
IR-Seluge: Interference-Resilient Code Dissemination in Wireless Sensor
Networks ∗

Sangwon Hyun, Peng Ning, An Liu
Department of Computer Science

North Carolina State University, Raleigh, NC 27695
{shyun2, pning, aliu3}@ncsu.edu

Abstract

Code dissemination, which refers to the process of prop-
agating a new code image to deployed sensor nodes through
wireless links, is an essential service for wireless sensor
networks. It must guarantee that every node in a network
correctly receives a complete code image. Several methods
have been developed for reliable and efficient code dissem-
ination in wireless sensor networks. However, none of them
considers the negative impact of environmental and unin-
tentional wireless interference. In particular, all existing
approaches will fail if severe interference exists in a single
channel (e.g., control channel). To address this problem, we
present an interference-resilient code dissemination system
named IR-Seluge for wireless sensor networks. IR-Seluge
has been implemented in nesC on TinyOS and evaluated
through a substantial set of experiments in a wireless sensor
testbed, which consists of 73 MicaZ motes. The experimen-
tal results indicate that IR-Seluge effectively and efficiently
mitigates the problem of wireless interference.

Keywords: Wireless Sensor Networks, Code Dissemination,
Wireless Interference, Resilience, Reliability

1. Introduction

A wireless sensor network is expected to consist of a po-
tentially large number of low-cost, low-power, and multi-
functional sensor nodes that communicate over short dis-
tances through wireless links. Due to their potential to pro-
vide fine-grained sensing and actuation at a reasonable cost,
wireless sensor networks are considered ideal candidates for
a wide range of applications, such as industry monitoring,
data acquisition in hazardous environments, and military

∗The material contained in this paper has been cleared through the au-
thors’ affiliation. Submission category:DCCS (regular paper), approximate
word count:7,800, contact author:Sangwon Hyun

operations.
It is desirable and sometimes necessary to reprogram

sensor nodes through wireless links after they are deployed,
due to, for example, the need of removing bugs and adding
new functionalities. The process of propagating a new code
image to the nodes in a network is commonly referred to
as code dissemination. Code dissemination must ensure
complete reliability, which means that every node in a net-
work correctly receives a complete code image. Other-
wise, the regions where the new code image does not reach
cannot perform the intended tasks in the new code image.
Moreover, unexpected inconsistency on the code images in
the network may cause serious consequences due to unin-
tended, wrong interactions between the different images.

Several code dissemination protocols (e.g., [5, 8, 20, 10,
18, 16]) have been developed to propagate code images to
all sensor nodes using the ad-hoc network formed by the
nodes themselves. In particular, Deluge [8], which uses an
epidemic protocol [12] for meta data advertisement and spa-
tial multiplexing for efficient propagation of code images,
has been included in recent TinyOS distributions and widely
used. Moreover, a few approaches have been proposed re-
cently to extend Deluge for secure code dissemination in
wireless sensor networks (e.g., [6, 7, 11, 9]).

However, none of these approaches considers the prob-
lems of environmental wireless interference. For example,
if severe interference exists on the channel for code dissem-
ination, none of these approaches would be able to complete
code dissemination. It is natural to consider using multiple
channels to mitigate the impact of wireless interference. In-
deed, several protocols [22, 19, 21, 13] have been developed
to improve code dissemination by exploiting multiple chan-
nels available on current sensor platforms (e.g., MicaZ [1],
TelosB [2]). Unfortunately, all these approaches use a sin-
gle, fixed control channel for communicating control mes-
sages; they will fail if there is serious wireless interference
on the control channel.

In fact, all existing approaches can be easily disrupted
by wireless interference. It is imperative to develop a new

solution to enhance the reliability of code dissemination in
the presence of wireless interference.

In this paper, we present the design, development, and
evaluation of an interference-resilient code dissemination
system namedInterference-Resilient-Seluge, or simply IR-
Seluge, for wireless sensor networks. IR-Seluge is an ex-
tension to Seluge [9], which is a secure code dissemination
system based on Deluge [8] for wireless sensor networks.
Seluge provides various security protections while preserv-
ing efficient dissemination mechanisms in Deluge. In addi-
tion to the security protection offered by Seluge, IR-Seluge
provides additional resilient properties against wireless in-
terference. Code dissemination in IR-Seluge may be con-
currently performed in multiple dissemination flows using
different channels, without relying on any specific chan-
nel (e.g., a control channel). The impact of interference
on a single channel is limited to only the nodes staying
in that channel. Moreover, if a channel becomes unavail-
able, nodes using the channel will migrate to other available
channels. Thus, as long as not all channels are disabled in a
region under wireless interference, IR-Seluge can still prop-
agate code images in that region.

Our contribution in this paper is three-fold: Our first and
most important contribution is the development of the IR-
Seluge protocol, which provides efficient and strong inter-
ference resilience properties in code dissemination. (To the
best of our knowledge, this paper is the first that considers
wireless interference problem in code dissemination.) In
particular, we make an original contribution in the design
of multi-channel protocol mechanisms that allow nodes to
notify their own status to their neighbor nodes on differ-
ent channels and to switch channels to communicate with
their neighbor nodes. Second, we extend the code base of
Seluge to develop a readily available software package for
interference-resilient code dissemination in wireless sensor
networks. Finally, we provide a careful evaluation of IR-
Seluge through both theoretical analysis and experimental
evaluation, which demonstrate the nice properties and real-
world performance of IR-Seluge.

The rest of this paper is organized as follows. Section 2
clarifies our assumptions and interference model. Section 3
gives a brief overview of Seluge. Section 4 presents the
protocol design of IR-Seluge. Section 5 provides a quali-
tative analysis of IR-Seluge’s interference resilience prop-
erty. Section 6 and Section 7 describe the implementation
and the experimental evaluation of IR-Seluge in a network
of 73 MicaZ motes. Section 8 discusses related work, and
Section 9 concludes this paper and points out the future re-
search direction.

