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An evidence-based account of trust is essential for an appropriate treatment of application-level
interactions among autonomous and adaptive parties. Key examples include social networks and
service-oriented computing. Existing approaches either ignore evidence or only partially address
the twin challenges of mapping evidence to trustworthiness and combining trust reports from
imperfectly trusted sources. This paper develops a mathematically well-formulated approach that
naturally supports discounting and combining evidence-based trust reports.

This paper understands an agent Alice’s trust in an agent Bob in terms of Alice’s certainty in
her belief that Bob is trustworthy. Unlike previous approaches, this paper formulates certainty
in terms of evidence based on a statistical measure defined over a probability distribution of the
probability of positive outcomes. This definition supports important mathematical properties
ensuring correct results despite conflicting evidence: (1) for a fixed amount of evidence, certainty
increases as conflict in the evidence decreases and (2) for a fixed level of conflict, certainty increases
as the amount of evidence increases. Moreover, despite a subtle definition of certainty, this paper
(3) establishes a bijection between evidence and trust spaces, enabling robust combination of trust
reports and (4) provides an efficient algorithm for computing this bijection.

Categories and Subject Descriptors: 1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multia-
gent systems

General Terms: Theory, Algorithms
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1. INTRODUCTION

Trust is a broad concept with many connotations. This paper concentrates on trust as it
relates to beliefs about future actions and not, for example, to emotions. The target appli-
cations for this paper involve settings wherein independent (i.e., autonomous and adaptive)
parties interact with one another, and each party may choose with whom to interact based
on how much trust it places in the other. Examples of such applications are social net-
works, webs of information sources, and online marketplaces. We can cast each party as
providing and seeking services, and the problem as one of service selection in a distributed
environment.

1.1 Whatis Trust?

A key intuition about trust as it is applied in the above kinds of settings is that reflects the
trusting party’s belief that the trusted party will support its plans [Castelfranchi and Falcone
1998]. For example, if Alice trusts Bob to get her to the airport, then this means that Alice
is putting part of her plans in Bob’s hands. In other words, Alice believes that there will
be a good outcome from Bob providing her with the specific service. In a social setting,
a similar question would be whether Alice trusts Bob to give her a recommendation to a
movie that she will enjoy watching or whether Alice trusts Bob to introduce her to a new
friend, Charlie, with whom she will have pleasant interactions. In scientific computing on
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the cloud, Alice may trust a service provider such as Amazon that she will receive adequate
compute resources for her analysis tool to complete on schedule.

Trust makes sense as a coherent concept for computing only to the extent that we con-
fine ourselves to settings where it would affect the decisions made by one or more partic-
ipants. Specifically, this places two constraints. One, the participants ought to have the
possibility of predicting each other’s future behavior. For example, if all interactions were
random (in the sense of a uniform distribution), no benefit would accrue to any participant
who attempts to model the trustworthiness of another. Two, if the setting ensured per-
fect anonymity for all concerned, trust would not be a useful concept because none of the
participants would be able to apply trust.

Except in settings where we have full access to how all the participants involved are rea-
soning and where we can apply strict constraints on their reasoning and their capabilities,
we cannot make any guarantees of success. More importantly, in complex settings, the
circumstances can change drastically in unanticipated ways. When that happens, all bets
are off. Even the most trustworthy and predictable party may fail—our placement of trust
in such a party may not appear wise in retrospect. Taleb [2007] highlights unanticipated
situations and shows the difficulties such situations have caused for humans. We do not
claim that a computational approach would fare any better than humans in such situations.
However, computational approaches can provide better bookkeeping than humans and thus
facilitate activities in the applications of interest.

1.2 Applications: Online Markets and Social Networks

Of the many computer science applications of trust, our approach emphasizes two in partic-
ular. These applications, online markets and social networks, are among the most popular
practical applications of large-scale distributed computing (involving tens of millions of
users) and involve trust as a key feature.

Online markets provide a setting where people and businesses buy and sell goods and
services. Companies such as eBay and Amazon host markets where buyers and sellers can
register to obtain accounts. Such online markets host a facility where sellers can post their
items for sale and buyers can find them. The markets provide a means to determine the
price for the item—by direct announcement or via an auction. However, in general, key
aspects of an item being traded are imperfectly specified, such as the condition of a used
book. Thus commerce relies upon the parties trusting each other. Because an online market
cannot readily ensure that buyer and seller accounts reflect real-world identities, each party
needs to build up its reputation (based on which others would find it trustworthy) through
interactions in the market itself. In other words, traditional ways to project trust, such as
the quality of a storefront or one’s attire, are not applicable. And trust is based to a large
extent on the positive and negative experiences obtained by others.

To this end, marketplaces such as eBay and Amazon provide a means by which each
participant in an interaction can rate the other participant. The marketplace aggregates the
ratings received by each participant to compute the participant’s reputation, and publishes
it for others to see. The idea is that a participant’s reputation would predict the behavior
one would expect from it. Current approaches carry out a simplistic aggregation. As
Section 4.5 shows, our proposed approach equals for exceeds current approaches in terms
of predicting subsequent behavior.

Social networks provide another significant application area for trust. Existing social
network approaches, such as Facebook or LinkedIn, provide a logically centralized notion
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of identity. Users then interact with others, potentially listing them as friends (including
professional contacts here). Users may also state opinions about others. The above ap-
proaches treat friendship as a symmetric relationship. They enable users to introduce their
friends as a way to expand the friends’ social circles and help with tasks such as looking
for a job or a contract. The idea is that trust can propagate, and can provide a valid ba-
sis for interaction between parties who were not previously directly acquainted with each
other. The existing popular approaches do not compute the propagated trust explicitly, al-
though the situation could change. Several have observed the intuitive similarity of social
networks and the web, and developed trust propagation techniques (several of which we
review in Section 5.1).

In terms of modeling, when we think of real-life social networks, we find it more natural
to think of friendship and trust as potentially asymmetric. Alice may admire Bob but Bob
may not admire Alice. This in addition maintains a stronger analogy with the web: Alice’s
home page may point to Bob’s but not the other way around. For this reason, we think of a
social network as a weighted directed graph in a natural manner. Each vertex of the graph
is a person, each edge means that source is acquainted with the target, and the weight on an
edge represents the level of trust placed by the source in the target. Symmetric situations
can be readily captured by having two equally weighted edges, the source and target of one
being the target and source of the other.

The directed graph representation is commonly used for several approaches including
the Pretty Good Privacy (PGP) web of trust [Zimmermann 1995; WoT ] and the FilmTrust
[Kuter and Golbeck 2007] network for movie ratings. The PGP web of trust is based on
the keyrings of different users—or, rather, of different identities. The idea is that each key
owner user may apply his key to certify zero or more other keys. The certifying key owner’s
expresses his level of trust as an integer from 1 to 4. The intended use of the web of trust
is to help a user Alice verify that a key she encounters is legitimate: if the key is signed
by several keys that Alice trusts then it presumably is trustworthy. FilmTrust is a social
network where users rate other users on the presumed quality of their movie ratings. An
intended use of FilmTrust is to help a user Alice find users whose movie recommendations
Alice would find trustworthy. Both these networks rely upon the propagation of trust.

Although the trust propagation is not the theme of this paper, it is a major motivation
for the approach here. In intuitive terms, propagation relies upon an ability to discount and
aggregate trust reports. What this paper offers are the underpinnings of approaches that
propagate trust based on evidence. Hang et al. [2009] and Wang and Singh [2006] propose
propagation operators that are based on the approach described in this paper. Importantly,
Hang et al. evaluate these operators on existing PGP web of trust and FilmTrust datasets.
As Section 4.5 shows, Hang et al. find that operators based on our approach yield superior
predictions of propagated trust than some conventional approaches.

1.3 Modeling Trust

Let us briefly consider the pros and cons of the existing approaches in broad terms. (Sec-
tion 5 discusses the relevant literature in some detail.)

Trust as an object of intellectual study has drawn attention from a variety of disciplines.
Basing loosely on McCarthy’s observation about three ways to approach computing [Fil-
man 2009], we think of four main ways to approach the study of trust. The logical ap-
proaches develop models based on mathematical logic that describe how one party trusts
another. The cognitive approaches develop models that seek to achieve realism in the
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sense of human psychology. The socioeconomic approaches characterize trust in terms of
the personal or business relationships among the parties involved, taking inspiration from
human relationships. The statistical approaches understand trust in terms of probabilistic
and statistical measures.

Each family of approaches has advantages for different computer science applications.
The logical approaches are nicely suited to the challenges of specifying policies such as
for determining identity and authorization. The cognitive approaches describe the human
experience and would yield natural benefits where human interfaces are involved. The so-
cioeconomic approaches apply in settings such as marketplaces and social networks. The
statistical approaches work best where the account of trust is naturally based on evidence,
which can be used to assess the trust one party places in another. The approach we propose
falls in the intersection of statistical and socioeconomic approaches, with an emphasis on
the treatment of evidence in a way that can be discounted and aggregated as some socioe-
conomic approaches require. This approach relies upon logical approaches for identity and
provide an input into decision-making about authorization. It should be clear that we make
no claims about the purely cognitive aspects of trust.

The currently dominant computer science approaches for trust emphasize identity and
generally take a qualitative stance in determining if a party is to be deemed trustworthy or
not. Because of their prominence, we compare these approaches to our approach.

