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Abstract—A power grid is a complex system connecting electric
power generators to consumers through power transmission and
distribution networks across a large geographical area. System
monitoring is necessary to ensure the reliable operation ofpower
grids, and state estimation is used in system monitoring to best
estimate the power grid state through analysis of meter measure-
ments and power system models. Various techniques have been
developed to detect and identify bad measurements, including
the interacting bad measurements introduced by arbitrary, non-
random causes. At first glance, it seems that these techniques can
also defeat malicious measurements injected by attackers,since
such malicious measurements can be considered as interacting
bad measurements.

In this paper, we present a new class of attacks, calledfalse data
injection attacks, against state estimation in electric power grids.
We show that an attacker can take advantage of the configuration
of a power system to launch such attacks to successfully bypass
the existing techniques for bad measurement detection. Moreover,
we look at two realistic attack scenarios, in which the attacker
is either constrained to some specific meters (due to the physical
protection of the meters), or limited in the resources required to
compromise meters. We show that the attacker can systematically
and efficiently construct attack vectors in both scenarios,which
can not only change the results of state estimation, but also
modify the results in a predicted way. We demonstrate the success
of these attacks through simulation using the IEEE 9-bus, 14-bus,
30-bus, 118-bus, and 300-bus systems. Our results indicatethat
security protection of the electric power grid must be revisited
when there are potentially malicious attacks.

I. I NTRODUCTION

A power grid is a complex system connecting a variety of
electric power generators to customers through power trans-
mission and distribution networks across a large geographical
area, as illustrated in Figure 1. The security and reliability of
power grids has critical impact on society and people’s daily
life. For example, on August 14, 2003, a large portion of the
Midwest and Northeast United States and Ontario, Canada,
experienced an electric power blackout, which affected an area
with a population of about 50 million people. The estimated
total costs range between $4 billion and $10 billion (U.S.
dollars) in the United States, and $2.3 billion (Canadian
dollars) in Canada [1].

System monitoring is necessary to ensure the reliable
operation of power grids. It provides pertinent information
on the condition of a power grid based on the readings
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Fig. 1. A power grid connecting power plants to customers viapower
transmission and distribution networks (revised from [2])

of meters placed at important area of the power grid. The
meter measurements may include bus voltages, bus real and
reactive power injections, and branch reactive power flows in
every subsystem of a power grid. These measurements are
typically transmitted to acontrol center, a component that
retains crucial system data and provides centralized monitoring
and control capability for the power grid. Measurements are
usually stored in atelemetry system, which is also known as
Supervisory Control And Data Acquisition (SCADA)system.
State estimationis used in system monitoring to best estimate
the power grid state through analysis of meter measurement
data and power system models.

State estimation is the process of estimating unknown state
variables in a power grid based on the meter measurements.
The output of state estimation is typically used in contingency
analysis, which will then be used to control the power grid
components (e.g., to increase the yield of a power generator)
to maintain the reliable operation even if some faults (e.g., a
generator breakdown) may occur next.

It is possible for an attacker to compromise meters to
introduce malicious measurements. For example, there is an



online video1 that teaches people how to manipulate electric
meters to cut their electricity bills. Though this meter-hacking
tutorial is about meters at the end consumers, it is conceivable
that attackers have the same kind of ability to modify the
meters in the power grid to introduce bad measurements if they
have access to these meters. If these bad measurements affect
the outcome of state estimation, they can mislead the power
grid control algorithms, possibly resulting in catastrophic
consequences.

Power systems researchers have realized the threat of bad
measurements and developed techniques for processing them
(e.g., [3]–[8]). These techniques first detect if there are bad
measurements, and then identify and remove the bad ones if
there are any. Some of these techniques (e.g., [3], [6], [7])were
targeted atarbitrary, interacting (i.e., correlated) bad measure-
ments. At first glance, it seems that these approaches can also
defeat the malicious measurements injected by attackers, since
such malicious measurements can be considered as interacting
bad measurements.

However, in this paper, we discover that all existing tech-
niques for bad measurement detection and identification can
be bypassed if the attacker knows the configuration of the
power system. The fundamental reason of this failure is thatall
existing techniques for bad measurement detection rely on the
same assumption that “when bad measurements take place, the
squares of differences between the observed measurements and
their corresponding estimates often become significant [8].”
Unfortunately, our investigation indicates that this assumption
is not always true. Indeed, with the knowledge of the power
system configuration, the attacker can systematically generate
bad measurements so that the above assumption is violated,
thus bypassing bad measurements detection.

In this paper, we present a new class of attacks, called
false data injection attacks, against state estimation in electric
power systems. By taking advantage of the configuration
information of a power system, an attacker can inject malicious
measurements that will mislead the state estimation process
without being detected by any of the existing techniques for
bad measurement detection.

State estimation uses power flow models. Apower flow
modelis a set of equations that depicts the energy flow on each
transmission line of a power grid. AnAC power flow modelis
a power flow model that considers both real and reactive power
and is formulated by equations that are nonlinear. For large
power systems, state estimation using an AC power flow model
is computationally expensive and even infeasible in many
cases. Thus, power system engineers sometimes only consider
the real power and use a linearized power flow model,DC
power flow model, to approximate AC power flow model [9],
[10]. A DC power flow model is less accurate, but simpler
and more robust than an AC model due to the linearity [10].
In this paper, as the first step in our research, we focus on

1http://www.metacafe.com/watch/811500/electricmeter hack how to
cut your electricity bill in half/

attacks against state estimation using DC power flow models.
We expect the results of this paper to serve as the foundation
for future research for generalized power flow models.

We present false data injection attacks from the attacker’s
perspective. We first show that it is possible for the attacker
to inject malicious measurements that can bypass existing
techniques for bad measurement detection. We then look at
two realistic attack scenarios. In the first attack scenario, the
attacker is constrained to accessing some specific meters due
to, for example, different physical protection of the meters.
In the second attack scenario, the attacker is limited in the
resources required to compromise meters. We consider two
realistic attack goals:random false data injection attacks, in
which the attacker aims to find any attack vector as long as it
can lead to a wrong estimation of state variables, andtargeted
false data injection attacks, in which the attacker aims to find
an attack vector that can inject a specific error into certain
state variables. We show that the attacker can systematically
and efficiently construct attack vectors for false data injection
attacks in both attack scenarios with both attack goals.

We validate these attacks through simulation using the IEEE
test systems, including IEEE 9-bus, 14-bus, 30-bus, 118-bus,
and 300-bus systems [11]. The simulation results demonstrate
the success of these attacks. For example, to inject a specific
malicious value into one target state variable, the attacker only
needs to compromise 10 meters in most cases in the IEEE
300-bus system, which has 1,122 meters in total.