2. Assumptions and Interference Model

Assumptions: We assume that a sensor node can switch

its radio frequency at run time. This is in fact true on
most current sensor platforms (e.g., Mica2 [4], MicaZ [1],
TelosB [2]). For instance, a MicaZ mote has 16 different
channels with 5MHz spacing.

We assume Seluge as the underlying code dissemination
system. Accordingly, we inherit the assumptions made by
Seluge [9]. These include: (1) the source of the code im-
ages, i.e., thebase station, is a powerful node with suffi-
cient energy supply (e.g., a laptop PC); (2) sensor nodes
are resource constrained in terms of computational power,
communication capability, storage capacity, and energy; (3)
each node has enough memory (i.e., external flash) to store
the disseminated code image; (4) the base station has a pri-
vate and public key pair, and each sensor node in the net-
work is pre-configured with the base station’s public key.

Interference Model: In this paper, we consider envi-
ronmental and unintentional wireless interference. Wireless
sensor networks frequently experience high loss rates and
dynamic link quality changes [23]. Moreover, due to its use
of open spectrum, a wireless sensor network will be highly
likely to co-exist with different networks using the same fre-
quency bandwidth, then the limited frequency bandwidth
can be congested [24]. In addition, it is well known that
electronic appliances like microwave oven cause strong in-
terference to wireless sensor networks.

We assume that wireless interference may exist in com-
munication channels potentially used for code dissemina-
tion. The affected area(s) may be the entire region or multi-
ple subregions of the network. We assume that in different
regions interference on different channels can exist. In a
single region, multiple channels can be unavailable due to
interference at the same time.

Note that if there is serious interference on all available
channels in a region at the same time, IR-Seluge will fail
in that region. Indeed, there is no solution with the radio
transceivers on the current sensor platforms in such case.
However, unlike other previous solutions, which will fail if
severe interference on the channel for code dissemination or
the control channel, IR-Seluge can disseminate code images
as long as (any) one channel is available.

3. Background: Seluge Overview

Seluge is a secure code dissemination system for wire-
less sensor networks [9]. Seluge relies on Deluge [8] for
efficient propagation of code images, and at the same time
provides security protection to ensure the integrity of dis-
seminated code images and defend against various DoS at-
tacks at the dissemination protocol level.

Seluge adopts the page-by-page dissemination strategy
from Deluge. A code image is divided into fixed-size pages,
and each page is further split into same-size packets. Each
sensor node can request a page only after completely receiv-

ing every packet in the previous page. Seluge uses a digital
signature to bootstrap the authentication of a new code im-
age, and uses cryptographic hash functions to authenticate
the actual dissemination packets. For the second to the last
page, the hash image of every packet is included in the cor-
responding packet of the previous page. As a result, the
authentication of a page allows the authentication of every
packet in the next page. Seluge uses Merkle hash tree [15]
to authenticate the hash images of the packets in the first
page, while the root of the Merkle tree is authenticated by
the bootstrapping signature. Along with the page-by-page
dissemination strategy, the packet structure of Seluge pro-
vides immediate authentication of every code dissemination
packet.

Seluge prevents DoS attacks exploiting the epidemic
propagation and suppression mechanisms of Deluge. The
root cause of these vulnerabilities is the lack of authentica-
tion of advertisement and request packets. Seluge provides
local broadcast authentication using cluster key, which al-
lows each node to immediately authenticate an advertise-
ment or data request packet upon receipt.

Finally, Seluge provides resistance to DoS attacks
against bootstrapping signatures. By broadcasting a large
number of packets with bogus signatures, the adversary can
force all the receivers to perform expensive signature verifi-
cations and eventually exhaust their limited battery. To deal
with such threats, Seluge usesMessage Specific Puzzle[17]
to effectively filter out forged signatures.

4. IR-Seluge Protocol

The basic idea of IR-Seluge is to fall back to alterna-
tive channels when the main channel for code dissemina-
tion is under severe wireless interference. Unlike previous
approaches that also use multiple channels for code dissem-
ination, IR-Seluge does not rely on any fixed control chan-
nel.

For the sake of presentation, we first clarify a few terms.
Theprimary channelfor a sensor node is a channel where
the node uses to transmit and receive code dissemination
packets. Each sensor node stays in the primary channel
for at least thechannel switching period. All the remain-
ing channels except for the primary channel are calledsec-
ondary channels. A node has anactive taskif it is trans-
mitting/receiving, or scheduled to transmit/receive codedis-
semination packets. A node can have an active task only in
the primary channel, and such a node cannot leave the pri-
mary channel before finishing the active task.

We now present the overall behavior of the IR-Seluge
protocol. As in Seluge [9] and Deluge [8], IR-Seluge uses
the epidemic protocol Trickle [12] for sensor nodes to ex-
change their state information related to code dissemina-
tion. To notify its current state related to a code image to its

neighbors, each node periodically advertises the image ver-
sion number, the number of received pages, its current pri-
mary channel number, and its remaining channel switching
period. Since its neighbor nodes may be using any chan-
nel, the node chooses a channel randomly (based on certain
distribution) to transmit the advertisement packet.

If a node discovers that a neighbor node in its primary
channel is in a different state, the node follows the Seluge
protocol to start transmitting or receiving code dissemina-
tion packets (i.e., start an active task) in the primary chan-
nel. Otherwise, the node analyzes advertisements from the
neighbor nodes with different primary channels to figure out
if there is any potential active task in one of its secondary
channels. If yes, the node switches its primary channel to
that secondary channel. However, if the answer is no, the
node randomly selects a secondary channel and switch its
primary channel there.

When a node finishes an active task (either sending or
receiving), it resets its channel switching period. In other
words, the node needs to stay in its current primary channel
longer, since there is work to do.

