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Abstract—A power grid is a complex system connecting electric Generation  les

power generators to consumers through power transmissionrd ~ _____________ ,,,,,,,,,,,,,,,,, g
distribution networks across a large geographical area. Sstem El
monitoring is necessary to ensure the reliable operation gbower
grids, and state estimation is used in system monitoring to best

— b e

estimate the power grid state through analysis of meter mease- L
Transmission ) Transmission Substation

ments and power system models. Various techniques have been
developed to detect and identify bad measurements, includg g\/
the interacting bad measurements introduced by arbitrary, non- ansmissi )
random causes. At first glance, it seems that these techniques can g'”bs‘a“m _
also defeat malicious measurements injected by attackersjpce = = ____//t}%%;_ _____ Cg____

such malicious measurements can be considered as interaugi Distribution B Distribution  [EESEE ,
Substations =L
bad measurements. \
In this paper, we present a new class of attacks, callddlsedata ~  ----------------

injection attacks, against state estimation in electric power grids. Customers
We show that an attacker can take advantage of the configuratin
of a power system to launch such attacks to successfully byps
the existing techniques for bad measurement detection. Meover,
we look at two realistic attack scenarios, in which the attaker
is either constrained to some specific meters (due to the phgsal
protection of the meters), or limited in the resources requied to
compromise meters. We show that the attacker can systematitly

and efficiently construct attack vectors in both scenarioswhich f | d . f th id. Th
can not only change the results of state estimation, but also ©f Meters placed at important area of the power grid. The

modify the results in a predicted way. We demonstrate the suess Meter measurements may include bus voltages, bus real and
of these attacks through simulation using the IEEE 9-bus, 14bus, reactive power injections, and branch reactive power flows i

30-bus, 118-bus, and 300-bus systems. Our results indicaieat  every subsystem of a power grid. These measurements are
security protection of the electric power grid must be revisted typically transmitted to acontrol center a component that
when there are potentially malicious attacks. . . . ) -
retains crucial system data and provides centralized rodng
I. INTRODUCTION and control capability for the power grid. Measurements are

A power grid is a complex system connecting a variety ¢fsually stored in @elemetry systenwhich is also known as
electric power generators to customers through power trafgipervisory Control And Data Acquisition (SCADgystem.
mission and distribution networks across a large geogeaphiState estimatiofis used in system monitoring to best estimate
area, as illustrated in Figure 1. The security and relighdf the power grid state through analysis of meter measurement
power grids has critical impact on society and people’sydaiflata and power system models.

life. For example, on August 14, 2003, a large portion of the State estimation is the process of estimating unknown state

M'dW?St and Northea_lst United States angl Ontario, Cana@/griables in a power grid based on the meter measurements.
experienced an electric power blackout, which affectedraa aThe output of state estimation is typically used in conti

with a population of about 50 million people. The e‘Stirn""tegnalys,is, which will then be used to control the power grid

:jOtﬁl cos_ts :ﬁnga k_)tet(\;veéetn t$4 b||||gn$gn3():i Sﬁo b'"'gn (Lé:%omponents (e.g., to increase the yield of a power gengrator
ollars) in the Unite ates, an -3 bilion (Cana '¥3 maintain the reliable operation even if some faults (eag.

dollars) in Cana_da_[l]. . . bqenerator breakdown) may occur next.
System monitoring is necessary to ensure the reliable

operation of power grids. It provides pertinent informatio It is possible for an attacker to compromise meters to
on the condition of a power grid based on the readingstroduce malicious measurements. For example, there is an

Fig. 1. A power grid connecting power plants to customers pasver
transmission and distribution networks (revised from [2])



online vided that teaches people how to manipulate electrattacks against state estimation using DC power flow models.
meters to cut their electricity bills. Though this meteckiag We expect the results of this paper to serve as the foundation
tutorial is about meters at the end consumers, it is conbkgvafor future research for generalized power flow models.
that attackers have the same kind of ability to modify the
meters in the power grid to introduce bad measurementsyif the We present false data injection attacks from the attacker’s
have access to these meters. If these bad measurements gfrspective. We first show that it is possible for the attacke
the outcome of state estimation, they can mislead the povterinject malicious measurements that can bypass existing
grid control algorithms, possibly resulting in catastrimph techniques for bad measurement detection. We then look at
consequences. two realistic attack scenarios. In the first attack scendhe
Power systems researchers have realized the threat of Btiecker is constrained to accessing some specific meters du
measurements and developed techniques for processing thenfor example, different physical protection of the mster
(e.g., [3]-[8]). These techniques first detect if there amel bIn the second attack scenario, the attacker is limited in the
measurements, and then identify and remove the bad onetgifources required to compromise meters. We consider two
there are any. Some of these techniques (e.g., [3], [6]W&te realistic attack goalstandom false data injection attack
targeted agrbitrary, interacting (i.e., correlated) bad measurewhich the attacker aims to find any attack vector as long as it
ments. At first glance, it seems that these approaches can &&n lead to a wrong estimation of state variables, tangeted
defeat the malicious measurements injected by attackece s false data injection attacksn which the attacker aims to find
such malicious measurements can be considered as inbgraciin attack vector that can inject a specific error into certain
bad measurements. state variables. We show that the attacker can systemgtical
However, in this paper, we discover that all existing tectnd efficiently construct attack vectors for false datadtigm
niques for bad measurement detection and identification catacks in both attack scenarios with both attack goals.
be bypassed if the attacker knows the configuration of the
power system. The fundamental reason of this failure isahat ~We validate these attacks through simulation using the IEEE
existing techniques for bad measurement detection relyien test systems, including IEEE 9-bus, 14-bus, 30-bus, 153-bu
same assumption that “when bad measurements take placeaté 300-bus systems [11]. The simulation results demdastra
squares of differences between the observed measuremehntdfae success of these attacks. For example, to inject a specifi
their corresponding estimates often become significant [g[nalicious value into one target state variable, the attachly
Unfortunately, our investigation indicates that this asption Nneeds to compromise 10 meters in most cases in the IEEE
is not always true. Indeed, with the knowledge of the pow&00-bus system, which has 1,122 meters in total.
system configuration, the attacker can systematically rgéme
bad measurements so that the above assumption is violatedractical Implication: We would like to point out that the
thus bypassing bad measurements detection. false data injection attacks do pose strong requirementiéo
In this paper, we present a new class of attacks, call@fackers. It requires that the attackers know the configura
false data injection attacksgainst state estimation in electric®f the target power system, which is in general not easy
power systems. By taking advantage of the configuratié® access. Moreover, the attackers have to manipulate some
information of a power system, an attacker can inject malisi Meters or their measurements before they are used for state
measurements that will mislead the state estimation psoc&stimation. Nevertheless, it is critical for power engisee
without being detected by any of the existing techniques fgd security people to be aware of this threat. Existingestat
bad measurement detection. estimation and the follow-up processes such as contingency
State estimation uses power flow models.pawer flow analysis assume near-p(_erfe_ct detection of large bad measur
modelis a set of equations that depicts the energy flow on eal$Nts, while our results indicate that the attackers caayaw
transmission line of a power grid. ARC power flow modek PYPass th_e detection by manlpulatlr_lg the_ measurementszalue
a power flow model that considers both real and reactive powgch @ discrepancy may be amplified in the later processes
and is formulated by equations that are nonlinear. For larflowing state estimation and lead to catastrophic impact

power systems, state estimation using an AC power flow mo@en if attackers have difficulty launching such attackedatly

is computationally expensive and even infeasible in maiffy reéal power systems.

