
Validating Existing Requirements for Compliance with Law Using a

Production Rule Model

Jeremy C. Maxwell and Annie I. Antón

North Carolina State University

{jcmaxwe3, aianton}@ncsu.edu

Abstract

To ensure legal compliance, requirements engineers

need tools to validate existing requirements for

compliance with relevant law. This paper proposes an

approach to aid in validating software requirements

for legal compliance. The approach employs a

production rule model for the United States Health

Insurance Portability and Accountability Act (HIPAA)

that can be queried by requirements engineers as they

validate and refine software requirements. In this

paper, we discuss a case study in which we applied the

approach to evaluate the iTrust Medical Records

System requirements for HIPAA compliance. We were

able to identify 12 new potential requirements beyond

the original 63 functional requirements, as well as

operationalize one nonfunctional requirement.

1. Introduction

Software engineers are increasingly asked to

develop software for regulated environments. The U.S.

Sarbanes-Oxley Act regulates financial companies.

The U.S. Health Insurance Portability and

Accountability Act
1
 (HIPAA) regulates the healthcare

and health insurance industries. The European Union’s

Directive 95/46/EC requires that personal data remains

protected. When developing software for domains

regulated by these and other laws, requirements

engineers must verify that existing requirements

comply with laws and regulations, as well as extracting

new requirements from law.

The cost of noncompliance is high, including fines,

cost of court representation, government audits, and

workforce training. The Choicepoint data breach cost

the company in excess of 27 million dollars [OAB07].

Using studies in The New England Journal of

Medicine and the American Hospital Association’s

2003 Hospital Statistics, we estimate that hospitals

1 45 CFR Parts 160, 162, and 164

budgeted between 360 million and 1.2 billion dollars

for HIPAA compliance in 2003 alone [AHA03, Kil03].

This estimate is only for hospitals, and does not

consider doctor’s offices, health insurance companies,

and other entities affected by HIPAA. Because of the

cost of noncompliance, complying with legal

regulations must be a focus area for software firms

when developing software.

The fundamental problem we address is the

communication gap between requirements engineers

and legal domain experts. Requirements engineers,

software designers, and developers are well versed in

the technical aspects of software development;

lawyers, policy makers, as well as judicial and

legislative officials are well versed in the law. The

communication gap between these domains can open

up software to noncompliance.

We present an approach to analyze existing

requirements’ completeness concerning regulatory

compliance. We query a production rule model to

determine the compliance of existing requirements,

elicit potential requirements to improve regulatory

compliance, and assist in operationalizing

nonfunctional requirements. Production rule models

provide a unique advantage when performing

compliance analysis: a low amount of knowledge of

the regulation is required to perform the analysis. We

developed our approach via an exploratory case study,

analyzing the requirements of iTrust, an open-source

electronic health records system, for HIPAA

compliance.

Production rules, a knowledge representation

technique used in artificial intelligence [DHL86], are

usually stated in Horn clauses connected by logical

operators [BL04]. In other words, each rule is an if-

then statement. Many such rules combine to create a

knowledge base, also called a rules base. To interact

with this rules base, a query is presented and viewed as

a top-level goal. An inference engine then uses a

reasoning strategy, usually backwards chaining, to

execute the rules in the rules base. The result is an

affirmation or a refutation of the original query [SS94].

The remainder of this paper is organized as follows:

Section 2 reviews work related to production rule

modeling of legal texts, rights and obligations in legal

texts, and evaluating existing requirements for legal

compliance; Section 3 reviews the approach used in the

iTrust case study; Section 4 discusses the results of our

case study; Section 5 discusses threats to the validity of

the case study; and Section 6 provides a summary of

this work and outlines areas of future work in the field.

2. Related Work

Prior work has focused on modeling legal texts

using production rules, extracting rights and

obligations from legal texts, and using traditional

requirements engineering techniques to evaluate

requirements for legal compliance.

2.1. Production Rule Modeling of Legal Texts

Knowledge representation has been identified as a

key activity for requirements engineering [BGM85].

Creating models of the software’s target environment

encourages communication between stakeholders.

Additionally, models allow: for querying the model;

the derivation of new knowledge not yet represented in

the model; and for simulation [BGM85]. Production

rules, among other techniques, have been proposed for

use in requirements engineering [DHL86].

We have made use of production rules to model a

portion of the HIPAA Privacy Rule [MA09]. We the

Production Rule Modeling methodology, a two-activity

process for translating a legal text into Prolog. We

translated §164.520, §164.522, §164.524 and §164.526

of the HIPAA Privacy Rule into Prolog. We query this

model when performing our analysis of the iTrust

requirements.

Production rules have been used to model several

other legal texts [BMT87, BRR87, SSK86, She87,

SKB91]. These works focus on: improving the

understanding of law using production rules [BMT87];

knowledge representation research rather than practical

uses of production rule models [BRR87, SSK86];

aiding law makers in drafting legislation [SSK86]; and

legal reasoning [BMT87, She87, SKB91]. Production

rule models have not been used to assist in

requirements validation and compliance checking.