Intuitively, when the primary channel of a node is un-
der serious interference, the node will receive almost no
message in the primary channel. Thus, after the channel
switching period, the node will move to a different chan-
nel. If there is no severe interference in the new primary
channel, the node will overhear advertisements from nodes
either in the primary channel or other secondary channels.
In either case, the node will find new active tasks in the
primary channel or a secondary channel, and code dissemi-
nation can continue there.

In the following, we describe the IR-Seluge protocol in
detail. Similar to the Seluge and Deluge protocols, there
are three protocol states for each node:Maintenance,
Receiving, andTransmitting. We describe the protocol
behaviors for them separately.

4.1. Maintenance State

The main task of a node inMaintenance (MT) state
is to maintain a consistent view with its neighbor nodes
(i.e., nodes within the signal range) on their program im-
ages. A node inMT state periodically broadcasts adver-
tisement packets in both primary and secondary channels.
Intuitively, such advertising allows the node to notify its
neighbor nodes about its current status and detect any dis-
crepancy from the neighbors.

When a node enters theMT state, it starts an adver-
tisement period, which consists of amonitoring period
and arandom backoffperiod. The random backoff is to
avoid message collisions due to simultaneous advertise-
ments from neighbors. During the monitoring period, the
node monitors the communication in its primary channel

over the neighborhood. At the end of each advertisement
period, based on its observation, the node decides whether
it transmits or suppresses the current advertisement, and if
transmitting, the channel it will advertise in. After the cur-
rent advertisement period, the node repeats the same proce-
dure for the next advertisement period. We will present how
to select a channel to advertise later in this section.

Our protocol follows Trickle [12] in adjusting the moni-
toring period (betweenMPmin andMPmax) to control its
advertising frequency. If a node overhears an advertisement
about a different version or a different number of pages dur-
ing the current advertisement period, it sets the duration of
the next monitoring period toMPmin. Otherwise, the node
decides whether to increase it or not. Before increasing the
monitoring period, the node checks if there is data it needs
to download from its neighbors. If yes, it does not increase
its monitoring period, since there is still on-going code dis-
semination. Otherwise, it doubles the next monitoring pe-
riod unless it exceedsMPmax. This approach allows rapid
propagation of a new program image, while consuming lit-
tle resources in steady state.

4.1.1 How to Select Advertisement Channel

Since each node performs active tasks only in the primary
channel, notifying each other among the neighbors using
the same primary channel is very important. In addition,
it is also important to have nodes using different primary
channels communicate with each other. In IR-Seluge, each
node advertises in the primary channel everyn advertise-
ment periods. For all the remaining periods, each node
selects one of its secondary channels and advertises there.
Moreover, if a node detects a potential active task in the pri-
mary channel but nothing different in the secondary chan-
nels, the node increases the frequency of advertisements in
the primary channel. If a node has already overheard the
same advertisement in the primary channel enough times,
it advertises in a secondary channel instead of the primary
one.

When selecting a secondary channel to advertise, a node
gives higher priority to those where there are more nodes
with smaller portion than itself. This is to maximize the
possibility that more nodes will benefit from this advertise-
ment (by, e.g., switching to this channel). But if these nodes
already have a potential sender in their primary channel,
we exclude the corresponding channel, because those nodes
can receive the data from other potential sender there.

Now let us present the detailed procedure. If the current
advertisement period is the turn to advertise in the primary
channel and the node has not overheard at leastk copies of
the same advertisement from the primary channel during the
current period, the node advertises in the primary channel.
Otherwise, the node checks whether there is a secondary

channel it needs to advertise in. For this checking proce-
dure, we use the following two searches. In both searches,
if there are multiple candidates meeting the condition, we
randomly choose one of them.

• Search 1looks for the secondary channel where there
are the nodes with the oldest version or the fewest
number of pages in the current version. Intuitively,
Search 1is to find a secondary channel where there
are nodes this node can help.

• Search 2looks for the secondary channel where there
are the nodes with the most number of pages. Intu-
itively, Search 2is to find a secondary channel where
there are nodes from which this node can get help.

We need to consider three cases. In the first case, a node
currently has something to receive in the primary channel.
The node only performsSearch 1. Since the node already
has a potential sender in the primary channel, it does not
need to performSearch 2to find a potential sender in a
secondary channel for itself. In the second case, a node
has potential receivers in the primary channel. The node
first performsSearch 1, and if it finds no channel, it fur-
ther performsSearch 2. In both cases, after the node finds
a secondary channel, it switches its radio to that channel,
advertises there, and switches back to the primary channel.
Through advertising in that channel, the node tries to attract
to its primary channel potential senders as well as receivers
from its secondary channels. If the node cannot find any
secondary channel through the two searches, it advertises
in the primary channel or suppresses the current advertise-
ment.

In the third case, the node has nothing to send or receive
in the primary channel so far. The node then tries to select
a secondary channel bySearch 1and thenSearch 2. If no
channel is found, the node randomly selects a secondary
channel for advertisement.

4.1.2 How to Switch Primary Channel

The ability to switch the primary channel is critical for ro-
bustness against interference. It allows nodes to evade the
channel under serious interference and continues code dis-
semination in other available channels.

Based on its observation of the current primary channel,
a node inMT state considers switching its primary channel
in the following three cases:

1. The node overhears an advertisement from a neighbor
in a secondary channel with a different version num-
ber or different number of pages with the same version
number for the disseminated code image.

2. The current channel switching period has expired.

3. The node completes a page.

Consider the first case. Intuitively, this case represents
the situation where a node realizes that it can help oth-
ers or get help from others if it switches its primary chan-
nel. LetX denote the node that considers switching its pri-
mary channel andY the neighbor that triggeredX ’s chan-
nel switch. LetCX andCY beX ’s andY ’s current primary
channel, respectively. FromY ’s point of view,CX is a sec-
ondary channel. Similarly,CY is X ’s secondary channel.