Practical Implication: We would like to point out that the
false data injection attacks do pose strong requirements for the
attackers. It requires that the attackers know the configuration
of the target power system, which is in general not easy
to access. Moreover, the attackers have to manipulate some
meters or their measurements before they are used for state
estimation. Nevertheless, it is critical for power engineers
and security people to be aware of this threat. Existing state
estimation and the follow-up processes such as contingency
analysis assume near-perfect detection of large bad measure-
ments, while our results indicate that the attackers can always
bypass the detection by manipulating the measurement values.
Such a discrepancy may be amplified in the later processes
following state estimation and lead to catastrophic impacts,
even if attackers have difficulty launching such attacks directly
in real power systems.

The rest of the paper is organized as follows. Section II
gives background information and related work. Section III
presents the basic principle of false data injection attacks,
and gives the approaches for both random and targeted false
data injection attacks in the two attack scenarios. SectionIV
demonstrates the success of these attacks through simulation.
Section V concludes this paper and points out some future
research directions.
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II. PRELIMINARIES

A. Background

Power System (Power Grid):A power transmission system
(or simply a power system) consists of electric generators,
transmission lines, and transformers that form an electrical
network [12]. This network is also called apower grid. It
connects a variety of electric generators together with a host
of users across a large geographical area. Redundant paths and
lines are provided so that power can be routed from any power
plant to any customers, through a variety of routes, based on
the economics of the transmission path and the cost of power.
A control center is usually used to monitor and control the
power system and devices in a geographical area.

State Estimation: Monitoring the power flows and volt-
ages in a power system is important in maintaining system
reliability. To ensure that a power system continues to operate
even when some components fail, power engineers use meters
to monitor the system components and report their readings
to the control center, which then estimates the state of power
system variables from these meter measurements. Examples
of state variables include bus voltage angles and magnitudes.

The state estimation problem is to estimate power system
state variablesx = (x1, x2, ..., xn)T based on the meter
measurementsz = (z1, z2, ..., zm)T , where n and m are
positive integers andxi, zj ∈ R for i = 1, 2, ..., n and j =
1, 2, ..., m [12]. More precisely, assumee = (e1, e2, ..., em)T

with ej ∈ R, j = 1, 2, ..., m, are measurement errors, the
state variables are related to the measurements through the
following model

z = h(x) + e, (1)

whereh(x) = (h1(x1, x2, ..., xn), h2(x1, x2, ..., xn), ...,
hm(x1, x2, ..., xn))T and hi(x1, x2, ..., xn) is a function of
x1, x2, ..., xn. The state estimation problem is to find an
estimatex̂ of x that is the best fit of the measurementz

according to Equation (1).
For state estimation using DC power flow model, Equa-

tion (1) can be represented by a linear regression model

z = Hx + e, (2)

whereH = (hi,j)m×n. Three statistical estimation criteria are
commonly used in state estimation:the maximum likelihood
criterion, the weighted least-square criterion, and the mini-
mum variance criterion[12]. When meter error is assumed to
be normally distributed with zero mean, these criteria leadto
an identical estimator with the following matrix solution

x̂ = (HTWH)−1HTWz, (3)

whereW is a diagonal matrix whose elements are reciprocals

of the variances of meter errors. That is,

W =
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whereσ2
i the variance of thei-th meter (1 ≤ i ≤ m).

Bad Measurement Detection:Bad measurements may be
introduced due to various reasons such as meter failures and
malicious attacks. Techniques for bad measurements detection
have been developed to protect state estimation [3], [12].
Intuitively, normal sensor measurements usually give an es-
timate of the state variables close to their actual values, while
abnormal ones may “move” the estimated state variables away
from their true values. Thus, there is usually “inconsistency”
among the good and the bad measurements. Power systems
researchers proposed to calculate themeasurement residual
z − Hx̂ (i.e., the difference between the vector of observed
measurements and the vector of estimated measurements), and
use its L2-norm ‖z − Hx̂‖ to detect the presence of bad
measurements. Specifically,‖z− Hx̂‖ is compared with a
thresholdτ , and the presence of bad measurements is assumed
if ‖z− Hx̂‖ > τ .

The selection ofτ is a key issue. Assume that all the state
variables are mutually independent and the meter errors follow
the normal distribution. It can be mathematically shown that
‖z−Hx̂‖2, denotedL(x), follows aχ2(v)-distribution, where
v = m−n is the degree of freedom. According to [12],τ can
be determined through a hypothesis test with a significance
level α. In other words, the probability thatL(x) ≥ τ2 is
equal toα. Thus,L(x) ≥ τ2 indicates the presence of bad
measurements, with the probability of a false alarm beingα.

B. Related Work

Many researchers have considered the problem of bad mea-
surements detection and identification in power systems [4].
Early power system researchers realized the existence of
bad measurements and observed that a bad measurement
usually led to large normalized measurement residual. After
the presence of bad measurements is detected, they mark the
measurement having the largest normalized residual as the
suspect and remove it [5], [13]–[19]. For example, Schweppe
et al. [13] filter one measurement having the largest normalized
residual at each loop, and then rerun the same process on the
reduced measurement set until the detection test is passed.
Handschin et al. [14] proposed a grouped residual search
strategy that can remove all suspected bad measurements at
the same time.

It was found that the largest normalized residual crite-
rion only worked well for independent, non-correlated bad
measurements callednon-interacting bad measurements[3],
[6], [7]. In practice, there exist correlated bad measurements,
which make the normalized residual of a good measurement
the largest. Such bad measurements are calledinteracting
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bad measurements. The largest normalized residual method
does not work satisfactorily in dealing with interacting bad
measurements. To address this problem, Hypothesis Testing
Identification (HTI) [7] and Combinatorial Optimization Iden-
tification (COI) [6], [20], [21] were developed. HTI selects
a set of suspected bad measurements according to their
normalized residuals, and then decide whether an individual
suspected measurement is good or bad through hypothesis
testing. COI uses the framework from the decision theory to
identify multiple interacting bad measurements. For example,
Asada et al. [20] proposed an intelligent bad data identification
strategy based on tabu search to deal with multiple interacting
bad measurements.

Recently, the focus in bad measurement processing is on
the improvement of the robustness using phasor measurement
units (PMUs) [22]–[25]. For example, Chen et al. [22] used
PMUs to transform the critical measurements into redundant
measurements such that the bad measurements can be detected
by the measurement residual testing and the system is still
observable.

At first glance, it seems that these approaches can also
defeat the malicious measurements injected by attackers, since
such malicious measurements can be considered as interacting
bad measurements. However, in this paper, we show that an
attacker can systematically bypass the detection of all these
approaches.

III. FALSE DATA INJECTIONATTACKS

We assume that there arem meters that providem mea-
surementsz1, ..., zm. We also assume that there aren state
variablesx1, ..., xn. The relationship between thesem meter
measurements andn state variables can be characterized by
anm×n matrix H, as discussed in Section II. In general, the
matrix H of a power system is a constant matrix determined
by the topology and line impedances of the system. How the
control center constructsH is illustrated in [3].