cases. Thus, power system engineers sometimes only conside ) ) )

the real power and use a linearized power flow mo@x, _The rest of the paper is organized as follows. Sec_tlon Il
power flow modelto approximate AC power flow model [9], 9V€S background information and related work. Section Il

[10]. A DC power flow model is less accurate, but Simp|epresepts the basic principle of false data injection attack
and more robust than an AC model due to the linearity [1 nd gives the approaches for both random and targeted false

In this paper, as the first step in our research, we focus gta injection attacks in the two attack scenarios. Se_dtVon _
demonstrates the success of these attacks through siomulati

Lhttp://www.metacafe.com/watch/811500/electriteter hack how._to_ Section V _Con(?IUdeS this paper and points out some future
cut_your_electricity_bill_in_half/ research directions.



Il. PRELIMINARIES of the variances of meter errors. That is,

A. Background P

Power System (Power Grid):A power transmission system
(or simply a power systeinconsists of electric generators, 0.2
transmission lines, and transformers that form an eledtric

) , . .
network [12]. This network is also called power grid It Whereo; the variance of the-th meter l=i<m)
connects a variety of electric generators together with st ho Bad Measurement Detection:Bad measurements may be

of users across a large geographical area. Redundant mths"&tmduced due to various reasons such as meter failures and
plicious attacks. Techniques for bad measurements detect

lines are provided so that power can be routed from any pow8 S
plant to any customers, through a variety of routes, based '€ Peen developed to protect state estimation [3], [12].

the economics of the transmission path and the cost of powgfuitively, normal sensor measurements usually give an es

A control center is usually used to monitor and control thiimate of the state V"f}”ablef‘ close to their actual valuésiew
power system and devices in a geographical area. abnormal ones may “move” the estimated state variables away

State Estimation: Monitoring the power flows and volt- from their true values. Thus, there is usually “inconsisién

. o . L among the good and the bad measurements. Power systems
ages in a power system is important in maintaining system .
o . researchers proposed to calculate theasurement residual
reliability. To ensure that a power system continues to aiger . .
. : fore Hx (i.e., the difference between the vector of observed
even when some components fail, power engineers use meters .
. . . measurements and the vector of estimated measuremers), an
to monitor the system components and report their readlnlg;s . N
: : se its Lo-norm ||z — HX|| to detect the presence of bad
to the control center, which then estimates the state of powe . o .
easurements. Specificalljz — HX| is compared with a

system variables from these meter measurements. Examrt)mfhes .
. . . resholdr, and the presence of bad measurements is assumed
of state variables include bus voltage angles and magrstud;

L . X If ||z — HX|| > 7.

The state estimation problem 'STtO estimate power systeMry o ejection of is a key issue. Assume that all the state
state vanablem = (xl’m"”’x”% brz:\sed on ;he MeLer ariables are mutually independent and the meter errdrfol
meefure_mten = = ((;1’22’ 7’;’?) i v7v 1er2e noan n; 'arie the normal distribution. It can be mathematically showrt tha
POSIIVE INtegers andy;, z; € K 1or v = 1,2,....n andj =, p1£|2, denoted’(x), follows ay?(v)-distribution, where

i _ T
1,2,...,m [12]. .More precisely, assume = (e1, €2, em)" " i the degree of freedom. According to [12]can
with e; € R, j = 1,2,...,m, are measurement errors, the0

i determined through a hypothesis test with a significance
state variables are related to the measurements throughlg?nv%I a. In other words, the probability thaf(x) > 72 is
following model ' ’ .

equal toa. Thus, £(x) > 72 indicates the presence of bad
z=h(x)+e, (1) measurements, with the probability of a false alarm being

B. Related Work

Many researchers have considered the problem of bad mea-
surements detection and identification in power systems [4]
estimatex of x that is the best fit of the measurement Ea(;ly power system redseal;chersdre?hzed éh% existence of
according to Equation (1). ad measurements an observe that a ba measurement

L . usually led to large normalized measurement residual.rAfte
For state estimation using DC power flow model, Equa- .
. . . e presence of bad measurements is detected, they mark the
tion (1) can be represented by a linear regression model . : .
measurement having the largest normalized residual as the
suspect and remove it [5], [13]-[19]. For example, Schweppe
et al. [13] filter one measurement having the largest nozedli
o o o residual at each loop, and then rerun the same process on the
whereH = (h; j)mxn. Three statistical estimation criteria argequced measurement set until the detection test is passed.
commonly used in state estimatiotite maximum likelihood Handschin et al. [14] proposed a grouped residual search

criterion, the weighted least-square criteripmnd the mini-  strategy that can remove all suspected bad measurements at
mum variance criteriorj12]. When meter error is assumed tGhe same time.

be normally distributed with zero mean, these criteria l&ad | as found that the largest normalized residual crite-

measurements calledon-interacting bad measuremeri,
%= (H"WH) 'H"Wz, (3) [6], [7]. In practice, there exist correlated bad measureme
which make the normalized residual of a good measurement
whereW is a diagonal matrix whose elements are reciprocalse largest. Such bad measurements are caliésracting

whereh(x) = (hi(x1,22, ..., Tn), ha(T1, T2, ooy T )y oeey
hon(x1, 22, ..., 2,))T and h;(z1, 29, ...,x,) is a function of
x1,%9,...,T,. The state estimation problem is to find a

z=Hx+e, (2)



bad measurementdhe largest normalized residual methodcheme. Note, however, that the false data injection attark
does not work satisfactorily in dealing with interactingdbanot constrained by these attack scenarios.

measurements. To address this problem, Hypothesis Testing Scenario | — Limited Access to Meters:-The attacker
Identification (HTI) [7] and Combinatorial Optimizationéd- is restricted to accessing some specific meters due to, for

tification (COI) [6], [20], [21] were developed. HT_I selects _ example, different physical protection of meters.
a set of suspected bad measurements according to their Scenario Il — Limited Resources to Compromise

normalized residuals, and then decide whether an individua Meters: The attacker is limited in the resources required
suspected measurement is good or bad thrqugh hypothesis to compromise meters. For example, the attacker only
_testm_g. COI_use_s the fr_amework from the decision theory to has resources to compromise upktoneters. Due to the

identify multiple interacting ba_d mgasurements. Eor e>_dgr,np limited resources, the attacker may also want to minimize
Asada et al. [20] proposed an intelligent bad data identifioa the number of meters that have to be compromised in

strategy based on tabu search to deal with multiple intiexgct order to launch a false data injection attack.
bad measurements. ) ) . o
Recently, the focus in bad measurement processing is ordn t.h\-e folllowmg, we first show the basic principle of false
the improvement of the robustness using phasor measurenfé@ injection attacks. We then focus on the two attack sce-
units (PMUs) [22]-[25]. For example, Chen et al. [22] useBarios and show how the attacker can construct attack \s&ector

PMUs to transform the critical measurements into redunddff Poth random and targeted false data injection attacks.

measurements such that the bad measurements can be detected

by the measurement residual testing and the system is still ] o o
observable. A. Basic Principle of False Data Injection Attacks

At first glance, it seems that these approaches can als
.. . . et z, represent the vector of observed measurements
defeat the malicious measurements injected by attackec® s ) e
ttti1at may contain malicious data, can be represented as

such malicious measurements can be considered as intgrac

- = T .
bad measurements. However, in this paper, we show that4n_ 2 +a, wherez = (z, ..., Zm>T S the vegtgr of original
measurements ard= (a1, ..., a,,)" is the malicious data that

attacker can systematically bypass the detection of aﬁah%he attacker adds to the original measurements. We refer to
approaches. . )

PP as anattack vector Thei-th elementz; being non-zero means
that the attacker compromises thth meter, and then replaces
its original measurement with a phony measurement+a;.