If Y has a later version thanX , X changes its primary
channel toCY right away, because updating to the latest
version is more important than any active task in the cur-
rent primary channel. Otherwise,X needs to examine its
primary channelCX further to determine whether it will
switch toCY . First, if X currently has a neighbor inCX

with more pages in the current version, it does not switch to
CY becauseX still needs to receive inCX . In other words,
the receiving active task in the primary channel has higher
priority than potential active tasks in secondary channels.
Next, supposeX only has neighbors with fewer pages in
CX . In this case, ifX currently has at least one neighbor
with the same number of pages as itself inCX , it switches
to CY with a certain probabilityp1 (0 < p1 < 1), since the
node with the same number of pages will possibly serve
those neighbors instead ofX . Finally, if X has discov-
ered no neighbors inCX with different number of pages,
it switches toCY right away.

Now consider the last two cases. Both of them are mo-
tivated by potential wireless interference. Consider the fol-
lowing two scenarios: (1)X is inside the region, where se-
vere interference exists onCX , and (2)X is on the bound-
ary of the region (i.e., with its current primary channelX

cannot communicate with neighbors onCX inside the re-
gion, but can communicate with neighbors onCX outside
the region). In the former scenario,X has to escapeCX as
soon as possible. In our protocol, ifX has discovered no
neighbors from any channel for the channel switching pe-
riod, it randomly selects a secondary channel and switches
its primary channel there. (Note that the node would have
renewed the channel switching period or switched to an-
other primary channel if it receives packets from other
nodes.)

In the latter scenario,X cannot communicate with the
neighbors onCX inside the region with severe interference
onCX but can communicate with those onCX outside the
region. To communicate with the neighbors affected by the
interference,X has to leaveCX . At the same time, ifX has
something to receive from the unaffected neighbors onCX ,
it would be good forX to stay inCX .

To deal with this problem, wheneverX finishes receiv-
ing a page,X decides whether it will leaveCX or not
based on the current circumstances inCX . First, suppose
X still has a neighbor with more pages inCX . ThenX

can still receive data from the neighbor usingCX , but at
the same time it may need to leaveCX for potential neigh-
bors under serious interference withCX . In our protocol,X
moves to a random secondary channel with probabilityp2

(0 < p2 < 1). Second, supposeX does not have neighbors
with more pages but neighbors with fewer pages inCX . In
this case, ifX currently has at least one neighbor with the
same number of pages as itself inCX , it moves to a ran-
dom secondary channel with probabilityp1 (0 < p1 < 1),
since the node with the same number of pages will possibly
serve those neighbors with fewer pages. Finally, ifX has
only discovered neighbors with the same number of pages
in CX , it moves to a random secondary channel right away.

4.2. Receiving State

IR-Seluge adapts the Deluge protocol [8] in the
Receiving (RX) state. If a node overhears an advertise-
ment of more pages in the same version from a neighbor
with the same primary channel, it transitions its state toRX

to request those pages. While inRX state, a node never
changes its primary channel and never broadcasts an adver-
tisement.

Let R denote a node which transitions toRX state and
S denote a neighbor that triggeredR’s state transition. In
order to receive the newly discovered data,R sends a re-
quest toS (with a random backoff to avoid collisions due
to simultaneous requests). Each request message includes
the destination, image version, index of the requested page
within the image, and requested packets in that page. For
each request, only the destination node has the responsi-
bility to transmit the requested packets. After sending the
request,R waits for a fixed period of time. Whenever re-
ceiving a requested packet,R reinitiates this time period. If
R receives no requested packet during the time period orR

has completely received all the requested packets,R transi-
tions back toMT state.

Our protocol uses the following suppression rules to re-
duce redundant transmissions. IfR overhears an advertise-
ment from a neighbor that uses the same primary channel
and has fewer number of pages than itself,R suppresses its
current request and transitions back toMT state, since that
neighbor has higher priority to get served. However, this
rule does not apply to advertisements from secondary chan-
nels, since the advertising node may find a potential sender
in its own primary or a secondary channel different from
R’s primary channel. Similarly, ifR overhears a request or
data packet for a page whose index is less than that of the
page to be requested,R suppresses its request for the same
reason. IfR overhears a request or data packet for the same
page it is currently working on,R delays its request until
the end of the data transmission for the overheard request
or data transmission. IfR still needs some packets in its

current working page after the data transmission,R sends a
request for those packets.

4.3. Transmitting State

IR-Seluge also adapts the Deluge protocol [8] in the
Transmitting (TX) state. If a node receives a request des-
tined to itself, it verifies whether it has the requested data,
and if yes, it transitions toTX state to serve the request.
Similar toRX state, a node inTX state never changes its
primary channel and never broadcasts an advertisement.

Each node inTX state remembers the index of the re-
quested page and the requested data packets in that page us-
ing a bit vector. The node starts broadcasting the requested
packets as soon as it receives the request. When new re-
quests for the same page are received during the transmis-
sion, the node aggregates the requested packets and trans-
mits them in a round robin fashion, until all requested pack-
ets are transmitted. After broadcasting all the requested
packets, the node transitions back toMT state.

Several suppression rules are also used inTX state to
reduce redundant transmissions. LetS denote a node which
just transitions toTX state. IfS overhears an advertise-
ment from a neighbor in the same primary channel with
lower page index than the oneS is about to broadcast,S
suppresses its data transmission, since the neighbor is likely
to request that page, which has higher priority.S then tran-
sitions back toMT state. Similarly, when overhearing a
request or a data packet for a page with lower index than
the pageS is about to broadcast,S also suppresses the data
transmission and transitions back toMT state.

5. Analysis

In this section, we provide a qualitative analysis of IR-
Seluge’s interference resilience property. An quantitative
evaluation through experiments in a sensor testbed is given
in Section 7.

In the following analysis, we assume that each noise
source is randomly located in the network and generates
strong interference in a single, random channel over its life-
time, which makes the channel unavailable. Sensor nodes
are randomly distributed over the entire network region.

