
Improving Automation in Developer Testing: State of the Practice

Tao Xie

Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

xie@csc.ncsu.edu

Abstract

Developer testing, a common step in software develop-

ment, involves generating desirable test inputs and checking

the behavior of the program unit under test during the exe-

cution of the test inputs. Existing industrial developer test-

ing tools include various techniques to address challenges

of generating desirable test inputs and checking the behav-

ior of the program unit under test. This paper presents an

overview of techniques implemented in industrial developer

testing tools to address challenges in improving automation

in developer testing. These techniques are summarized from

two main aspects: test efficiency (e.g., with a focus on cost)

and test effectiveness (e.g., with a focus on benefit).

1 Introduction

Software testing is the most widely used approach for

improving software quality in practice. Among various

types of testing, developer testing (where developers test

their code as they write it, as opposed to testing done by

a separate quality assurance organization) has been widely

recognized as a valuable means of improving software qual-

ity. Developer testing, often in the form of unit testing,

helps developers to (1) gain high confidence in the the pro-

gram unit under test (e.g., a class) while they are writing

it and (2) reduce fault-fixing cost by detecting faults early

when they are freshly introduced in the program unit.

The popularity and benefits of developer testing have

been well witnessed in industry; however, manual developer

testing is known to be labor intensive. In addition, manual

testing is often insufficient in comprehensively exercising

behavior of the program unit under test to expose its hidden

faults. For example, due to program complexity and limited

human-brain power, developers may not be capable of com-

ing up with certain test inputs (such as corner or special test

inputs) that can expose faults in the program unit.

To address the issue, one of the common ways is to con-

duct automated developer testing by using tools to automate

activities in developer testing. Developer testing activities

typically include generating test inputs, creating expected

outputs, running test inputs, and verifying actual outputs.

Developers can use existing testing frameworks such as JU-

nit [9] to write unit-test inputs and their expected outputs.

Then JUnit can automate running test inputs and verifying

actual outputs against the expected outputs.

To reduce the burden of manually creating test inputs,

developers can use industrial testing tools to generate test

inputs automatically. But then expected outputs for these

test inputs are still missing, and it is infeasible for de-

velopers to create expected outputs for this large number

of generated test inputs. Specifications [12] can be used

to improve the effectiveness of generating test inputs and

check program behaviors when running test inputs without

expected outputs. Without requiring specifications (which

may be difficult for developers to write), testing tools can

use code coverage criteria such as statement coverage and

block coverage to select a subset of generated test inputs for

developers to manually verify the actual outputs.

This paper presents an overview of state of practice in

improving automation in developer testing. We provide in-

sights to major industrial tools’ key features in improving

automation in developer testing. We collect a list of ma-

jor industrial developer testing tools from various sources.

Specifically, we collect the first list of developer testing

tools among testing tool finalists of recent annual Jolt Prod-

uct Excellence and Productivity Awards1, prestigious in-

dustrial awards in recognizing excellent industrial products.

We also include some other industrial tools that first adopted

important features later incorporated by some tools in the

first list. In the end, this paper discusses (1) three indus-

trial tools among Jolt Award finalists: Parasoft Jtest [14]

for Java, Agitar AgitarOne [4, 5] for Java, CodePro Ana-

lytiX [1] for Java, and (2) two other industrial tools: Mi-

crosoft Pex [3] for C# and SilverMark Test Mentor [18]

for Java. Throughout the discussion of features provided

by these tools, we also briefly mention selected relevant re-

search work from academia that may help fill the gap left

by existing industrial tools. Note that the information for

these discussed industrial tools is drawn from the public

1http://www.joltawards.com/



domain (e.g., from tool materials in respective vendor web

sites). This paper does not intend to compare these indus-

trial tools side by side or provide ranking among these tools,

but highlight valuable features provided by these industrial

tools from two main aspects: test efficiency (e.g., with a

focus on cost) and test effectiveness (e.g., with a focus on

benefit).

2 Test Efficiency

Existing tool support for improving test efficiency in-

cludes creating and running test inputs more efficiently.

One main technique in improving test efficiency is the

capture-and-replay technique [6, 13, 16]. Such a technique

has been traditionally used in GUI or Web application test-

ing, being supported by various industrial tools such as IBM

Rational Robot [15].

In the context of developer testing, the capture phase of

the technique monitors the interactions of the unit under test

(e.g., a class) and its environment (e.g., the rest of the sys-

tem where the class is) during the execution of the system.