Production rule modeling has also been used by

Mitchell et al. to create a preliminary version of a

HIPAA Compliance Checker
2
 [HS08, Mit08]. The

tool, written in Prolog and based on a class project,

seeks to enable the discovery of inconsistencies in

2 http://crypto.stanford.edu/privacy/HIPAA/

legal texts, while providing real-time message

checking for privacy violations. There are several

differences between their work and ours. Their

Checker determines whether a message can legally be

transmitted between two entities; thus, they have yet to

address the broad range of queries present in the

regulation. For example, a model of the HIPAA

Security and Privacy Rule could potentially be queried

about access control, the right of notice, security

requirements, etc. Second, their work does not make

use of the rights, obligations, and permissions, whereas

we draw upon our prior work in this area [BA08,

BVA06].

2.2. Extracting Rights and Obligations from

Legal Texts

The Semantic Parameterization methodology

extracts rights and obligations from regulatory texts

[BA08, BVA06, BAD09]. This methodology is based

on deontic logic, which is concerned with the notions

of permission and obligation. Rights, obligations, and

permissions are the main query mechanisms of the

production rule model we have developed previously

[MA09]. As such, in our case study, we query the

model to determine an organization’s legal obligations

that must be fulfilled by the covered entity, and, by

extension, the software.

2.3. Evaluating for Legal Compliance using

Traditional Requirements Engineering

Techniques

Massey et al. examined the iTrust requirements for

security and legal concerns [MOH08]. They developed

a methodology for tracing requirements back to

applicable regulatory sections. Their input was 27

Unified Modeling Language (UML) use cases and four

nonfunctional requirements, which comprised the

entirety of the original iTrust requirements. They

derived 63 functional and 10 nonfunctional

requirements, which we use for our case study

presented in Section 4. Additionally, a portion of their

methodology, mapping terminology in a requirements

document to the terminology in a legal text, is similar

to the first activity in our approach, presented in

Section 3. Our work differs from the work by Massey

et al. through our use of Prolog to validate existing

requirements and identify new potential

requirements—Massey et al. rely on more traditional

techniques such as the Inquiry Cycle Model for

evaluating requirements for legal compliance [PTA94].

2.4. Prolog Overview

In this section, we provide a brief overview of the

Prolog syntax we use in this paper. The syntax of a

Prolog rule is:

<result> :-

<condition1>,
<condition2>,

...
<conditionN>.

Where the symbol :- is interpreted as the if

conditional, the comma symbol is interpreted as

logical-and, and the period symbol is interpreted as a

full stop (the end of a rule). The result is evaluated to

true only if {condition1, condition2,...,

conditionN} are evaluated to true. The Prolog rule

father(X,Y) :- male(X), child(Y,X) is read “X is

the father of Y if X is male and Y is the child of X.”

The portion of the rule before the :- symbol is called

the head of the rule, while the portion following the :-

is called the body of the rule [SS94].

An atom is a name, quoted string, or a sequence of

special characters (:- is one example). A term is the

basic unit in Prolog; a term can be an atom, an integer

value, a variable or a compound term. A variable

signifies a single yet unspecified quantity, and are

signified by beginning with a capital letter. A

compound term consists of a predicate and its

arguments, where a predicate is a relationship between

atoms. A procedure is a set of rules that have the same

predicate as the head [SS94].

A production rule model makes use of two built-in

Prolog commands. The assert(NewFact) command

adds a new fact to the knowledge base, namely the

parameter of the command. Similarly, the

retract(Fact) command removes the first occurrence

of the specified fact from the knowledge base [SS94].

We will make use of these commands to build

precondition sets from the requirements to query the

model.

The strength of Prolog to answer queries comes

from two concepts: unification and backtracking

[Set90]. Unification occurs when the inference engine

attempts to find a single value to bind to multiple

occurrences of a variable. The inference engine

backtracks to find alternate solutions when they are

requested or when one line of reasoning has failed.

2.5. iTrust Overview

iTrust
3
 is an open-source electronic health records

system used as an instructional tool at North Carolina

State University. The system is developed as part of

3 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

undergraduate and graduate courses; each semester,

students develop new functionality and test the code

developed from previous semesters.

For our case study, we use the 73 requirements

developed by Massey et al. [MOH08]. We focus on

analyzing the 63 functional requirements; the 10

nonfunctional requirements, as is usually the case, tend

to detail system wide requirements. For example, the

nonfunctional requirements specify technology

constraints, testing criteria, coding standards, and the

web browsers iTrust must be compatible with. One of

the nonfunctional requirements is “iTrust shall comply

with HIPAA and other laws and regulations.”

3. Using Production Rules to Validate

Requirements’ Compliance

We developed a three activity approach for

checking requirements for regulatory compliance. An

overview of this approach is presented in Figure 1. A

production rule model of the legal text and an existing

set of requirements are inputs. The steps are listed as

follows:

1. Map Terminology. Map requirements document

terminology to regulation terminology used in the

production rule model.

2. Identify Precondition Sets. Preconditions for

queries are identified and grouped into sets.