—Identity. Traditional approaches address trust primarily with respect to identity. A party

attempts to establish its trustworthiness to another party by presenting a certificate. The
certificate is typically obtained from a certificate authority or (as in webs of trust) from
another party. The presumption is that the certificate issuer would have performed some
offline verification. The best case for such an engagement is that a party truly has the
identity that it professes to have.
Although establishing identity is crucial to enabling trust, identity by itself is inadequate
for the problems we discuss here. In particular, identity does not yield a basis for de-
termining if a given party will serve a desired purpose appropriately. For example, if
Amazon presents a valid certificate obtained from Verisign, the most it means is that the
presenter of the certificate is indeed Amazon. The certificate does not mean that Alice
would have a pleasant shopping experience at Amazon. After all, Verisign’s certificate
is not based upon any relevant experience: simply put, the certificate does not mean
that Verisign purchased goods from Amazon and had a pleasant experience. From the
traditional standpoint, this example might sound outlandish, but ultimately if trust is to
mean that one party can place its plans in the hands of another, the expected experience
is no less relevant than the identity of the provider.

—All or none. Traditional approaches model trust qualitatively. This is based on an intu-

ition of hard security. If one cannot definitely determine that a particular party has the
stated identity, then that is sufficient reason not to deal with it at all.
Yet in many cases, requiring an all-or-none decision about trust can be too much to ask
for, especially when we think not of identity but more broadly of whether a given party
would support one’s plans. When we factor in the complexity of the real world and the
task to be performed, virtually no one would be able to make a hard guarantee about
success. Following the above example, it would be impossible for Bob to guarantee that
he will get Alice to the airport on time, recommend only the perfect movies, or introduce
her to none other than her potential soul mate.
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Approaches based on reputation management seek to address this challenge. They usu-
ally accommodate shades of trust numerically based on ratings acquired from users.
However, these approaches are typically formulated in a heuristic, somewhat ad hoc
manner. The meaning assigned to the aggregated ratings is not clear from a probabilistic
(or some other mathematical) standpoint.

For the reasons adduced above, although the traditional approaches to trust are valuable,
they are not adequate for dealing with the kinds of interactive applications that arise in
settings such as social networks and service-oriented computing. This paper develops a
mathematical approach that addresses such challenges.

1.4 Trust Management

In essence, trust management [loannidis and Keromytis 2005] refers to the approaches by
which trust judgments are reached, including how trust information is maintained, prop-
agated, and used. Approaches for trust management vary depending on the trust model
being considered. The logic-based approaches lead to trust management approaches that
in simplified terms are centered on the maintenance, propagation, and use of identity cre-
dentials expressed as values of attributes needed to make authorization decisions based on
the stated policies. Other important elements of trust management involve architectural as-
sumptions such as the existence of certificate authorities and the creation and evaluation of
certificate chains. To our knowledge, trust management has not been explicitly addressed
for the cognitive approaches.

The socioeconomic approaches have received a lot of interest lately. In the case of mar-
ketplaces and social networks maintained as web-sites, many such approaches postulate
the existence of an authority that provides the identity for each of the participants. In some
cases, an “‘enforcer” can eliminate participants that misbehave and can attempt to litigate
against them in the real world, but the connection between a virtual identity and a real-
world identity can be tenuous except in cases where a user has to provide some real-world
credential such as a credit card number. Other networks, such as the Pretty Good Privacy
(PGP) web of trust, postulate no central authority at all, and rely on direct relationships
between pairs of participants. Most recent research in socioeconomic approaches takes a
conceptually distributed stance, which is well-aligned with multiagent systems. Here the
participants are modeled as peers who continually interact with and rate each other. The
peers exchange their ratings of others as a way to help each other identify the best peers
with whom to interact. Where the approaches differ is in how they represent trust, how
they exchange trust reports, and how they aggregate trust reports. Sections 5.1 and 5.2
review the most relevant of these approaches.

1.5 Scope and Organization

This paper takes the view that a probabilistic account of trust that considers the interactions
among parties is crucial for supporting the above kinds of applications.

The rest of this paper is organized as follows. Section 2 motivates an evidential treatment
of trust. Section 3 proposes a new notion of certainty in evidence by which we can map
evidence into trust effectively. Section 4 shows that this approach satisfies some important
properties, and shows how to apply it computationally. Section 5 reviews some of the
most relevant literature. Section 6 summarizes our contributions and brings forth some
directions for future work.



2. MOTIVATING EVIDENCE-BASED TRUST

Subtle relationships underlie trust in social and organizational settings [Castelfranchi and
Falcone 1998]. Without detracting from such principles, this paper takes a narrower view
of trust. In simple terms, although our intuitions are similar to those of Castelfranchi and
Falcone, we approach the topic from a detailed analysis of the probabilistic aspects of trust,
whereas they approach the topic from a conceptual analysis of the broader conception of
trust.

We model each party computationally as an agent. Each agent seeks to establish a
belief or disbelief that another agent’s behavior is good (thus abstracting out details of the
agent’s own plans as well as the social and organizational relationships between the two
agents). The model we propose here, however, can in principle be used to capture as many
dimensions of trust as needed, e.g., trust about timeliness, quality of service, and so on.

In broad terms, trust arises in two main settings studied in economics [Dellarocas 2005].
In the first, the agents adjust their behavior according to their payoffs. The corresponding
approaches to trust seek to alter the payoffs by sanctioning bad agents so that all agents
have an incentive to be good. In the second setting, which this paper considers, the agents
are of (more or less) fixed types, meaning that they do not adjust whether their behavior
is good or bad. The corresponding approaches to trust seek to distinguish good agents
from bad agents, i.e., signal who the bad (or good) agents are. Of course, the payoffs of
the agents would vary depending on whether other agents trust them or not. Thus, even
in the second setting, agents may adjust their behavior. However, such incentive-driven
adjustments would occur at a slower time scale.

The following are some examples of the signaling setting, which we study. An airline
would treat all coach passengers alike. Its effectiveness in transporting passengers and
caring for them in transit depends on its investments in aircraft, airport lounges, and staff
training. Such investments can change the airline’s trustworthiness for a passenger, but
a typical passenger would do well to treat the airline’s behavior as being relatively sta-
ble. In the same vein, a computational service provider’s performance would depend on
its investments in computing, storage, and networking infrastructure; a weather service’s
accuracy and timeliness on the quality of its available infrastructure (sensors, networks,
and prediction tools).

Our approach doesn’t inherently require that the agents’ behavior be fixed. Common
heuristic approaches for decaying trust values can be combined with our work. However,
accommodating trust updates in a mathematically well-formulated manner is itself a chal-
lenging problem, and one we defer to future work.

The most prevalent trust models today are based on subjective ratings given by one
party to another. Section 5.1 discusses a few such approaches. These ratings originate
from subjective user assessments and may indicate how much one user liked another but
without any corresponding precise relationship between such ratings and what is expected
to transpire in a subsequent interaction.

By contrast, we understand a rational agent placing trust in another party based substan-
tially on evidence consisting of positive and negative experiences with it. This evidence
can be collected by an agent locally or via a reputation agency [Maximilien 2004] or by
following a referral protocol [Sen and Sajja 2002]. In such cases, the evidence may be
implicit in the trust reports obtained that somehow summarize the evidence being shared.
This paper develops a mathematically well-formulated evidence-based approach for trust
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that supports the following two crucial requirements, which arise in multiagent systems
applied in important settings such as electronic commerce or information fusion.

Dynamism. Practical agent systems face the challenge that trust evolves over
time. This may happen because additional information is obtained, the par-
ties being considered alter their behavior, or the needs of the rating party
change.

Composition. It is clear that trust cannot be trivially propagated. For example,
Alice may trust Bob who trusts Charlie, but Alice may not trust Charlie.
However, as a practical matter, a party would not have the opportunity or
be able to expend the cost, e.g., in money or time, to obtain direct experi-
ences with every other party. This is the reason that a multiagent approach—
wherein agents exchange trust reports—is plausible. Consequently, we need
a way to combine trust reports that cannot themselves be perfectly trusted,
possibly because of the source of such reports or the way in which such re-
ports are obtained. And we do need to accommodate the requirement that
trust is weakened when propagated through such chains.

Traditionally, mathematically well-formulated approaches to trust that satisfy the above
requirements have been difficult to come by. With few exceptions, current approaches
for combining trust reports tend to involve ad hoc formulas, which might be simple to
implement but are difficult to understand and justify from a conceptual basis.

The common idea underlying solutions that satisfy the above requirements of dynamism
and composition is the notion of discounting. Dynamism can be accommodated by dis-
counting over time and composition by discounting over the space of sources (i.e., agents).
Others have applied discounting before, but without adequate mathematical justification.
For instance, Yu and Singh [2002] develop a heuristic discounting approach layered on
their (otherwise mathematically well-formulated) Dempster-Shafer account.

Wang and Singh [2006] describe a multiagent application of the present approach. They
develop an algebra for aggregating trust over graphs understood as webs of trust. Wang and
Singh concentrate on their algebra and assume a separate, underlying trust model, which
is a previous version of the one developed here. By contrast, the present paper is neutral
about the discounting and aggregation mechanisms, and instead develops a mathematically
well-formulated evidential trust model that would underlie any such agent system where
trust reports are gathered from multiple sources.

Following Jgsang [2001], we understand trust in terms of the probability of the probabil-
ity of outcomes, and adopt his idea of a trust space of triples of belief (in a good outcome),
disbelief (or belief in a bad outcome), and uncertainty. Trust in this sense is neutral as
to the outcome and is reflected in the certainty (i.e., one minus the uncertainty). Thus the
following three situations are distinguished:

—Trust being placed in a party (i.e., regarding the party as being good): belief
is high, disbelief is low, and uncertainty is low.

—Distrust being placed in a party (i.e., regarding the party as being bad): belief
is low, disbelief is high, and uncertainty is low.

—Lack of trust being placed in a party (pro or con): belief is low, disbelief is
low, and uncertainty is high.