We use the following notation.Chi represents theith
channel in the system.NCHis

represents thesth noise
source, which interferes withChi. SE andSA denote the
area of the entire network region and nodeA’s signal range,
respectively.x represents the total number of channels in
the system.ti(1 ≤ i ≤ x) denotes the number of noise
sources in the system that interfere withChi.

Lemma 1. The probability that any two nodes in the same
neighborhood have at least one common available channel
is greater than or equal to

x∑

i=1

(

ti∏

s=1

(1 −
SNCHis

SE

))2 (1)

Proof. Let n1 andn2 denote two nodes in the same neigh-
borhood. There areti noise sources that interfere withChi

in the network:NCHi1 , NCHi2 , . . . , NCHiti
. In order for

Chi to be available to each node, it must be outside the sig-
nal ranges of allti noise sources. The probability that both
n1 andn2 are not in the signal ranges of any ofti noise

sources is(
∏ti

s=1
(1−

SNCHis

SE
))2 (a). Since there may be in-

tersections between the signal ranges ofti noise sources, the
probability is actually greater than or equal to (a). Because
there arex channels in total, the probability thatn1 andn2

have at least one common available channel is greater than

or equal to
∑x

i=1
(
∏ti

s=1
(1 −

SNCHis

SE
))2.

Let us divide the time line into a series of unit time peri-
ods. For simplicity, we assume that each node switches to
an independent channel across time periods.

Lemma 2. The probability that any two nodes in the same
neighborhood meet inChi in any one ofl time periods is

1 − (1 − (
1

x
)2)l (2)

Proof. The probability that bothn1 andn2 are inChi in
any single time period is(1

x
)2. Then the probability thatn1

andn2 do not meet each other inChi for l time periods is
(1− (1

x
)2)l. Therefore, the probability thatn1 andn2 meet

in Chi in any one ofl time periods is1 − (1 − (1

x
)2)l.

Lemma 3. The probability that any two nodes in the same
neighborhood meet in a channel available to both of them
in any one ofl time periods is greater than or equal to

(1 − (1 − (
1

x
)2)l)

x∑

i=1

(

ti∏

s=1

(1 −
SNCHis

SE

))2 (3)

Proof. The probability thatn1 andn2 meet inChi in any
one ofl time periods andChi is available to both of them
is greater than or equal to(1 − (1 − (1

x
)2)l)(

∏ti

s=1
(1 −

SNCHis

SE
))2. Since there arex channels in the system, the

probability thatn1 andn2 meet in a channel available to
both of them in any one ofl time periods is greater than or

equal to(1−(1−(1

x
)2)l)

∑x

i=1
(
∏ti

s=1
(1−

SNCHis

SE
))2.

As time goes on,(1 − (1 − (1

x
)2)l) in (3) converges to 1

becauseliml→∞(1−(1−(1

x
)2)l) = 1. Then the probability

that any two neighbor nodes meet in a channel available to
both of them in any one ofl time periods becomes greater

than or equal to
∑x

i=1
(
∏ti

s=1
(1 −

SNCHis

SE
))2, and that is

exactly equal to the probability in Lemma 1. This implies
if one node has a new code image that the other node in
the same neighborhood needs, and they have at least one
common available channel, then the new code image can be
eventually propagated to the latter node in IR-Seluge.

6. Implementation

We have implemented IR-Seluge as an extension to
Seluge [9], a secure remote programming system based
on Deluge [8] for wireless sensor networks. On the
base station side, IR-Seluge needs no additional func-
tionality compared to Seluge. On the sensor side,
we added two modules,IRSelugeChTracker and
IRSelugeChManager, into the Seluge code base.
IRSelugeChTracker is responsible for maintaining

the statistics about the primary and secondary channels
based on received advertisement, request, and data pack-
ets. IRSelugeChManager includes all the functionali-
ties related to managing the channels, such as managing the
primary channel and the channel switching period, channel
selection for advertisement packets, and channel switching
for transmitting advertisement in a secondary channel.

Table 1. Code size (bytes) on MicaZ.
ROM RAM

Deluge 22,226 1,123
Seluge 45,258 2,278
IR-Seluge 49,236 2,481
TinyECC in Seluge/IR-Seluge 13,044 426

Table 1 shows the ROM and RAM usage of Seluge and
IR-Seluge on MicaZ motes. The code sizes of Deluge and
TinyECC are also included for reference purposes. It is easy
to see that IR-Seluge just slightly increases the ROM and
RAM consumption compared with Seluge. Seluge and IR-
Seluge do significantly increase both the ROM and RAM
consumption compared with Deluge, and a significant por-
tion of the ROM increase is due to TinyECC.

7. Experimental Evaluation

In this section, we report the experimental evaluation of
IR-Seluge in a wireless sensor testbed. We first compare
the performance overhead of our scheme with Seluge with-
out and with strong noise, and then further evaluate the in-
terference resilience of IR-Seluge in different interference
scenarios.

In order to emulate serious wireless interference, we use
several nodes in the testbed as noise sources. For the noise
sources, we modify the CC2420 Radio module in TinyOS
so that a noise source keeps sending packets without clear

channel assessment (CCA). With this program, each noise
source continuously injects noise into a specific channel
throughout each experiment.

Evaluation Metrics: We use two metrics in our evalua-
tion: average completion timeand communication over-
head. The average completion time is the average time
required for all nodes to receive a disseminated code im-
age. The communication overhead is measured as the total
number of packets transmitted by all the nodes during code
dissemination. For communication overhead, we show the
number of request and data packets and the number of ad-
vertisements separately.

Testbed: We perform the experiments using 73 MicaZ
motes in the WiSeNet sensor testbed for our experiments.
Figure 1 shows the layout of the testbed. The sensor nodes
are deployed on the second floor of Engineering Building
II at North Carolina State University. The testbed area in-
cludes offices, labs, server rooms, and corridors, covering
an area of 152.5 feet× 97 feet. We equip each node with
an Ethernet programming board, which provides remote ac-
cess to the node. We only use the programming boards
to gather evaluation results from the sensor nodes; they do
not interfere with the radio communication between sensor
nodes at all. We set the transmission power level of the Mi-
caZ radio module (CC2420) as0dBm. The square-shaped
nodes with numbers are used as noise sources.