3. Analyze Requirements. Identify conflicts, gaps in
requirements coverage, and organizational

concerns. The identification of new legal

preconditions in this step may require the engineer

to return to the Identify Preconditions step to

create new precondition sets.

Figure 1. Approach Overview

Applying the steps in our approach, using a

production rule model, a set of validated requirements,

along with new potential requirements, are produced.

In the remainder of this section, we will discuss each

step in detail using a concrete example from our case

study. Requirement 21 from the iTrust requirements

document is listed in Figure 2. We will identify new

compliance requirements using this requirement as a

starting point.

Reqt21: iTrust shall allow a patient, using his/her

authorized account, to read or update his/her

demographic information, the demographic

information for the patients he/she represents, his/her

list of personal representatives, the list of personal

representatives for the patients he/she represents, their

list of designated physicians, and the list of designated

physicians for the patients he/she represents.

Figure 2. An iTrust Requirement

3.1. Map Terminology

Mapping terminology entails mapping the natural

language phrases in the requirements document onto

the terminology used in the legal text as expressed by

the production rule model. As proposed by Massey et

al. [MOH08] this is the first phase of checking

requirements for regulatory compliance. There are

three categories of terminology: actors, objects, and

relations. Actors are individuals and organizations that

have a right, are constrained by an obligation, or

permitted to perform some action [MA09], or appear in

the requirements document as a subject. Objects are

inanimate things with which actors interact. Relations

are actions performed by actors, relationships between

actors or objects, or properties of actors or objects in

the production rule model.

Ideally, terminology should be mapped early in the

requirements engineering process, as regulatory

compliance should be a consideration from the outset.

Oftentimes, however, engineers are working on

existing systems whose requirements have already

been specified. These requirements: (a) may predate

the regulation, (b) were specified based on an older

version of the regulation, or (c) were specified without

regard to the regulation at all. Thus, terminology

mapping is an essential activity.

A prerequisite to the Map Terminology activity is

well-defined, consistent requirements document

terminology. This may require discussion and

negotiation with stakeholders to address conflicting or

vague terminology.

A challenge mentioned but not solved by Massey et

al. [MOH08] is the familiarity with the legal text that is

required before terminology mapping can take place. A

requirements engineer must have a deep knowledge of

the legal text in order to accurately map terms. The

queriability of production rule models enables us to

address this challenge. As a result of the iTrust case

study, we have added two Prolog procedures to our

model: glossary and whatIs. Using these two

procedures, a requirements engineer can obtain the

definitions of terms used in a legal text. This integrated

glossary is similar to others used in previous legal

knowledge base systems [GMT87, SAA00].

The glossary procedure prints a listing of all

predicates, derived from the legal text, that are used in

the production rule model. The actor terms, object

terms, and the relation terms can be printed

individually, or at the same time. Currently, there are

24 actors, 19 objects, and 69 relations in the glossary.

The whatIs procedure displays the actual definition

of the term from the legal text, along with the section

the definition appears in, where applicable. For

example, to determine the meaning of the term

‘protected health information’ (PHI), the command

whatIs(phi) is used, resulting in the output shown in

Figure 3. Some terminology, however, does not have a

specific definition in the legal text. For example,

receive is an action preformed from one actor to

another, but does not have a precise legal definition in

the HIPAA Privacy Rule. For terminology such as

receive, whatIs provides documentation on the uses

of the term in the production rule model. The glossary

and whatIs Prolog procedures form the basis of a legal

glossary as suggested by Otto and Antón [OA07].

Using these two procedures, an engineer is able to

1 ?- whatIs(phi).

Protected Health Information
SOURCE: HIPAA Privacy and Security Rule, section 160.103

means individually identifiable health information:
 (1) Except as provided in paragraph (2) of this definition, that is:

 (i) Transmitted by electronic media;
 (ii) Maintained in electronic media; or

 (iii) Transmitted or maintained in any other form or medium.
 (2) Protected health information excludes individually identifiable health

 information in:
 (i) Education records covered by the Family Educational Rights and Privacy Act,

 as amended, 20 U.S.C. 1232g;

 (ii) Records described at 20 U.S.C. 1232g(a)(4)(B)(iv); and
 (iii) Employment records held by a covered entity in its role as employer.

Yes

Figure 3. Example of whatIs

determine the terminology used in the production rule

model, the best map with the requirements document

terminology, and gain confidence that terms are being

used consistently. To illustrate, consider Requirement

21, listed in Figure 2. Using the two Prolog procedures,

we map the iTrust terminology to the terminology in

the production rule model. Table 1 displays the result

of mapping the terminology of Requirement 21. We

use the notation CE to denote a covered entity as

defined by the HIPAA Privacy Rule. Examples of

covered entities include health care providers,

insurance companies, and correction institutions.