We assume that the attacker knows the matrixH of the
target power system. For example, the attacker can obtain
H by intruding into the control center of the target system.
The attacker generates malicious measurements based on the
matrix H, and then injects the malicious measurements into
the compromised meters to undermine the state estimation
process. The injected malicious measurements can introduce
arbitrary errors into the output of state estimation without
being detected by the existing approaches.

As discussed earlier, we consider two realistic attack goals:
random false data injection attacks, in which the attacker aims
to find any attack vector as long as it can result in a wrong
estimation of state variables, andtargeted false data injection
attacks, in which the attacker aims to find an attack vector that
can inject a specific error into certain state variables.

We use the following two realistic attack scenarios to
facilitate the discussion on how the attacker can construct
attack vectors to bypass the current bad measurement detection

scheme. Note, however, that the false data injection attacks are
not constrained by these attack scenarios.

• Scenario I – Limited Access to Meters:The attacker
is restricted to accessing some specific meters due to, for
example, different physical protection of meters.

• Scenario II – Limited Resources to Compromise
Meters: The attacker is limited in the resources required
to compromise meters. For example, the attacker only
has resources to compromise up tok meters. Due to the
limited resources, the attacker may also want to minimize
the number of meters that have to be compromised in
order to launch a false data injection attack.

In the following, we first show the basic principle of false
data injection attacks. We then focus on the two attack sce-
narios and show how the attacker can construct attack vectors
for both random and targeted false data injection attacks.

A. Basic Principle of False Data Injection Attacks

Let za represent the vector of observed measurements
that may contain malicious data.za can be represented as
za = z + a, wherez = (z1, ..., zm)T is the vector of original
measurements anda = (a1, ..., am)T is the malicious data that
the attacker adds to the original measurements. We refer toa

as anattack vector. Thei-th elementai being non-zero means
that the attacker compromises thei-th meter, and then replaces
its original measurementzi with a phony measurementzi+ai.

The attacker can choose any non-zero arbitrary vector as the
attack vectora, and then construct the malicious measurements
za = z + a. Let x̂bad and x̂ denote the estimates ofx using
the malicious measurementsza and the original measurements
z, respectively.̂xbad can be represented asx̂ + c, wherec is a
non-zero vector of lengthn. Note thatc reflects the estimation
error injected by the attacker.

As discussed in Section II, the bad measurement detec-
tion algorithm computes theL2-norm of the corresponding
measurement residual to check whether there exist bad mea-
surements or not. However, if the attacker can useHc as
the attack vectora (i.e., a = Hc), then theL2-norm of the
measurement residual ofza is equal to that ofz, as shown in
Theorem 1. In other words, if the attacker can choosea as a
linear combination of the column vectors ofH, za can pass
the detection as long asz can pass the detection.

Theorem 1:Suppose the original measurementsz can pass
the bad measurement detection. The malicious measurements
za = z + a can pass the bad measurement detection ifa is a
linear combination of the column vectors ofH (i.e.,a = Hc).

Proof: Sincez can pass the detection, we have‖z−Hx̂‖ ≤
τ , where τ is the detection threshold.̂xbad, the vector of
estimated state variables obtained fromza, can be represented
as x̂ + c. If a = Hc, i.e., a is a linear combination of the
column vectorsh1, ...,hn of H, then the resultingL2-norm
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of the measurement residual is

‖za − Hx̂bad‖ = ‖z + a − H(x̂ + c)‖

= ‖z − Hx̂ + (a − Hc)‖

= ‖z − Hx̂‖ ≤ τ. (5)

Thus, theL2-norm of the measurement residual ofza is less
than the thresholdτ . This means thatza can also pass the bad
measurement detection. �

In this paper, we refer to an attack in which the attack vector
a equalsHc, wherec is an arbitrary non-zero vector, as afalse
data injection attack. By launching false data injection attacks,
the attacker can manipulate the injected false data to bypass
the bad measurement detection and also introduce large errors
into the output of the state estimation, since each element of
c could be an arbitrarily large number.

B. Scenario I – Limited Access to Meters

We assume that the attacker has access tok specific meters.
Assume Im = {i1, ..., ik} is the set of indices of those
meters. In other words, the attacker can modifyzij

, where
ij ∈ Im. To launch a false data injection attack without being
detected, the attacker needs to find a non-zero attack vector
a = (a1, ..., am)T such thatai = 0 for i /∈ Im anda is a linear
combination of the column vectors ofH (i.e., a = Hc).

We now present random and targeted false data injection
attacks, respectively.

1) Random False Data Injection Attack:As discussed
earlier, the non-zero attack vectora satisfies the condition
a = (a1, ..., am)T = Hc with ai = 0 for i /∈ Im. In a random
false data injection attack, the vectorc (i.e., the estimation
errors introduced to the state variables) can be any value.

The attacker can find an attack vectora as follows. First,
the attacker can compute an equivalent form of the rela-
tion a = Hc by eliminatingc. To simplify the notation, let
P = H(HTH)−1HT, andB = P − I. It is easy to see that
PH = H. The attacker can simply multiplyP to both sides of
the relationa = Hc to obtain a sequence of equivalent forms,
as shown below:

a = Hc ⇔ Pa = PHc ⇔ Pa = Hc ⇔ Pa = a

⇔ Pa − a = 0 ⇔ (P − I)a = 0

⇔ Ba = 0. (6)

This means that a vectora satisfies the relationa = Hc if
and only if it satisfies the relationBa = 0. So the attacker
needs to find a non-zero attack vectora such thatBa = 0

andai = 0 for i /∈ Im.
There are many known approaches for obtaining

attack vectors from the above equation. Here we
give a simple one. The attacker can representa as
a = (0, ..., 0, ai1 , 0, ..., 0, ai2, 0, ..., 0, aik

, 0, ..., 0)T ,
where ai1 , ai2 , ..., aik

are the unknown variables to
be solved. SupposeB = (b1, ...,bm), where bi

(1 ≤ i ≤ m) is the i-th column vector ofB. Thus,

Ba = 0 ⇔ (...,bi1 , ...,bi2 , ...,bik
, ...)(0, ..., 0, ai1 , 0,

..., 0, ai2 , 0, ..., 0, aik
, 0, ..., 0)T = 0. Let the m × k

matrix B′ = (bi1 , ...,bik
) and the length k vector

a′ = (ai1 , ..., aik
)T . We have

Ba = 0 ⇔ B′a′ = 0.

If the rank of B′ is less thank, B′ is a rank deficient
matrix, and there exist infinite number of non-zero solutions
a′ that satisfy the relationB′a′ = 0 [26]. According to [26],
the solution isa′ = (I − B′−B)d, whereB′− is the Matrix-1
inverse ofB′ andd is an arbitrary non-zero vector of length
k. With a non-zero solutiona′, the attacker can construct the
corresponding attack vectora by filling 0’s as the remaining
elements ina.

