R∗&S(1)

j are the same. We

denote by U (1) the set of all variables and constants occurring in R∗&S(1)
j ; note

that S(1)
j is a total order on U (1).

(2) Let CQ be the set of all constants that occur in the query Q but not in
U (1). We use CQ to add to S(1)

j all ACs that are necessary to obtain a total order

on U (1) ∪CQ. Denote by S(2)
j the resulting set of total-order ACs. Again, by our

results of Section 3.4 on total-order CQAC queries, all of R∗&Sj , R∗&S(1)
j , and

R∗&S(2)
j return the same set of answers on the database T . We assume here that

the heads of R∗&S(1)
j and of R∗&S(2)

j are the same.

By construction of S(2)
j it holds that T is a MaxCR database for (the input

query Q and) R∗&S′j , such that S(2)
j is the total order associated with T . We

have seen that R∗&S(2)
j returns on T the same set of answers as a CQAC element

R∗&Sj of Rexp, and therefore returns on T the same set of answers as the query



Q. Thus, by construction of Build-MaxCR, Build-MaxCR must have considered
R∗&S(2)

j when processing input (Q,V, k).
We have seen that on each database D on which Rexp produces an answer,15

expansions of some CQACs considered by Build-MaxCR also produce exactly
the answers to Rexp(D). Thus, to show containment of Rexp in the expansion
of the output of Build-MaxCR for the input (Q,V, k), it remains to show that
for all the (considered above) CQACs Pr that “cover” Rexp and that have been
considered by Build-MaxCR, the algorithm returns each such Pr.

Indeed, the only case where Build-MaxCR would not return a Pr in question
would be the case where the summary ACs of Pr (obtained by Build-MaxCR
from the ACs of the individual total-order CQAC components P ′r of P exp

r ) would
not be enforceable on just the head variables of Pr. We observe first that for each
such P ′r, the head variables of P ′r would be the same as the head variables of
some CQAC in R. (This follows from the construction of the R∗&S(2)

j , see earlier
in this proof.)

Now, for some Pr considered by Build-MaxCR for (Q,V, k), let c be a con-
stant of the query Q such that c does not occur in the expansion of the V(n) used
to build Pr. (That is, Pr is defined as a conjunction of V(n) with some ACs.)
Assume that Build-MaxCR is not returning this Pr because an AC S(c) that
uses the constant c involves a nonhead variable of Pr. In this case, it must be
that Rexp is not contained in Q, because the only case in which S(c) would arise
in Pr is the case where one must “remove from the output” of Build-MaxCR a
MaxCR CQAC P ′r that returns a nonempty answer on some database on which
Q does not return any answer. Thus, we obtain by contradiction that our as-
sumption (of Build-MaxCR not being able to produce an output due to S(c) not
being enforceable on the head variables of Pr) cannot hold.

From the proof in the preceding paragraph, it holds that for each CQAC Ri

in R, there must exist a CQAC Pj in the output P of Build-MaxCR (that is,
P = ∪z

j=1Pj for some natural number z) such that (1) the relational parts of Ri

and Pj are isomorphic (after dropping any duplicate subgoals), and (2) the AC
part of Ri implies the AC part of Pj . Therefore, we have shown Rexp v Pexp as
required.

4 Minimally Containing Rewritings

We now turn to the problem of finding minimally containing rewritings [18–20],
which we abbreviate as MiCRs, of a CQAC query using CQAC views. The word
“minimal” in “MiCR” refers to a containing rewriting that contains the fewest
false positives (in the given rewriting language) w. r. t. the query answer.

We focus on the problem of enabling a MiCR of a CQAC query using CQAC
views to be executed as efficiently as possible. To that end, we look at minimizing
the number of relational subgoals of a given MiCR, and thus the number of
joins in the evaluation plans for the MiCR. In Section 4.1, we introduce the

15 By Rexp v Q, all answers produced by Rexp on D are also produced by Q on D.



notion of a minimized MiCR, which formalizes the above efficiency intuition.
The main contribution of this section is an algorithm that we call pruned-MiCR,
see Section 4.3. Given a CQAC MiCR for a given problem input (i.e., for a CQAC
query and a set of CQAC views), pruned-MiCR globally minimizes the MiCR in
an efficient and scalable way. (See Section 4.4 for the correctness and complexity
results for pruned-MiCR.) Our experimental results in Section 6 suggest that
for many problem inputs (for the MiCRs for queries and views of certain types),
pruned-MiCR outputs minimized MiCRs whose evaluation costs are significantly
lower than those of the (MiCR) input to the algorithm.

Note that the idea of pruned-MiCR is quite general and thus applicable be-
yond containing rewritings. Specifically, a straightforward modification of pruned-
MiCR could be used to reduce the number of relational subgoals of (and thus to
provide more efficient execution options for) the outputs of our Build-MaxCR
algorithm of Section 3. Suppose the Build-MaxCR algorithm has been executed
to obtain the MCR of query Q using the viewset V. Then each CQAC com-
ponent, say R, in the UCQAC output of the Build-MaxCR algorithm can be
minimized by running the pruned-MiCR algorithm on input (Q,V, R), and then
replacing the CQAC R in the Build-MaxCR output, by the answer R′ output by
the pruned-MiCR algorithm. When this has been done for each R in the output
of Build-MaxCR, the resulting UCQAC MCR is equivalent (as expansions) to
the original UCQAC MCR that was output by Build-MaxCR. Yet, the new UC-
QAC is likely to be much faster to execute. This could be especially important in
applications where the speed of execution of the rewriting is much more critical
than the speed of generation of the rewriting, for example in applications where
the rewriting is obtained once, and then executed several times.

4.1 The Setting and Definitions

We begin by providing a general definition of a MiCR and by defining (CQAC)
minimized MiCRs.

Definition 12. (Minimally containing rewriting) A query Q′ defined in
query language L1 is a minimally containing rewriting (MiCR) of a query Q
defined in language L2 using a set of views V defined in language L3 if: (1) Q′

is a containing rewriting of Q in terms of V, and (2) there exists no containing
rewriting (in language L1) Q′′ of Q using V, such that the expansion of Q′′ is
properly contained in the expansion of Q′.

For the results in this section, each of L1 through L3 is the language of CQAC
queries.

We study the problem of minimizing the number of relational subgoals of a
given CQAC MiCR, to enable efficient evaluation of the MiCR. We now define
the notion of minimized MiCR, which formalizes this efficiency intuition.

Definition 13. (Minimized MiCR) Given a CQAC query Q and a set of
CQAC views V, CQAC MiCR R of Q using V is a minimized (CQAC) MiCR of
Q using V if removing any relational subgoal of R results in query R′ such that
R and R′ are not equivalent as expansions, that is Rexp ≡/ (R′)exp.



By definition, if we delete even a single relational subgoal from a minimized
MiCR, it no longer remains a MiCR. Finding minimized MiCRs is especially
important in those cases where the MiCR is computed once and then executed
repeatedly. In such cases, it is important that the MiCR execute efficiently. Since
a minimized MiCR may have many fewer relational subgoals than the original
MiCR (see, e.g., Example 11), and thus many fewer joins, such a performance
improvement would have a significant payoff.

We now consider the notion of a “globally minimal” minimized MiCR. A
globally minimal minimized CQAC MiCR for a CQAC query Q and set V of
CQAC views has the minimum number of relational subgoals among all CQAC
queries defined using V that are equivalent (as expansions) to a (unique) CQAC
MiCR for Q and V. It turns out that a globally minimized MiCR may not be
unique for a given (Q,V), as shown by the following example.

Example 9. Consider a Boolean CQ query Q and two Boolean CQ views V1 and
V2. (Recall that CQ queries are in the language CQAC.)

Q() : − p(X).
V1() : − p(X).
V2() : − p(X).

Any sound and complete algorithm for generating CQAC MiCRs for CQAC
inputs would return rewriting

R() : − V1(), V2().