Table 1. Mapping the Terminology of Reqt21
iTrust Terminology Production Rule Model

Terminology

patient individual

demographic
information

phi

designated physician lhcp

personal representative individualRepresentative

read demographic
information

receive(individual,CE,phi)

update demographic
information

requests(individual, CE,

amends(CE, phi))

3.2. Identify Precondition Sets

Identify Precondition Sets entails gathering

preconditions derived from the law and individual

requirements. A precondition set signifies a set of facts

that represent one instance or possibility. These sets of

facts will then be used in the Analyze Requirements

activity to query the knowledge base. Precondition sets

are built from individual requirements, to test the

requirement for regulatory compliance, and from law

to express legal preconditions. Some requirements may

have no preconditions.

Initially, the only precondition sets an engineer is able

to identify come from the requirement. For example,

Table 2 presents precondition sets identified from

Requirement 21 listed in Figure 2. In preparation for

the Analyze Requirements activity, each precondition

set must be specified as a series of Prolog assert

statements, with each precondition corresponding to

one assert statement.

Table 2. Precondition Sets Identified from
Reqt21

PS1 assert(coveredUnder(individual, CE)).

PS2 assert(coveredUnder(individual, CE)).
assert(receive(individual,CE,phi)).

PS3 assert(coveredUnder(individual, CE)).

assert(requests(individual, CE,
amends(CE, phi))).

PS4 assert(coveredUnder(individual, CE)).
assert(represents(

individualRepresentative, individual)).

3.3. Analyze Requirements

Analyzing Requirements entails using the

precondition sets identified in the previous activity to

query the production rule model. A requirements

engineer then uses the query responses to determine

potential areas of noncompliance in the original

requirements. The query process is iterative, by which

an engineer explores how different precondition sets

play out in the model. Invaluable to this is the Prolog

trace procedure. This procedure instructs the

inference engine to print each goal the engine attempts

to prove, and the results of each proof. Through this

mechanism, and engineer can gain insight to the

preconditions for failed rules. These preconditions are

derived from the legal text, as they are preconditions to

rules in the model. Some preconditions may not have

been represented in the initial precondition sets. The

engineer then repeats the Analyze Requirements

activity for the newly identified precondition set.

An example trace transcript is listed in Figure 4.

using a precondition set containing a single

precondition, expressed in Prolog as:

assert(coveredUnder (individual, hmo)). This

precondition set is a variant of PS1 from Table 2. The

query being executing is may(hmo, Permission,

Source). The first column in Figure 4 is the activity

the inference engine is performing: testing a goal

(Call), exiting a successful goal (Exit), failing to

prove a goal (Fail), or backtracking to try to find other

solutions (Redo). The second column contains the level

of nested calls; the last column lists the goal being

examined. Variables the inference engine has not yet

unified begin with an underscore, ‘G’, followed by an

1. Redo: (1) may(hmo, _G11, _G12) ?
2. Call: (2) areHIPAAdefinitions(hmo, _G21) ?

3. Call: (3) coveredEntity(hmo) ?
4. Call: (4) healthPlan(hmo) ?

5. Exit: (4) healthPlan(hmo) ?

6. Exit: (3) coveredEntity(hmo) ?
7. Call: (3) isPHI(_G21) ?

8. Exit: (3) isPHI(phi) ?
9. Exit: (2) areHIPAAdefinitions(hmo, phi) ?

10. Call: (2) s164_524_a_1_exception(phi) ?
11. Call: (3) phi for courtProceeding ?
12. Fail: (3) phi for courtProceeding ?
13. Redo: (2) s164_524_a_1_exception(phi) ?
14. Call: (3) subjectToClinicalLab

Improvements1988_42USC_263a(phi) ?

15. Fail: (3) subjectToClinicalLab
Improvements1988_42USC_263a(phi) ?

16. Redo: (2) s164_524_a_1_exception(phi) ?
17. Call: (3) exemptFromClinicalLab

Improvements1988_42CFR_493_3a2(phi)
18. Fail: (3) exemptFromClinicalLab

Improvements1988_42CFR_493_3a2(phi)
19. Redo: (3) isPHI(_G21) ?
20. Exit: (3) isPHI(psychotherapyNotes) ?

Figure 4. Example Trace Execution

integer index (e.g., _G21).

We discover preconditions by examining the trace

transcript. For example, lines 11-12 in Figure 4, the

inference engine attempts and fails to prove the goal

phi for courtProceeding. We did not express this

precondition in our original preconditions sets, so we

create a new precondition set, namely:

PS5: assert(coveredUnder(individual, hmo)).
 assert(phi for courtProceeding).

PS5 asserts the newly identified precondition, along

with the original precondition. Preconditions from

which similar precondition sets can be constructed are

in lines 14-15, and 17-18.

To query the model to validate existing

requirements, we first execute the assert statements in a

precondition set. Figure 5 displays a transcript for part

of an example query execution. For this query, we use

precondition set PS5, whose preconditions are asserted

in prompts one and two. The query may(hmo,

Permission,Source) is executed in prompt three.

Multiple responses to the query are viewed by pressing

the semi-colon (logical-or in Prolog) key. We omit

several responses from the model for brevity’s sake.

1 ?- assert(coveredUnder(individual, hmo)).
Yes

2 ?- assert(phi for courtProceeding).