Such system execution can be induced by manually or auto-

matically running system tests. Based on the monitored in-

teractions, the capture phase automatically creates unit tests

for the unit under test. Each unit test includes (1) test in-

puts as captured method invocations of the unit (in addi-

tion to some other necessary method invocations of other

units) and (2) test oracles as the captured return values of

the method invocations of the unit. The replay phase of the

technique simply reruns the created unit tests, which check

the unit behavior with their test oracles.

In contrast to automatically running the system tests, au-

tomatically running the created unit tests is faster since the

unit tests focus on only the interactions with the unit un-

der test. In contrast to manually running the system tests,

automatically running the created unit tests is much faster

since no manual effort is required besides focusing on the

interactions with the unit. In contrast to manually writing

these unit tests for the unit, the technique allows automatic

creation of these unit tests.

The technique would be primarily useful in regression

testing (i.e., checking the behavior of a new version to be

the same as the one of the old version). When applying

the technique on an initially faulty unit, the capture phase

would capture the faulty behavior of the faulty unit and the

replay phase would simply make sure that this faulty behav-

ior would remain in future versions!

Note that this technique exercises no new unit behav-

ior beyond the one exercised by the system-test execution.

Therefore, no new code coverage can be achieved by the

created unit tests beyond the system tests. But it may be

possible that the created unit tests can expose new faults not

exposed by the system tests since the test oracles in the unit

tests can be stronger than the ones for the system tests by

checking inside the system black box [24].

Some industrial tools adopt the capture-and-replay tech-

nique. For example, SilverMark Test Mentor provides a

feature called Object Interaction Recording. Parasoft Jtest

provides a feature called Jtest Tracer (previously called Test

Case Sniffer).

One challenge in this technique is to deal with non-

primitive argument values and return values on the unit in-

terface, when creating unit tests from captured unit interac-

tions. Some tools may just handle only primitive values in

the unit interactions. Some tools may serialize an object’s

value in the capture phase and deserialize it in the replay

phase. But such a mechanism would produce obsolete or

broken unit tests for later versions of the unit, e.g., when

classes related to these objects are refactored, causing their

object fields being changed. One better mechanism is to

capture and replay method sequences that produce actual

object values [23]. Another better mechanism is to use a

mock object [16] in place of an argument or return object

(as supported by Microsoft Pex [3, 20] and related to auto-

matic stub generation provided by Parasoft Jtest [14]). Then

tools can capture and replay arguments and return values of

methods of the mock object. Various researchers [6, 13, 16]

have investigated advanced mechanisms of the capture-and-

replay technique. In terms of improving efficiency in manu-

ally creating unit tests, researchers [17] have also developed

IDE support for helping developers write unit test inputs

and oracles faster.

3 Test Effectiveness

In contrast to improving test efficiency (concerning more

about reducing cost), improving test effectiveness focuses

on improving the quality of test inputs and test oracles. We

next discuss techniques and challenges in generating test

inputs and test oracles.

3.1 Test Inputs

In unit testing of object-oriented programs, test-input

generation includes two subtasks: (1) generating desirable

primitive-method-argument values and (2) generating desir-

able method-argument objects and receiver objects. Here

desirable test inputs are test inputs for achieving some test

objectives not previously achieved such as causing program

crashes, violating specified properties, and achieving high

code coverage (which are all related to test oracles dis-

cussed in Section 3.2).

In the first subtask, industrial tools use four main tech-

niques: using predefined values for a primitive type, using

constant values (of the same primitive type) that appear in



the code under test, using random values, and using val-

ues derived with symbolic execution [11]. Symbolic execu-

tion has been popularly used by tools such as Parasoft Jtest,

Agitar AgitarOne, and Microsoft Pex. The symbolic execu-

tion technique generally performs better than the other three

main techniques in terms of achieving high code coverage.

In the second subtask, industrial tools use three main

techniques on generating method sequences to produce de-

sirable objects: generating default sequences (e.g., using

the null reference and invoking only a constructor), generat-

ing random method sequences, generating (quasi)bounded-

exhaustive sequences, and generating sequences based on

heuristics. Most industrial tools may use one or more of the

first three techniques where the third technique often uses

only a small bound (e.g., up to method sequences of length

3). Microsoft Pex uses heuristics based on collected code

information to generate desirable method sequences.