However, whereas Jgsang defines certainty itself in a heuristic manner, we define cer-
8



tainty based on a well-known statistical measure over a probability distribution. Despite
the increased subtlety of our definition, it preserves a bijection between trust and evidence
spaces, enabling the combination of trust reports (via mapping them to evidence). Our
definition captures the following key intuitions.

—Effect of evidence. Certainty increases as evidence increases (for a fixed
ratio of positive and negative observations).

—Effect of conflict. Certainty decreases as the extent of conflict increases in
the evidence.

Jgsang’s approach satisfies the intuition about the effect of evidence but fails the intuition
about the effect of conflict. It falsely predicts that mounting conflicting evidence increases
certainty—and equally as much as mounting confirmatory evidence. Say Alice deals with
Bob four times: in either case, her evidence would be between zero and four positive
experiences. It should be uncontroversial that whereas Alice’s certainty is greatest when
the evidence is all in favor or all against, her certainty is least when the evidence is equally
split. Section 4.2 shows that Jgsang, in contrast to our approach, assigns the same certainty
in each case.

Yu and Singh [2002] model positive, negative, or neutral evidence, and apply Dempster-
Shafer theory to compute trust. Neutral experiences yield uncertainty, but conflicting pos-
itive or negative evidence does not increase uncertainty. Further, for conflicting evidence,
Dempster-Shafer theory can yield unintuitive results. The following is a well-known ex-
ample about the Dempster-Shafer theory, and is not specific to Yu and Singh’s use of it
[Sentz and Ferson 2002; Zadeh 1979]. Say Pete sees two physicians, Dawn and Ed, for
a headache. Dawn says Pete has meningitis, a brain tumor, or neither with probabilities
0.79, 0.20, and 0.01, respectively. Ed says Pete has a concussion, a brain tumor, or neither
with probabilities 0.79, 0.20, and 0.01, respectively. Dempster-Shafer theory yields that
the probability of a brain tumor is 0.725, which is highly counterintuitive and wrong, be-
cause neither Dawn nor Ed thought that a brain tumor was likely. Section 4.3 shows that
our model of trust yields an intuitive result in this case: the probability of a brain tumor is
0.21, which is close to each individual physician’s beliefs.

This paper makes the following contributions.

—A rigorous, probabilistic definition of certainty that satisfies the above key
intuitions, especially with regard to accommodating conflicting information.

—The establishment of a bijection between trust reports and evidence, which
enables the mathematically well-formulated combination of trust reports
that supports discounting as motivated above.

—An efficient algorithm for computing the above-mentioned bijection.

It is worth briefly clarifying the scope of this paper. This paper deals with a numeric
representation of trust that captures beliefs regarding the success of a prospective interac-
tion between a trusting and a trusted party. This paper takes a rigorous probabilistic stance
on trust. The novelty of this paper lies in the introduction of a measure of certainty, which
naturally accommodates conflict in evidence. Thus the approach of this paper is suitable
in a wide range of settings where autonomous parties interact. In particular, this approach
applies where the parties share information about each other. However, the main focus of
this paper is not the propagation of trust as an end in itself, but representing and reasoning
about evidence-based trust.



3. MODELING CERTAINTY

The proposed approach is based on the fundamental intuition that an agent can model
the behavior of another agent in probabilistic terms. Specifically, an agent can represent
the probability of a positive experience with, i.e., good behavior by, another agent. This
probability must lie in the real interval [0, 1]. The agent’s trust corresponds to how strongly
the agent believes that this probability is a specific value (whether large or small, we do
not care). This strength of belief is also captured in probabilistic terms. To this end,
we formulate a probability density function of the probability of a positive experience.
Following [Jgsang 1998], we term this a probability-certainty density function (PCDF).
Crucially, in our approach, unlike in J@sang’s, certainty is a statistical measure defined on
a PCDF, and thus naturally accommodates both the amount of evidence and the extent of
the conflict in the evidence.

3.1 Certainty from a PCDF

Because the cumulative probability of a probability lying within [0, 1] must equal 1, all
PCDFs must have the mean density of 1 over [0, 1], and 0 elsewhere. Lacking additional
knowledge, a PCDF would be a uniform distribution over [0, 1]. However, with additional
knowledge, the PCDF would deviate from the uniform distribution. For example, knowing
that the probability of good behavior is at least 0.5, we would obtain a distribution that is 0
over [0,0.5) and 2 over [0.5, 1]. Similarly, knowing that the probability of good behavior
lies in [0.5, 0.6], we would obtain a distribution that is 0 over [0,0.5) and (0.6, 1], and 10
over [0.5,0.6]. Notice that although a cumulative probability must equal 1, a probability
density can be any nonnegative real number: densities are constrained only to ensure that
cumulative probabilities equal 1.

In formal terms, let p € [0, 1] represent the probability of a positive outcome. Let the
distribution of p be given as a function f : [0,1] — [0, 00) such that fol f(p)dp = 1.
The probability that the probability of a positive outcome lies in [p1, p2] can be calculated

by [ ri * f(p)dp. The mean value of f is Hﬁ% = 1. As explained above, when we
know nothing else, f is a uniform distribution over probabilities p. That is, f(p) = 1 for
p € [0,1] and 0 elsewhere. This reflects the Bayesian intuition of assuming an equiprobable
prior. The uniform distribution has a certainty of 0. As additional knowledge is acquired,
the probability mass shifts so that f(p) is above 1 for some values of p and below 1 for
other values of p.

Our key intuition is that the agent’s trust corresponds to increasing deviation from the
uniform distribution. Two of the most established measures for deviation are standard
deviation and mean absolute deviation (MAD) [Weisstein 2003]. MAD is more robust,
because it does not involve squaring (which can increase standard deviation because of
outliers or “heavy tail” distributions such as the Cauchy distribution). Absolute values
can sometimes complicate the mathematics. But, in the present setting, MAD turns out
to yield straightforward mathematics. In a discrete setting involving data points z; ...z,
with mean Z, MAD is given by %2?21 |x; — &|. In the present case, instead of summation
we have an integral, so instead of dividing by n we divide by the size of the domain, i.e.,
1. Because a PCDF has a mean value of 1, increase in some parts above 1 must yield a
matching reduction below 1 elsewhere. Both increase and reduction from 1 are counted by
| f(p) — 1|. Definition 1 scales the MAD for f by 1 to remove this double counting; it also
conveniently places certainty in the interval [0, 1].
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DEFINITION 1. The certainty based on f, cy, is given by cy = % fol |f(p) — 1|dp

In informal terms, certainty captures the fraction of the knowledge that we do have.
(Section 5.3 compares this approach to information theory.) For motivation, consider ran-
domly picking a ball from a bin that contains N balls colored white or black. Suppose p is
the probability that the ball randomly picked is white. If we have no knowledge about how
many white balls there are in the bin, we cannot estimate p with any confidence. That is,
certainty ¢ = 0. If we know that exactly m balls are white, then we have perfect knowledge
about the distribution. We can estimate p = % with ¢ = 1. However, if all we know is that
at least m balls are white and at least n balls are black (thus m + n < N), then we have
partial knowledge. Here ¢ = %‘*‘” The probability of drawing a white ball ranges from
% to 1 — &. We have

0, [0, &)
fo) =4 v pel® 1- %]
0 (1- N ,1].
Using Definition 1, we can confirm that certainty based on the function f as defined above,
Cf — m.]JVCn:
1
ci = 3 Jo 1f(p) —1ldp
m 11— 1
= %(fON 1 dp+ f% N(N—]'r\rfL—n - l)dp+ flfﬁ 1 dp
= 3(F+ (g — D+ ®)
— m+n
N

3.2 Evidence Space

For simplicity, we begin by thinking of a (rating) agent’s experience with a (rated) agent as
a binary event: positive or negative. Evidence is conceptualized in terms of the numbers of
positive and negative experiences. When an agent makes unambiguous direct observations
of another, the corresponding evidence could be expressed as natural numbers (including
zero). However, our motivation is to combine evidence in the context of trust. As Sec-
tion 1 motivates, for reasons of dynamism or composition, the evidence may need to be
discounted to reflect the weakening of the evidence source due to the effects of aging or the
effects of imperfect trust having been placed in it. Intuitively, because of such discounting,
the evidence is best understood as if there were real (i.e., not necessarily natural) numbers
of experiences. Similarly, when a rating agent’s observations are not clearcut positive or
negative, we can capture the ratings via arbitrary nonnegative real numbers (as long as their
sum is positive).

Accordingly, following [Jgsang 2001], we model the evidence space as E = Rt x
R*\ {(0,0)}, a two-dimensional space of nonnegative reals whose sum is strictly positive.
(Here R is the set of nonnegative reals.) The members of F are pairs (r, s) corresponding
to the numbers of positive and negative experiences, respectively.

DEFINITION 2. Evidence space E = {{r,s)|r > 0,s > 0,t =r+s > 0}
11



Combining evidence as a result is a trivial operation: simply add up the positive and nega-
tive evidence separately.

Let = be the probability of a positive outcome. The posterior probability of evidence
(r, s) is the conditional probability of = given (r, s) [Casella and Berger 1990, p. 298].

DEFINITION 3. The conditional probability of x given (r, s) is

— __9Uns)|x)f(=)
f(.’E|<7", S>) - f()l g({r,s)|z) f(x)dx

_ z"(1—x)°
[01 z"(1—z)3dz

r+s

where g((r, s)|x) = z"(1—x)*

r

Throughout this paper, r, s, and t = r + s refer to positive, negative, and total evidence,
respectively. The following development assumes that there is some evidence; i.e., t > 0.