This MiCR R (for Q and {V1, V2}) is equivalent as expansionsto each of the
queries R1 and R2, as follows:

R1() : − V1().
R2() : − V2().

Each of R1 and R2 is a globally minimal minimized MiCR for (Q, {V1, V2}). �

Next, we give an example which shows that two distinct minimized MiCRs for
a given CQAC MiCR can have a different number of relational (view) subgoals.
At the same time, note that the minimized MiCRs output by our algorithm
pruned-MiCR is guaranteed to be a globally minimized MiCR, see Section 4.4
for the details.

Example 10.
Q() : −p(), s(), t(), u().
V1() : −p(), s().
V2() : −t(), u().
V3() : −s(), t().
V4() : −p().
V5() : −u().

R() : −V1(), V2(), V3(), V4(), V5().



R′() : −V1(), V2().
R′′() : −V3(), V4(), V5().

In this example R is the full MiCR of Q using views V1, V2, V3, V4, V5. R′ and
R′′ are two distinct minimized MiCRs for R. R′ has two relational subgoals and
R′′ has three relational subgoals. Thus two distinct minimized MiCRs for a given
CQAC MiCR can have a different number of relational subgoals. Note that our
pruned-MiCR algorithm will output R′ (which is globally minimal) as opposed to
R′′ (which is a minimized MiCR but not a globally minimal minimized MiCR).

4.2 Decidability and Complexity

We now examine the complexity of the problem of computing containing rewrit-
ings. We show that for a class of CQAC problem inputs for which the homomor-
phism property is guaranteed to hold, it is NP-complete to determine whether a
CQAC containing rewriting exists (Section 4.2). Further, we describe algorithm
full+prined-MiCR and prove its correctness (Section 4.3).

We define the language C = ∪4
i=1 Ci, as a union of four sub-languages. C

is a subclass of CQACs and shows good properties with respect to checking
query containment. We denote by cLSI (oLSI, respectively) the closed (open,
respectively) left-semi-interval ACs, and bycRSI (oRSI, respectively) the closed
(open, respectively) right-semi-interval ACs.

Definition 14. (Language C) We say that an AC is of SI type 1,2,3, or 4 if
it is an cLSI, oLSI, cRSI, or oRSI AC, respectively. A query Q is said to belong
to the class Ci, i = 1, 2, 3, 4 iff Q is a CQ that does not have any ACs other
than ACs of SI type i. We define C=∪4

i=1 Ci and say that a query is in class
(or in language) C and is of type i if it belongs to class Ci.

Klug [22] has shown that when two queries are expressed in language C
and both are of the same type then the homomorphism property holds between
them [22].

We now present a theorem, which says that when queries and views are in
one of the four classes: Ci’s (defined in Section 2), then there exists a containing
rewriting that is also in one of the four Ci’s.

Theorem 5. For a query Q and a set of views V, all of which belong to the
class Ci, the following holds: If there exists a containing rewriting R of Q using
V such that R is a UCQAC, then there also exists a containing rewriting R′ of
Q using V, such that R′ belongs to the class Ci.

The proof is by construction of R′ from R.

Proof. Without loss of generality, we assume that the query Q has only left-
semi-interval ACs of the form X < c or X ≤ c. Construct a canonical database
D by freezing each variable in Q to a unique constant and by populating D with



the resulting tuples of the relational subgoals of Q. Specifically, the variables
that appear in the arithmetic predicates of Q are frozen as follows. For any AC
(X θ c) of Q where θ is one of < or ≤, freeze X to a value c− εx, where εx does
not appear in Q or in any view in V and can be chosen to be arbitrarily small.
Because the disjunctive rewriting R contains Q, there must be a conjunct R1 in
R that produces any tuple also produced by Q(D) on the view instance V (D),
such that R1(D) is a superset of Q(D). Therefore, there must be a containment
mapping µ from the relational subgoals of R1 to the predicates and constants
in D that produces the (frozen) head of R1 on D. Because the mapping ν from
the predicates and variables of Q to the tuples and frozen constants in D is
bijective, a composition of µ with ν−1 is also a containment mapping from R1

to the relational subgoals of Q.
We now construct fromR1 a new purely conjunctive rewritingR2 by dropping

any ACs in R1. By construction, R1 v R2. The query Q and the set of views V
are in the same class Ci. All ACs in Rexp

2 come from the expansion of the views
in R2 and are in the same class Ci. Thus, we conclude that the homomorphism
property holds between Rexp

2 and Q. (This conclusion follows from Theorem 4
in [42].)

Thus, to show containment of Q in R2, it remains to prove that AC(Q) ⇒
AC(R2). Recall that all ACs inR2 are left-semi interval inequality comparisons of
the form X θ k because they come from the views. We constructed the database
D by choosing the maximum values for the variables (that is, we chose each
c − εx to be as large a value as possible). Computing R2 on D produces the
(frozen) head of R2. It follows that for each variable X in R2, such that X maps
to a variable Y that occurs in an AC: Y θ c of Q, the range (k) of X is equal to
or exceeds the maximum value c for Y in D, for otherwise computing R2 on D
would not produce the (frozen) head of R2. We conclude that AC(Q)⇒ AC(R2).
Thus, R2 is R′ in the statement of the theorem.

(The only exception to AC(Q) ⇒ AC(R2) could be when Q has an AC
Z ≤ c. Because Z is frozen to c − δ, it could be accepted by R2 having an AC
T < c, where µ(T ) = Z. In this case, the implication (Z ≤ c)⇒ (Z < c) does
not hold. However, this case is precluded by the condition that the ACs in Q
and V belong to a single class Ci and can thus only contain either ≤ or < but
not both. Therefore, R2 must be having an AC T ≤ c, where µ(T ) = Z. Now,
the implication (Z ≤ c)→ (Z ≤ c) holds trivially.)

Theorem 6. Given a CQAC query and a set of CQAC views, it is decidable
whether there exists a UCQAC containing rewriting that is a UCQAC. Further-
more, there exists an algorithm for computing a MiCR.

We now turn our attention to special cases. We show that the problem of
finding a containing rewriting of a query using views that are expressed in one
of the four languages Ci indicated above is NP complete.

Theorem 7. Given (1) a query Q whose relational predicates belong to a set
of predicates P , (2) a set of views V such that all views in V have relational
predicates only from P , and given that (3) Q and V are expressed using the same



language Ci in C, it is NP complete to decide whether there exists a containing
rewriting of Q using V in the language UCQAC.

Proof. The proof that the problem is in NP uses the result of Lemma 2. If the
answer to the question of whether there exists a containing rewriting is “yes”,
then the certificate is a containing rewriting together with a containment map-
ping from the expansion of the rewriting to the query. If the size of the rewriting
is polynomial then the size of the containment mapping is also polynomial and
checking that it is a containment mapping can be done in polynomial time be-
cause the homomorphism property holds. It remains to be proven that the size
of the rewriting is polynomial. We do so in Lemma 2; see the statement and
proof of the Lemma after the end of this proof.

NP-hardness is by reduction from CQ containment and is a consequence of
the following theorem.

Theorem 8. Let Q be a CQ query, and let V be a set of CQ views. It is NP
hard to decide whether there exists a safe containing rewriting in the language
of UCQACs of Q using V.