In test-input generation at the unit-testing level, one issue

is to deal with illegal test inputs (also called invalid test in-

puts), which are test inputs that the unit under test is not ex-

pected to handle. Adopting the design-by-contract method-

ology [12], Parasoft Jtest, CodePro AnalytiX, and Microsoft

Pex (when used in combination of Microsoft Contracts [2])

allow developers to specify method preconditions or class

invariants for the unit under test. Then their test gener-

ation engines would filter out or avoid generating illegal

test inputs, which violate method preconditions or class in-

variants. Microsoft Pex also allows developers to write as-

sumptions for parameterized unit tests (PUTs) [19] (unit test

methods with parameters, more details described in Sec-

tion 3.2.2). Then assumption-violating test inputs for PUTs

are filtered out or avoided in test-input generation.

Some tools such as Agitar AgitarOne adopt a defensive

programming methodology, where developers are advised

to write explicit checking code in the beginning of a method

body of the unit under test to detect illegal test inputs, (once

detected) throwing appropriate exceptions. Note that these

tools’ test-input generation engines would still generate il-

legal test inputs.

Challenges in the first subtask include complex logics

in code involving complicated constraints beyond the capa-

bility of constraint solvers underlying symbolic execution,

and involving a large/infinite number of paths (especially

when loops are involved). Challenges in the second subtask

are even more substantial since it faces even more daunting

combinations of possible method calls (each of which may

need the first subtask to resolve its primitive argument val-

ues). Researchers [10] have explored advanced techniques

to address challenges in method-sequence generation.

One direction to address challenges faced in test-input

generation is to allow developers to guide tools in differ-

ent ways. For example, developers can specify data fac-

tories for a non-primitive object type. Such data factories

are called test-input factories or test helpers in Agitar Ag-

itarOne, object repositories in Parasoft Jtest, and factory

classes or methods in CodePro AnalytiX and Microsoft Pex.

As another example, CodePro AnalytiX and Parasoft Jtest

allow developers to directly edit the generated test inputs to

improve them. Microsoft Pex allows developers to write pa-

rameterized unit tests [19] (e.g., where developers can write

desirable method sequences with primitive values being un-

specified and generated by Pex). Researchers [21, 25] have

also explored techniques for exploiting information from

manually written traditional unit tests in guiding the gen-

eration of new test inputs.

3.2 Test Oracles

There are two main levels of test oracles: ones specific

only to one individual test input and ones applicable to mul-

tiple test inputs.

3.2.1 Test Oracles Specific to Individual Test Input

Test oracles can be in the form of assertions in manually

written unit tests (such as those in JUnit [9]). Developers

can relatively easily write assertions for one test input but

writing them for many unit-test inputs (which can be gener-

ated by tools) is time-consuming and infeasible.

In the regression testing context, similar to the capture-

and-replay technique described in Section 2, tools can use

the capture-and-assert technique [22], which captures the

return values of methods of the unit under test during the

execution of the generated test inputs, and then automat-

ically creates assertions based on the captured return val-

ues. Parasoft Jtest, CodePro AnalytiX, Agitar AgitarOne,

and Microsoft Pex implement such technique for regression

testing. A resulting test case with automatically created as-

sertions is called a characterization test by Feathers [8].

In general testing (beyond regression testing), tools such

as Parasoft Jtest, CodePro AnalytiX, and Microsoft Pex al-

low developers to inspect and verify captured assertions in

the generated unit test suite. To reduce inspection effort,

these tools allow to select only test inputs that can achieve

new code coverage (such as statement coverage and block

coverage) not previously achieved.

3.2.2 Test Oracles Applicable to Multiple Test Inputs

Test oracles applicable to multiple test inputs can be clas-

sified into three types. First, developers can determine

whether the execution of a test input fails based on whether

the execution throws an uncaught exception. Such type

of test oracles is related to robustness testing, being sup-

ported by all industrial tools. Note that this type of test

oracles is quite limited since the execution may throw no



uncaught exceptions but produce wrong outputs (such as

wrong method-return values).

Second, developers can write properties (also called

specifications) in the unit code under test based on the

design-by-contract methodology [12], where properties can

be in the form of method preconditions, method postcon-

ditions, and class invariants. Parasoft Jtest, CodePro An-

alytiX, and Microsoft Pex (when used in combination of

Microsoft Contracts [2]) support such type of test oracles.

Agitar AgitarOne allows developers to specify class invari-

ants. Developers may have a more difficult time in writing a

property than writing an assertion in unit tests (as in the first

level of test oracles) but one property can be used to check

the execution of multiple test inputs, offering more benefits.