We assume that there are meters that providen mea- The attacker can choose any non-zero arbitrary vector as the
surementszy, ..., z,,. We also assume that there arestate attack vectorn, and then construct the malicious measurements
variableszy, ..., x,,. The relationship between these meter z, = z + a. Let %,.q andx denote the estimates af using
measurements and state variables can be characterized biyre malicious measurements and the original measurements
anm x n matrix H, as discussed in Section Il. In general, the, respectively%y,.q can be represented &st ¢, wherec is a
matrix H of a power system is a constant matrix determinatbn-zero vector of length. Note thatc reflects the estimation
by the topology and line impedances of the system. How tleeror injected by the attacker.

control center construct is illustrated in [3]. As discussed in Section Il, the bad measurement detec-
We assume that the attacker knows the matdixof the tion algorithm computes thé.-norm of the corresponding

target power system. For example, the attacker can obtai@asurement residual to check whether there exist bad mea-

H by intruding into the control center of the target systenyyrements or not. However, if the attacker can iBe as

The attacker generates malicious measurements based ontBeattack vecton (i.e., a = Hc), then theL,-norm of the

matrix H, and then injects the malicious measurements infleasurement residual ef, is equal to that of;, as shown in

the compromised meters to undermine the state estimatipleorem 1. In other words, if the attacker can choeses a

process. The injected malicious measurements can inteodyifear combination of the column vectors ®, z, can pass
arbitrary errors into the output of state estimation withoyhe detection as long ascan pass the detection.

being c_ietected by the existing a_pproaches. o Theorem 1:Suppose the original measurementsan pass

As discussed earlier, we consider two realistic attackgoajhe phad measurement detection. The malicious measurements
random false data injection attackis which the attacker aims Za = 7+ a can pass the bad measurement detecticnisf a
to find any attack vector as long as it can result in a wronghear combination of the column vectors Hf (i.e.,a = Hc).
estimation of state variables, atatgeted false data injection
attacks in which the attacker aims to find an attack vector tha@roof: Sincez can pass the detection, we hgje— Hx| <
can inject a specific error into certain state variables. 7, where r is the detection thresholdkpa.q, the vector of

We use the following two realistic attack scenarios testimated state variables obtained fregy can be represented
facilitate the discussion on how the attacker can constriad X + c. If a=Hc, i.e., a is a linear combination of the
attack vectors to bypass the current bad measurementidateatolumn vectorshy, ..., h,, of H, then the resulting.o-norm

IIl. FALSE DATA INJECTIONATTACKS
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of the measurement residual is Ba=0< (...,b;,....; by, ..., bs,,...)(0,...,0,a;,0,

Hi Hix r,0,04,,0,...,0,a;,,0,....,007 = 0. Let the m x k
12 — HXbaal| = [z +2a—-H(x+c) matrix B = (b;,,...b; ) and the lengthk vector
= |z—Hx+ (a— Hc)| a’ = (ai,...,a;,)". We have

= [z-HX|[ <7 (5) Ba=0< B'a’ =0.

Thus, theL,-norm of the measurement residualzf is less If the rank of B’ is less thank, B’ is a rank deficient
than the threshold. This means that, can also pass the badmatrix, and there exist infinite number of non-zero soluion

measurement detection. O & that satisfy the relatioB’a’ = 0 [26]. According to [26],

: ica! — _ Rr/— ] iX-
In this paper, we refer to an attack in which the attack vectg}e solution isa’ = (_I B B_)d’ whereB'™ is the Matrix-1
inverse ofB’ andd is an arbitrary non-zero vector of length

a equalsHc, wherec is an arbitrary non-zero vector, agadse ) T
k. With a non-zero solutiom’, the attacker can construct the

data injection attackBy launching false data injection attacks, i ttack tar by filling O th L
the attacker can manipulate the injected false data to Isyp5 errr’r?(ir?tc;nigg attack vectarby fifing ©'s as the remaining

the bad measurement detection and also introduce largeser I th K of B i | tok. then B’ | ¢ K
into the output of the state estimation, since each elemrentdp  the ranx o IS equal tof, , Ien IS not-a ran
eficient matrix and the relatioB’a’ = 0 has a unique

c could be an arbitrarily large number. . .

y'arg solutiona’ = 0 [26]. This meansa = 0. As a result, no error
B. Scenario | — Limited Access to Meters can be injected into the state estimation, and the attagator
We assume that the attacker has accegsspecific meters. 90€S not exist. o
AssumeZ,, = {i ir) is the set of indices of those It is possible that the attack vector does not exisk ifs

m - 90 .
meters. In other words, the attacker can modify, where tc:o smaII.- Howeve;], ifk 2 "L_ n +1, the attack ve(|:tor
i; € . To launch a false data injection attack without beingbve:ays e>l§|sts, as shown |n_ Theorem 2. Moreover, as Or?g as
detected, the attacker needs to find a non-zero attack ve attacker can compromise —n + 1 or more meters, the
a=(a a,)T such thats; = 0 for i ¢ Z,, anda is a linear attacker can always successfully construct an attack vézto
- 9 m 1 T m

combination of the column vectors # (i.e.,a = Hc). bypass the detection.