If the rank of B′ is equal tok, then B′ is not a rank
deficient matrix and the relationB′a′ = 0 has a unique
solutiona′ = 0 [26]. This meansa = 0. As a result, no error
can be injected into the state estimation, and the attacker vector
does not exist.

It is possible that the attack vector does not exist ifk is
too small. However, ifk ≥ m − n + 1, the attack vector
always exists, as shown in Theorem 2. Moreover, as long as
the attacker can compromisem − n + 1 or more meters, the
attacker can always successfully construct an attack vector to
bypass the detection.

Theorem 2:If the attacker can compromisek specific me-
ters, wherek ≥ m − n + 1, there always exist attack vectors
a = Hc such thata 6= 0 andai = 0 for i /∈ Im.

Proof: According to Equation (6),a = Hc ⇔ Ba = 0, where
B = P − I = H(HTH)−1HT − I. H should be anm×n full
rank matrix to allow the estimation ofx from z [12]. Without
loss of generality, we further assumem ≥ n. Thus, rank(H) =
n. P is a projection matrix ofH, sinceP = H(HTH)−1HT.
Thus, rank(P) = rank(H) = n, andn eigenvalues ofP are
1’s and the remainingm − n eigenvalues ofP are 0’s [26].
Obviously, forB = P − I, m−n eigenvalues ofB are 1’s and
n eigenvalues ofB are 0’s. Therefore, rank(B) = m−n. The
matrix B′ is a m × k matrix. So rank(B′) ≤ m − n. Further
consideringk ≥ m− n + 1, we have rank(B′) < k. Thus,B′

is rank deficient matrix and there exist infinite number of non-
zero solutions fora′ that satisfy the relationB′a′ = 0. This
means there exist many non-zero attack vectorsa in which
ai = 0 for i /∈ Im. �

Indeed, whenk ≥ m − n + 1, the attacker does not need
to compute the matricesB and B′ to solve the equation
B′a′ = 0. Instead, the attacker can use an alternative algo-
rithm based on elementary matrix transformation to directly
construct attack vectors. Intuitively, the attacker can perform
column transformations onH such that some column vectors
in the resulting matrix become linear combinations of column
vectors inH and at the same time, the elements corresponding
to the meters not controlled by the attacker are eliminated (i.e.,
ai = 0 for i /∈ Im). Each of such vectors can be used as an
attacker vector.
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Let Īm = {j|1 ≤ j ≤ m, j /∈ Im}. It is easy to see
that the size of̄Im is m − k, since the size ofIm is k. Let
H = (h1, ...,hn), wherehi = (h1,i, ..., hm,i)

T for 1 ≤ i ≤ n.
For a randomj ∈ Īm, the attacker first scans the matrixH
to find a column vector whosej-th element is not zero. If
the attacker can find such a vector, the attacker swaps it with
the first column vectorh1. Then, the attacker can construct
anm× (n− 1) matrix H1 = (h1

1, ...,h
1

n−1) by performing
column transformations onH as shown below:

h1
i=

{

h1−
hj,1

hj,i+1
hi+1, if hj,i+1 6= 0, 1 ≤ i ≤ n − 1

hi+1, if hj,i+1 = 0, 1 ≤ i ≤ n − 1
(7)

If the j-th element is zero for all the column vectors of
H, thenh1

i = hi for 1 ≤ i ≤ n − 1. As a result, thej-th
row of H1 are all zeros. The attacker repeats this process to
the reduced matrixH1 and the reduced matrices thereafter
using a different element in̄Im, until all elements inĪm are
exhausted. Finally, the attacker can get a matrix having at
least one column vector, sincem − k ≤ n − 1. Obviously,
the column vectors of the final matrix are linear combinations
of the column vectors ofH, and them − k rows with index
j ∈ Īm of this matrix consist of all 0’s. Any column vector
can be used as an attacker vector.

2) Targeted False Data Injection Attack:In a targeted false
data injection attack, the attacker intends to inject specific
errors into the estimation of certain chosen state variables.
This attack can be represented mathematically as follows. Let
Iv = {i1, ..., ir}, wherer < n, denote the set of indexes of the
r target state variables chosen by the attacker. In other words,
the attacker has chosenxi1 , xi2 , ..., xir

as the target state
variables. In this attack, the attacker intends to construct an
attack vectora such that the resulting estimatêxbad = x̂ + c,
wherec = (c1, c2, ..., cn)T and ci for i ∈ Iv is the specific
error that the attacker has chosen to inject tox̂i. That is, the
attacker wants to replacêxi1 , ..., and x̂ir

with x̂i1 + ci1 , ...,
and x̂ir

+ cir
, respectively.

We consider two cases for the targeted false data injection
attack: Aconstrainedand anunconstrainedcase. In the con-
strained case, the attacker wants to launch a targeted falsedata
injection attack that only changes the target state variables but
does not pollute the other state variables. The constrainedcase
represents the situations where the control center (software or
operator) may know or have ways to verify the estimates of the
other state variables. In the unconstrained case, the attacker has
no concerns on the impact on the other state variables when
attacking the chosen ones.

The construction of an attack vectora becomes rather
simple in the constrained case. Consider the relationa = Hc.
As discussed earlier, the attack vectora must satisfy the
condition thatai = 0 wherei /∈ Im. Note that every element
ci in c is fixed, which is either the chosen value wheni ∈ Iv

or 0 wheni /∈ Iv. Thus, the attacker can substitutec back
into the relationa = Hc, and check ifai = 0 for ∀i /∈ Im.
If yes, the attacker succeeds in constructing the (only) attack
vectora. Otherwise, the attack is impossible.

Now let us consider the unconstrained case. In this case,
only the elementsci of c for i ∈ Iv are fixed; the other
elementscj for j /∈ Iv can be any values. The attacker can use
an approach similar to the one for random false data injection
attacks to construct an attack vector. Specifically, the attacker
can first transforma = Hc into an equivalent form without
havingc, and then solvea from the equivalent form.

Note that a = Hc =
∑

i/∈Iv
hici +

∑

j∈Iv
hjcj. Let

Hs = (hj1 , ...,hjn−r
) and cs = (cj1 , ..., cjn−r

)T , where
ji /∈ Iv for 1 ≤ i ≤ n − r. Further letb =

∑

j∈Iv
hjcj ,

Ps = Hs(H
T

s
Hs)

−1HT

s
, Bs = Ps − I, andy = Bsb. Thus,

the relationa = Hc can be transformed into the following
equivalent forms

a = Hc ⇔ a =
∑

i/∈Iv

hici +
∑

j∈Iv

hjcj = Hscs + b

⇔ Psa = PsHscs + Psb

⇔ Psa = Hscs + Psb

⇔ Psa = a − b + Psb

⇔ (Ps − I)a = (Ps − I)b

⇔ Bsa = Bsb ⇔ Bsa = y (8)

This implies thata satisfies the relationa = Hc if and only if
a satisfies the relationBsa = y. (It is easy to see thatBs is
an m × m matrix.) Thus, the attacker needs to find an attack
vectora such thatBsa = y wherea = (a1, a2, ..., am)T and
ai = 0 for i /∈ Im.