Figure 1. The WiSeNet testbed (73 MicaZ
motes; 152.5 feet × 97 feet).

Experiment Setup: For our scheme, we run all the ex-
periments with two different conditions on the initial pri-
mary channel:randomand fixed initial primary channel.
With the random initial primary channel, a node starts with
a randomly selected channel as the initial primary channel,
while with the fixed initial primary channel, each node starts
with a designated initial primary channel. We examine the
effect of these initial conditions on the performance of our
scheme in each experiment scenario. We call our scheme

with random and fixed initial primary channelIR-Seluge-
RandomInitPChandIR-Seluge-FixedInitPCh, respectively.

We use channel 26 for Seluge, which does not overlap
with 802.11 [3]. Likewise, we use channel 26 for the ini-
tial primary channel in IR-Seluge-FixedInitPCh. We set
the channel switching period to 8 advertisement periods. A
node tries to advertise in the primary channel for every 3
advertisement periods. We setp1 = 0.3 andp2 = 0.1. We
follow the same settings in Seluge (and also Deluge) to set
the lower and the upper bounds of the advertisement period
to 512ms and 70 minutes, respectively. As in Seluge, we
put 17ms interval between each data packet transmission to
accommodate the time required by Seluge’s verification op-
eration. In each experiment, the dissemination starts from
the star-shaped node located at the bottom-right corner in
Figure 1. For each test case, we perform the same set of
experiments 10 times and take the average over them. We
also show 95% confidence intervals.

7.1. Scenario 1—No Interference

We first compare the performance of IR-Seluge and Sel-
uge when there is no noise source. To see the impact of code
image size on performance, we use four different sizes: 10K
bytes, 20K bytes, 30K bytes, and 40K bytes. Figures 2(a)
and 2(b) show the average completion time and communi-
cation overhead in the experiments, respectively.

Let us first compare IR-Seluge-RandomInitPCh and
Seluge. The average completion time of IR-Seluge-
RandomInitPCh is about 80% to 145% longer than that
of Seluge. Over all the experiments, the overhead for
request and data packets of IR-Seluge-RandomInitPCh is
about 100% larger than that of Seluge, and IR-Seluge-
RandomInitPCh introduces about 99% more advertisement
packets than Seluge.

In IR-Seluge-RandomInitPCh, since every node ran-
domly selects its initial primary channel, the nodes stay in
all 16 different channels when dissemination begins. Thus,
it takes some time for each node to find neighbors in dif-
ferent channels that have data it needs. In addition, when a
node broadcasts data in response to a request from a neigh-
bor using the same primary channel, some neighbors that
also need the same data may be in its secondary channels
and thus cannot utilize overhearing as effectively as Seluge.

IR-Seluge-FixedInitPCh shows better performance than
IR-Seluge-RandomInitPCh. In all experiments, IR-Seluge-
FixedInitPCh introduces on average 45% longer average
completion time, 53% more request and data packets, and
45% more advertisement packets than Seluge. In IR-
Seluge-FixedInitPCh, every node stays in the same ini-
tial primary channel when dissemination begins. There-
fore, the overhead is closer to Seluge than IR-Seluge-
RandomInitPCh.

0

50

100

150

200

0 10 20 30 40
Code size (KB)

IRSeluge-Rand

IRSeluge-Fixed

Seluge

(a) Avg. completion time (sec)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 10 20 30 40

Code size (KB)

IRSeluge-Rand-req+data

IRSeluge-Rand-adv

IRSeluge-Fixed-req+data

IRSeluge-Fixed-adv

Seluge-req+data

Seluge-adv

(b) Number of message transmissions

Figure 2. Average completion time and com-
munication overhead of IR-Seluge and Sel-
uge in scenario 1.

These results indicate that IR-Seluge degrades the per-
formance of Seluge when there is no noise source. How-
ever, the next evaluation will show that IR-Seluge can effec-
tively survive severe interference that completely disables
Seluge.

7.2. Scenario 2—Interference on a Single
Channel

In this scenario, we compare Seluge and IR-Seluge when
a single channel is under severe interference. We use four
nodes (nodes 21, 24, 31, and 63) close to line1 in Fig-
ure 1 as noise sources, which divides our testbed into two
halves. Every noise source interferes with channel26. We
first run Seluge for one hour to see how far the dissemina-
tion flow can reach. As expected, Seluge’s dissemination
flow is completely blocked by the noise sources. Only the
nodes to the right of line2 in Figure 1 finish receiving the
entire code image, but no nodes to the left of line2 receive
even a single page.

In contrast, both IR-Seluge-RandomInitPCh and IR-
Seluge-FixedInitPCh successfully bypass the interference

and every node in the testbed completely receives the en-
tire code image. Table 2 shows the performance overhead
of our scheme in this scenario. IR-Seluge-FixedInitPCh
introduces more overhead compared to the case of no
noise sources. IR-Seluge-FixedInitPCh introduces about
1.4 times more delay, 0.8 times more request and data pack-
ets, and 1.2 times more advertisements than in the case of no
noise sources. However, IR-Seluge-RandomInitPCh over-
comes such interference without introducing extra overhead
compared with the case of no noise sources.

Table 2. Average completion time and com-
munication overhead of IR-Seluge in sce-
nario 2 (Seluge is unable to disseminate be-
yond line 2 in Figure 1.).