We now present random and targeted false data injection-rheor‘:“m 2:1f the attacker can compromigespecific me-

attacks, respectively. ters, wherek > m — n + 1, there always exist attack vectors

1) Random False Data Injection AttackAs discussed &~ He such thata # 0 anda; = 0 for i ¢ .

earlier, the non-zero attack vectar satisfies the condition Proof: According to Equation (6)a = Hc < Ba = 0, where
a=(ay,...am)" =Hewith a; =0fori ¢ Z,,. Inarandom B =P —I=HHTH) 'HT - L H should be amxn full
false data injection attack, the vector(i.e., the estimation rank matrix to allow the estimation of from z [12]. Without
errors introduced to the state variables) can be any value. |oss of generality, we further assume> n. Thus, rankH) =
The attacker can find an attack vectors follows. First, . P is a projection matrix oH, sinceP = HHTH) 'HT.
the attacker can compute an equivalent form of the rel@hus, rankP) = rankH) = n, andn eigenvalues ofP are
tion a = Hc by eliminatingc. To simplify the notation, let 1's and the remainingn — n eigenvalues ofP are 0’s [26].
P =H(HTH) 'HT, andB = P — L It is easy to see that Obviously, forB = P — I, m—n eigenvalues oB are 1's and
PH = H. The attacker can simply multipl? to both sides of 5, eigenvalues oB are 0's. Therefore, rarfB) = m —n. The
the relationa = Hc to obtain a sequence of equivalent formsmnatrix B’ is am x k matrix. So rankB’) < m — n. Further
as shown below: consideringk > m —n + 1, we have rankB’) < k. Thus,B’
is rank deficient matrix and there exist infinite number of non
a=He < Pa=PHce Pa=HecePa=a zero solutions fom’ that satisfy the relatioB’a’ = 0. This

& Pa-—a=0&(P-Ta=0 means there exist many non-zero attack vectoia which
& Ba=0. (6) a;=0fori¢Z,. O
This means that a vecter satisfies the relatiom = Hc if Indeed, wherk > m — n + 1, the attacker does not need

and only if it satisfies the relatioiBa = 0. So the attacker to compute the matrice8 and B’ to solve the equation
needs to find a non-zero attack vectorsuch thatBa =0 B’a’ = 0. Instead, the attacker can use an alternative algo-
anda; =0 for i ¢ Z,,. rithm based on elementary matrix transformation to diyectl
There are many known approaches for obtainingpnstruct attack vectors. Intuitively, the attacker canfqren
attack vectors from the above equation. Here wmlumn transformations oH such that some column vectors
give a simple one. The attacker can representas in the resulting matrix become linear combinations of catum

a = (0,...,0,a;,,0,...,0,a;,,0,...,0,a;,,0,...,0)T,  vectors inH and at the same time, the elements corresponding
where a;,,ai,,...,a;, are the unknown variables totothe meters not controlled by the attacker are eliminated (
be solved. SupposeB = (by,...,b,), where b; a; =0 fori ¢ Z,,). Each of such vectors can be used as an

(1 < i < m) is the i-th column vector of B. Thus, attacker vector.



Let Z,, = {j|1 < j < m,j ¢ I,}. It is easy to see Now let us consider the unconstrained case. In this case,
that the size ofZ,, is m — k, since the size of,, is k. Let only the elements; of ¢ for i € Z, are fixed; the other
H = (hy,...,h,), whereh; = (hq i, ..., hmi)? for1 <i <n. elements; forj ¢ Z, can be any values. The attacker can use
For a randomj € Z,,, the attacker first scans the matdik an approach similar to the one for random false data injectio
to find a column vector whosg-th element is not zero. If attacks to construct an attack vector. Specifically, theckér
the attacker can find such a vector, the attacker swaps it withn first transforma = Hc into an equivalent form without
the first column vectoih;. Then, the attacker can construchavingc, and then solvea from the equivalent form.
anm x (n—1) matrix H* = (h'y,...,h', ;) by performing ~ Note thata = Hec = 3,7 hic; + 3,7 hjc;. Let

column transformations oH as shown below: Hs = (hj,,..,h;, ) andcs = (cj,...,c;, )T, where

hy— D iy, if 0,1<i<n—1 ji ¢ I, for 1 < i < n — r. Further Ietb:Zjezuhjcj,

hlz:{ F Rl ? 0l<ien_1 (O P =HHIH,) HT, B, =P, - L andy = B,b. Thus,
G Gl =5 5=t = the relationa = Hc can be transformed into the following

If the j-th element is zero for all the column vectors okquivalent forms
H, thenh!; = h; for 1 < i < n — 1. As a result, thej-th
row of H! are all zeros. The attacker repeats this process to @ = He & a= Z hici + Z hjcj = Hses +b
the reduced matri¥I' and the reduced matrices thereafter Lo &Ly

using a different element if,,, until all elements irnZ,, are & Psa=PiHscs +Psb
exhausted. Finally, the attacker can get a matrix having at < Psa=Hscs +Psb
least one column vector, sinee — k < n — 1. Obviously, < Psa=a—-b+Psb
the column vectors of the final matrix are linear c_om_blnamon & (Py—Da=(Ps—1I)b
of the column vectors oH, and them — k rows with index
< Bsa=Bsbe Bsa=y (8)

j € I,, of this matrix consist of all 0’s. Any column vector

can be used as an attacker vector. This implies that satisfies the relatioa = Hc if and only if
2) Targeted False Data Injection Attackn a targeted false 5 satisfies the relatioBsa = y. (It is easy to see thdBs is

data injection attack, the attacker intends to inject sj@ecianm x m matrix.) Thus, the attacker needs to find an attack
errors into the estimation of certain chosen state vaablgectora such thatBsa = y wherea = (a1, as,...,a,)T and

This attack can be represented mathematically as folloes. lg;, — ¢ for i ¢ Ipn.

Z, = {i1,...,ir}, wherer < n, denote the set of indexes of the There arek unknown elements im at positionsiy, ..., i,

r target state variables chosen by the attacker. In othersyorghhere i1, ...,i;, € Z,,. Thus, the vectora can be written

the attacker has chosen;,,z;,,...,x; as the target state gsg — (0, ...,0,a;,,0,...,0,a,,0, ...,0,a;,,0, ...,0)T, where
variables. In this attack, the attacker intends to constanc a;,’s are unknown elements that need to be solved. Suppose

attack vector such that the resulting estimat@aqa = X +¢, B, = (b,,,...,bs, ), Wwhereb,, (1 < i < m) is the
wherec = (c1,¢z,...,cn)" ande; for i € Z, is the specific j-th column vector ofB,. We follow the same reasoning
error that the attacker has chosen to injectfoThat is, the as in Section 1I-B1 to denotd] = (bs,,, ... bs, ) and
attacker wants to replace;,, ..., and;, with Z;, +ci,... a’ = (a4,...,a;,)7. Then we have
andz;. + c¢;,., respectively. y

We consider two cases for the targeted false data injection Ba'=y & Bsa=y < a= Hc

attack: Aconstrainedand anunconstrainectase. In the con-  Thys, to construct an attack vector, the attacker needs to
strained case, the attacker wants to launch a targeteddalae check if the rank ofB’ is the same as the rank of the
.. . . S
injection attack that only changes the target state vagblit augmented matrixB’|y). If yes, the relationBLa’ =y is
. . S : ! S
does not pollute .the cher state variables. The constraiasel 5 consistent equation. According to [26], there exist itdini
represents the situations where the control center (stét@a nymper of solutions’ = B~y + (I — B/~ B,)d that satisfy
. . S S
operator) may know or have ways to verify the estimates of thge relationB.a’ = y, whereB'" is the Matrix-1 inverse of
. . 1 S
other state variables. In the unconstrained case, thekatteas B’ and d is an arbitrary non-zero vector of length The
. . S

no concerns on the impact on the other state variables Whgthcker can construct an attack veciofrom anya’ # 0. If
attacking the chosen ones. the rank ofB’, is not the same as the rank of the augmented

The construction of an attack vectar becomes rather matrix (B.ly), then the relatioB.a’ = y is not a consistent

. . . . . S 1 S
simple in the constrained case. Consider the relaiienHc.  gquation, and thus has no solution. This means that thekattac

As discussed earlier, the attack vectormust satisfy the cannot construct an attack vector to inject the specificrgrro
condition thata; = 0 where: ¢ Z,,. Note that every element nio the chosen state variables.