Proof. The problem is NP-hard: By reduction from CQ containment. Given
queries Q1 and Q2, we construct Q′1 and Q′2: The head in both is p(X) such that
p and X do not appear in Q1 and Q2. The body of Q′1 and Q′2 each contain all
the subgoals of Q1 and Q2 respectively and a new predicate p′(X, ti) where t1 is
the tuple of variables in the head of Q1 and t2 is the tuple of variables in the head
of Q2 respectively. Then Q2 is contained in Q1 iff Q′2 has a containing rewriting
which uses as view Q′1. To prove, we need to argue that such a rewriting would
use only one copy of the view and one copy of the query. This is easily shown by
observing that Q′1 is the only view. Q′1 has the variable X in the head. Thus, all
subgoals in a containing rewriting must be Q′1(X) modulo variable renamings of
X. Any rewriting must have Q′1(X) in the body in order to be safe because there
is no other view and no different head homomorphisms of Q′1 is possible. If the
view has conjunctions of Q′1 with itself, it can be rewritten with only one copy
of the view. Similarly, if the query has multiple copies of Q′2, it is equivalent to
a query with one copy of Q′2. This is again because X is the only variable in the
head of Q′2, and thus, there is only one subgoal Q′2(X) that can be in the query,
modulo variable renamings. The additional copies of Q′2(X) can be removed.

For safe containing rewritings, the following lemma says that it is possible to
have a containing rewriting with a specific bound on its size:

Lemma 2. If there exists a safe CQAC rewriting R of a CQAC query Q, Q v
Rexp, then there exists a safe CQAC rewriting R′ of Q, Q v R′exp, such that the
number of viewheads in R′ is less than or equal to the arity of the head of Q.

Proof. We prove this by constructing the required R′. R′ is obtained from R
as follows: (1) drop all arithmetic predicates from R, and (2) for each variable
X that occurs in the head of R, choose to retain exactly one viewhead, say
V , that occurs in the body of R, where viewhead V is such that X occurs in



it. Drop all other viewheads from the body of R to obtain the new R′. By
construction, R′ has at most n viewheads in its body, where n is the number of
unique distinguished variables that occur in R, that is, n is basically the arity of
the head of R, which is identical to the arity of the head of Q. Furthermore, we
know that R′ is safe, since the process of construction ensures that each variable
that occurs in the head of R′ also occurs in one of the viewheads in the body of
R′. Now, the subgoals in the body of R′ are a subset of the subgoals in the body
of R, hence the subgoals in the body of R′ exp are also a subset of the subgoals
in the body of Rexp. There is a identity containment mapping I from the body
of R′exp to that of Rexp. Because, Q v Rexp, there exist containment mappings
µi from Rexp to Q, such that

AC(Q)⇒ ∪iµi(AC(Rexp)). (1)

By composing I with µi, we get containment mappings νi = µi (because I
is an identity mapping) from R′exp to Q. Now, we need to show AC(Q) ⇒
∪i(AC(R′exp)) to establish that Q v R′exp. Note that if an AC appears in R′exp,
it also appears in Rexp (by construction). Therefore, from Equation 1, we have
Q v R′exp and thus, Q v R′exp.

For all boolean queries, the query Q() : −, which says that Q is always true,
is a safe containing CQAC. Note that this is consistent with Lemma 2 above,
because the number of variables in the head of Q and the number of subgoals in
its body is the same (both are zero).

It turns out that a MiCR is unique up to equivalence as expansions.

Theorem 9. Under the CWA, and for queries and views in the same language
Ci in C, the MiCR is unique up to equivalence as expansions.

Proof. Let R1 and R2 be two UCQAC MiCRs of query Q using the set of views
V, such that R1 and R2 are not equivalent as expansions. Since R1 is minimally
containing, by definition Rexp

2 is not contained in Rexp
1 . Similarly, Rexp

1 is also
not contained in Rexp

2 . Consider all canonical databases of Q. For each such
canonical database Di, let ti be the corresponding tuple obtained from the head
of Q. Now let r1i be a CQAC in the UCQAC R1, such that r1i produces ti on
Di. Note that since R1 is a containing rewriting, such r1i must exist. Similarly
let CQAC r2i in UCQAC R2 produce ti on Di. Since the query and views are
in a language in C, there must be a single mapping from the variables and
constants in r1exp

i to the constants in Di that produced ti. Moreover since Di is
obtained by freezing the variables in Q to corresponding constants, there must
also exist a corresponding mapping from the variables and constants in r1exp

i

to the variables and constants in Q. Let µ1i be this mapping from r1exp
i to Q.

Similarly, let µ2i be the mapping from r2exp
i to Q. Replace each distinguished

variable in r1i by its image under µ1i and each distinguished variable in r2i

by its image under µ2i and construct the CQAC ri by conjoining the bodies
of r1i and r2i. Di specifies a total order on the variables and constants in Q.
Depending upon which of these variables and constants appear in ri, add to ri



all applicable ACs that are derived from Di and that involve the variables and
constants in ri. If Di specifies that two variables in the head of ri are equal, then
equate those variables. The ri thus obtained is a containing rewriting of Q that
is contained in each of r1i and r2i. Let the UCQAC R be obtained by taking
the union of the ri’s constructed for all possible Di’s. Thus R is a containing
rewriting of Q using V, but it is contained in both R1 and R2, which contradicts
our assumption that rewritings R1 and R2 are minimally containing.

Theorem 9 shows that for a given query and set of views, if R1 and R2 are
both MiCRs, then it is necessary that R1 and R2 are equivalent as expansions.
However, note that for contained rewritings, if R1 and R2 are both MCRs, then
it is not necessary that R1 ≡ R2.

4.3 The full+pruned-MiCR Algorithm

In this subsection, we discuss in detail the working of the full-MiCR, pruned-
MiCR, and CB-MiCR algorithms. The bucket-construction procedure used by
pruned-MiCR is further described through the pseudocode in Algorithm 2 and
through Example 11.

The pruned-MiCR Algorithm

The pruned-MiCR algorithm accepts on input a CQAC query Q, and a set
of CQAC views V, and returns CQACs R and R′ defined in terms of V, such
that R is a MiCR and R′ is a minimized MiCR of Q using V. Since pruned-
MiCR uses a bucket strategy that constructs only some of the buckets (rather
than constructing all buckets) it may not always be able to find the minimized
version R′ of the MiCR. However, it always finds the MiCR R itself, on all inputs.
Algorithm 2 gives the pseudocode of pruned-MiCR and Example 11 illustrates
the bucket forming strategy that it uses.

The pruned-MiCR algorithm starts by initializing R, so that its head is iden-
tical to the head of Q, and its body contains no subgoals. Then it examines
one-by-one each view V in V. For each containment mapping µ from the rela-
tional subgoals in V to the relational subgoals in Q, pruned-MiCR constructs
h(V ) from V , where the function h is such that it replaces each distinguished
variable X in V , by its image µ(X) under mapping µ. The algorithm then con-
structs ac, which is a conjunction of some ACs from Q. An AC from Q is included
in ac iff all variables in that AC appear in h(V ). It then checks the implication
AC(Q) ⇒ µ(AC(h(V ))), that is, it checks if the ACs of Q imply the ACs of
h(V ). If this is true, it conjoins all the subgoals in h(V ) and the subgoals in ac,
with the subgoals that are already in R, thus forming a new R. Once all the
given views have been processed in this way, the algorithm checks if every head
variable of Q is available in at least one relational subgoal in the body of R. If
this is true, then the CQAC whose body consists of the existing subgoals in R,
and whose head is identical to the head of Q, is a MiCR. We call this the full



MiCR of Q using V, and the part of the algorithm till this point is also called
the full MiCR algorithm. Otherwise, the algorithm declares that there exists no
safe containing rewriting of Q using V, and stops.