Traditional probability theory models the event (r, s) by the pair (p, 1 — p), the expected
probabilities of positive and negative outcomes, respectively, where p = rii_Jer = :Ll
The idea of adding 1 each to r and s (and thus 2 to r + s) follows Laplace’s famous rule
of succession for applying probability to inductive reasoning [Ristad 1995]. This rule in
essence reflects the assumption of an equiprobable prior, which is common in Bayesian
reasoning. Before any evidence, positive and negative outcomes are equally likely, and
this prior biases the evidence obtained subsequently.

In practical terms, Laplace’s rule of succession, alluded to above, reduces the impact
of sparse evidence. It is sometimes termed Laplace smoothing. If you only made one
observation and it was positive, you would not want to conclude that there would never be a
negative observation. As the body of evidence increases, the increment of 1 has a negligible
effect. More sophisticated formulations of rules of succession exist [Ristad 1995], but
Laplace’s rule is simple and reasonably effective for our present purposes. Laplace’s rule
is insensitive to the number of outcomes in that 1 is always added. The effect of this
statistical “correction” (the added 1) decreases inversely as the number of outcomes being
considered increases. More sophisticated approaches may be thought of as decreasing the
effects of their corrections more rapidly.

Importantly, as explained above, total evidence in our approach is modeled as a non-
negative real number. Due to the effect of discounting, the total evidence can appear to be
lower than 1. In such a case, the effect of any Laplace smoothing can become dominant.
For this reason, this paper differs from Wang and Singh [2007] in defining a measure of
the conflict in the evidence that is different from the probability to be inferred from the
evidence.

3.3 Conflict in Evidence

The conflict in evidence simply refers to the relative weights of the negative and posi-
tive evidence. Conflict is highest when the negative and positive evidence are equal, and
least when the evidence is unanimous one way or the other. Definition 4 characterizes the
amount of conflict in the evidence. To this end, we define a as . Clearly, a € [0,1]: «
being 0 or 1 indicates unanimity, whereas « = 0.5 means r = s, i.e., maximal conflict in
the body of evidence. Definition 4 captures this intuition.

12



DEFINITION 4. conflict(r,s) = min(a, 1 — «)

3.4 Certainty in Evidence

In our approach, as Definition 1 shows, certainty depends on a PCDF. The particular PCDF
we consider is the one of Definition 3, which generalizes over binary events. It helps in our
analysis to combine these so as to define certainty based on evidence (r, s), where r and s
are the positive and negative bodies of evidence, respectively. Definition 5 merely writes
certainty as a function of r and s.

DEFINITION 5. ¢(r,s) — 1|dx

- 2[0 |jlzr(1 z) dx

Recall that ¢ = r + s is the total body of evidence. Thus r = ta and s = ¢(1 — «). We
can thus write ¢(r, s) as ¢(ta, t(1 — «)). When « is fixed, certainty is a function of ¢, and
is written ¢(¢). When ¢ is fixed, certainty is a function of «, and is written ¢(«). And, ¢/ (¢)
and ¢’(«) are the corresponding derivatives.

3.5 Trust Space

The traditional probability model outlined above ignores uncertainty. Thus it predicts the
same probability whenever  and s have the same ratio (correcting for the effect of the
Laplace smoothing) even though the total amount of evidence may differ significantly. For
example, we would obtain p = 0.70 whether r = 6 and s = 2 or r = 69 and s = 29.
However, the result would be intuitively much more certain in the second case because
of the overwhelming evidence: the good outcomes hold up even after a large number of
interactions. For this reason, we favor an approach that accommodates certainty.

Following [Jgsang 2001], we define a trust space as consisting of trust reports modeled
in a three-dimensional space of reals in [0, 1]. Each point in this space is a triple (b, d, u),
where b+d+u = 1, representing the weights assigned to belief, disbelief, and uncertainty,
respectively. Certainty c is simply 1 —u. Thus ¢ = 1 and ¢ = 0 indicate perfect knowledge
and ignorance, respectively. Definition 6 states this formally.

DEERINITION 6. Trust space T = {(b,d,u)|b > 0,d > 0,b+d > 0,u > 0,b+d+u =
1}

Combining trust reports is nontrivial. Our proposed definition of certainty is key in
accomplishing a bijection between evidence and trust reports. The problem of combining
independent trust reports is reduced to the problem of combining the evidence underlying
them. Section 3.6 further explains how evidence and trust space are used in this approach.

3.6 From Evidence to Trust Reports

As remarked above, it is easier to aggregate trust in the evidence space age and to discount
it in trust space. As trust is propagated, each agent involved would map the evidence
it obtains to trust space, discount it, map it back to evidence space, and aggregate it as
evidence. We cannot accomplish the above merely by having the agents perform all their
calculations in either the evidence space or the trust space. Therefore, we need a function
to map evidence space to trust space. This function should be (uniquely) invertible.
Definition 7 shows how to map evidence to trust. This mapping relates positive and neg-
ative evidence to belief and disbelief, respectively, but with each having been discounted
by the certainty. Definition 7 generalizes the pattern of [Jgsang 1998] by identifying the
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degree of conflict « and certainty ¢(r, s). The development below describes two important
differences with Jgsang’s approach.

DEFINITION 7. Let Z(r,s) = (b,d,u) be a transformation from E to T such that
Z = (b(r,s),d(r,s),u(r,s)), where

) b(r,s) = ac(r,s)
2 d(?“, S) = (1 - 04)0(7", S)
3 ulr,s)=1—c(r,s)

where o = 7 and c(r, s) is as given in Definition 5.

One can easily verify that ¢(0,1) > 0. In general, because t = r + s > 0, ¢(r, s) > 0.
Moreover, ¢(r,s) < 1: thus, 1 — ¢(r,s) > 0. This ensures that b+ d > 0, and v > 0.
Notice that o = b_%d.

Jpsang [1998] maps evidence (r,s) to a trust triple (
ences with our approach are:

T S

1
t4+17 t4+17 t+1

). Two main differ-

—Our definition of certainty depends not only on the amount of evidence but
also on the conflict, which Jgsang ignores.

—Our definition of certainty incorporates a subtle characterization of the prob-
abilities whereas, in essence, Jgsang defines certainty as t% He offers no

mathematical justification for doing so. The underlying intuition seems to

be that certainty increases with increasing evidence. We finesse this intu-

ition to capture that increasing evidence yields increasing certainty but only

if the conflict does not increase.

Section 4.2 shows a counterintuitive consequence of Jgsang’s definition.

In passing, we observe that discounting as defined by Jgsang [1998] and Wang and
Singh [2006] reduces the certainty but does not affect the probability of a good outcome.
Discounting in their manner involves multiplying the belief and disbelief components by
the same constant, v # 0. Thus a triple (b, d, u) is discounted by  to yield (b, dy, 1 —by—

d~y). Recall that the probability of a good outcome is given by o = Wbd' The probability
by _ b

of a good outcome from a discounted report is rdy = bid which is the same as a.

Let us consider a simple example. Suppose Alice has eight good and two bad transac-
tions with a service provider, Charlie, yielding a trust triple of (0.42,0.1,0.48). Suppose
Bob has one good and four bad transactions with the Charlie, yielding a trust triple of
(0.08,0.33,0.59). Suppose Alice and Bob report their ratings of Charlie to Ralph. Sup-
pose that Ralph’s trust in Alice is (0.2,0.3,0.5) and his trust in Bob is (0.9,0.05,0.05).
Ralph then carries out the following steps.

—Ralph discounts Alice’s report by the trust he places in Alice (i.e., the belief
component of his triple for Alice, 0.2), thus yielding (0.084,0.02,0.896).
Ralph discounts Bob’s report in the same way by 0.9, thereby yielding
(0.072,0.297,0.631).

—Ralph transforms the above two discounted reports into the evidence space,
thus obtaining (0.429,0.107) from Alice’s report and (0.783,3.13) from
Bob’s report.

—Ralph combines these in evidence space, thus obtaining a total evidence of
(1.212,3.237).
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—Transforming these back to trust space, Ralph obtains that he trusts Charlie
to (0.097,0.256, 0.645).

Notice how, in the above, since Ralph places much greater credibility in Bob than in Alice,
Ralph’s overall assessment of Charlie is closer to Bob’s than to Alice’s.

4. IMPORTANT PROPERTIES AND COMPUTATION

We now show that the above definition yields important formal properties and how to
compute with this definition.

4.1 Increasing Experiences with Fixed Conflict

Consider the scenario where the total number of experiences increases for fixed @ =
0.50. For example, compare observing 5 good episodes out of 10 with observing 50 good
episodes out of 100. The expected value, «, is the same in both cases, but the certainty
is clearly greater in the second. In general, we would expect certainty to increase as the
amount of evidence increases. Definition 5 yields a certainty of 0.46 from (r, s) = (5, 5),
but a certainty of 0.70 for (r, s) = (50, 50).
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Fig. 1. Certainty increases with ¢ both in J@sang’s approach and in our approach when the level of conflict is
fixed; for our approach, we show o = 0.5 and o = 0.99; in Jgsang’s approach, certainty is independent of the
level of conflict; X-axis: ¢, the amount of evidence; Y-axis: ¢(t), the corresponding certainty.

Figure 1 plots how certainty varies with ¢ both in our approach and in Jgsang’s ap-
proach. Notice that the specific numeric values of certainty in our approach should not be
compared to those in Jgsang’s approach. The trend is monotonic and asymptotic to 1 in
both approaches. The important observation is that our approach yields a higher certainty
curve when the conflict is lower.

Theorem 1 captures this property in general for our approach.
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THEOREM 1. Fix a. Then c(t) increases with t for t > 0.