¢; in c is fixed, which is either the chosen value whes Z, ) o )
or 0 wheni ¢ 7,. Thus, the attacker can substituteback C- Scenario Il — Limited Resources to Compromise Meters

into the relationa = Hc, and check ifa; = 0 for Vi ¢ Z,,. In Scenario Il, we assume the attacker has limited resources
If yes, the attacker succeeds in constructing the (onhgcktt to compromise up td& meters. Unlike Scenario I, there is no
vectora. Otherwise, the attack is impossible. restriction on what meters the attacker can choose. Foatte s



of presentation, we call a lengih-vector ak-sparse vectoif The heuristic approach does not guarantee the construction
it has at mostt non-zero elements. Thus, the attacker need$ an attack vector even if it exists, nor does it guarantee th
to find ak-sparse, non-zero attack vectorthat satisfies the construction of an attack vector that has the minimum number

relationa = Hc. of non-zero elements. Nevertheless, it runs pretty quiakign
As in Scenario |, we consider both random and targetéctan construct an attack vector, and thus could still besdulis
false data injection attacks in Scenario Il. tool for the attacker.

1) Random False Data Injection AttackVith the resources Ideally, in order to reduce the attack costs, the attacker
to compromise up t& meters, the attacker may use a brutewould like to compromise as few meters as possible. In other
force approach to construct an attack vector. That is, thrds, the attacker wants to find the optimal attack veator
attacker may try all possibla’s consisting ofk unknown with the minimum number of non-zero elements. The attacker
elements andn — k zero elements. For each candidate may use the brute-force approach discussed at the begiohing
the attacker may check if there exists a non-zero solution $&ction 11I-C1 withk being 1 initially, and gradually increase
a such thatBa = 0 using the same method as discussed i until an attack vector is found. Apparently, such an attack
Section IlI-B1. If yes, the attacker succeeds in constngcti vector gives the optimal solution with the minimum number of
an attack vector. If the attacker cannot find-gparse attack compromised meters. There are possibilities to imprové suc
vector after exhausting all the possikiss, the attack vector a brute-force approach, for example, using a binary search i
does not exist. However, the brute-force approach could tokentifying the minimumk.
time consuming. In the worst case, the attacker needs t@®?) Targeted False Data Injection AttackiVe follow the
examine(’,’j) candidate attack vectors. notation used in Scenario | to describe the targeted false da

To improve the time efficiency, the attacker may take adhjection attack. LetZ, = {iy,...,i,}, wherer < n, denote
vantage of the following observation. Since a successfatkt the set of indexes of the target state variables chosen by
vector is a linear combination of the column vectordbfi.e., the attacker. In this attack, the attacker intends to coosan
a = Hc), the attacker can perform column transformations tttack vectora to replacez;, , ..., and;, with &;, + ¢;,, ...,

H to reduce the non-zero elements in the transformed coluand &, + ¢;, respectively, where;, , ..., c; are the specific
vectors. As this process continues, more column vectorsdrrors to be injected.

the transformedd will have fewer non-zero elements. The Similar to Scenario I, we consider both constrained and
column vectors with no more thak non-zero elements canunconstrained cases. As discussed earlier, in the comstrai
be used as attack vectors. In particular, when the mafrix case, the attacker intends to only change the estimation of
is a sparse matrix (which is usually the case in real powlte chosen target state variables, but does not modify the
systems), it does not take many column transformations dther state variables. Thus, all elementscofire fixed. So
construct a desirable attack vector. the attacker can substitute into the relationa = He. If

We give a heuristic approach to take advantage of thise resultinga is a k-sparse vector, the attacker succeeds in
observation as follows. The attacker can initialize a size constructing the attack vector. Otherwise, the attackis.fa
gueue with then column vectors ofH. The attacker then The attack vector derived in the constrained case is the only
repeats the following process: Take the first column vettorpossible attack vector; there is no way to further reduce the
out from the queue. It is a k-sparse vector, the algorithmnumber of compromised meters.
returns and: can be used as the attack vector. If not, for each Now let us consider the unconstrained case. Only the
column vectors in the queue, the attacker checks if linearlglementsc; of ¢ for i € Z, are fixed; the other elements
combiningt ands can result in a column vector with lessc; for j ¢ 7, can be any values. According to Equation (8),
zero elements that If so, the attacker appends the resulting = Hc < Bga = y. (Note that the derivation of Equation (8)
vector into the queue. The attacker repeats this proce8saundoes not assume any specific compromised meters. Thus,
k-sparse vector is found or the set is empty. It is easy to séquation (8) also holds in the unconstrained case in Sagnari
that ak-sparse vector constructed in this way must be a liney)
combination of some column vectors B, and can serve as To construct an attack vector, the attacker needs to find a
an attack vector. k-sparse attack vectar that satisfies the relatioBsa = y.

The heuristic approach could be quite slow for a generalcloser look at this problem reveals that it is thenimum
H. However, it works pretty efficiently for a sparse matkly  Weight Solution for Linear Equations proble@i7], which is
which is usually the case for real-world power systems. Fan NP-Complete problem: Given a mati and a vectoib,
example, in our simulation, whelh= 12 in the IEEE 300-bus compute a vectax satisfyingAx = b such thatk has at most
test system, it takes the heuristic approach about 16.@#dec k& non-zero elements.
on a regular PC to find an attack vector after computing 596 Several efficient heuristic algorithms have been developed
linear combinations of column vectors. As another exampl®, deals with the above problems, for example, the Matching
when k = 6 in the IEEE 118-bus test system, it takes thiBursuit algorithm [28]—[30], the Basis Pursuit algorith&1],
approach about 5.82 seconds to find an attack vector after $88], and the Gradient Pursuit algorithm [33]. The attacker
linear combinations of column vectors. can use these algorithms to find a near optimal attack vector.