If a full MiCR R has been found, the pruned-MiCR algorithm proceeds with
its bucket-forming strategy. For every relational subgoal gr in every h(V ) in R,
and for every subgoal gq in Q that gr maps to, pruned-MiCR tries to insert
V ′, which is the head of that h(V ) conjoined with the ac for that h(V ), into
appropriate buckets as follows. Pruned-MiCR compares gr with gri , for all gri ’s
for which it has previously constructed a bucket (gq, gri

) involving the same
query subgoal gq. If any gri

is strictly more restrictive than gr (i.e. if gr can map
to gri

in a containment mapping), then the flag constructNewBucket for subgoal
gr (which was initialized to true), is now made false. However, if instead for any
gri , it finds that gr is strictly more restrictive than that gri , then the bucket
(gq, gri) for that gri is deleted. Finally, if there exists some gri which is exactly
as restrictive as gr, then V ′ is inserted into the existing bucket (gq, gri

) and
flag constructNewBucket is made false16. In the end, if constructNewBucket
is still true, then pruned-MiCR creates a new bucket denoted by (gq, gr), and
inserts V ′ into that new bucket. Once pruned-MiCR has finished processing all
relational subgoals in all h(V )’s, it runs the minimum-set-cover algorithm over
all the buckets. Let R′ be the conjunction of exactly those V ′s that are in the
smallest set of V ′s that can represent all buckets (i.e. R′ is a conjunction of
the V ′s that are returned as answer by the minimum-set-cover algorithm). If
the expansion of R′ is contained in the expansion of the full MiCR R, then
the pruned-MiCR algorithm is able to provide the user with R′, which is the
minimized MiCR of Q using V. Otherwise, it provides the user with only the full
MiCR R that was obtained earlier.

The CB-MiCR Algorithm

The pruned-MiCR algorithm is able to find the full MiCR on all inputs and
is also able to find the minimized MiCR on some inputs. In order to have an
algorithm which also finds the minimized MiCR on all inputs, we developed the
CB-MiCR algorithm, which does a simple exhaustive search of all subsets of
the set of relational subgoals in the full MiCR. The obvious tradeoff involved is
that CB-MiCR, on account of the exhaustive search that it does to guarantee
the generation of a minimized MiCR, typically runs slower than pruned-MiCR,
which uses a more sophisticated bucket-strategy.

Both the CB-MiCR algorithm and the pruned-MiCR algorithm, initially ap-
ply the same steps (i.e. the full MiCR algorithm) that are described in Section 4.3
in the context of pruned-MiCR. However, once the full MiCR R has been found,
the two algorithms apply different strategies in obtaining the minimized MiCR

16 However, if the head of the h(V ) which corresponds to gr contains at least one head
variable which is not present in the head of the h(V ) which corresponds to gri , then
constructNewBucket is not made false, and V ′ is not inserted into that bucket.



R′ from R. CB-MiCR adopts the naive approach of forming candidates by look-
ing at all possible subsets of the relational subgoals in R. It considers these
subsets in increasing order of the size of the subsets. If any candidate has an ex-
pansion that is equivalent to the expansion of the full MiCR, then the CB-MiCR
algorithm declares this candidate to be the minimized MiCR R′, and stops. In
the worst case, CB-MiCR has to consider all subsets up to the largest subset,
which consists of all the subgoals from R. This is the case in which the minimized
MiCR happens to be the same as the full MiCR, that is, R′ is R itself.

An example illustrating bucket construction in pruned-MiCR

Example 11.
Q(X,Z) :- p(X,Y, Y,X,X), s(Z,Z) Z < 3.
V1() :- p(X1, A1, B1, X1, C1).
V2(X2) :- p(X2, A2, B2, X2, C2).
V3(X3) :- p(X3, A3, B3, X3, X3).
V4(X4) :- p(C4, A4, B4, X4, X4).
V5(B5) :- p(A5, Y5, Y5, B5, C5).
V6(Z6) :- s(Z6, T6).
R(X,Z) :- V1(), V2(X), V3(X), V4(X), V5(X), V6(Z), Z < 3.
R′(X,Z) :- V3(X), V5(X), V6(Z), Z < 3.

In Example 11, suppose we are trying to find the full MiCR and the minimized
MiCR of the query Q using the set of views V ={V1, V2, V3, V4, V5, V6}.

Computing the full MiCR

As outlined in Section 4.3 and in Algorithm 2, the pruned-MiCR algorithm
initializes R so that its head is identical to the head of Q and its body contains
no subgoals (that is, R is initially set to R(X,Z) :–). Pruned-MiCR then ex-
amines one-by-one all views in V. For each view V in V, it tries to discover all
possible h(V )’s resulting from this V that can be added to R. In Example 11,
on examining V1, V1() gets added to R. Similarly, for V2 the pruned-MiCR al-
gorithm adds V2(X). Also, for V3, V4, and V5 it adds V3(X), V4(X), and V5(X),
respectively. For V6 it adds V6(Z) along with the AC Z < 3. Thus, the resulting
R has six relational subgoals and one arithmetic subgoal. Note that Q has two
variables in the head, X and Z, and each of these is available in at least one
relational subgoal in the body of R. Thus, R is the full MiCR of Q using V.

Forming the buckets

V1: For view V1, for the view subgoal p(X1, A1, B1, X1, C1) and the query sub-
goal p(X,Y, Y,X,X), pruned-MiCR constructs a new bucket and inserts V1() as
an entry in that bucket.

V2: For view V2, for the view subgoal p(X2, A2, B2, X2, C2) and the query sub-
goal p(X,Y, Y,X,X), pruned-MiCR constructs a new bucket and inserts V2(X)



Algorithm 2: The full+pruned-MiCR algorithm.
Input : CQAC query Q; set of CQAC views V
Output : the full MiCR R of Q in terms of V, the globally minimal minimized MiCR R′

1. //Construct the full MiCR R
2. Initialize R to have a head that is identical to the head of Q and a body that is empty;
3. for each view V in V do

4. for each containment mapping µ from the relational subgoals in V to
the relational subgoals in Q do

5. construct h(V ) by replacing each distinguished variable X in V by µ(X);
6. ac← null;
7. for each AC aci ∈ AC(Q) do

8. if all variables in aci appear in h(V ) then
9. ac← ac ∧ aci;

10. if AC(Q)⇒ µ(AC(h(V ))) then
11. conjoin h(V ), ac with the existing body of R;

12. if there is some variable in the head of Q that is not present in any
relational subgoal in R then

13. output that there exists no safe MiCR of Q using V and stop;

14. //Construct buckets for approximate containment checking
15. for each relational subgoal gr in each h(V ) in R do

16. for each subgoal gq in Q that gr maps to do
17. V ′ ← h(V ), ac; constructNewBucket← true;
18. for every bucket (gq, gri) that already exists for gq do

19. if gri is more restrictive than gr then
20. constructNewBucket← false;

21. if gr is more restrictive than gri then
22. delete the bucket (gq, gri);

23. if gri and gr are equally restrictive then
24. insert V ′ in the existing bucket (gq, gri);
25. constructNewBucket← false;

26. if constructNewBucket is true then
27. create a new bucket (gq, gr) with one entry V ′ in it;

28. Run a minimum-set-cover algorithm over all the buckets to select a smallest-sized
set of V ′ entries such that at least one entry from each bucket has been selected;
29. Construct CQAC R′ by taking a conjunction of all the selected V ′ entries;
30. if (R′)exp v Rexp then

31. Output R as the full MiCR and R′ as the globally minimal minimized MiCR;

32. else
33. Output R as the full MiCR;



as an entry in that bucket. Although V2 covers the p-subgoal in Q exactly as
tightly as V1 covers it, that is, although both V1 and V2 are equally restrictive,
V2 contributes the additional head variable X which is not contributed by V1.
Hence, the pruned-MiCR algorithm constructs a new bucket, rather than insert-
ing V2(X) in the same bucket that already contains V1().

V3: For view V3, for the view subgoal p(X3, A3, B3, X3, X3) and the query sub-
goal p(X,Y, Y,X,X), pruned-MiCR constructs a new bucket and inserts V3(X)
as an entry in that bucket. It also deletes the previous two buckets that it has
created, since V3, being more restrictive than V1 and V2, covers the p-subgoal in
Q more tightly than either of them.

V4: For view V4, for the view subgoal p(C4, A4, B4, X4, X4) and the query sub-
goal p(X,Y, Y,X,X), pruned-MiCR does not construct any new bucket since
the existing bucket which contains V3(X) already covers the p-subgoal in Q in
a tighter way.