There arek unknown elements ina at positionsi1, ..., ik,
where i1, ..., ik ∈ Im. Thus, the vectora can be written
as a = (0, ..., 0, ai1 , 0, ..., 0, ai2 , 0, ..., 0, aik

, 0, ..., 0)T , where
aij

’s are unknown elements that need to be solved. Suppose
Bs = (bs1 , ...,bsm

), where bsi
(1 ≤ i ≤ m) is the

i-th column vector ofBs. We follow the same reasoning
as in Section III-B1 to denoteB′

s
= (bsi1

, ...,bsik
) and

a′ = (ai1 , ..., aik
)T . Then we have

B′
s
a′ = y ⇔ Bsa = y ⇔ a = Hc.

Thus, to construct an attack vector, the attacker needs to
check if the rank ofB′

s is the same as the rank of the
augmented matrix(B′

s|y). If yes, the relationB′
sa

′ = y is
a consistent equation. According to [26], there exist infinite
number of solutionsa′ = B′−

s
y + (I − B′−

s
Bs)d that satisfy

the relationB′
sa

′ = y, whereB′−
s is the Matrix-1 inverse of

B′
s and d is an arbitrary non-zero vector of lengthk. The

attacker can construct an attack vectora from anya′ 6= 0. If
the rank ofB′

s is not the same as the rank of the augmented
matrix (B′

s
|y), then the relationB′

s
a′ = y is not a consistent

equation, and thus has no solution. This means that the attacker
cannot construct an attack vector to inject the specific errors
into the chosen state variables.

C. Scenario II – Limited Resources to Compromise Meters

In Scenario II, we assume the attacker has limited resources
to compromise up tok meters. Unlike Scenario I, there is no
restriction on what meters the attacker can choose. For the sake
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of presentation, we call a length-m vector ak-sparse vectorif
it has at mostk non-zero elements. Thus, the attacker needs
to find a k-sparse, non-zero attack vectora that satisfies the
relationa = Hc.

As in Scenario I, we consider both random and targeted
false data injection attacks in Scenario II.

1) Random False Data Injection Attack:With the resources
to compromise up tok meters, the attacker may use a brute-
force approach to construct an attack vector. That is, the
attacker may try all possiblea’s consisting ofk unknown
elements andm − k zero elements. For each candidatea,
the attacker may check if there exists a non-zero solution of
a such thatBa = 0 using the same method as discussed in
Section III-B1. If yes, the attacker succeeds in constructing
an attack vector. If the attacker cannot find ak-sparse attack
vector after exhausting all the possiblea’s, the attack vector
does not exist. However, the brute-force approach could be
time consuming. In the worst case, the attacker needs to
examine

(

m
k

)

candidate attack vectors.
To improve the time efficiency, the attacker may take ad-

vantage of the following observation. Since a successful attack
vector is a linear combination of the column vectors ofH (i.e.,
a = Hc), the attacker can perform column transformations to
H to reduce the non-zero elements in the transformed column
vectors. As this process continues, more column vectors in
the transformedH will have fewer non-zero elements. The
column vectors with no more thank non-zero elements can
be used as attack vectors. In particular, when the matrixH

is a sparse matrix (which is usually the case in real power
systems), it does not take many column transformations to
construct a desirable attack vector.

We give a heuristic approach to take advantage of this
observation as follows. The attacker can initialize a sizen
queue with then column vectors ofH. The attacker then
repeats the following process: Take the first column vectort

out from the queue. Ift is a k-sparse vector, the algorithm
returns andt can be used as the attack vector. If not, for each
column vectors in the queue, the attacker checks if linearly
combining t and s can result in a column vector with less
zero elements thant. If so, the attacker appends the resulting
vector into the queue. The attacker repeats this process until a
k-sparse vector is found or the set is empty. It is easy to see
that ak-sparse vector constructed in this way must be a linear
combination of some column vectors ofH, and can serve as
an attack vector.

The heuristic approach could be quite slow for a general
H. However, it works pretty efficiently for a sparse matrixH,
which is usually the case for real-world power systems. For
example, in our simulation, whenk = 12 in the IEEE 300-bus
test system, it takes the heuristic approach about 16.63 seconds
on a regular PC to find an attack vector after computing 596
linear combinations of column vectors. As another example,
when k = 6 in the IEEE 118-bus test system, it takes this
approach about 5.82 seconds to find an attack vector after 900
linear combinations of column vectors.

The heuristic approach does not guarantee the construction
of an attack vector even if it exists, nor does it guarantee the
construction of an attack vector that has the minimum number
of non-zero elements. Nevertheless, it runs pretty quicklywhen
it can construct an attack vector, and thus could still be a useful
tool for the attacker.

Ideally, in order to reduce the attack costs, the attacker
would like to compromise as few meters as possible. In other
words, the attacker wants to find the optimal attack vectora

with the minimum number of non-zero elements. The attacker
may use the brute-force approach discussed at the beginningof
Section III-C1 withk being 1 initially, and gradually increase
k until an attack vector is found. Apparently, such an attack
vector gives the optimal solution with the minimum number of
compromised meters. There are possibilities to improve such
a brute-force approach, for example, using a binary search in
identifying the minimumk.

2) Targeted False Data Injection Attack:We follow the
notation used in Scenario I to describe the targeted false data
injection attack. LetIv = {i1, ..., ir}, wherer < n, denote
the set of indexes of ther target state variables chosen by
the attacker. In this attack, the attacker intends to construct an
attack vectora to replacex̂i1 , ..., and x̂ir

with x̂i1 + ci1 , ...,
and x̂ir

+ cir
, respectively, whereci1 , ..., cir

are the specific
errors to be injected.

Similar to Scenario I, we consider both constrained and
unconstrained cases. As discussed earlier, in the constrained
case, the attacker intends to only change the estimation of
the chosen target state variables, but does not modify the
other state variables. Thus, all elements ofc are fixed. So
the attacker can substitutec into the relationa = Hc. If
the resultinga is a k-sparse vector, the attacker succeeds in
constructing the attack vector. Otherwise, the attacker fails.
The attack vector derived in the constrained case is the only
possible attack vector; there is no way to further reduce the
number of compromised meters.

Now let us consider the unconstrained case. Only the
elementsci of c for i ∈ Iv are fixed; the other elements
cj for j /∈ Iv can be any values. According to Equation (8),
a = Hc ⇔ Bsa = y. (Note that the derivation of Equation (8)
does not assume any specific compromised meters. Thus,
Equation (8) also holds in the unconstrained case in Scenario
II.)