Yes

3 ?- may(hmo,Permission,Source).

Permission = unreviewable(denies(hmo,
receives(individual, hmo, phi))),

Source = '164.524(a)(2)(i)' ;

Permission = unreviewable(denies(hmo,
receives(individual, hmo,

psychotherapyNotes))),
Source = '164.524(a)(2)(i)' ;

No

Figure 5. Sample Query Execution

The engineer must now view the model responses,

and determine if they conflict with the existing

requirements. The query response indicates that PHI

may be withheld from the patient, if it has been

prepared for a court proceeding; other queries (not

discussed here) have indicated that the HMO has no

such permission when the PHI has not been prepared

for a court proceeding. In the iTrust requirements,

however, there is no possibility of preventing the

release of such information. This functionality is

important, because in certain court cases, information

may need to be withheld as evidence. Figure 6 lists two

new compliance requirements we identified (with

original indexing retained).

All compliance requirements identified during the

Analyze Requirements activity need to be verified with

NewReqt3: iTrust shall allow a physician, an

administrative assistant, or a medical assistant, using

his/her authorized account, to flag diagnostic

information or restricted diagnostic information as

being used in preparation for court proceedings

NewReqt4: iTrust shall allow a physician, an

administrative assistant, or a medical assistant, using

his/her authorized account, the option to restrict a

patient’s access to their diagnostic information or

restricted diagnostic information that has been flagged

as being used in preparation for court proceedings.

Figure 6. New Potential Requirements

legal domain experts to ensure the law has properly

been interpreted. Additionally, stakeholders may

choose to change the original requirements in light of

the new information, or choose some alternate means

of implementing the newly identified requirements

other than software, such as business practices.

4. The iTrust Requirements Case Study

In this section, we discuss our case study and

findings. Namely, we describe: the materials used in

our case study; the terminology mapping activity; the

identify precondition sets activity; and our analysis of

the iTrust requirements using the production rule

model.

4.1. Materials

As mentioned in Section 2.5, we performed our

analysis on the 73 iTrust requirements. These

requirements are documented in wiki form, which

contains a glossary of terms used in the document.

Several requirements are annotated with security, legal,

and/or engineering concerns.

For requirements validation, we use the production

rules model we developed [MA09]. This model covers

§164.520, §164.522, §164.524 and §164.526 of the

HIPAA Privacy Rule, and is written in SWI-Prolog
4
.

Because we did not use a comprehensive production

rule model of the HIPAA Security and Privacy Rule,

our analysis was governed by the four sections our

model covered. Drawing on our knowledge of the

Rule, we first analyzed the requirements to determine

which sections of the legal text were relevant to each

requirement. This analysis is atypical, and is

unnecessary when using a comprehensive model of a

legal text. Table 3 displays the results of this analysis.

Only the sections of the Security and Privacy Rule that

have related iTrust requirements are displayed. As

indicated in Table 3, our case study focuses on

4 http://www.swi-prolog.org/

validating the 18 requirements that directly related to

the sections our production rule model covers.

Table 3. iTrust Requirements vs. Relevant
HIPAA Sections, with Focus Sections

Highlighted
HIPAA Section #of Relevant Requirements

§164.308 3

§164.312 11

§164.506 11

§164.510 1

§164.514 1

§164.520 3

§164.524 14

§164.526 1

§164.528 5

4.2. Mapping iTrust Terminology to

Production Rule Model Terminology

Mapping the iTrust terminology to production rule

model terminology was easier than the typical case.

The iTrust requirements document contains an actor to

HIPAA Privacy Rule role mapping, performed by

Massey et al. [MOH08]. They used a stakeholder role

hierarchy to determine overlap between the iTrust

actors and the roles defined in the Rule. We did,

however, have to map the objects and relations

terminology.

We found the command line interface for the

glossary created by the glossary and whatIs Prolog

procedures to be inefficient. For example, if the

definition of one term uses another term, we must

perform an independent search for the new term. A

hyperlinked glossary will be more efficient for such

cases. We plan to include such a glossary in our

graphical tool discussed in Section 6.

4.3. Identify Precondition Sets from the iTrust

Requirements

We identified a total of 14 precondition sets.

Precondition set PS1 in Table 2 was our starting point,

then we identified the remaining precondition sets as

we began to trace query executions. We provided an

example of this process in Section 3.2.

Among the 14 precondition sets, we identified three

cross-references to external legislation, namely: (a) the

Clinical Laboratory Improvement Amendments of

1988
5
, (b) the legal text contained at 42 C.F.R. 493.3,

and (c) the Privacy Act of 1974
6
. Otto and Antón have

identified cross referencing as a difficult problem for

regulatory compliance [OA07], because they contain

5 42 U.S.C. 263a.
6 The Privacy Act of 1974, 5 U.S.C. § 552a, 1974.

additional compliance requirements. Exploring these

cross-references and their implications for legal

compliance is an important area for future work.