IR-Seluge- IR-Seluge-
RandomInitPCh FixedInitPCh

Avg. completion
time (sec) 147.62 235.51
Total number of
request and data 15485.63 21512.45
packet transmissions
Total number of
advertisement packet 7462 12341.67
transmissions

IR-Seluge-RandomInitPCh shows less performance
overhead than IR-Seluge-FixedInitPCh in this scenario.
This is because with IR-Seluge-FixedInitPCh the initial pri-
mary channels of all nodes are not available for the interfer-
ence and it takes some efforts for these nodes to realize the
unavailability of the primary channel and migrate to other
channels. In contrast, given 16 channels, with IR-Seluge-
RandomInitPCh only about 1/16 of the nodes have been af-
fected by the interference on their initial primary channels.

7.3. Scenario 3—Interference on Multiple
Channels

In this scenario, we examine the performance of IR-
Seluge when there is severe interference on multiple chan-
nels in a region of the network. We place 2 to 8 noise
sources close to line1 in Figure 1, and perform experiments
in four cases: (1) nodes 21 and 24 as 2 noise sources; (2)
nodes 21, 24, 31 and 63 as 4 noise sources; (3) nodes 21, 24,
31, 63, 20, and 25 as 6 noise sources; and (4) nodes 21, 24,
31, 63, 20, 25, 22, and 30 as 8 noise sources. Different from
scenario 2, each noise source interferes with a different
channel ranging from channel(26 − #noisesources + 1)
to 26. We use 30K code image in the experiments.

Figures 3(a) and 3(b) show the average completion
time, the number of advertisement packets, and the num-
ber of request and data packets sent in all the experiments.

0

100

200

300

0 2 4 6 8
Number of noise sources(on the line 1)

IR-Seluge-Rand

IR-Seluge-Fixed

(a) Avg. completion time (sec)

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8
Number of noise sources(on the line 1)

IRSeluge-Rand-req + data

IRSeluge-Rand-adv

IRSeluge-Fixed-req + data

IRSeluge-Fixed-adv

(b) Number of message transmissions

Figure 3. Average completion time and com-
munication overhead of IR-Seluge in sce-
nario 3.

In both figures, IR-Seluge-RandomInitPCh shows slightly
increasing overhead as the number of noise sources in-
creases. In the worst case of 8 noise sources, IR-Seluge-
RandomInitPCh introduces about 29% longer average com-
pletion time, 3% more request and data packets, and 19%
more advertisement packets than the case of no noise
sources.

In both figures, IR-Seluge-FixedInitPCh shows higher
overheads when there are 2 and 4 noise sources than the
other cases. When the number of noise sources becomes
6 and 8, the overheads decrease. Our further investigation
indicates that the overhead is sensitive to the location and
the channel that each noise source interferes. Thus, there
is no clear trend based on the number of noise sources.
Compared to the case of no noise sources, IR-Seluge-
FixedInitPCh shows about 100% longer average completion
time, 119% more advertisement packets, and 56% more re-
quest and data packets in the worst case.

7.4. Scenario 4—Interference on Multiple
Channels in Multiple Regions

In this scenario, we evaluate the performance of IR-
Seluge when there is serious interference on multiple chan-
nels in multiple regions. We scatter 2 to 8 noise sources in
various regions of the entire testbed, and perform the exper-
iments in the following four cases: (1) nodes 13 and 50 as 2
noise sources; (2) nodes 13, 50, 3, and 48 as 4 noise sources;
(3) nodes 13, 50, 3, 48, 24, and 61 as 6 noise sources; and
(4) nodes 13, 50, 3, 48, 24, 61, 35, and 66 as 8 noise sources.
Every noise source interferes with a different channel rang-
ing from channel(26 − #noisesources + 1) to 26. As in
scenario 3, we use the 30K code image.

0

100

200

300

400

500

0 2 4 6 8

Number of noise sources (scattered)

IRSeluge-Rand

IRSeluge-Fixed

(a) Avg. completion time (sec)

5000

10000

15000

20000

25000

30000

0 2 4 6 8

Number of noise sources (scattered)

IRSeluge-Rand-req+data

IRSeluge-Rand-adv

IRSeluge-Fixed-req+data

IRSeluge-Fixed-adv

(b) Number of message transmissions

Figure 4. Average completion time and com-
munication overhead of IR-Seluge in sce-
nario 4.

Figures 4(a) and 4(b) show the average completion time
and communication overhead in these experiments. In all
cases, IR-Seluge-RandomInitPCh requires almost no extra
overhead compared to the case of no noise sources. In the
most severe case of 8 noise sources, the average completion
time is only 18% longer than the case of no noise sources.
The overhead for advertisement packets and that for request

and data packets are almost same as in the case of no noise
sources.

However, IR-Seluge-FixedInitPCh shows larger over-
head than IR-Seluge-RandomInitPCh when there are noise
sources. The average completion time of IR-Seluge-
FixedInitPCh is about 56% longer than that of IR-Seluge-
RandomInitPCh. In terms of communication overhead, IR-
Seluge-FixedInitPCh introduces on average 37% more re-
quest and data packets and 70% more advertisement packets
than IR-Seluge-RandomInitPCh.

Based on the experimental evaluation, we can conclude
that IR-Seluge can effectively mitigate the effects of radio
interference. In contrast, Seluge fails when its dissemi-
nation channel is under serious interference. Among the
two variations, having a random initial primary channel per-
forms better than having a fixed initial primary channel, par-
ticularly when serious interference exists in the initial pri-
mary channel. However, when there is no severe interfer-
ence, IR-Seluge does introduce higher overhead than Sel-
uge.

8. Related Work

Code dissemination is a critical issue to enable efficient
tasking of wireless sensor networks. Several code dissem-
ination protocols (e.g., [5, 8, 20, 10, 18, 16]) have been
developed to propagate new code images using the ad-hoc
wireless network formed by sensor nodes. Among these op-
tions, Deluge [8] has been widely used after being included
in recent TinyOS distributions.