In our simulation, we choose to use the Matching Pursudbnstructing attack vectors in various situations as welha

algorithm, since it is the most popular algorithm for compgt efforts required for a successful attack vector constoucti

the sparse signal representations and has exponentiabfrate In our experiments, we simulate attacks against state es-

convergence [34]. timation using DC power flow model. We extract the con-
The attacker may also want to minimize the number diguration of the IEEE test systems (particularly the matrix

meters to be compromised. That is, the attacker needs to flH)i from MATPOWER, a MATLAB package for solving

an attack vectom with the minimum number of non-zeropower flow problems [1£] We perform our experiments based

elements that satisfies= Hc such that the chosen elementon the matrix H and meter measurements obtained from

in ¢ have the specific values. This problem is in fact the MIMATPOWER. For each test system, the state variables are

RVLS™ problem [35]: Given a matrixA and a vectorb, Vvoltage angles of all buses, and the meter measurements are

compute a vectox satisfyingAx = b such thatx has as few real power injections of all buses and real power flows of all

non-zero elements as possible. Matching Pursuit Algorithbianches. We simulate the behavior of compromising;tie

can again be used to find an attack vector, since this problemeter by adding an offset (chosen by the attack) toitkie

is the optimization version of the minimum weight solutiormeasurement.

for linear equations problem discussed earlier. The numbers of state variables and measurements for all
the test systems and some examples of mdtiare given
D. Discussion in Appendix A. Other information (such as the topology, the

We would like to point out that the false data injectior#ocations of meters, bus data, and branch data) can be found
in_the source files in MATPOWER.

attacks do pose strong requirements for the attackers. 'In . . .
particular, it requires that the attackers know the conéiian I?I_”Ltgi: exper |m3\r}t S dare s;(rr;ula:]e_:dhla MA-;LOAE;AI'DO otr_1 a
of the target power system. Such information is usually kept runnlr:jgl (ISnB oWS AF, which has a 5. zrentium
secret by power companies at control centers or other pIac:eBroceSSOr an memary.

with physical security measures. Thus, it is non-triviat foA. Results of Scenario |

the attackers to obtain the system configuration informatio As mentioned earlier, in Scenario I, the attacker is limited
to launch these attacks. Nevertheless, it would be defnitgh accessing: specific meters. In other words, the attacker
wrong to assume that the attackers cannot access such infgg only modify the measurements of thésemeters. Our
mation at all. As pointed out in [2], an attacker may breakyajuation objective in this scenario is mainly two-foldtsE
into the control center through four interfaces. Moreo#ee, \ve would like to see how likely the attacker can use these
attackers may pursue social engineering approaches taget §; meters to achieve his/her attack goal. Second, we want to
information. see the computational efforts required for finding an attack
Another challenge for the attackers is the manipulation Q&ctor. In our evaluation, we consider (1) random false data
the meter measurements. The attackers may physically tampgection attacks, (2) targeted false data injection &tain
the meters, or manipulate the meter measurements before s unconstrained case, and (3) targeted false data mjecti
are used for state estimation in the control center. Agaie, dattacks in the constrained case.
the existing protection in the power grid, this is non-@lvi  Based on our evaluation objective, we use two evaluation
However, assuming that this is impossible will definitelyeyi metrics. The first metric is the probability that the attacke
us a false sense of security and will pave ways for catasé®pltan successfully construct an attack vector givenktspecific
in the future. meters. The second metric is the execution time required to
Despite the difficulty for launching false data injectiorgither construct an attack vector or conclude that the kaigac
attacks, it is critical for power engineers and securitypdeo infeasible.
to be aware of this threat. Existing state estimation and thewe perform the experiments as follows. For random false
follow-up processes assume a near-perfect detection @ ladata injection attacks, we let the parameterange from 1
bad measurements. However, our work in this paper indicatesthe maximum number of meters in each test system. (For
that an attacker can systematically bypass detection. Thigamplej ranges from 1 to 490 in the IEEE 118-bus system.)
discrepancy may be amplified in the later processes follgwiFor eachk, we randomly choosé specific meters and use
state estimation, leading to catastrophic impacts. Aoldéti the approach presented in Section I11-B1 to attempt an lattac
research is necessary to clarify the implication of theefalsiector construction. We repeat this process 100 times ftr bo
data injection attacks. IEEE 118-bus and 300-bus systems and 1,000 times for the

other systenis and estimate theuccess probability;, (i.e.,
IV. EXPERIMENTAL RESULTS
2In MATPOWER, the shift injection vector is set t for state estimation
In this section, we validate the false data injection atacksing DC power flow model.

through experiments using IEEE test systems, including theslt takes significantly more time to e_xhaustively examine HBHEE 118-

pus and 300-bus systems with all possikls. Thus, we reduce the number
IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-bus SyStefiSrials for these systems to 100 so that the simulation aaishfiwithin a
We are primarily interested in assessing the feasibility @fasonable amount time.



the probability of successfully constructing an attackteec bus system, and 20 trials for the IEEE 300-bus systein)

with &k given meters) ap;, =

# successful tr alls
# trials

each trail, we randomly choogemeters and test if an attack

Let R, denote the percentage of the spec|f|c meters und@ctor that injects false data into this target variable ban

attacker’s control (i.e.

‘total number of meters

k ). Figure 2 shows generated. If yes, we mark the experiment as successfidr Aft

the relationship betweep; and R, for random false data these trails, we can compute the success probability for
injection attacks. We can see that increases sharply aB,  this particular state variable as py,, = # Succeii{g;;m”s
is larger than a certain value in all systems. For examplef

Finally, we compute the overall success probabyhgyas the

the IEEE 300-bus system increases quickly wiignexceeds average ofp ,,’s for all the chosen state variables.

20%. Moreover, the attacker can generate the attack vectoFigure 3 shows the relationship betwegp and Ry, for

with the probability close to 1 wheR,, is large enough. For targeted false data injection attacks in the unconstraiasd.
example,p, is almost 1 whenRy, is greater than 60% andWe observe the same trend in this figure as in Figure 2, though
40% in the IEEE 118-bus and 300-bus systems, respectivéhe probability in this case is in general lower than that in
Finally, larger systems have highgr than smaller systems for Figure 2. For examplep;, increases sharply aB;, is larger

the sameR;,. For examplep,, is about 0.6 for IEEE 300-bus than 60% for both the IEEE 118-bus and 300-bus systems.
system and 0.1 for IEEE 118-bus system when the attachdereover, for both systems, the probability that the attack
can compromise 30% of the meters in both systems. can successfully generate the attack vector is larger théan 0

Probability of finding the attack vector

Fig. 2. Probability of finding an attack vector for randonstalata injection

attacks

Probability of finding the attack vector

0.8r

0.61

when Ry, is larger than 70%. For targeted false data injection
attacks, larger systems also tend to have highehan smaller
systems for the samBy.

Figures 2 and 3 indicate that it is possible for the attacker
to successfully generate attack vectors in the above two
attacks, even if the attacker has limited access to soméfispec
meters. The success probability increases dramaticaltheas

0.4 T ii’gzs number of meters controlled by the attacker increases lakyon
~ _ 30-bus a threshold.
0.2r - - -118-bus|] The targeted false data injection attack in the constrained
: —300-bus case is the most challenging one for the attacker. Due to the
% 02 04 06 08 1 constraints on the specific meters, the targeted stateblesia

Percentage of specific meters to compromise

-~ -9-bus

and the necessity of no impact on the remaining state vasabl
the probability of constructing a successful attack vegdan

fact very small, though still possible. We perform expetitse

for this case slightly differently. We randomly pick 6 sefs o
meters for the IEEE 118-bus and 300-bus systems. In each set,
there are 350 meters and 700 meters for the IEEE 118-bus and

- 14-bus 300-bus systems, respectively. We then check the number of
0.8 s . .. .

--30-bus | '/ / individual target state variables that can be affected lphea
ol ’”éég:gzz 0o set of meters in the constrained case (i.e., without affgcti

0.4

0.2

0

0

0.2 0.4 0.6 0.8 1

the estimation of the remaining state variables).