Trace transcripts are not a perfect method for

discovering precondition sets—from our prior

experience with the HIPAA Privacy Rule, we knew

there are legal preconditions we failed to identify using

trace transcripts. Failing to identify precondition sets

can lead to noncompliant software. An improved

interface will greatly aid in discovering new

precondition sets. Specifically, every precondition for a

legal rule could be uncovered by a utility for listing all

preconditions for a specified goal. We plan on

incorporating such a utility into a graphical tool for

interaction with production rule models.

4.4. Analyzing the iTrust Requirements for

Compliance

As discussed in this subsection, we identified 12

new potential requirements to be added to the iTrust

requirements document. In addition, we

operationalized an ambiguous nonfunctional

requirement.

4.4.1. Identifying New Compliance Requirements

We identified 12 new potential iTrust requirements.

To identify these requirements, we make use of rights,

obligations, and permissions. These form the principle

query mechanisms of our production rule model; each

of our queries make use of the rights, obligations, and

permission rule patterns [MA09]. The queries we used

are listed in Table 4. These queries were paired with

the previously identified precondition sets.

Table 4. Queries Used to Identify New
Requirements

Q1 right(individual,CE,receives(individual,C

E,phi),Source).

Q2 may(CE,X,Source).

Q3 may(CE,unreviewable(denies(CE,

receives(individual, CE,
phi))),Source).

Q4 may(correctionalInstitution,unreviewable(
denies(correctionalInstitution,

receives(individual,
correctionalInstitution,

phi))),Source).

Q5 may(CE,reviewable(X),Source).

Q6 must(CE,X,Source)).

To aid the query process, we are developing tool

support for production rule modeling. The tool support

is very preliminary. In particular, we employ one

feature of the tool support, the use of variable lists in

queries. That is, we built an architectural framework

that allows for specification of a list of possible values

a variable can hold. The tool support iteratively

replaces each of the CE variables in Table 4 with each

value from a list of covered entities. This mechanism

allows us to query the model for each type of covered

entity individually, and observe differences between

their obligations. We determined, for example, that

correctional institutions have several unique

obligations, or are released from obligations with

which other covered entities must comply.

The majority of the newly identified requirements

address exceptions to releasing PHI to a patient. The

original iTrust requirements do not include any such

exceptions. Two example requirements have been

listed in Figure 6, Section 3.3. It is important to note

that these requirements may have been identified using

other methods. Production rule modeling has an

advantage over other methods because familiarity with

the legal text is not required.

Traceability to the source section in the legal text is

essential, because it aids in demonstrating due

diligence [OA07]. For each compliance requirement,

we recorded the value unified to the Source variable.

This variable is the source section in the HIPAA

Privacy Rule where the requirement originates from.

4.4.2. Operationalizing Nonfunctional

Requirements

Many of the iTrust nonfunctional requirements were

not applicable to HIPAA compliance. We were able,

however, to operationalize one nonfunctional

requirement into a set of functional requirements.

Requirement 65 is:

Reqt65: iTrust shall have a privacy policy, which is

linked off of the login screen.

This requirement is listed as a nonfunctional

requirement, because the privacy policy can govern the

behavior of the system, but is not an actual part of the

system the developers create. That is, the iTrust

developers must provide access to the policy via the

iTrust login screen, but legal domain experts are

responsible for creating the privacy policy. Production

rule models, however, can provide insight to the

elements of the privacy policy that are required by law.

To operationalize this requirement, we first must

map the objects and relations to HIPAA terminology.

Using the Prolog procedures specified in Section 3.1,

we mapped the iTrust term “privacy policy” to the

production rule term “notice”, as used in §164.520 of

the Privacy Rule.

Using the precondition set and queries listed in

Table 5, we were able to determine the potential

requirements for the notice a covered entity must

maintain. We discovered 18 functional requirements

and one nonfunctional requirement. The 18 functional

requirements specify the contents of the privacy notice;

the one nonfunctional requirement specifies that the

privacy policy must be written in plain language.

Table 5. Precondition Set and Queries Used to
Operationalize an iTrust Nonfunctional

Requirement
Precondition
Set

assert(coveredUnder(individual,

healthCareProvider)).

Query #1 right(individual, CE, Right,
Source).

Query #2 must(healthCareProvider,
Obligation, Source).

5. Threats to Validity

Our case study is exploratory and formative; we

developed an approach for evaluating existing

requirements for legal compliance by analyzing the

iTrust requirements. Internal validity is not a concern

for exploratory case studies [Yin03]. Internal validity

addresses causal relationships. No inferences are made

as the result of our case study, so internal validity is

not applicable. Construct validity, external validity,

and reliability do concern our case study, which we

now discuss.

Construct validity addresses the degree to which a

case study is in accordance with the theoretical

concepts used [CC79, Yin03]. Three ways to reinforce

construct validity are: use multiple sources of

evidence, establish a chain of evidence, and have key

informants review draft case study reports [Yin03].