Proof sketch: The proof of this theorem is built via a series of steps. The main idea is to
show that ¢/(¢t) > 0 for ¢ > 0. Here f(r, s, z) is the function of Definition 3 viewed as a
function of r, s, and x.
(1) Let f(r,s,x) = Mﬁ Then c(r,s) = %fol |f(r,s,2) — 1|dx.
We can write ¢ and f as functions of ¢ and «. That is, ¢ = ¢(t, ) and
= f(t’ a, 'T)
(2) Eliminate the absolute sign. By Lemma 9, we can define A and B where
J(A) = f(B) = lsothatc(t,a) = 5 fo |f(t, o, z)—1|dx = ff(f(t,a,z)—
1)dx A and B are also funct10ns of ¢ and o
(3) When « is fixed, c(t «) is a function of ¢t and we can differentiate it

by t. Notice that: fB(t) — 1)de = B'(t)(f(t,B) — 1) —

A'(t)(f(t, A )+ fB(Ef)) ) — 1)dz. The first two terms are
0 by the deﬁnltlon of A and B

(4) Using the formula, -=a/(®) = Inaf’(z)af® we can calculate 8tf(t a,x).

(5) Then we break the result into two parts. Prove the first part to be positive
by Lemma 9, and the second part to be 0 by exploiting the symmetry of

the terms.

Hence, ¢/(t) > 0, as desired. [
The appendix includes full proofs of this and the other theorems.

4.2 Increasing Conflict with Fixed Experience

Another important scenario is when the total number of experiences is fixed, but the evi-
dence varies to reflect different levels of conflict by using different values of «. Clearly,
certainty should increase as r or s dominates the other (i.e., « approaches 0 or 1) but should
reduce as 7 and s are in balance (i.e., o approaches 0.5). Figure 2 plots certainty for fixed
t and varying conflict.

Table I.  Certainty computed by different approaches for varying levels of conflict.

(0,4) (1,3) (2,2) (3,1) (4,0)

Our approach 0.54 0.35 0.29 0.35 0.54
Jpsang 0.80 0.80 0.80 0.80 0.80
Yu & Singh 1.00 1.00 1.00 1.00 1.00

More specifically, consider Alice’s example from Section 1. Table I shows the effect of
conflict where ¢ = 4. Briefly, Yu and Singh [2002] base uncertainty not on conflict, but on
intermediate (neither positive not negative) outcomes. If there is no intermediate value, the
certainty is at its maximum.

Let’s revisit Pete’s example of Section 1. In our approach, Dawn and Ed’s diagnoses
would correspond to two b, d, u triples (where b means “tumor” and d means “not a tu-
mor”): (0.20,0.79,0.01) and (0.20,0.79, 0.01), respectively. Combining these we obtain
the b, d, u triple of (0.21,0.78,0.01). That is, the weight assigned to a tumor is 0.21 as
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Fig. 2. Certainty is concave when ¢ is fixed at 100; X-axis: r + 1; Y-axis: ¢(«); minimum occurs at r = s = 5;
certainty according to Jgsang is constant and is shown for contrast.

opposed to 0.725 by Dempster-Shafer theory—which is unintuitive, because a tumor is
Dawn and Ed’s least likely prediction.
Theorem 2 captures the property that certainty increases with increasing unanimity.

THEOREM 2. The function c(«) is decreasing when 0 < a < %, and increasing when

3 < a < 1 Thus c() is minimized at o = 3.

Proof sketch: The main idea is to show that ¢/(ar) < 0 when « € (0,0.5) and ¢/ (o) >
0 when o € [0.5,1.0). This is accomplished via steps similar to those in the proof of
Theorem 1. First remove the absolute sign, then differentiate, then prove the derivative is
negative in the interval (0, 0.5) and positive in the interval (0.5,1). O

Putting the above results together suggests that the relationship between certainty on
the one hand and positive and negative evidence on the other hand is nontrivial. Figure 3
confirms this intuition by plotting certainty against r and s as a surface. The surface rises
on the left and right corresponding to increasing unanimity of negative and positive evi-
dence, respectively, and falls in the middle as the positive and negative evidence approach
parity. The surface trends upward going from front to back corresponding to the increasing
evidence at a fixed level of conflict.

It is worth emphasizing that certainty does not necessarily increase even as the evidence
grows. When additional evidence conflicts with the previous evidence, a growth in evi-
dence can possibly yield a loss in certainty. This accords with intuition because the arrival
of conflicting evidence can shake one’s beliefs, thus lowering one’s certainty.

Figure 4 demonstrates a case where we first acquire negative evidence, thereby increas-
ing certainty. Next we acquire positive evidence, which conflicts with the previous evi-
dence, thereby lowering certainty. In Figure 4, the first ten transactions are all negative;
the next ten transactions are all positive. Certainty grows monotonically with unanimous
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Fig. 4. Certainty increases as unanimous evidence increases; the addition of conflicting evidence lowers certainty;
X-axis: number of transactions. Y-axis: ¢ certainty.

evidence and falls as we introduce conflicting evidence. Because of the dependence of
certainty on the size of the total body of evidence, it doesn’t fall as sharply as it rises, and
levels off as additional evidence is accrued.
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4.3 Bijection Between Evidence and Trust Reports

A major motivation for modeling trust and evidence spaces is that each space facilitates
computations of different kinds. Discounting trust is simple in the trust space whereas
aggregating trust is simple in the evidence space.

Recall that, as Theorem 1 shows, we associate greater certainty with larger bodies of
evidence (assuming conflict is fixed). Thus the certainty of trust reports to be combined
clearly matters: we should place additional credence where the certainty is higher (gener-
ally meaning the underlying evidence is stronger). Consequently, we need a way to map
a trust report to its corresponding evidence in such a manner that higher certainty yields a
larger body of evidence.

The ability to combine trust reports effectively relies on being able to map between the
evidence and the trust spaces. With such a mapping in hand, to combine two trust reports,
we would simply perform the following steps:

(1) Map trust reports to evidence.
(2) Combine the evidence.
(3) Transform the combined evidence to a trust report.

The following theorem establishes that Z has a unique inverse, Z 1.
THEOREM 3. The transformation Z is a bijection.

Proof sketch: Given (b,d,u) € T, we need (r,s) € E such that Z(r,s) = (b,d,u). As
explained in Section 3.6, o = b Thus, we only need to find ¢ such that ¢(t) = 1 — w.

btd;
The existence and uniqueness of ¢ is proved by showing that

(1) ¢(t) is increasing when ¢ > 0 (Theorem 1)
(2) lim;—ooc(t) = 1 (Lemma 11)
(3) lim;—gc(t) = 0 (Lemma 12)

Thus there is a unique ¢ that corresponds to the desired level of certainty. (]

4.4 Algorithm and Complexity

Definition 5, which provides the basis for Definition 7, lies at the heart of our algorithm.
We calculate the integral of Definition 5 via an application of the well-known trapezoidal
rule. To further improve performance, we cache a matrix of certainty values for different
values of positive and negative evidence.

Theorem 3 shows the existence of Z~!. However, no closed form is known for Z 1.
For this reason, we develop an iterative, approximate algorithm for computing Z ~*.

As explained in Section 3.6, the ratio « depends solely on b and d. Thus given (b, d, u),
we can determine e immediately as Hid. Since r = taand s = t(1—a), in this manner, we
know the relationships between r and ¢, and between s and ¢. But we do not immediately
know ¢. In essence, no closed form for Z 1! is known because no closed form is known for
its ¢t component.

The intuition behind our algorithm for computing ¢ is that after fixing «, the correct
value of ¢ is one that would yield the desired certainty of (1 — w). This works because,
as remarked in the proof sketch for Theorem 3, ¢(t) ranges between 0 and 1. Further,
Theorem 1 shows that for fixed «, ¢(t) is monotonically increasing with ¢. In general, ¢
being the size of the body of evidence is not bounded. However, as a practical matter, an
upper bound can be placed on ¢. Thus, a binary search is an obvious approach. (When no
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bound is known, a simple approach would be to (1) guess exponentially increasing values
for ¢ until a value is found for which the desired certainty is exceeded; and then (2) conduct
binary search between that and the previously guessed value.)

For binary search, since we are dealing with real numbers, it is necessary to specify
€ > 0, the desired precision to which the answer is to be computed. (In our experiments
wesete = 10"%)

Algorithm 1 calculates Z~! via binary search on c(t) to a specified precision, € > 0.
Here t,,,4, > 0 is the maximum size of the body of evidence considered. (Recall that 1g
means logarithm to base 2.)

1 0‘:174%19
2c=1—u;
3t1=0;

4 to = tmaas

5 while t5 — t; > e do
o | 1=t

7 if c(t) < c then
8 | =t

9 else

10 Ltgzt;

1 r=tao;
12s=t—r;

13 returnr, s

Algorithm 1: Calculating (r,s) = Z~1(b,d, u).

THEOREM 4. The complexity of Algorithm 1 is Q(—lge).

Proof: After the while loop iterates i times, to — 1 = t,,4,27". Eventually, t, — t; falls
below e, thus terminating the loop. Assume the loop terminates in n iterations. Then,
to — 11 = tmae2 ™ < € < tmae2” "1 This implies 27 > t% > 271 That is,
n > (Igtmer — lge) >n — 1.

4.5 Empirical Evaluation

The experimental validation of this work is made difficult by the lack of established datasets
and testbeds, especially those that would support more than a scalar representation of trust.
The situation is improving in this regard [Fullam et al. 2005], but current testbeds do not
support exchanging trust reports of two dimensions (as in (b, d, u) because b+ d +u = 1).