Figures 4 and 5 show the impact of targeted false data
injection attacks in the constrained case. The attacker can
affect 8-11 individual state variables in the IEEE 118-bus
system and 13-16 individual state variables in the IEEE 300-
bus system. Thus, though the targeted false data injection

Percentage of specific meters to compromise attack in the constrained case is hard, it is still possible t

modify some target state variables.
In Scenario |, all attacks can be performed fairly quickly.
In other words, it takes little time for the attacker to kndvit i
For targeted false data injection attacks in the uncometthi js possible to construct an attack vector. Moreover, when th
case, we also let the parametérrange from 1 to the zitack is feasible, it takes again little time to actuallysmuct

maximum number of meters in each test system, and perfogi attack vector. Table | shows the execution time requiged b
the following experiments for each. We randomly pick 10
target state variables for each test system (8 for the IEBESS- “In this case, it take even more time than random false datetio
system, since it Omy has 8 state varlables) For each taraiet attacks to exhaustively examine the |IEEE 118-bus and 380spstems with

all possiblek’s. Thus, we reduce the number of trials for these two systems
variable, we perform mU|t'ple trials (1'000 trials for theHE 100 and 20, respectively, so that the simulation can finighimia reasonable

9-bus, 14-bus, and 30-bus systems, 100 trials for the IEBE 1Zmount time.

Fig. 3. Probability of finding an attack vector for compromgs a single
state variable in targeted false data injection attacksdustrained case)



Fig. 4. Number of target state variables affected (IEEE Bd8-system)

Fig. 5.
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TABLE Il
RESULTS OF RANDOM FALSE DATA INJECTION ATTACKS

Test system | # meters to
compromise
IEEE 9-bus 4
IEEE 14-bus 4
IEEE 30-bus 4
IEEE 118-bus 4
IEEE 300-bus 4

can use the limited resources to achieve his/her attack goal
and at the same time, examine the computation required for
attacks. We use two evaluation metrics in our experiments:
(1) number of meters to compromise in order to construct an
attack vector, and (2) execution time required for consimngc

an attack vector.

Due to the flexibility for the attacker to choose different-me
ters to compromise in Scenario Il, the evaluation of Scenlari
generally requires more experiments to obtain the evalnati
results. In the following, we examine (1) random false data
injection attacks, (2) targeted false data injection &gan the
constrained case, and (3) targeted false data injectiackastt
in the unconstrained case, respectively.

1) Results of Random False Data Injection Attackan-
dom false data injection attacks are the easiest one ameng th
three types of attacks under evaluation, mainly due to thgtle
constraints that the attacker has to follow. We perform a set
of experiments to construct attack vectors for random false

the random false data injection attack and the targetee falfata injection attacks against the IEEE 9-bus, 14-bus,80-b

data injection attack in the unconstrained case. For exampl18-bus, and 300-bus systems. We assume the attacker wants
the time needed for the random false data injection attathB) minimize the attack cost by Compromising as few meters
either construct an attack vector or conclude the infelityibi a5 possible. This means the attacker needs to find the attack
of the attack ranges from 0.34ms to 867.9 ms for the 118ector having the minimum number of non-zero elements. The

bus system. The time required for the targeted false d@aite-force approach is too expensive to use for finding such
injection attack in the constrained case is very small, esingttack vector because of its high time complexity. For examp
the computational task is just the multiplication of a matrijt needs to examine abo@t? combinations for the IEEE 9-
and a column vector. For example, the time required for thgs test system. Thus, in our experiment, we use the heuristi

IEEE 300-bus system ranges from 1.2ms to 11ms. We do R@jorithm discussed in Section I1I-C1 to find an attack vecto
give the specific numbers in this paper.

B. Results of Scenario Il

As mentioned earlier, in Scenario Il, the attacker has &dhit
resources to compromise up to meters. Compared with
Scenario |, the restriction on the attacker is relaxed in tigﬁ
sense that ang meters can be used for the attack. Similar t

that has near minimum number of non-zero elements for each
system.

Table Il shows the results. For all test systems, the attacke
can construct an attack vector for random false data imjecti
attacks by only compromising 4 meters. The number of meters
at need to be compromised seems surprisingly small. We
fook into the experimental data, and find that this is mainly

Scenario |, we would also like to see how likely the attack%{ue to the fact that tha&l matrices of all these IEEE test

TABLE |

TIMING RESULTS IN SCENARIO| (MS)

systems are sparse. For example, Hienatrix of the IEEE
300-bus system is a 1,12300 matrix, but most of the entries
are 0's. In particular, the sparsest columnkh only has 4

Test system | Random attacK Targeted aftack non-zero elements. This column is eventually selected by t.h
(unconstrained) algorithm as the attack vector. Note that power systems with
IEEE 9-bus 0.17-2.4 0.21-22 sparseH matrices are not rare cases. In practice, components
IEEE 14-bus 0.16-5.6 0.26-11.3 in a power system that are not physically adjacent to each
IIIEIEIE fﬁ;bﬁs 00-3?45—81(;17-99 0%5413;317-25 other are usually not connected. As a result, Hiematrices
-bus .34-867. 42-1, .
IEEE 300-bus| 0.55-8,549.6 0.73-18,510 of the power systems are often sparse.
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2) Results of Targeted False Data Injection Attacks in
Constrained CaseSimilar to Scenario |, targeted false data in-
jection attacks in the constrained case are the most clgiign
one among the three types of attacks due to all the congtraint
that the attacker has to follow in attack vector construrctio
In the constrained case, the attacker aims to change specific
state variables to specific values and keep the remainitg sta
variables as they are.

In our experiments, we randomly chook€l < [ < 10)
target state variables and generate malicious data for @éach
them. The malicious values are set to be 100 times larger
than the real estimates of the state variables. We then exami
how many meters need to be compromised in order to injédy. 8. Constrained case: Number of meters to compromisejéstifalse
the malicious data (without changing the other non-targ&t'® Nt a single state variable

state variables). For each value pfwe perform the above
experiment 1,000 times to examine the distribution of th@ate variables and the number of meters to compromiseelin th

number of meters that need to be compromised. worst case, to inject malicious data into as many as 10 state
variables, the attacker needs to compromise 60-140 meters
in the IEEE 118-bus system and 50-140 meters in the IEEE

w W
o u

N
(4]

=
()]

l;
I,
1]

Number of meters to compromise
N
o

%
%
%
%
%

300-bus 118-bus 30-bus 14-bus 9-bus
IEEE test systems

W T T T - 7] 300-bus system. Note that there are 1,122 meters in the IEEE
T 300-bus system and 490 meters in the IEEE 118-bus system.