While we rely on the iTrust requirements document as

our single source of evidence, future studies for

different sets of requirements will validate and refine

our approach developed herein. To establish a chain of

evidence, we rigorously followed the steps presented in

Section 3 when validating the iTrust requirements for

legal compliance, even when we were aware we had

neglected to identify legal preconditions and therefore

neglected to identify requirements. Finally, our draft

case study report has been reviewed by several

members of ThePrivacyPlace
7
.

External validity addresses the ability of a case

study’s findings to be generalized to other domains

under different settings [Yin03]. We recognize several

threats to the external validity of our case study. iTrust

is intended for eventual deployment in industry, but is

currently only an academic project. We only examine

one legal text, the HIPAA Privacy Rule, which

regulates only one domain, the healthcare industry.

Furthermore, we used a portion of a production rule

model, and not a comprehensive model when

7 www.theprivacyplace.org

performing our analysis, and only analyzed a subset of

the iTrust requirements.

Mitigating these threats, the iTrust requirements

stakeholders included a physician and a healthcare

information professional [MOH08], and thus

approximate requirements gathered in industrial

settings. Further studies with different requirements

artifacts, in other domains, regulated by other legal

texts will serve to further validate and refine our

approach.

Reliability addresses the ability to repeat a case

study and reproduce similar results [Yin03]. A threat to

the reliability of our case study is the authors’

familiarity with the HIPAA Privacy Rule [BA08,

BVA06, MA09]. Allowing previous knowledge of the

regulation affect or even guide the query process is a

threat to the repeatability of our case study, especially

concerning the discovery of new precondition sets. To

address this threat, we were extremely cautious to

strictly adhere to and follow our approach as a novice

would, even when we were aware precondition sets

had been missed, as discussed in Section 4.3.

6. Conclusion

This paper an approach to analyze existing

requirements for regulatory compliance using queries

to a production rule model. These queries enable a

requirements engineer to determine whether existing

requirements comply with law, as well as aid in

identifying new requirements to improve legal

compliance. We validated our approach on a set of

requirements for the iTrust electronic health records

system.

We are currently developing a user-friendly tool

support with a graphical user interface (GUI) to

support analysis efforts. A strength of production rule

modeling is engineers are not required to have intimate

knowledge of the legal text. As discussed in Section

4.3, there were several preconditions we did not

discover while using the SWI-Prolog command line

interface. Utilities we are planning to include in the

tool are: a text editor; an interface for authoring,

executing, and saving queries; an interface for

conducting automated unit testing of the production

rule model to aid in maintenance and construction; a

viewer to view the text of the regulation, and the

production rules that map to each section in the legal

text; and a glossary builder and viewer.

Another avenue of future work is to

comprehensively model a regulatory text. We cannot

be certain the existing or new potential requirements

are noncompliant with some portion of the legal text

that is not yet modeled. A comprehensive production

rule model of the legal text will address this current

limitation.

Cross-references pose significant challenges to

requirements engineers in determining regulatory

compliance [OA07]. For now, we rely on

environmental flags to resolve cross-references, but

this places the onus on the user to check the external

legislation for compliance. The affect of cross-

referencing on legal compliance and production rule

modeling is necessary to consider when

comprehensively modeling a legal text.

Finally, we are designing a human subject

experiment to measure the effectiveness of our

approach for analyzing existing requirements for legal

compliance and identifying potential requirements. The

experiment will be carried out by individuals with little

familiarity with the HIPAA Privacy Rule, allowing us

to validate the claim that production rule models aid

engineers with little legal domain knowledge in

extracting compliance requirements. This experiment

will address the authors’ familiarity with the legal text

being a threat to reliability, as discussed in Section 6.3.

Acknowledgements

This work was partially funded by NSF grant

#0325269. We thank Paul Otto, Aaron Massey, Jessica

Young, and Gurleen Kaur for their comments.

References

[AHA03] American Hospitals Association, AHA Hospital

Statistics, Health Forum LLC, 2009.

[BA08] Breaux, T.D. and Antón, A.I., “Analyzing

Regulatory Rules for Privacy and Security

Requirements”, IEEE Trans. on Software Engineering,

Vol. 34, No. 1, Jan.-Feb. 2008, pp. 5-20.

[BAD09] Breaux, T.D., Antón, A.I., and Doyle, J.,

“Semantic Parameterization: A Process for Modeling

Domain Descriptions”, ACM Trans. on Soft. Eng.

Methodologies, (In Press) 2009.

[BGM85] Borgida, A., Greenspan, S., Mylopoulos, J.,

“Knowledge Representation as the Basis for

Requirements Specifications”, IEEE Computer, Vol. 18,

No. 4, Apr. 1985, pp. 82-91.

[BMT87] Biagioli, C., Mariani, P., and Tiscornia, D.,

“Esplex: A Rule and Conceptual Model for Representing

Statutes”, Proc. of the 1st ACM Intl. Conf. on Artificial

Intelligence and Law, Boston, 1987, pp. 240-251.

[BRR87] Bench-Capon, T.J.M., Robinson, G.O., Routen,

T.W., and Sergot, M.J., “Logic Programming for Large

Scale Applications in Law: A Formalisation of

Supplementary Benefit Legislation”, Proc. of the 1st

ACM Intl. Conf. on Artificial Intelligence and Law,

Boston, May 1987, pp. 190-198.