To reduce the difficulty of writing properties and stim-

ulate developers to write properties, Agitar AgitarOne im-

plements a software agitation technique [5] based on dy-

namic invariant detection [7]. It generates observations of

the code behaviors inferred from the execution of automat-

ically generated test inputs. These observations summarize

common behavioral patterns reflected by the execution of

multiple test inputs. Then developers can inspect and verify

these observations: if these observations reflect desirable

behaviors, developers promote them to be assertions (such

as method postconditions and class invariants); if these ob-

servations reflect faulty behaviors, developers detect faults

and then fix these faults.

Third, developers can write properties in unit test code

such as parameterized unit tests (PUTs) [19], which are test

methods with parameters. Developers can write assump-

tions (similar to preconditions) and assertions (similar to

postconditions) in PUTs; however, assumptions or asser-

tions in PUTs are often not specified for only one specific

method but for a scenario where multiple methods are in-

voked. Both Microsoft Pex and Agitar AgitarOne support

parameterized unit tests. To some extent, writing assertions

in PUTs can be viewed as in a middle ground between writ-

ing assertions in traditional unit tests and writing properties

in the unit code under test, in terms of test oracles’ fault-

detection capability, ease of writing, and scope of benefits.

References

[1] CodePro AnalytiX, Accessed in January 2009. http://

www.instantiations.com/codepro/.

[2] Microsoft Research Contracts, accessed in January 2009.

http://research.microsoft.com/en-us/

projects/contracts.

[3] Microsoft Research Pex, accessed in January 2009.

http://research.microsoft.com/en-us/

projects/Pex/.

[4] Agitar AgitarOne, Accessed in January 2009.

http://www.agitar.com/solutions/

products/agitarone.html.

[5] M. Boshernitsan, R. Doong, and A. Savoia. From Daikon to

Agitator: lessons and challenges in building a commercial

tool for developer testing. In Proc. ISSTA, pages 169–180,

2006.

[6] S. Elbaum, H. N. Chin, M. Dwyer, and J. Dokulil. Carving

differential unit test cases from system test cases. In Proc.

FSE, pages 253–264, 2006.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to sup-

port program evolution. IEEE Trans. Softw. Eng., 27(2):99–

123, 2001.

[8] M. Feathers. Working Effectively with Legacy Code. Pren-

tice Hall, 2004.

[9] E. Gamma and K. Beck. JUnit. http://www.junit.

org.

[10] K. Inkumsah and T. Xie. Improving structural testing of

object-oriented programs via integrating evolutionary test-

ing and symbolic execution. In Proc. ASE, pages 297–306,

2008.

[11] J. C. King. Symbolic execution and program testing. Com-

mun. ACM, 19(7):385–394, 1976.

[12] B. Meyer. Object-Oriented Software Construction. Prentice

Hall, 1988.

[13] A. Orso and B. Kennedy. Selective capture and replay of

program executions. In Proc. WODA, pages 29–35, 2005.

[14] Parasoft Jtest, accessed in January 2009. http:

//www.parasoft.com/jsp/products/home.

jsp?product=Jtest.

[15] IBM Rational Robot, accessed in January 2009.

http://www-01.ibm.com/software/

awdtools/tester/robot/index.html.

[16] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic

test factoring for Java. In Proc. ASE, pages 114–123, 2005.

[17] Y. Song, S. Thummalapenta, and T. Xie. UnitPlus: Assisting

developer testing in Eclipse. In Proc. ETX, pages 26–30,

2007.

[18] SilverMark Test Mentor, accessed in January 2009. http:

//www.silvermark.com/Product/java/stm/.

[19] N. Tillmann and W. Schulte. Parameterized unit tests. In

Proc. ESEC/FSE, pages 253–262, 2005.

[20] N. Tillmann and W. Schulte. Mock-object generation with

behavior. In Proc. ASE, pages 365–368, 2006.

[21] N. Tillmann and W. Schulte. Unit tests reloaded: Parame-

terized unit testing with symbolic execution. IEEE Softw.,

23(4):38–47, 2006.

[22] T. Xie. Augmenting automatically generated unit-test suites

with regression oracle checking. In Proc. ECOOP, pages

380–403, 2006.

[23] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework

for detecting redundant object-oriented unit tests. In Proc.

ASE, pages 196–205, 2004.

[24] T. Xie and D. Notkin. Checking inside the black box: Re-

gression testing by comparing value spectra. IEEE Trans.

Softw. Eng., 31(10):869–883, October 2005.

[25] T. Xie and D. Notkin. Tool-assisted unit-test generation and

selection based on operational abstractions. Automated Soft-

ware Engineering Journal, 13(3):345–371, July 2006.