V5: For view V5, for the view subgoal p(A5, Y5, Y5, B5, C5) and the query subgoal
p(X,Y, Y,X,X), pruned-MiCR constructs a new bucket and inserts V5(X) as an
entry in that bucket. The MiCR algorithm sees that currently there is only one
bucket for the p-subgoal in Q. But V5(X) has the same value for the second and
third arguments in its p-subgoal, and so it covers a constraint which the existing
bucket does not cover. Hence a new bucket is created and V5(X) is inserted into
it.

V6: For view V6, for the view subgoal s(Z6, T6) and the query subgoal s(Z,Z),
pruned-MiCR constructs a new bucket and inserts V6(Z), Z < 3 as an entry in
that bucket.

Minimal Set Cover and Finding the Minimized MiCR

At the end of the bucket-forming procedure, finally there are three buckets
and the minimum-set-cover routine returns {V3(X), V5(X), V6(Z), Z < 3} as
answer, so pruned-MiCR constructs

R′(X,Z) :- V3(X), V5(X), V6(Z), Z < 3.
Since R′ is obtained by deleting some subgoals from R, we know that R v R′,
and hence Rexp v (R′)exp. On checking for containment in the other direction,
pruned-MiCR finds that (R′)exp v Rexp is also true. Thus, (R′)exp ≡ Rexp, and
so pruned-MiCR returns R′ as the globally minimal minimized MiCR.

The CB-MiCR algorithm works identical to the pruned-MiCR algorithm ex-
cept that instead of constructing and using buckets, it considers all subsets of
the relational subgoals of R. It first considers all subsets of size one, and does
not find any rewriting whose expansion is equivalent to the expansion of R. It
then considers all subsets of size two, and so on. When it is considering subsets
of size three, it considers {V3(X), V5(X), V6(Z), Z < 3}, and determines that



the expansion of this rewriting is equivalent to the expansion of the full MiCR.
Hence, it returns

R′(X,Z) :- V3(X), V5(X), V6(Z), Z < 3
as the minimized MiCR.

We now show an example where our algorithm is incomplete. For example,
consider the query Q and the four views V 1, V 2, V 3, and V 4.

Example 12.
Q :- p(X,X), r(X,X).
V 1(X) :- p(X,X).
V 2(X) :- p(X,Y ), r(X,Y ).
V 3() :- r(X,X).
V 4() :- p(X,Y ).
R :- V 1(X), V 2(X), V 3(), V 4().

R is a MiCR of Q. Notice that R is not a minimized MiCR because V 4 is
redundant in R. The equality of the variables in the p subgoal is covered by V 1,
the equality of the variables in the r subgoal is covered by V 3, and the equality of
the first variable in the p subgoal with the first variable in the r subgoal and the
equality of the second variable in the p subgoal and the second variable in the r
subgoal are covered by V 2. However, because the pruned-MiCR algorithm only
checks for shared variable constraints within a subgoal (due to the process of
bucket construction), it will deem V 1 to be covering the p-subgoal more tightly
than V 2 and V 3 to be covering the r-subgoal more tightly than V 2 and V 2 will
not be entered in either bucket. Similarly, view V 1 covers the p-subgoal more
tightly than view V 4 and thus V 4 is deleted. Consequently, the pruned-MiCR
algorithm generates R′ : −V 1(X), V 3() as a minimization of R and checks for
the equivalence of R and R′. Because they are not equivalent, the algorithm will
undo our attempted minimization, reject R′ and return the non-minimal R.

Complexity of pruned-MiCR

We now discuss the complexity of the pruned-MiCR algorithm. Let r be the
maximum number of relational subgoals in Q and in any view in V. Let p be
the number of relational subgoal in the full-MiCR R that is given as input to
pruned-MiCR. Thus the expansion of R has at most p × r subgoals. Hence the
maximum possible number of buckets is p × r × r. The simplest minimum-set-
cover routine which examines all subsets of the set of buckets takes at most
2p×r×r time. The algorithm needs to perform a total of just one containment
test (as its final step), so this time can be taken as constant. Thus, the overall
time is O(2p·r·r).



4.4 Correctness of the MiCR algorithm

Theorem 10. The full-MiCR part of algorithm full+pruned-MiCR is sound
and complete for all problem inputs for which the homomorphism property holds
between the expansion of the rewriting and the input query.

Note that the full MiCR algorithm is applicable only in cases where the
homomorphism property holds between the expansion of the rewriting and the
query.

Theorem 11. (Soundness Theorem for Full-MiCR) Given a CQAC query
Q and CQAC views V. For any CQAC R (defined in terms of V) that is output
by the full-MiCR subroutine, R is a MiCR of Q using V.

Proof. Let R be a rewriting generated (after line 11) by the full-MiCR algorithm.
We need to show that Rexp contains Q. We show that there exists a containment
mapping µ from Rexp to Q that satisfies AC(Q)⇒ µ(AC(Rexp)). The mapping
µ can be constructed by composing the individual partial mappings in line 4.
There is a containment mapping µi from each h(Vi) added to R constructed in
line 4. By construction, each distinguished variable in h(Vi) that appears in R
is replaced by µi(X). Thus, µ maps each variable in R to itself in µ(Rexp). Each
non-distinguished variable Y in each h(Vi) is unique (does not appear in any
other h(Vi)) and µ(Y ) = µi(Y ). Thus, µ is a containment mapping from Rexp

to Q.
Now, we need to show AC(Q)⇒ µ(AC(Rexp)). The arithmetic predicates in

AC(Rexp either (i) appear in R or (ii) are obtained by the expansion of a view in
R. (i) By construction, each arithmetic comparison ac appearing in R is obtained
from AC(Q) (lines 7-9), and µ maps all variables appearing in R to themselves.
Thus, AC(Q)⇒ µ(ac). (ii) Each AC, aj appearing in the expansion of R but not
in R must have been obtained from the expansion of some view in R. For each
h(Vi) in R, in (line 10-11), the algorithm checks that AC(Q) ⇒ µi(AC(h(Vi))
for all i. Again, for each X appearing in the expansion of the rewriting R,
µ(X) = µi(X) by construction as shown in the previous paragraph. And, µi(aj)
appears in µi(h(Vi) (for some i) and is implied by AC(Q). Thus, AC(Q)⇒ µ(aj).
Therefore, all ACs in Rexp are implied by AC(Q).

Theorem 12. (Completeness Theorem for Full-MiCR) Given a CQAC
query Q and CQAC views V, let P be a CQAC query defined in terms of V
such that there exists a single containment mapping µP from P exp to Q that
establishes Q v P exp. Then (1) the output of the full-MiCR subroutine is not
empty, and (2) denoting by R the CQAC output of the full-MiCR subroutine we
have that Rexp v P exp.

Proof. 1. Let s be a relational subgoal in P . Let µs be the mapping which is
obtained from µP by restricting its domain to those subgoals in P exp which are
in the expansion of s. Thus, µs is a containment mapping from the expansion of
s to Q. The predicate name of s is the name of one of the views, say view v, in
V. Since the full-MiCR subroutine examines each view in V (line 3 in Algorithm



2) and each possible containment mapping (line 4 in Algorithm 2), it must have
examined v and must have added s as a relational subgoal in R. This proves (1).

2. Now, let acs be the ACs that are conjoined with s while adding it to R (line
11 in Algorithm 2). acs are a subset of the ACs of Q. Hence, the expansion of
s conjoined with acs forms a CQAC that contains Q. This reasoning is true for
every relational subgoal s in P , therefore Rexp v P exp

0 , where P0 is a conjunction
of all the relational subgoals in P .