The integrity and availability of code dissemination are
crucial in ensuring the success of code dissemination. Sev-
eral groups of researchers have developed a number of
schemes and systems to address these issues. Examples in-
clude Sluice [11], Secure Deluge [7], the approach in [6],
and Seluge [9], all of which are secure extensions to Del-
uge. In particular, Seluge provides not only integrity protec-
tion of disseminated code images, but also resilience against
DoS attacks that exploit the code dissemination protocol. In
addition, Seluge does not harm any efficient dissemination
mechanisms in Deluge. For such reasons, Seluge has been
used as the foundation of the work presented in this paper.

Several protocols (e.g., [22, 19, 21, 13]) have been de-
veloped to improve the performance of code dissemination
by exploiting the channel diversity available on the current
sensor platforms. The objective of these protocols is to im-
prove the efficiency of code dissemination, through a ded-
icated control channel and multiple concurrent dissemina-
tion channels.

However, all existing approaches can be disabled by
strong interference in only a single channel (e.g., the con-
trol channel). The research in this paper complements these
approaches by significantly improving the resilience against

wireless interference.

9. Conclusion

In this paper, we presented the design, development, and
evaluation of an interference-resilient code dissemination
system named IR-Seluge for wireless sensor networks. IR-
Seluge is developed as an interference-resilient extension
to Seluge [9]. Besides the security protections provided
by Seluge, IR-Seluge offers additional resilience proper-
ties against wireless interference: As long as one or more
channels are available, IR-Seluge can still propagate code
images to the nodes in a region where severe wireless inter-
ference exists.

Our future research will be focused on optimizing the
channel switching strategy so that IR-Seluge can offer the
same interference resilience with lower overhead.

References

[1] MICAz: Wireless measurement system. http:
//www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/MICAz_Datasheet.pdf.

[2] TelosB mote platform. http://www.xbow.com/
Products/Product_pdf_files/Wireless_
pdf/TelosB_Datasheet.pdf.

[3] Crossbow. Tinyos getting started guide. http:
//www.xbow.com/support/support_pdf_
files/getting_started_guide.pdf.

[4] Crossbow Technology Inc. MICA2 data sheet.
[5] Crossbow Technology Inc. Mote in-network programming

user reference, 2003.
[6] J. Deng, R. Han, and S. Mishra. Secure code distribution

in dynamically programmable wireless sensor networks. In
Proceedings of the Fifth International Conference on Infor-
mation Processing in Sensor Networks (IPSN ’06), April
2006.

[7] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securing
the deluge network programming system. InProceedings of
the Fifth International Conference on Information Process-
ing in Sensor Networks (IPSN ’06), April 2006.

[8] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale.
In Proceedings of the 2nd International Conference on Em-
bedded Networked Sensor Systems (SenSys ’04), November
2004.

[9] S. Hyun, P. Ning, A. Liu, and W. Du. Seluge: Secure
and dos-resistant code dissemination in wireless sensor net-
works. InProceedings of the Seventh International Confer-
ence on Information Processing in Sensor Networks (IPSN
’08), pages 445–456, April 2008.

[10] S. Kulkarni and L. Wang. MNP: multihop network repro-
gramming service for sensor networks. InProceedings of
the 25th International Conference on Distributed Comput-
ing Systems (ICDCS ’05), pages 7–16, June 2005.

[11] P. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Se-
cure dissemination of code updates in sensor networks. In
Proceedings of the 26th International Conference on Dis-
tributed Computing Systems (ICDCS ’06), July 2006.

[12] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and mainte-
nance in wireless sensor networks. InProceedings of the 1st
Symposium on Network System Design and Implementation
(NSDI ’04), March 2004.

[13] C. M. Liang, R. Musaloiu-E, and A. Terzis. Typhoon: A
reliable data dissemination protocol for wireless sensor net-
works. InProceedings of the Fifth European conference on
Distributed Computing in Sensor Systems (EWSN ’08), Jan-
uary 2008.

[14] A. Liu, P. Ning, and C. Wang. Lightweight remote image
management for secure code dissemination in wireless sen-
sor networks. InProceedings of 2009 IEEE INFOCOM,
April 2009.

[15] R. Merkle. Protocols for public key cryptosystems. InPro-
ceedings of the IEEE Symposium on Research in Security
and Privacy, Apr 1980.

[16] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A
reliable and scalable data dissemination service for wireless
embedded devices. InProceedings IEEE International Real-
Time Systems Symposium, pages 277–286, December 2005.

[17] P. Ning, A. Liu, and W. Du. Mitigating DoS attacks
against broadcast authentication in wireless sensor net-
works. ACM Transactions on Sensor Networks, 4(1):1–35,
February 2008.

[18] N. Reijers and K. Langendoen. Efficient code distribution in
wireless sensor networks. InProceedings of the 2nd ACM
International Conference on Wireless Sensor Networks and
Applications (WSNA ’03), pages 60–67, September 2003.

[19] R. Simon, L. Huang, E. Farrugia, and S. Setia. Using multi-
ple communication channels for efficient data dissemination
in wireless sensor networks. InProceedings of the Second
International Conference on Mobile Ad-hoc and Sensor Net-
works (MASS ’05), November 2005.

[20] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote
code update mechanism for wireless sensor networks. Tech-
nical Report CENS-TR-30, UCLA, Center for Embedded
Networked Computing, November 2003.

[21] L. Wang and S. S. Kulkarni. Gappa: Gossip based multi-
channel reprogramming for sensor networks. InProceed-
ings of the Second International Conference on Distributed
Computing in Sensor Systems (DCOSS ’06), June 2006.

[22] W. Xiao and D. Starobinski. Poster abstract: Exploiting
multi-channel diversity to speed up over-the-air program-
ming of wireless sensor. InProceedings of the Third ACM
Conference on Embedded Networked Sensor Systems (Sen-
Sys ’05), November 2005.

[23] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. InProceed-
ings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys ’03), pages 1–13, Nov 2003.

[24] G. Zhou, J. Stankovic, and S. Son. The crowded spectrum
in wireless sensor networks. InProceedings of the Third
Workshop on Embedded Networked Sensors (EmNets ’06),
May 2006.