100l Lo E This means that the attacker only needs to compromise a small
b fraction of the meters to launch targeted false data imgacti

attacks even in the constrained case.
We also exhaustively examine a special situation of tacgete

Number of meters to compromise

%0 B ; é false data injection attacks in the constrained case. Sqedbyi,
j =i L for each state variable, we examine the number of meters that
o—% N L ] need be compromised if the attacker aims at this variable.
1 2 3 4 5 6 7 8 9 10 Figure 8 shows the results. We can see that the attacker can

Number of target state variables . . . . . .
inject malicious data into any single state variable usegs|

than 35 meters for the IEEE 118-bus system and less than 40
meters for the IEEE 300-bus system. For all the systems, none
of the median values is greater than 10. This means that the
attacker can affect most of the state variables by using at mo

Fig. 6. Constrained case: Number of meters to compromisejé¢atifalse
data intol state variables in the IEEE 118-bus system

140f
120}

Number of target state variables

10 compromised meters.
In the constrained case, sinces fixed, the attack vectors
can be directly computed. Thus, the execution time in all the

8
€
§ .
g l
£ 100/ o ) . ;
o o experiments is very short. For example, it costs only 1.2 ms
4 80y T ‘ E | on the test computer to generate an attack vector that snject
goo E E | 1] false data into 10 state variables in the IEEE 300-bus system
S 40 _ : ! Q E i Lot 3) Results of Targeted False Data Injection Attacks in
é 20l | E [ Unconstrained Caseln the unconstrained case, the attacker
= 07:13 Lot | wants to inject malicious data into specific state varialbes

1 2 3 4 5 6 7 8 9 10 the attacker does not have to keep the other state variatles u

changed. As discussed in Section 11I-C2, we use the Matching

Fig. 7. Constrained case: Number of meters to compromisajéctifalse Pursuit algorithm [28]_.[30] to ﬁnq attaCk. vectors. We penfp
data intol state variables in the IEEE 300-bus system the same set of experiments as in Section IV-B2 to obtain the

Figures 6 and 7 show the results for the IEEE 118-bus alfo evaluation metrics: the number of meters to compromise
300-bus systems, respectively. In these figures, we use the execution time. Note that in the unconstrained dase,

plot$® to show the relationship between the number of targi@kes significantly more time to find a near minimum number
of meters than the previous experiments. Thus, we show more

5In a box plot [36], each box describes a group of data throhgir five ~detailed results on execution time in this case.
summaries: minimum, first quartile, median, third quartiéexd maximum. Figures 9 and 10 show the relationship between the number
They are represented as horizontal lines at the very botrine lower end . e
of meters to compromise and the number of specific state

of the box, inside the box, at the upper end of the box, andeawény top, ) k
respectively. variables to compromise for the IEEE 118-bus and 300-bus
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systems, respectively. Figures 11 and 12 show the corrdspon
ing execution time of the Matching Pursuit algorithm for
finding an attack vector successfully. From these figures, we
can see that the attacker needs to compromise 60-130 meters
for the IEEE 118-bus system and 55-140 meters for the IEEE
300-bus system, if the attacker wants to inject malicious da
into as many as 10 state variables. These meters can beyquickl
identified within 2 seconds for the IEEE 118-bus system and
within 8 seconds for the IEEE 300-bus system.
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Fig. 9. Unconstrained case: Number of meters to compromisggect false
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Fig. 10. Unconstrained case: Number of meters to compromoiseject
false data intd state variables in the IEEE 300-bus system
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Fig. 11. Unconstrained case: Execution time of finding aac#tvector to
inject false data into one state variable in the IEEE 118dystem
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Fig. 12. Unconstrained case: Execution time of finding aac#tvector to
inject false data into one state variable in the IEEE 300dystem
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Fig. 13. Unconstrained case: Number of meters to compromoiseject
false data into one state variable
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Fig. 14. Unconstrained Case: Execution time of finding aachtivector to
inject false data into one state variable

We also exhaustively examine the special situation of in-
jecting malicious data into a single state variable for h# t
IEEE test systems, as in the constrained case. Figures 13
and 14 show the number of meters to compromise for these
systems and the corresponding execution time, respegctivel
As shown in Figures 13 and 14, for example, the attacker
can inject malicious data into any single state variablehef t
IEEE 300-bus system by compromising 27 meters, and it costs
the attacker less than 2.6 seconds to find the attack vector.
Similarly, to inject false data into any single state valéabf
the IEEE 118-bus system, the attacker needs to compromise 22
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meters, and these meters can be identified within 0.5 second} F. C. Schweppe, J. Wildes, and D. B. Rom, “Power systeiticsstate

These experimental results indicate that the false data in-
jection attacks are practical and easy to launch if the ledgtac [14]
has the configuration information of the target system amd ca

modify the meter measurements.
[15]

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new class of attacks, calléél
false data injection attacksgainst state estimation in electric

estimation. parts 1, 2, 3JEEE Transactions on Power Apparatus and
Systemsvol. 89, no. 1, pp. 120-135, January 1970.

E.Handschin, F. C. Schweppe, J. Kohlas, and A. Fiecligad data
analysis for power system state estimatid&BEE Transactions on Power
Apparatus and Systemsol. 94, no. 2, pp. 329-337, April 1975.

A. Garcia, A. Monticelli, and P. Abreu, “Fast decouplsiéte estimation
and bad data processindEEE Transactions on Power Apparatus and
Systemsvol. 98, no. 5, pp. 1645-1652, September 1979.

N. Xiang, S. Wang, and E. Yu, “A new approach for detattiand
identification of multiple bad data in power system stateénesion,”
IEEE Transactions on Power Apparatus and Systevot 101, no. 2,

power systems. We show that an attacker can take advantage of pp. 454-462, Febuary 1982.

the configuration of a power system to launch such attacks[to]
bypass the existing techniques for bad measurement d®tecti
We considered two realistic attack scenarios, where the 5
tacker is either constrained to some specific meters, otdimi

——, “An application of estimation-identification apgch of multiple
bad data in power system state estimation,JHEE Power Engineering
Society Summber MeetingA USA, July 1983.

N. Xiang and S. Wang, “Estimation and identification ofultiple
bad data in power system state estimation,thie 7th Power Systems

in the resources required to compromise meters. We showed Computation Conference, PSCCausanne, July 1981, pp. 1061-1065.

that the attacker can systematically and efficiently comstr (1]

attack vectors in both scenarios, which can not only change
the results of state estimation, but also modify the resnlts
predicted way. We performed simulation on IEEE test syster?8]
to demonstrate the success of these attacks. Our resultisin t
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APPENDIXA
IEEE TEST SYSTEMS

As discussed in the paper, we validate the false data
injection attacks through experiments using IEEE tesesyst
including the IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-
bus systems. We extract the configuration of these testragste
(particularly the matrixH) from MATPOWER, a MATLAB
package for solving power flow problems [11]. The informa-
tion regarding the topology, bus data, and branch data can
be found from source files of MATPOWER. The names of
these source files arease9. m casel4. m case30. m
casell8. m andcase300. m

Table Il shows the number of state variables and the
number of measurements in the IEEE test systems. All these
systems are assumed to be fully measured. Figures 15 and 16
show the matrixH of the IEEE 9-bus and 14-bus systems,
respectively. The matribH'’s for the IEEE 30-bus, 118-bus,
and 300-bus systems are space consuming; we do not include
them here.

TABLE Il
NUMBER OF STATE VARIABLES AND MEASUREMENTS IN THEIEEE TEST
SYSTEMS
Test system | # State Variable§g # Measurements
IEEE 9-bus 8 27
IEEE 14-bus 13 54
IEEE 30-bus 29 112
IEEE 118-bus 117 490
IEEE 300-bus 299 1122
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