3. Since, Q v P exp, the ACs in P are not more restrictive than the ACs of Q,
that is for any variable, say X, in P exp, the values which X is allowed to take
in P exp cannot be more restrictive than the values that the image of X under
P is allowed to take in Q. Also, the extra ACs that are added to R (line 11
in Algorithm 2) are taken exactly as they are from the body of Q. Hence, the
values which X is allowed to take in P exp cannot be more restrictive than the
values of the corresponding variable in Rexp as well. Thus, Rexp v P exp.

Theorem 13. (Soundness Theorem for Pruned-MiCR) Given a CQAC
query Q, CQAC views V, and CQAC R (R is defined in terms of V and there
exists a single containment mapping µR from Rexp to Q that establishes Q v
Rexp) that is output by the full-MiCR subroutine. For any CQAC R′ defined
in terms of V that is output as the globally minimal minimized MiCR by the
pruned-MiCR algorithm (1) (R′)exp ≡ Rexp, and (2) there does not exist any
CQAC R′′ defined in terms of V for which (R′′)exp ≡ Rexp and for which the
number of relational subgoals in R′′ is strictly less than the number of relational
subgoals in R′.

Proof. 1. By construction, the head of R′ is identical to the head of R and the
subgoals in R′ are a subset of the subgoals in R. Hence, Rexp v (R′)exp. Since
R′ is output by the pruned-MiCR algorithm, it has been explicitly checked (in
line 30 of Algorithm 2) that (R′)exp v Rexp is true. Hence, (R′)exp ≡ Rexp and
(1) is proved.

2. The proof of (2) follows from the correctness of the minimum-set-cover algo-
rithm.
(i) At the end of the bucket-forming procedure of the pruned-MiCR algorithm,
each bucket represents a condition17 or requirement that holds true in the full
MiCR, and must therefore also hold true in a minimized MiCR. Suppose that
when picking entries from buckets in order to construct the minimized MiCR,
we do not pick any entry from a particular bucket B. Then the condition repre-
sented by bucket B will not hold in the resulting rewriting. Hence, the resulting
rewriting will not be a MiCR since its expansion will not be equivalent to the
expansion of the full MiCR.
17 For example, for a bucket labeled (p(X,X, Y ), p(A,A,B)) the condition is that the

first two arguments of the p-subgoal have the same value.



(ii) The minimum-set-cover algorithm picks not just any set cover, but it picks
the set cover of the smallest possible size. That is, the answer returned by the
minimum-set-cover algorithm consists of the smallest possible number of bucket
entries that are needed in order to cover all buckets.

Therefore, if we are looking for a rewriting, say R′′, such that R′′ that has
at least one entry from each bucket, and such that the number of relational
subgoals in the body of R′′ is strictly less than the number of relational subgoals
in the body of R′, then by (i) and (ii) above, we conclude that such an R′′ does
not exist.

Thus, when the pruned-MiCR outputs a minimized version which is different
from the full MiCR, then by definition this is the globally minimal minimized
CQAC MiCR for the given query Q using the given viewset V.

Theorem 14. Completeness Theorem for pruned-MiCR (in the MiCR
sense) Given a CQAC problem input (Q,V, R), where R is a CQAC MiCR for
Q using V, let R′ be the (CQAC) output of algorithm pruned-MiCR. Then R′ is
a CQAC MiCR for Q and V.

While being complete in the sense of Theorem 14, algorithm pruned-MiCR is
not complete in the sense that it does not always produce a (globally) minimized
MiCR for its problem inputs. The reason for this behavior is that as discussed
in Section 4.3 pruned-MiCR does not consider shared variables across query
subgoals (that is, variables that occur in two or more subgoals of the query)
while minimizing the MiCR.

5 Variable Types

Checking for containment of two conjunctive queries with arithmetic predicates
requires constructing all possible total orders of the variables and constants in the
two queries’ canonical databases. For n variables and constants, the number of
total orders is O(n!). In practice, even for a very reasonably sized query having 10
variables and constants, the number of total orders becomes prohibitively large.
In this subsection, we explore the question whether we can reduce the number of
total orders that must be checked while checking for containment among CQACs.
The reduction is based on the intuition that it may not make sense to compare a
variable representing “price” and another representing, say, “date”, e.g., “Price1
> Date1”. We explain our observations below after introducing some required
terminology.

We obtain the type of each variable as explained below. For each argument
of each predicate appearing in the body of either query, we assign a distinct
equivalence class. Merge the equivalence classes of arguments that have a shared
variable. If variable X and Y appear in the same AC, then merge the two equiv-
alence classes of the arguments where X and Y appear. We refer to the final
merged equivalence classes as the types of each argument and its corresponding
variable.



Let Q1 and Q2 be two CQACs. Recall that Q1 is contained in Q2 iff: β2 ⇒
µ1(β1) ∨ µ2(β1) . . . The projection of this implication on a type t is obtained
by computing the closure of each of the conjuncts in the lhs and rhs of the
implication and eliminating all ACs that contain variables not of type t from the
implication. We say an AC is of type i only if all variables appearing in the AC
is of type i.

Lemma 3. In the implication I : β2 ⇒ µ1(β1) ∨ µ2(β1) . . ., if the rhs of I
contains an AC of type i, then each disjunct in the rhs of I contains an AC of
type i.

Proof. Each disjunct on the rhs of i is a mapping of the ACs in a single query.
If the rhs of I contains an AC of type i, that must have come from one of the
disjuncts. If one of the disjuncts has an AC of type i, then the query body has
an AC of type i and the mapping of this AC under the different mappings must
produce an AC of type i in each disjunct on the rhs.

Theorem 15. If I : β2 ⇒ µ1(β1) ∨ µ2(β1) . . . holds, then ∀i, projection(I, i)
holds where i is a merged equivalence class constructed from Q1 and Q2.

Proof. Consider a particular type i. On the lhs of projection(I, i), we have all
ACs in the closure of β2 that are of type i. On the rhs of the projection, we
have all ACs of type i in the closure of the rhs conjuncts in I. Assume that
projection(I, i) does not hold. Then, there exists one canonical database on
which the lhs of projection(I, i) holds but none of the disjuncts in its rhs holds.
Along with Lemma 3, this case would imply that there is an AC of type i in
each of the disjuncts of the rhs that does not hold and each disjunct in the rhs
of I has an AC of type i that does not hold. The last statement implies that I
does not hold — a contradiction.

Theorem 15 says that when I holds, its projection implications on each type
holds, however, the reverse is not true. The intuition to why the reverse does
not hold is illustrated by the following example.

Example 13. Consider the two queries:
Q1 : −p(X,Y ), X < 25, Y < 0.
Q2 : −p(X1, X2), p(X3, X4), X1 < 25, X2 = 0, X3 = 25, X4 < 0.

The implication I:

(X1 < 25, X2 = 0, X3 = 25, X4 < 0)⇒ ((X1 < 25, X2 < 0)∨(X3 < 25, X4 < 0))

clearly does not hold because X2 = 0 violates the first disjunct on the rhs and
X3 = 25 violates the second.

Now, consider the query Q1. The two types in it are type(X) and type(Y ).
X, X1, X3 are of type(X) and Y , X2, X4 are of type(Y ). Projecting I on
type(X) produces:

(X1 < 25, X3 = 25)⇒ (X1 < 25) ∨ (X3 < 25)



which holds. Similarly, projecting I on type(Y ) produces

(X2 = 0, X4 < 0)⇒ (X2 < 0) ∨ (X4 < 0)

which holds too.
As this example illustrates, even if all the projection implications on all the

types hold, it does not necessarily imply that the full implication holds.

In case the workload contains many queries where the containment check
fails, the corollary of Theorem 15, Corollary 2 stated below can be used to
resolve these cases faster. Instead of performing the implication check on the
full implication, we can check whether the implication holds on each type. If
the implication does not hold on any one type, then the containment of the two
queries does not hold.

Corollary 2. If projection(I,i) does not hold for any type i, where I is the im-
plication that must be checked to prove the containment of Q2 in Q1, Q2 is not
contained in Q1.