To construct an attack vector, the attacker needs to find a
k-sparse attack vectora that satisfies the relationBsa = y.
A closer look at this problem reveals that it is theMinimum
Weight Solution for Linear Equations problem[27], which is
an NP-Complete problem: Given a matrixA and a vectorb,
compute a vectorx satisfyingAx = b such thatx has at most
k non-zero elements.

Several efficient heuristic algorithms have been developed
to deals with the above problems, for example, the Matching
Pursuit algorithm [28]–[30], the Basis Pursuit algorithm [31],
[32], and the Gradient Pursuit algorithm [33]. The attacker
can use these algorithms to find a near optimal attack vector.
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In our simulation, we choose to use the Matching Pursuit
algorithm, since it is the most popular algorithm for computing
the sparse signal representations and has exponential rateof
convergence [34].

The attacker may also want to minimize the number of
meters to be compromised. That is, the attacker needs to find
an attack vectora with the minimum number of non-zero
elements that satisfiesa = Hc such that the chosen elements
in c have the specific values. This problem is in fact the MIN
RVLS= problem [35]: Given a matrixA and a vectorb,
compute a vectorx satisfyingAx = b such thatx has as few
non-zero elements as possible. Matching Pursuit Algorithm
can again be used to find an attack vector, since this problem
is the optimization version of the minimum weight solution
for linear equations problem discussed earlier.

D. Discussion

We would like to point out that the false data injection
attacks do pose strong requirements for the attackers. In
particular, it requires that the attackers know the configuration
of the target power system. Such information is usually kept
secret by power companies at control centers or other places
with physical security measures. Thus, it is non-trivial for
the attackers to obtain the system configuration information
to launch these attacks. Nevertheless, it would be definitely
wrong to assume that the attackers cannot access such infor-
mation at all. As pointed out in [2], an attacker may break
into the control center through four interfaces. Moreover,the
attackers may pursue social engineering approaches to get such
information.

Another challenge for the attackers is the manipulation of
the meter measurements. The attackers may physically tamper
the meters, or manipulate the meter measurements before they
are used for state estimation in the control center. Again, due
the existing protection in the power grid, this is non-trivial.
However, assuming that this is impossible will definitely give
us a false sense of security and will pave ways for catastrophes
in the future.

Despite the difficulty for launching false data injection
attacks, it is critical for power engineers and security people
to be aware of this threat. Existing state estimation and the
follow-up processes assume a near-perfect detection of large
bad measurements. However, our work in this paper indicates
that an attacker can systematically bypass detection. This
discrepancy may be amplified in the later processes following
state estimation, leading to catastrophic impacts. Additional
research is necessary to clarify the implication of the false
data injection attacks.

IV. EXPERIMENTAL RESULTS

In this section, we validate the false data injection attacks
through experiments using IEEE test systems, including the
IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-bus systems.
We are primarily interested in assessing the feasibility of

constructing attack vectors in various situations as well as the
efforts required for a successful attack vector construction.

In our experiments, we simulate attacks against state es-
timation using DC power flow model. We extract the con-
figuration of the IEEE test systems (particularly the matrix
H) from MATPOWER, a MATLAB package for solving
power flow problems [11]2. We perform our experiments based
on the matrix H and meter measurements obtained from
MATPOWER. For each test system, the state variables are
voltage angles of all buses, and the meter measurements are
real power injections of all buses and real power flows of all
branches. We simulate the behavior of compromising thei-th
meter by adding an offset (chosen by the attack) to thei-th
measurement.

The numbers of state variables and measurements for all
the test systems and some examples of matrixH are given
in Appendix A. Other information (such as the topology, the
locations of meters, bus data, and branch data) can be found
in the source files in MATPOWER.

All the experiments are simulated in MATLAB 7.4.0 on a
DELL PC running Windows XP, which has a 3.0 GHz Pentium
4 processor and 1 GB memory.

A. Results of Scenario I

As mentioned earlier, in Scenario I, the attacker is limited
to accessingk specific meters. In other words, the attacker
can only modify the measurements of thesek meters. Our
evaluation objective in this scenario is mainly two-fold. First,
we would like to see how likely the attacker can use these
k meters to achieve his/her attack goal. Second, we want to
see the computational efforts required for finding an attack
vector. In our evaluation, we consider (1) random false data
injection attacks, (2) targeted false data injection attacks in
the unconstrained case, and (3) targeted false data injection
attacks in the constrained case.

Based on our evaluation objective, we use two evaluation
metrics. The first metric is the probability that the attacker
can successfully construct an attack vector given thek specific
meters. The second metric is the execution time required to
either construct an attack vector or conclude that the attack is
infeasible.

We perform the experiments as follows. For random false
data injection attacks, we let the parameterk range from 1
to the maximum number of meters in each test system. (For
example,k ranges from 1 to 490 in the IEEE 118-bus system.)
For eachk, we randomly choosek specific meters and use
the approach presented in Section III-B1 to attempt an attack
vector construction. We repeat this process 100 times for both
IEEE 118-bus and 300-bus systems and 1,000 times for the
other systems3, and estimate thesuccess probabilitypk (i.e.,

2In MATPOWER, the shift injection vector is set to0 for state estimation
using DC power flow model.

3It takes significantly more time to exhaustively examine theIEEE 118-
bus and 300-bus systems with all possiblek’s. Thus, we reduce the number
of trials for these systems to 100 so that the simulation can finish within a
reasonable amount time.
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the probability of successfully constructing an attack vector
with k given meters) aspk = # successful trails

# trials .
Let Rk denote the percentage of the specific meters under

attacker’s control (i.e., k
total number of meters ). Figure 2 shows

the relationship betweenpk and Rk for random false data
injection attacks. We can see thatpk increases sharply asRk

is larger than a certain value in all systems. For example,pk of
the IEEE 300-bus system increases quickly whenRk exceeds
20%. Moreover, the attacker can generate the attack vector
with the probability close to 1 whenRk is large enough. For
example,pk is almost 1 whenRk is greater than 60% and
40% in the IEEE 118-bus and 300-bus systems, respectively.
Finally, larger systems have higherpk than smaller systems for
the sameRk. For example,pk is about 0.6 for IEEE 300-bus
system and 0.1 for IEEE 118-bus system when the attacker
can compromise 30% of the meters in both systems.
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Fig. 2. Probability of finding an attack vector for random false data injection
attacks
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Fig. 3. Probability of finding an attack vector for compromising a single
state variable in targeted false data injection attacks (unconstrained case)

For targeted false data injection attacks in the unconstrained
case, we also let the parameterk range from 1 to the
maximum number of meters in each test system, and perform
the following experiments for eachk. We randomly pick 10
target state variables for each test system (8 for the IEEE 9-bus
system, since it only has 8 state variables). For each targetstate
variable, we perform multiple trials (1,000 trials for the IEEE
9-bus, 14-bus, and 30-bus systems, 100 trials for the IEEE 118-

bus system, and 20 trials for the IEEE 300-bus system)4. In
each trail, we randomly choosek meters and test if an attack
vector that injects false data into this target variable canbe
generated. If yes, we mark the experiment as successful. After
these trails, we can compute the success probabilitypk,v for
this particular state variablev as pk,v = # successful trails

# trials .
Finally, we compute the overall success probabilitypk as the
average ofpk,v ’s for all the chosen state variables.