We have evaluated this approach on two datasets. The first dataset includes ratings
received by five sellers (of Slumdog Millionaire Soundtracks) on Amazon Marketplace.
Amazon supports integer ratings from 1 to 5. Amazon summarizes the information on
each seller as an average score along with the total number of ratings received. However,
it also makes the raw ratings available—these are what we use. We map the ratings to
evidence (r, s), where r + s = 1. Specifically, we map 1 to (0.0, 1.0), 2 to (0.25,0.75),
and so on, increasing r in increments of 0.25 and decreasing s by the same amount to
maintain r + s = 1.
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Fig. 5. Prediction errors based on ratings received by a seller on Amazon using different methods. Here, one
timestep is 25 transactions, errors are the average of the 25 prediction errors, based on ratings in the range [1, 5].

For each seller, we consider the ratings that it received in the order in which it received
them. The idea is that the party who carried out the (i + l)St transaction with the seller
would generally have had access to the previous ¢ ratings received by that seller. Therefore,
for each ¢ we map the first ¢ ratings to a (b, d, u) triple and use this triple to predict the
(i + 1) rating.

Figure 5 shows the prediction errors that result by applying different methods on the
ratings received by one of the sellers. The Amazon approach refers to treating the average
current rating as the predictor of the next rating. In the other approaches shown, the pre-
diction is the b value computed from the ratings till the present rating. J@sang’s approach
and our approach calculate b as already discussed. Our approach with discounting involves
discounting the past ratings as a way to place additional weight on the more recent ratings.
Specifically, we discount each rating by 10% for each time unit.

Table II. Average prediction errors for trustworthiness of five Amazon sellers based on their ratings, based on
ratings in the range [1, 5].

Seller A Seller B SellerC  Seller D  Seller E

Amazon’s approach 0.473 0.287 0.233 0.135 0.502
Josang’s approach 0.557 0.333 0.375 0.195 0.530
Our approach 0.388 0.244 0.186 0.122 0.445

Our approach with discounting 0.303 0.186 0.159 0.095 0.276

Figure 5 shows that our approach yields a lower prediction error than Amazon and
Jgsang’s approaches. Jgsang’s approach is worse than Amazon’s whereas ours is better.
Moreover, our approach coupled with discounting yields even better results. The results
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for the other sellers are similar, and we omit them for brevity. Table II summarizes the
results for all five sellers and shows that the same pattern holds for them.

prediction errors
T

= Amazon’s approach i
“““ Josang's approach

==W&S approach with history discount

= = =W&S approach without history discoun

10 20

Fig. 6. Prediction errors based on ratings received by an artificial “multiple personality” seller using different
methods. This seller’s list of ratings is a concatenation of the ratings of the actual sellers. Here, one timestep is
50 transactions and shows the average prediction errors, based on ratings in the range [1, 5].

We next evaluate our approach with respect to its ability to track a changing behavior
pattern. To develop this test-case while staying in the realm of actual data, we artificially
construct a seller whose ratings are a concatenation of the ratings obtained by different
sellers. In this way, this seller models a seller who changes his strategy arbitrarily. Figure 6
shows the results of applying the above approaches to this artificial seller. It finds that the
same pattern of results holds as in Figure 5. In Figure 6 too, Jgsang’s approach yields
worse results than Amazon whereas our approach yields superior results. Further, with the
benefit of history discounting, our approach does even better.

A possible way to understand these results is the following. Amazon calculates the
average rating as the prediction whereas Jgsang incorporates Laplace smoothing (recall
the discussion in Section 3.2). Thus Jgsang ends up with higher error in many cases.
Further, Jgsang’s definition of certainty ignore conflict and thus increases monotonically
with evidence. Thus his predictions are the worst. Our approach takes a more nuanced
approach than Amazon’s but without the pitfalls of Jgsang’s approach, and thus produces
better results. With the benefit of discounting, it reduces the effect of old evidence, thus
improving the outcome further.

The second evaluation of the proposed approach is based on its use within trust propa-
gation operators. Recently, Hang et al. [2009] proposed trust propagation operators based
on the approach described in this paper. They evaluated their operators using two net-
work datasets, namely, FilmTrust (538 vertices representing users; 1,234 weighted directed
edges representing ratings) [Kuter and Golbeck 2007] and the PGP web of trust (39,246
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vertices representing users (or rather keys) and 317,979 weighted directed edges represent-
ing the strength of an endorsement) [WoT ]. Hang et al. report how the operators based on
our approach perform better than other approaches applied on those datasets. The defini-
tions of operators and the various path search strategies are nuanced and cannot be readily
repeated here, so we refer the reader to Hang et al.’s paper for additional details.

5. LITERATURE

A huge amount of research has been conducted on trust. We now review some of the most
relevant literature from our perspective of an evidential approach.

5.1 Literature on Distributed Trust

In general, the works on distributed trust emphasize techniques for propagating trust. In
this sense, they are not closely related to the present approach, which emphasizes evidence
and only indirectly considers propagation. Many of the existing approaches rely on sub-
jective assessments of trust. Potentially, one could develop variants of these propagation
algorithms that apply on evidence-based trust reports instead of subjective assessments.
However, two challenges would be (1) accommodating (b, d, u) triples instead of scalars;
and (2) conceptually making sense of the propagated results in terms of evidence. Hang et
al. [2009], discussed above, address both of these challenges.

Carbone et al. [2003] study trust formally in a setting based on distributed computing
systems. They propose a two-dimensional representation of trust consisting of (1) trust-
worthiness and (2) certainty placed in the trustworthiness. Carbone et al.’s notion of trust-
worthiness is abstract and they do not discuss how the trust originates. In particular, they
do not relate trustworthiness with evidence. Carbone et al. partially order trustworthiness
and certainty. The level of trustworthiness for them is the extent to which, e.g., the amount
of money loaned, an agent will fully trust another. There is no probabilistic interpretation,
and they do not specify how to calculate certainty or any properties of it.

Weeks [2001] introduces a mathematical framework for distributed trust management
systems. He uses the least fixed point in a lattice to define the semantics of trust com-
putations. Importantly, Weeks only deals with the so-called hard trust among agents that
underlies traditional authorization and access control approaches. He doesn’t deal with
evidential trust, as studied in this paper.

Several approaches understand trust in terms of aggregate properties of graphs, such as
can be described via matrix operations [Guha et al. 2004; Kamvar et al. 2003; Richardson
et al. 2003]. The propagation of trust corresponds to matrix multiplication. Such aggregate
methods can be attractive and have a history of success when applied to link analysis
of web pages. Such link analysis is inspired by the random browser model. However,
it is not immediately apparent why trust should map to the random browser model, or
whether it is even fair to expect trust ratings to be public the way links on web pages
are. A further unintuitive consequence is that to ensure convergence these approaches
split trustworthiness. For example, if Alice trusts two people but Bob only trusts only
one person, Alice’s trustworthiness is split between two people but Bob’s trustworthiness
propagates fully to his sole contact. There is no conceptual reason for this discrepancy.

Ziegler and Lausen [2004] develop an approach based on spreading activation for prop-
agating trust. They too model trust itself as an arbitrary subjective rating: based on the
agents’ opinions, not on evidence. Ziegler and Lausen model trust as energy to be propa-
gated through spreading activation, but do not justify their energy interpretation adequately
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on any mathematical or conceptual grounds. It simply seems like an approach that they
think might work. Their notion of trust is global in that each party ends up with an en-
ergy level that describes its trustworthiness. Thus the relational aspect of trust is lost.
The above remark about splitting trustworthiness among multiple parties applies to energy
based models as well.

Quercia et al. [2007] design a system to propagate trust among mobile users. They relate
nodes corresponding to users based on the similarity of their ratings. Quercia et al. apply
a graph-based learning technique by which a node may compute its rating of another node.
Thus their method is similar to collaborative filtering applied by each node. A fundamental
difference with our approach is that Quercia et al.’s model is based on subjective ratings,
not on evidence. Thus it makes no attempt to relate the ratings to expected behavior.
However, our approach could potentially be combined with the prediction part of Quercia
et al.’s model.

Schweitzer et al. [2006] propose an approach for propagating trust in ad hoc networks
that builds on the Jgsang’s representation. So it could potentially benefit from the present
approach. Schweitzer et al. do not explicitly accommodate the certainty of the reports.
Their approach is heuristic and in this sense differs from Hang et al. [2009]. However,
Schweitzer et al. include a nice feature where a participant can warn those to whom it
previously sent a referral if it finds that it no longer trusts the party it previously recom-
mended.

Kuter and Golbeck [2007] propose a trust propagation algorithm that computes all paths
from a source to a sink vertex in a graph, and combines trust ratings from those paths along
with a confidence measure. The underlying data in their approach are subjective ratings
given by one user to another. In this way, this work fits into the above family of trust
propagation research and not into the evidential approaches, which this paper emphasizes.

5.2 Literature on Trust and Evidence

Abdul-Rahman and Hailes [2000] present an early model for computing trust. However,
their approach is highly ad hoc and limited. Specifically, various weights are simply added
up without any mathematical justification. Likewise, the term uncertainty is described but
without being given any mathematical foundation.

Sierra and Debenham [2007] define an agent strategy by combining the three dimensions
of utility, information, and semantic views. Their framework defines trust, reputation, and
uncertainty. Their definition is rather complex. It is justified based on the authors’ intu-
itions and is experimentally evaluated. Thus it is plausible in a conceptual way. However,
it lacks an explicit mathematical justification, such as we have sought to develop in this
work.

The Regret system combines several aspects of trust, notably the social aspects [Sabater
and Sierra 2002]. It involves a number of formulas, which are given intuitive, but not math-
ematical, justification. A lot of other work, e.g., [Huynh et al. 2006], involves heuristics
that combine multiple information sources to judge trust. It would be an interesting direc-
tion to combine a rigorous approach such as ours with the above heuristic approaches to
capture a rich variety of practical criteria well.