Proof. The corollary follows from Theorem 15. If I was true, then projection(I, i)
for all types i would be true. Because we know that one projection(I, i0), say,
is not true, then I must not be true. If I is not true, the containment does not
hold.

Example 13 shows that even when the rhs of the projection of the implication
on each type holds, the implication itself does not hold. However, if I has only
one AC in the rhs, i.e., if the homomorphism property holds between the two
queries, then the theorem would hold because all the ACs that hold in the rhs
of the projected implications belong together in one disjunct (because the rhs
contains only one disjunct when the homomorphism property holds). Thus, in
this special case, we can check whether the projection of the implication holds
for all types and decide containment based on that.

Theorem 16. The implication I : β2 ⇒ µ(β1) holds iff ∀i, projection(I, i) holds
for each type i in the queries whose containment is being checked.

Proof. Theorem 15 already proves that if I holds then all the projections of I for
each type i in the queries hold. Let all the projections of I for each type i hold.
For any canonical database where the lhs of I holds, the lhs of each projection
of I holds too. Thus, the respective rhs of each projection of I holds. Take the
conjunction of all the rhs of these individual projections. This conjunction is
nothing but the rhs of I and because each conjunct holds, their conjunction
holds. Thus the rhs of I also holds and therefore, I holds.

Thus, in our work (see, e.g., the full+pruned MiCR algorithm in Section 4.3),
where we assume the homomorphism property holds, we can project the impli-
cation on each type and check if the projected implications hold and based on
that decide on the containment of the queries. Because of this improvement, our



algorithm is significantly more scalable than that using a normal containment
checking algorithm.

The techniques identified in this section can be used to reduce the time by
any algorithm that checks for containment among two CQACs. For example,
in our MiCR algorithm, the technique can be applied while containment checks
arise in the following steps: (1) While constructing the full MiCR, the view body
is being checked for containment in the query body, and (2) Before generating
the minimized candidate rewriting, the expansion of the candidate rewriting is
checked to see if it is contained in the expansion of the full MiCR. In Build-
MaxCR, at the stage of finding the rewriting, the algorithm uses its strategy of
constructing summary ACs to bypass any explicit containment checking between
CQACs. However, the techniques described in this section can still be used at
the later stage where the individual CQACs are being added to the UCQAC
answer of Build-MaxCR. When Build-MaxCR is trying to add any CQAC P ′ to
its UCQAC answer P , it can use these techniques to check containment between
CQAC P ′ and each CQAC P ′i that is already in P .

6 Experimental Results

In this section, we report the results of the experimental evaluation of our algo-
rithms. Section 6.1 describes our experiments with the Build-MaxCR algorithm
and Section 6.2 describes our results on the performance of the MiCR algorithms.

For our study, we used randomly generated queries of different shapes, such
as chain queries and star queries [43]. We used the random query generator
implemented in [11] to generate queries and views. This generator enables us
to control the following parameters: (1) the number of subgoals in the queries
and views; (2) the number of variables per subgoal; (3) the number of distin-
guished variables; and (4) the degree to which predicate names are duplicated in
the queries and views. We extended the output from this generator so that the
queries and views could have ACs in addition to relational subgoals. For this pur-
pose we constructed ACs in which the two variables (or a variable and a constant)
and the arithmetic operator in each AC was randomly selected. The algorithms
were implemented in Java and compiled to executables. All experiments were
run on a 2 GHz Pentium M processor running Windows XP Professional with
1 GB RAM and a 60GB hard drive. The run-times were averaged over twelve
executions, after discarding the minimum and maximum readings.

6.1 Experiments on the Build-MaxCR algorithm

In this subsection, we discuss our experiments with the Build-MaxCR algorithm.
Our results show the scalability and runtime of Build-MaxCR for chain and star
queries.

Figures 1 and 2 show the runtime of Build-MaxCR for chain queries and
views. Figure 2 shows that for k = 2, Build-MaxCR has good scalability — it
can handle 600 views in about 10 seconds and 1200 views in about 30 seconds.
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However, for higher values of k, as the size of the CQAC-rewriting templates
becomes larger, the size of MaxCrV ars (the set of variables and constants used
to form MaxCR canonical databases as explained in Section 3.2) also increases.
For |MaxCrV ars| = n there are O(n!) possible total orders, and this explosive
growth in the number of total orders causes Build-MaxCR to have a correspond-
ingly large runtime. However, for even small values of k, Build-MaxCR detects
several multiple-mapping MCRs which cannot be detected by single-mapping
algorithms. For example, the rewriting in Example 2 can be found by Build-
MaxCR even for the low value of k = 1, however it can never be found using
single-mapping algorithms.

Figures 1 and 2 show that for the same number of views and for the same
value of k, Build-MaxCR always terminates earlier when the input query and
views are such that there exists no contained rewriting of the given query using
the given views. As shown in Figure 1, this saves at least 650 milliseconds for
even the smallest input with just 2 views. These savings help lower the average
runtime of Build-MaxCR, since in a real-world setting there may be a number
of inputs for which no contained rewriting can be constructed using the given
views. For example, if the query contains a subgoal with predicate name p, and
if the CQAC-rewriting template being considered by Build-MaxCR does not
contain any view which has a p-subgoal in its definition, then there cannot exist
any mapping from the relational subgoals of Q to the same-name subgoals in the
expansion of the template. In such cases, Build-MaxCR immediately detects that
M = ∅ (as shown in the Build-MaxCR pseudocode in Algorithm 1 and does not
do any further processing for this template. If the input viewset V is such that
none of the views in it have a p-subgoal, then Build-MaxCR correctly detects
that no contained rewriting is possible and terminates immediately without any
further processing.

A single-mapping algorithm would suffice if queries were CQs (rather than
CQACs), or if there were no non-distinguished variables. (If every variable in
every view definition is available in the corresponding viewhead, then it becomes
readily accessible to any algorithm which is trying to add ACs to a CQ-part in
order to form a CQAC that is contained in the query.) However, in practice, it
is not reasonable to expect such special conditions. Many real queries involve
ACs. For example, 19 out of the 22 queries (i.e., more than 85% queries) in
the TPC-H benchmark involve ACs. Similarly, it is also common to have views
with non-head variables. The presence of shared, non-head variables gives rise
to multiple-mapping contained rewritings. The Build-MaxCR algorithm can find
such rewritings, even for low values of k.

Figure 3 shows the Build-MaxCR runtime for star queries and views, for
k = 1 and k = 2. The runtime is almost constant (about 10ms) for k = 1. Figure
4 is an adaptation of Figure 3, with a logarithmic scale on the Y-axis. Similar
to the case of chain queries, for star queries as well, our experiments show that
for low values of k, the Build-MaxCR algorithm scales well.



6.2 Experiments on the MiCR algorithms

We performed experiments to compare the execution time of the pruned-MiCR
algorithm with that of the CB-MiCR algorithm, and we report our results in this
subsection. We measured the scalability of the two algorithms in the number of
views. Not surprisingly, our results also show that it is common for the number
of joins in a minimal MiCR to be significantly lower than the number of joins in
a full MiCR.

Like the pruned-MiCR algorithm, the CB-MiCR algorithm too finds all pos-
sible h(V )’s by considering mappings from the views in V to the query Q.18 After
this stage, the pruned-MiCR algorithm uses its novel strategy to distribute the
view subgoals into buckets, and then constructs a minimal MiCR by ensuring
that each bucket is represented in the rewriting. It tries all subsets of the set
of possible h(V )’s; candidate rewritings are formed by taking the conjunction of
the subgoals in any such subset. The CB-MiCR algorithm considers the same
candidate rewritings. However, in the absence of the MiCR-buckets it is forced
to perform an expensive containment test for each candidate, to check if the
expansion of the candidate is contained in the expansion of the full MiCR (i.e.,
in the conjunction of all h(V )’s). Our experiments demonstrate that the pruned-
MiCR algorithm speeds up rewriting generation, since it eliminates containment
checks by doing an early pruning in the process of generating a minimal MiCR.
Thus the implementations of the two MiCR algorithms essentially differ in their
strategies for testing candidates and make use of the same steps when possible.