Figure 3 shows the relationship betweenpk and Rk for
targeted false data injection attacks in the unconstrainedcase.
We observe the same trend in this figure as in Figure 2, though
the probability in this case is in general lower than that in
Figure 2. For example,pk increases sharply asRk is larger
than 60% for both the IEEE 118-bus and 300-bus systems.
Moreover, for both systems, the probability that the attacker
can successfully generate the attack vector is larger than 0.6
whenRk is larger than 70%. For targeted false data injection
attacks, larger systems also tend to have higherpk than smaller
systems for the sameRk.

Figures 2 and 3 indicate that it is possible for the attacker
to successfully generate attack vectors in the above two
attacks, even if the attacker has limited access to some specific
meters. The success probability increases dramatically asthe
number of meters controlled by the attacker increases beyond
a threshold.

The targeted false data injection attack in the constrained
case is the most challenging one for the attacker. Due to the
constraints on the specific meters, the targeted state variables,
and the necessity of no impact on the remaining state variables,
the probability of constructing a successful attack vectoris in
fact very small, though still possible. We perform experiments
for this case slightly differently. We randomly pick 6 sets of
meters for the IEEE 118-bus and 300-bus systems. In each set,
there are 350 meters and 700 meters for the IEEE 118-bus and
300-bus systems, respectively. We then check the number of
individual target state variables that can be affected by each
set of meters in the constrained case (i.e., without affecting
the estimation of the remaining state variables).

Figures 4 and 5 show the impact of targeted false data
injection attacks in the constrained case. The attacker can
affect 8–11 individual state variables in the IEEE 118-bus
system and 13–16 individual state variables in the IEEE 300-
bus system. Thus, though the targeted false data injection
attack in the constrained case is hard, it is still possible to
modify some target state variables.

In Scenario I, all attacks can be performed fairly quickly.
In other words, it takes little time for the attacker to know if it
is possible to construct an attack vector. Moreover, when the
attack is feasible, it takes again little time to actually construct
an attack vector. Table I shows the execution time required by

4In this case, it take even more time than random false data injection
attacks to exhaustively examine the IEEE 118-bus and 300-bus systems with
all possiblek’s. Thus, we reduce the number of trials for these two systemsto
100 and 20, respectively, so that the simulation can finish within a reasonable
amount time.
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Fig. 4. Number of target state variables affected (IEEE 118-bus system)
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Fig. 5. Number of target state variables affected (IEEE 300-bus system)

the random false data injection attack and the targeted false
data injection attack in the unconstrained case. For example,
the time needed for the random false data injection attack to
either construct an attack vector or conclude the infeasibility
of the attack ranges from 0.34ms to 867.9 ms for the 118-
bus system. The time required for the targeted false data
injection attack in the constrained case is very small, since
the computational task is just the multiplication of a matrix
and a column vector. For example, the time required for the
IEEE 300-bus system ranges from 1.2ms to 11ms. We do not
give the specific numbers in this paper.

B. Results of Scenario II

As mentioned earlier, in Scenario II, the attacker has limited
resources to compromise up tok meters. Compared with
Scenario I, the restriction on the attacker is relaxed in the
sense that anyk meters can be used for the attack. Similar to
Scenario I, we would also like to see how likely the attacker

TABLE I
T IMING RESULTS IN SCENARIO I (MS)

Test system Random attack Targeted attack
(unconstrained)

IEEE 9-bus 0.17–2.4 0.21–2.2
IEEE 14-bus 0.16–5.6 0.26–11.3
IEEE 30-bus 0.35–14.9 0.24–31.4
IEEE 118-bus 0.34–867.9 0.42–1,874.5
IEEE 300-bus 0.55–8,549.6 0.73–18,510

TABLE II
RESULTS OF RANDOM FALSE DATA INJECTION ATTACKS

Test system # meters to
compromise

IEEE 9-bus 4
IEEE 14-bus 4
IEEE 30-bus 4
IEEE 118-bus 4
IEEE 300-bus 4

can use the limited resources to achieve his/her attack goal,
and at the same time, examine the computation required for
attacks. We use two evaluation metrics in our experiments:
(1) number of meters to compromise in order to construct an
attack vector, and (2) execution time required for constructing
an attack vector.

Due to the flexibility for the attacker to choose different me-
ters to compromise in Scenario II, the evaluation of Scenario II
generally requires more experiments to obtain the evaluation
results. In the following, we examine (1) random false data
injection attacks, (2) targeted false data injection attacks in the
constrained case, and (3) targeted false data injection attacks
in the unconstrained case, respectively.

1) Results of Random False Data Injection Attacks:Ran-
dom false data injection attacks are the easiest one among the
three types of attacks under evaluation, mainly due to the least
constraints that the attacker has to follow. We perform a set
of experiments to construct attack vectors for random false
data injection attacks against the IEEE 9-bus, 14-bus, 30-bus,
118-bus, and 300-bus systems. We assume the attacker wants
to minimize the attack cost by compromising as few meters
as possible. This means the attacker needs to find the attack
vector having the minimum number of non-zero elements. The
brute-force approach is too expensive to use for finding suchan
attack vector because of its high time complexity. For example,
it needs to examine about227 combinations for the IEEE 9-
bus test system. Thus, in our experiment, we use the heuristic
algorithm discussed in Section III-C1 to find an attack vector
that has near minimum number of non-zero elements for each
system.

Table II shows the results. For all test systems, the attacker
can construct an attack vector for random false data injection
attacks by only compromising 4 meters. The number of meters
that need to be compromised seems surprisingly small. We
look into the experimental data, and find that this is mainly
due to the fact that theH matrices of all these IEEE test
systems are sparse. For example, theH matrix of the IEEE
300-bus system is a 1,122×300 matrix, but most of the entries
are 0’s. In particular, the sparsest column inH only has 4
non-zero elements. This column is eventually selected by the
algorithm as the attack vector. Note that power systems with
sparseH matrices are not rare cases. In practice, components
in a power system that are not physically adjacent to each
other are usually not connected. As a result, theH matrices
of the power systems are often sparse.
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2) Results of Targeted False Data Injection Attacks in
Constrained Case:Similar to Scenario I, targeted false data in-
jection attacks in the constrained case are the most challenging
one among the three types of attacks due to all the constraints
that the attacker has to follow in attack vector construction.
In the constrained case, the attacker aims to change specific
state variables to specific values and keep the remaining state
variables as they are.