Teacy et al. [2005] propose TRAVOS, the Trust and Reputation model for Agent-based
Virtual OrganisationS. TRAVOS uses a probabilistic treatment of trust. Teacy et al. model
trust in terms of confidence that the expected value lies within a specified error tolerance.
An agent’s confidence increases with the error tolerance. Teacy et al. study combinations
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of probability distributions to which the evaluations given by different agents might cor-
respond. They do not formally study certainty. Further, Teacy et al.’s approach does not
yield a probabilistically valid method for combining trust reports, which is the focus of this
paper.

Despotovic and Aberer [2005] propose a simple probabilistic method, maximum like-
lihood estimation, to aggregate ratings. This method dramatically reduces the calculation
overhead of propagating and aggregating trust information. Further, the aggregated trust
admits a clear statistical interpretation. However, Despotovic and Aberer’s model is overly
simplified: the agents rate a target as either good or bad. Thus their approach cannot be
used where the agents are required to give more accurate ratings, e.g., even a scalar (as a
real value) from O to 1. Further, Despotovic and Aberer’s method does not consider the
uncertainty of a rating or equivalently the number of transactions on which a rating might
be based. Since witnesses can be any agents, in order to estimate the maximum likelihood,
each agent needs to record the trustworthiness of all possible witnesses, thus increasing
the complexity of scaling up. More importantly, since only a small number of witnesses
are chosen and each agent only knows a small number of all agents, most of the time, the
agent cannot compute how much trust to place in the necessary witnesses.

Reece et al. [2007] develop a method to consolidate an agent’s direct experience with
a service provider and trust reports about that service provider received from other agents.
Reece ef al. calculate a covariance matrix based on the Dirichlet distribution that de-
scribes the uncertainty and correlations between different dimensional probabilities. The
covariance matrix can be used to communicate and fuse ratings. The Dirichlet distribution
considers only the ratio of positive and negative transactions. It does not depend on the
number of transactions, so the resulting uncertainty or certainty estimates are independent
of the total number of transactions. As we explained above, this is contrary to intuition
because certainty does increase with mounting evidence if the ratio of positive and nega-
tive transactions is kept constant. Lastly, Reece e al. neglect the trustworthiness of the
agent who provides the information. The present paper provides a basis for accommodat-
ing the trustworthiness of agents who provide information: this aspect is studied by Wang
and Singh [2006], which applies the present approach to specify operators for propagating
trust.

Halpern and Pucella [2006] consider evidence as an operator that maps prior beliefs
to posterior beliefs. Similar to our certainty function, they use a confirmation function
to measure the strength of the evidence. However, there are many kinds of confirmation
functions available, and it is not clear which one to use. Halpern and Pucella use the log-
likelihood ratio. They do not give a mathematical justification for its optimality, only that
it avoids requiring a prior distribution on hypotheses.

Fullam and Barber [2006] describe trust-related decisions based on agent role (trustee
or truster) and transactions (fundamental transaction or reputation transaction). They pro-
pose applying Q-learning and explain why the learning is complicated when reputation
transaction is used. Fullam and Barber use the Agent Reputation and Trust (ART) test-bed
to evaluate their learning techniques. Fullam and Barber [2007] study different sources
of trust information: direct experience, referrals from peers, and reports from third par-
ties. They propose a dynamical learning technique to identify the best sources of trust,
based on some parameters. Both the above works do not consider the uncertainty of trust
information and do not offer any mathematical justification for their approach.

25



The following work is not directly related to our work but is worth discussing because
it deals with service discovery based on uncertainty. Li ef al. [2008] describe ROSSE, a
search engine for grid service discovery. They introduce the notion of “property uncer-
tainty” when matching services. A property is uncertain when it is used in some but not
all advertisements for services in the same category. Thus, for Li et al., uncertainty means
how unlikely a service has the property in question. This is quite different from our mean-
ing based on the probability of the probability of a particular outcome. Li et al. use rough
set theory to deal with property uncertainty and select the best matched services.

Other approaches study systems in which agents alter their relationships or their be-
haviors based on calculations of each other’s trustworthiness. Jurca and Faltings [2007]
describe a mechanism that uses side-payment schemes to provide incentives for agents so
that it becomes rational for the agents to report ratings of other agents truthfully. Jurca and
Faltings use a simplistic trust model. They express trust as a scalar from 0 to 1, and do
not consider uncertainty. As a result, one bad experience out of ten yields the same level
of trust as would 1,000 bad experiences out of 10,000. By contrast, our approach finds
the two cases to yield different measures of certainty. Overall, though, our approach is
complementary to theirs. Jurca and Faltings are interested in obtaining individual ratings;
we are interested in aggregating the ratings into measures of belief of certainty, which can
then be propagated [Wang and Singh 2006].

Sen and Sajja [2002] also address the problem of deceptive agents. They study reputation-
based trust with an emphasis on the problem of estimating the number of raters (some of
whom may be liars) to query in order to obtain a desired likelihood threshold about the
quality of a service provider. They model the agents’ performance as drawn from two dis-
tributions (high and low); agents use reputation to determine if some of the raters are liars.
Sen and Sajja experimentally study the effect on performance of systems wherein some
of the raters are liars with a view to identifying thresholds beyond which the number of
liars can disrupt a system. Yu and Singh [2003] show how agents may adaptively detect
deceptive agents. Yolum and Singh [2003] study the emergent graph-theoretic properties
of referral systems. This paper complements such works because it provides an analytical
treatment of trust that they do not have whereas they address system concerns that this
paper does not study.

5.3 Literature on Information Theory

Shannon entropy [1948] is the best known information-theoretic measure of uncertainty. It
is based on a discrete probability distribution p = (p(z)|z € X) over a finite set X of al-
ternatives (elementary events). Shannon’s formula encodes the number of bits required to
obtain certainty: S(p) = — > _ .y p(x)lgp(x). Here S(p) can be viewed as the weighted
average of the conflict among the evidential claims expressed by p. Jaynes [2003] pro-
vides examples, intuitions, and precise mathematical treatment of the entropy principle.
More complex, but less well-established, definitions of entropy have been proposed for
continuous distributions as well, e.g., [Smith 2001].

Entropy, however, is not suitable for the present purposes of modeling evidential trust.
Entropy captures (bits of) missing information and ranges from 0 to co. At one level, this
disagrees with our intuition that, for the purposes of trust, we need to model the confidence
placed in a probability estimation. Moreover, the above definitions cannot be used in mea-
suring the uncertainty of the probability estimation based on past positive and negative
experiences.
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6. DISCUSSION

This paper offers a theoretical development of trust that would underlie a variety of sit-
uations where trust reports based on evidence are combined. In particular, it contributes
to a mathematical understanding of trust, especially as it underlies a variety of multiagent
applications. These include social networks understood via referral systems and webs of
trust, in studying which we identified the need for this research. Such applications require
a natural treatment of composition and discounting in an evidence-based framework. As
Section 1 shows, these applications broaden to service-oriented computing in general.

Further, an evidence-based notion of trust must support important properties regarding
the effects of increasing evidence (for constant conflict) and of increasing conflict (for
constant evidence). Theoretical validation, as provided here, is valuable for a general-
purpose conceptually driven mathematical approach such as ours. The main technical
insight of this paper is how to manage the duality between trust and evidence spaces in a
manner that provides a rigorous basis for combining trust reports.

A payoff of this approach is that an agent who wishes to achieve a specific level of cer-
tainty can compute how much evidence would be needed at different levels of conflict. Or,
the agent can iteratively compute certainty to see if the certainty of its beliefs or disbeliefs
has reached an acceptably high level.

It is worth considering briefly the benefits of treating trust as a well-defined concept.
Potentially, instead of exchanging trust reports, the agents could exchange probability dis-
tributions based upon the evidence. However, discounting such evidence would require
going through the trust report representation that we described. Because of the bijection
that Theorem 3 establishes, the trust and evidence representations are equivalent, so the
choice between them is arbitrary. However, trust is an important concept for both concep-
tual and practical reasons. In conceptual terms, trust represents a form of relational capital
[Castelfranchi et al. 2006] among the agents. From a practical standpoint, trust summarizes
the prospects for an interaction in a way that makes intuitive sense to people and fits into
practical agent architectures. Making intuitive sense to people is crucial from the stand-
point of effective requirements elicitation and for explaining outcomes to users, which are
crucial for improving credibility and predictability. Patrick ef al. [2005] and Yan et al.
[2008] discuss additional ramifications of trust and usability on each other. Moreover, in
open architectures where the agents are implemented heterogeneously, a numeric treatment
of trust can provide a simple means of facilitating interoperation without requiring that the
implementations agree on their internal representations.

6.1 Conclusions

The broad family of applications that this approach targets includes social networks and
service-oriented computing. These applications rely on the parties concerned acquiring
evidence in order to make reasoned judgments about interacting with others. As a practical
matter, it is inevitable that there will be conflicts in the trust reports received from others.
There is agreement that certainty is crucial in combining trust reports. However, previous
approaches calculate certainty naively in a manner that disregards conflict. Thus our results
are a significant advance even though our approach begins from the same PCDF framework
as applied by Jgsang in his treatment of trust.
We now summarize our technical contributions.

—This paper offers a theoretical development of trust based on certainty that
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would underlie a variety of situations where trust reports based on evidence
are combined. Specifically, in this approach, for a fixed amount of evidence,
certainty increases as conflict in the evidence decreases. And, for a fixed
level of conflict, certainty increases as the amount of evidence increases.

—DMoreover, despite a more subtle definition of certainty than in the litera-
ture, this paper establishes a bijection between evidence and trust spaces,
enabling robust combination of trust reports. Further, it provides an efficient
algorithm for computing this bijection.