In the first set of MiCR experiments, we studied the effect of increasing the
number of views for chain queries. Figure 5 shows the results for a chain query
with ten subgoals. It shows that the execution time of the CB-MiCR algorithm
increases rapidly with an increase in coverage (i.e., the average number of view
subgoals covering each query subgoal). Note that if each query subgoal is covered
by at most one view, the pruned-MiCR algorithm’s early pruning is not used.
However, when there are multiple views covering a query subgoal, the advantages
of the early pruning are substantial. The execution speedup resulting from the
use of the pruned-MiCR algorithm is evident even at low coverage values of up
to 2.

Figure 6 shows that the pruned-MiCR algorithm executes efficiently even
for high coverage values. This is in sharp contrast to the CB-MiCR algorithm,
which takes more than 20000ms even for coverages below 5. The increase in the
run-time of the pruned-MiCR algorithm at higher coverage values is marginal
and stems from the increased time required for forming the MiCR-buckets. In
practice, constructing rewritings in the pruned-MiCR algorithm takes time that
is about linear in the number of buckets. Thus the rewriting-construction phase
does not significantly slow down the overall algorithm execution. The CB-MiCR
algorithm however spends a substantial amount of time in rewriting construction,
because for each candidate it has to do a CQAC containment test to check if the
18 This is equivalent to chasing Q with forward constraints obtained from the views in
V. Each homomorphism on a viewhead from V that gets added to the chase result
of Q is analogous to some h(V ) obtained by the pruned-MiCR algorithm.
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Fig. 7. Chain Queries: Scalability up to 1000 views.

candidate is contained in the full MiCR. If the full MiCR contains m subgoals,
then the CB-MiCR algorithm potentially has to perform 2m such containment
tests, as would be required if the full MiCR itself turns out to be the minimal
MiCR. The scalability of the pruned-MiCR algorithm makes it useful in finding
minimal MiCRs for practical cases involving a large number of applicable views.
As seen in Figure 7, for a chain query with 10 subgoals and for chain views
containing between 2 and 6 subgoals, the algorithm scales well and can handle
even 1000 views in under 10 seconds.

Figures 8 and 9 show the runtime of CB-MiCR and pruned-MiCR on star
queries and views. Figure 8 considers 1 to 10 views and Figure 9 considers
up to 500 views. We used a query with one fact table that was joined with 5
dimension tables for a total of 6 relational subgoals. The views had between 2
and 8 relational subgoals.

Figure 10 shows the runtime of the pruned-MiCR algorithm for chain queries
with and without the containment test which forms the last step of the algorithm.
For coverage values of about 7 and below, the extra containment test does not
appreciably slow down the algorithm.

In generating the MiCR of a query using views, every time that a new view
is made available, it may generate 0 or more h(V )’s. And every time that a h(V )
is made available: (i) the number of joins in the MiCR increases by 1, to attain a
new value of say n, and (ii) the number of joins in the minimal MiCR increases by
1, decreases by any amount, or remains the same, to take on some value between
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Number of joins Number of 
available 
views 

Query/Views Full 
MiCR 

Minimal 
MiCR 

Coverage 

 Q() :- p(A, B), r(B, C), s(C, D), t(D, E)    

1 v1() :- p(A, B) 0 0 0.25 

2 v2() :- r(B, C) 1 1 0.50 

3 v3() :- p(A, B), r(B, C) 2 0 1.00 

4 v4() :- s(C, D) 3 1 1.25 

5 v5() :- r(B, C), s(C, D) 4 1 1.75 

6 v6() :- t(D, E) 5 2 2.00 

7 v7() :- s(C, D), t(D, E) 6 1 2.50 

8 v8() :- r(B, C), s(C, D), t(D, E) 7 1 3.25 

9 v9() :- u(L, M) 7 1 3.25 

10 v10() :- p(A, B), r(B, C), s(C, D), t(D, E) 8 0 4.25 

11 v11() :- s(C, D), u(L, M) 9 0 4.50 

12 v12() :- r(B, C), t(D, E) 10 0 5.00 

 

Fig. 12. Example query and views.

0 and n. In the worst case, the maximum value that n can take is one less than
the sum, over all query subgoals, of the number of h(V )’s covering that subgoal.
The number of joins, both in the full and in the minimal MiCR, depends upon
the number of views in the input. In general, a plot of the number of joins versus
the number of available views may take any shape subject to conditions (i) and
(ii) above, and normally the number of joins in a minimal MiCR is significantly
lower than the number of joins in the full MiCR. In particular, once all query
subgoals have been covered, the number of joins in a minimal MiCR can only
decrease or remain the same, whereas the number of joins in the full MiCR go on
increasing with every new h(V ). Figure 11 illustrates these ideas for the simple
example of Figure 12.

Each bucket constructed by the pruned-MiCR algorithm represents a single
subgoal from the given query. However, the presence of conditions such as shared
variables may require the minimization procedure to construct multiple-subgoal
buckets as well, in order to ensure that the correct minimal MiCR is obtained
on all inputs. Such an increase in the number of buckets would increase the
complexity and run-time of the algorithm. As a tradeoff, the pruned-MiCR al-
gorithm represents only the single-subgoal buckets and these are sufficient to find
the minimal-MiCR of several commonly encountered queries. However, since the
pruned-MiCR algorithm does not construct multiple-subgoal buckets, there may
be certain inputs on which it may not be able to find the minimal MiCR. (How-
ever note that it always finds the full MiCR on all inputs.) To ensure that the
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Fig. 13. The pruned-MiCR algorithm always finds the full MiCR. In addition, it cor-
rectly finds the minimal MiCR on 96% of the input sets.

minimized CQAC determined by the pruned-MiCR algorithm is equivalent to
the full MiCR, the pruned-MiCR algorithm performs one containment check in
its final step. We performed experiments to validate our claim that the buckets
created by the pruned-MiCR algorithm can correctly find the minimized CQAC
(i.e., the minimal MiCR, which is equivalent to the full MiCR) in most cases
in practice. As shown in Figure 13, from a collection of over 1200 CQAC chain
queries containing between one and ten relational subgoals, we created 100 sets
of inputs, each consisting of one CQAC query and about 250 CQAC views. In
only 4 of the 100 input sets, running the pruned-MiCR algorithm produced a
minimized CQAC that was not equivalent to the full MiCR. In such cases the
pruned-MiCR algorithm cannot find the minimal MiCR. Instead it outputs the
full MiCR (which is the correct MiCR of the given query using the given views,
except that it is not in the minimized form). Out of the remaining 96 cases,
there were 3 cases in which there existed no MiCR of the given query using the
given views (and this was correctly determined by the pruned-MiCR algorithm),
54 cases in which the minimal MiCR was the same as the full MiCR (and the
pruned-MiCR algorithm was able to find it correctly), and 39 cases in which
the minimal MiCR was different from the full MiCR (and in these cases too the
pruned-MiCR algorithm was able to correctly find the minimal MiCR). Thus
the choice of buckets that is made by the pruned-MiCR algorithm proved to be
appropriate for finding the minimal MiCR in the case of over 95% of the input
sets.



Thus in summary, our experiments have shown (i) that in addition to al-
ways finding the full MiCR, the pruned-MiCR algorithm also correctly finds the
minimal MiCR on many of the inputs, (ii) that for chain queries, the pruned-
MiCR algorithm outperforms the CB-MiCR algorithm significantly due to its
early pruning, and (iii) that the pruned-MiCR algorithm scales gracefully with
an increase in the number of views and is able to generate rewritings within a
reasonable time for even a very large number of views.
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