In our experiments, we randomly choosel (1 ≤ l ≤ 10)
target state variables and generate malicious data for eachof
them. The malicious values are set to be 100 times larger
than the real estimates of the state variables. We then examine
how many meters need to be compromised in order to inject
the malicious data (without changing the other non-target
state variables). For each value ofl, we perform the above
experiment 1,000 times to examine the distribution of the
number of meters that need to be compromised.
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Fig. 6. Constrained case: Number of meters to compromise to inject false
data intol state variables in the IEEE 118-bus system
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Fig. 7. Constrained case: Number of meters to compromise to inject false
data intol state variables in the IEEE 300-bus system

Figures 6 and 7 show the results for the IEEE 118-bus and
300-bus systems, respectively. In these figures, we use box
plots5 to show the relationship between the number of target

5In a box plot [36], each box describes a group of data through their five
summaries: minimum, first quartile, median, third quartile, and maximum.
They are represented as horizontal lines at the very bottom,at the lower end
of the box, inside the box, at the upper end of the box, and at the very top,
respectively.
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Fig. 8. Constrained case: Number of meters to compromise to inject false
data into a single state variable

state variables and the number of meters to compromise. In the
worst case, to inject malicious data into as many as 10 state
variables, the attacker needs to compromise 60–140 meters
in the IEEE 118-bus system and 50–140 meters in the IEEE
300-bus system. Note that there are 1,122 meters in the IEEE
300-bus system and 490 meters in the IEEE 118-bus system.
This means that the attacker only needs to compromise a small
fraction of the meters to launch targeted false data injection
attacks even in the constrained case.

We also exhaustively examine a special situation of targeted
false data injection attacks in the constrained case. Specifically,
for each state variable, we examine the number of meters that
need be compromised if the attacker aims at this variable.
Figure 8 shows the results. We can see that the attacker can
inject malicious data into any single state variable using less
than 35 meters for the IEEE 118-bus system and less than 40
meters for the IEEE 300-bus system. For all the systems, none
of the median values is greater than 10. This means that the
attacker can affect most of the state variables by using at most
10 compromised meters.

In the constrained case, sincec is fixed, the attack vectors
can be directly computed. Thus, the execution time in all the
experiments is very short. For example, it costs only 1.2 ms
on the test computer to generate an attack vector that injects
false data into 10 state variables in the IEEE 300-bus system.

3) Results of Targeted False Data Injection Attacks in
Unconstrained Case:In the unconstrained case, the attacker
wants to inject malicious data into specific state variables, but
the attacker does not have to keep the other state variables un-
changed. As discussed in Section III-C2, we use the Matching
Pursuit algorithm [28]–[30] to find attack vectors. We perform
the same set of experiments as in Section IV-B2 to obtain the
two evaluation metrics: the number of meters to compromise
and the execution time. Note that in the unconstrained case,it
takes significantly more time to find a near minimum number
of meters than the previous experiments. Thus, we show more
detailed results on execution time in this case.

Figures 9 and 10 show the relationship between the number
of meters to compromise and the number of specific state
variables to compromise for the IEEE 118-bus and 300-bus
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systems, respectively. Figures 11 and 12 show the correspond-
ing execution time of the Matching Pursuit algorithm for
finding an attack vector successfully. From these figures, we
can see that the attacker needs to compromise 60–130 meters
for the IEEE 118-bus system and 55–140 meters for the IEEE
300-bus system, if the attacker wants to inject malicious data
into as many as 10 state variables. These meters can be quickly
identified within 2 seconds for the IEEE 118-bus system and
within 8 seconds for the IEEE 300-bus system.
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Fig. 9. Unconstrained case: Number of meters to compromise to inject false
data intol state variables in the IEEE 118-bus system
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Fig. 10. Unconstrained case: Number of meters to compromiseto inject
false data intol state variables in the IEEE 300-bus system
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Fig. 11. Unconstrained case: Execution time of finding an attack vector to
inject false data into one state variable in the IEEE 118-bussystem
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Fig. 12. Unconstrained case: Execution time of finding an attack vector to
inject false data into one state variable in the IEEE 300-bussystem
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Fig. 13. Unconstrained case: Number of meters to compromiseto inject
false data into one state variable
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Fig. 14. Unconstrained Case: Execution time of finding an attack vector to
inject false data into one state variable

We also exhaustively examine the special situation of in-
jecting malicious data into a single state variable for all the
IEEE test systems, as in the constrained case. Figures 13
and 14 show the number of meters to compromise for these
systems and the corresponding execution time, respectively.
As shown in Figures 13 and 14, for example, the attacker
can inject malicious data into any single state variable of the
IEEE 300-bus system by compromising 27 meters, and it costs
the attacker less than 2.6 seconds to find the attack vector.
Similarly, to inject false data into any single state variable of
the IEEE 118-bus system, the attacker needs to compromise 22
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meters, and these meters can be identified within 0.5 second.
These experimental results indicate that the false data in-

jection attacks are practical and easy to launch if the attacker
has the configuration information of the target system and can
modify the meter measurements.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new class of attacks, called
false data injection attacks, against state estimation in electric
power systems. We show that an attacker can take advantage of
the configuration of a power system to launch such attacks to
bypass the existing techniques for bad measurement detection.
We considered two realistic attack scenarios, where the at-
tacker is either constrained to some specific meters, or limited
in the resources required to compromise meters. We showed
that the attacker can systematically and efficiently construct
attack vectors in both scenarios, which can not only change
the results of state estimation, but also modify the resultsin a
predicted way. We performed simulation on IEEE test systems
to demonstrate the success of these attacks. Our results in this
paper indicate that security protection of the electric power
grid must be revisited when there are potentially malicious
attacks.

In our future work, we would like to extend our results
to state estimation using AC power flow models and seek
techniques that can tolerate false data injection attacks.
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APPENDIX A
IEEE TEST SYSTEMS

As discussed in the paper, we validate the false data
injection attacks through experiments using IEEE test systems,
including the IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-
bus systems. We extract the configuration of these test systems
(particularly the matrixH) from MATPOWER, a MATLAB
package for solving power flow problems [11]. The informa-
tion regarding the topology, bus data, and branch data can
be found from source files of MATPOWER. The names of
these source files arecase9.m, case14.m, case30.m,
case118.m, andcase300.m.

Table III shows the number of state variables and the
number of measurements in the IEEE test systems. All these
systems are assumed to be fully measured. Figures 15 and 16
show the matrixH of the IEEE 9-bus and 14-bus systems,
respectively. The matrixH’s for the IEEE 30-bus, 118-bus,
and 300-bus systems are space consuming; we do not include
them here.

TABLE III
NUMBER OF STATE VARIABLES AND MEASUREMENTS IN THEIEEE TEST

SYSTEMS

Test system # State Variables # Measurements
IEEE 9-bus 8 27
IEEE 14-bus 13 54
IEEE 30-bus 29 112
IEEE 118-bus 117 490
IEEE 300-bus 299 1122
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Fig. 16. MatrixH of the IEEE 14-bus system
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