[BVA06] Breaux, T.D., Vail, M.W., and Antón, A.I.,

“Towards Regulatory Compliance: Extracting Rights and

Obligations to Align Requirements with Regulations”,

Proc. of the 14th IEEE Intl. Requirements Engineering

Conf., Minneapolis, Sep. 11-15, 2006, pp. 46-55.

[CC79] Cook, T.D., Campbell, D.T., Quasi-Experimentation:

Design & Analysis Issues for Field Settings, Houghton

Mifflin: Boston, 1979.

[DHL86] Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F.,

and Rifaut, A., “A Knowledge Representation Language

for Requirements Engineering”, Transactions of the

IEEE, vol. 74, no. 10. Oct. 1986, pp. 1431-1444.

[GMT87] Greenleaf, G., Mowbray, A., and Tyree, A.A.,

“Expert Systems in Law: The Datalex Project”, Proc. of

the 1st ACM Intl. Conf. on Artificial Intelligence and

Law, Boston, May 1987, pp. 9-17.

[HS08] Ho, Anthony, and Sundaram, Sharada, A Prolog

Based HIPAA Online Compliance Auditor, Unpublished

class report, Mar. 20, 2008,

<www.stanford.edu/class/cs259/projects/ cs259-final-

Sharada%20Sundaram%20Anthony%20 Ho/report.pdf>.

[Kil03] P. Kilbridge, “The Cost of HIPAA Compliance”, The

New England Journal of Medicine, Vol. 348, No. 15, pp.

1423-1424, Apr. 10, 2003.

[MA09] Maxwell, J.C., and Antón, A.I., “Developing

Production Rule Models to Aid in Acquiring

Requirements from Legal Texts”, North Carolina State

University, Tech. Rep. TR-2008-25, 2008. In submission

to: Proc. of the 17th IEEE Requirements Engineering

Conference, Atlanta, Aug. 31-Sep. 4, 2009.

[Mit08] Mitchell, J.C., Medical Privacy and Business Process

Design, Presentation, Stanford Computer Forum, March

17, 2008, <http://forum.stanford.edu/events/2008slides

/Security%20 Workshop%20Slides/John%20Mitchell-

forum-workshop-08.pdf>.

[MOH08] Massey, A.K., Otto, P.N., Hayward, L.J., and

Antón, A.I., “Evaluating Existing Security and Privacy

Requirements for Legal Compliance”, Under revision for:

Requirements Engineering Journal, Springer Verlag,

2008.

[OA07] Otto, P.N., and Antón, A.I. “Addressing Legal

Requirements in Requirements Engineering”, Proc. of the

15th IEEE International Requirements Engineering

Conference, New Dehli, Oct. 15-19, 2007, pp. 5-14.

[OAB07] Otto, P.N., Antón, A.I., Baumer, D.L., “The

Choicepoint Dilemma: How Data Brokers Should Handle

the Privacy of Personal Information”, IEEE Security and

Privacy, vol. 5, no. 5, Sep.-Oct. 2007, pp. 15-23.

[Peek97] Peek, N., “Representing Law in Partial information

Structures”, Artificial Intelligence and Law, Vol. 5, No. 4,

Dec. 1997, pp. 263-290.

[PTA94] Potts, C., Takahashi, K., and Antón, A.I., “Inquiry-

based Requirements Analysis”, IEEE Software, Vol. 11,

No. 2, Mar. 1994, pp. 21-32.

[SAA00] Schreiber, G., Akkermans, H., Anjewierden, A., de

Hoog, R., Shadbolt, N., Van de Velde, W., and Wielinga,

B., Knowledge Engineering and Management: The

CommonKADS Methodology, Cambridge, Mass.: MIT

Press, 2000.

[She87] Sherman, D.M. “A Prolog Model of the Income Tax

Act of Canada”, Proc. of the 1st ACM Intl. Conf. on

Artificial Intelligence and Law, Boston, May 1987, pp.

127-136.

[SKB91] Sergot, M.J., Kamble, A.S., and Bajaj, K.K.,

“Indian Central Civil Service Pension Rules: A Case

Study in Logic Programming Applied to Regulations”,

Proc. of the 3rd ACM Intl. Conf. on Artificial Intelligence

and Law, Oxford, 1991, pp. 118-127.

[SS94] Sterling, L., and Shapiro, E., The Art of Prolog:

Advanced Programming Techniques, Cambridge, Mass.:

MIT Press, 1994, 2nd ed.

[SSK86] Sergot, M.J., Sadri, F., Kowalski, A., Kriwaczek,

F., Hammond, P., and Cory, H.T., “The British

Nationality Act as a Logic Program”, Comm. of the ACM,

Vol. 29, No. 5, May 1986, pp. 370-386.

[Yin03] Yin, R.K., Case Study Research: Design and

Methods, in Applied Social Research Methods Series,

Vol. 5, Thousand Oaks, CA: Sage Publications, 2003, 3rd

ed.