6.2 Directions

This work has opened up some important directions for future work. First, the above work
treats all past transactions equally and simply adds up all positive transactions and negative
transactions. We might give more weight to most recent transactions, i.e., discount the
evidence by its age. The foregoing showed how trust evolves with respect to increasing
evidence under different conditions. The same properties apply to the evolution of trust
over time, that is, as time passes and more evidence is obtained. A crucial observation
is that because of the bijection established in Theorem 3, the historical evidence at any
point can be summarized in a belief-disbelief-uncertainty triple. New evidence can then
be added as explained above. Moreover, we can discount the value of evidence over time
if necessary. For example, we may discount the evidence at every time step (chosen based
on the domain: e.g., one hour or one day, or after each transaction). As a result of such
discounting, new evidence would have a greater impact than older evidence.

Second, our work assumes a uniform prior probability distribution. Other prior prob-
ability distributions such as the Gaussian distribution may be useful in different settings.
We conjecture that certainty defined on other probability distributions would support the
mathematical properties (monotonicity with increasing evidence for fixed conflict and for
decreasing conflict for fixed evidence) just as well as the certainty formalized here.

Third, an important technical challenge is to extend the above work from binary to multi-
valued events. Such an extension would enable us to handle a larger variety of interactions
among people and services.

Fourth, we can imagine new models that encompass all the challenging aspects of the
beta model, which can analyze the model and provide with algorithms for computing the
various probabilities in this model.
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A. PROOFS OF THEOREMS AND AUXILIARY LEMMAS
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The motivation behind Lemma 6 is, in essence, to remove the absolute value function

that occurs in the definition of certainty. Doing so enables differentiation.

LEMMA 6. Given A and B defined by f; s(A) = frs(B) =1, 0< A< 15 < B <
1, we have cy = ff(fns(x) —1)dz
Proof: As in Definition 2,  + s > 0 throughout this paper. By Lemma 5, f, s(x) is
strictly increasing for z € [0, ), strictly decreasing for € (;3,1] and maximized
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= [ (frsl@) = D)da.
Thus [ | frs(2)—1da = [ 1 — (frs(@)dz+ [ (1= frs(@)dz+ [} (frs(@) - 1)dz
and L [ [ frs(z) = Udz = [ (frs(@) — Ddz. O
LEMMA 7.

1 r .

. , 1
/ 2" (1 —x)’dx = k -
0 r—i—s—l—l,:lr—i-s—&—l—z

?
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Proof: We use integration by parts.

Jyar (1 —a)tde = [} a7d(S5 (1 —2)*tY)

= _mT(ls_-i-xl)sJrl |(1J + s-:l fOl xr_l(l - .I‘)s+1dl‘

=50 fol 2" (1 — 2)sde

o r-(r—1)---1 1 r+s
= (r+s)-(r+s—1)---(s+1) fO (1 - LC) T

_ 1 i
T r4s+1 'Hl r+sjklfi' U
1=
LEMMA 8.
T . o
7 o

li " = 1
i _1;[1041"—1—7“—}—1—2' (14 a)otl M

Where r is a positive integer:

Proof: This lemma is used in the next lemma, to show that the right side of an equation
approaches a constant, where the equation has duplicated roots, and then the two roots of
the equation approach that duplicated root.

T

i 1 i
hmr_’oo r In ,H1 ar+r+1—1
i=

r r
= lim, % ln(Hll 'Hl m)
i i

=lim, % ln('H zH ar1+z')

=In 7(1+(5'j;a+1
Therefore,

T

: 7 _ a®
limy oo { l:I ar+r+1—i ~ (1+a)otl: t

LEMMA 9.

lim A(r) = lim B(r) = ! (2)

r—00 r—00 1 + o
Where r is a positive integer:
Proof: The idea is to show that A(r) and B(r) are two roots of an equation g(x) = 5(r).
If lim, o, B(r) = [ and the equation g(x) = [ has duplicated roots of «, then we have
lim, 00 A(r) = lim, oo B(r) = «
By Lemma 6, A(r) and B(r) are two roots for the equation
(1l —2)* = {/fol (1 —x)rdz
since
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lm, oo \/fo 27 (1 — x)ordx

— 1 ” 1 i
= lim, o \/MJ”Jr1 11 wrrri—; (by Lemma7)
i=1

= ﬁ (by Lemma 8)
= a1 - a)°
since z(1 — x)® achieves its maximum at x = 1-s1-a ,and z = 14—7 is the only root for the
equation
z(l—2)* = ﬁ(l — ﬁ)a
Therefore,
lim, 00 A(r) = lim, 0o B(r) = 1—&-% |

(" (1—2)°"
Proof of Theorem 1 ¢(r) is increasing where r > 0 ¢/(r) = f A(r) 7f1 )y
1)dx

_ B"(r)A—=B(r)*"
- B/(T)( f (y (1—y)ordy - 1)

(r(A=A(r))*"
—A(r )(f (y(1—y)ordy -1

B(r " (1—x)*"
+Ja ((7“)) jr Jo (y ((1 y))‘“dy — 1)dz
fB(T (w’“(l z)*"
A(r) dr [Tyr(1—y)ordy
B(r) 4

QT 1 7‘ ar

- ﬁ( A(r) E( "(1-x) fo (1—y)*"dy
B(r r Ol’!‘ ar

— [ @ (1= @)y [y (1= )T dy)

B(r r ozr
= ([ @ (1 = 2) ) In(z(1 - 2)?) o y" (1 — )" dy

— [t @ (1= 2)°7) [y (1= )" In(y(1 — y)*)dy)

B :
= & f) [ e (= 2)ory (1= ) In 2= ddy
where d = fo y"(1 — y)*"dy According to Lemma 5 2" (1 — 2)*" > 3" (1 — y)*" when
x e [A(r), B( )] andy € (0, A(r)] U [B(r),1) so we have
(r B(r ar, r ar z z
f )f () —2)%Ty"(1 —y)*" In 8 y;ad:ﬂdy>0
and

fB(r fA(r) (I-2)*y"(1—y)* Iny dmdy >0

B B(r p—— 1—
fA((T) N ((T)) (1—2)"y"(1 —y)°" In xE x; dxdy =0

we have ¢/ (r) > 0, so ¢(r) is increasing when > 0. O

LEMMA 10. Define L(r) = ) f(z,r)dx and R(r) = r)dx.

Where
fla,r) =2"(1 — 2)*" Then
lim, o L(r) = 0 and lim,_,, R(r) =0

L pAr e [
[y flz,r)d fo o fzr)da fB(T) J(@,

Proof: We only need to show that lim,. ., L(r) = 0. Since lim,_ ., R(r) = 0 can be
proved similarly. The idea is to show that L(r) is the remainder of the Taylor expansion of
(A+1— A)yortr
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fo "(1—2)*dx
_ fo ar+1 1 _x)ar+1)
_ MHx (1 — z)ortl|A — oA 21— x)* e
= ar+1 fO T_l(l - m)oﬂ’—i—ldx - ar-i-l AT( o A)O”""'l
= st fl - 0 ey
A ar+r+1—1q
71231]1:[ O‘7"-5-7"-1-1 Jj ot (liA) o
So A
Lr) = frommyeras Jo @ (1 —2)*de
= (ar+r+1) ﬁ %ﬂ_l foA z"(1—2)*"dzx
i=1
- 1- (1 _ A)ar+r+1
- . )
~(ar+r+) 2 [ M o (1= Ayertre
=1\ §—1

ar+r
i—1
k 7

(2 +1—A)2r+ =

(ar+r+1)([ M

+1—A)ertrdy

21 (1 o A)ar+r+1*idm)

=11 ardrtl—i for any positive integer k. Since
K3

=1

ar—+r

1’1(1 . A)oerr'rfi

i=0 \ 4

so we have
L(r) =

o0

=(ar+r+1)>

i=r 1

IR
oar—+Tr
artril 4§

i=r \ ¢

IN

el A(A+1 -

since
r—1 .
rET ) a1

i=0 \ 4

(ar+r+1)§f0A

ar—+r

ar—+r

ar +r xi(l . A)ar-&-r—idx

i

At
i+1

(1 _ A)ar—i—r—i

AZ(]. o A)arJr’rfi

Ayertr 2S[O iq — gpartr—iy

i=0 \ 4

— A)er+r=1 is the Taylor expansion of (A + 1 —
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r—1
im 1 S [ @77 A - Ayertr—i=o

T i=0 \ 4

and by Lemma 9 lim %T“A = 1. Therefore,

T—00

lim, o L(r) = 0 and similarly lim, o R(r) =0. O
LEMMA 11. lim,_ . c(r) =1

Proof: Let f = M Then we have
Jo " (1—z)orda
c(x) = [ f(x)dz — L(z) — R(z) — (B — A)
since fol f(z)dx = 1,1im,_,oc B—A = 0 (by Lemma9) and lim, oo L(r) = lim, o R(r) =
0 (by Lemma 10). So

lim, oo c(r) =1
LEMMA 12. lim,_q¢(r) = 0.

Proof: We only give a sketch of the proof. Let f(x) < M when r < 1. For Ve > 0,
_ : a"(1—z)*"
let § = (ML)’ since W
when r — 0. So 3 rg > 0 such that,
|f(z) — 1| < ewhenr < rg,x € [§,1 — §]. So when r < g,

c(r) =3 [ |f(z) - 1]da
21 f (@) = Lda + ;70| f(@) — Uda [, | f(2) - 1]dz)
((M41)0 + €+ (M + 1)) = e. Hence we have lim ¢(r) =0. O

r—

approaches to 1 uniformly in the interval [3, 1 — ¢],

N|— D=

<
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