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Abstract—The expanding interest in the modeling and enactment of
service engagements creates fresh challenges for software engineering.
Existing work on “technical” services, such as on web and grid services,
bears little relationship to real-life “business” services that we consider
here. Conventional software engineering is ill-equipped to deal with
distributed information systems comprised of autonomous entities repre-
senting the business partners involved in a typical service engagement.

Although many have recognized the importance of communication in
the modeling and enactment of distributed systems, existing approaches
treat communication at a low level. Specifically, existing messaging-
based approaches consider the flow, but not the meanings, of the mes-
sages. Thus they can facilitate interoperation only at a correspondingly
low level. In contrast, we give primacy to the meanings of the messages
exchanged, based on the notion of commitments. Doing so yields a
new high-level notion of interoperability, which we term alignment. We
propose a distributed (locally executable) method that guarantees the
alignment of business partners despite asynchrony.

1 INTRODUCTION

Interoperation literally means working together. Since practical
software systems inevitably comprise multiple components,
software engineering is naturally concerned with their interop-
erability. Classically, software engineering has been concerned
with inactive components resident within a single administra-
tive domain. Of late, software engineering has trended toward
active components. However, the notion of interoperability in
most current research has not kept pace with these trends.
This paper addresses software systems whose components
represent business partners. We treat such active components
as autonomous agents who interoperate to realize a service
engagement. For example, purchasing a book may involve a
customer, a merchant, a shipper, a payment agency such as a
credit card company, and two or more banks. Each may be
modeled as an agent. As in any distributed system, the agents
communicate via messaging. Although message transmission
and reception are crucial, a purely syntactic treatment of
messages cannot adequately express the inherently semantic
business considerations that apply in a service engagement.
When considering service engagements, it is natural that
interoperability would involve business-level considerations
centered on how each partner performs on its contracts with
the others. This understanding of interoperability conflicts with
the traditional notion that components interoperate merely if
each would receive messages that another would send it. For

example, the above purchase engagement would fail if the
customer doesn’t pay, even if everyone receives all messages.

In simple terms, the state of the art on interoperability
may be described as follows. Whereas traditional software
engineering approaches disregard business considerations, ap-
proaches that incorporate business considerations disregard
the challenges of distributed computing. In contrast, this
paper motivates (1) alignment as a business-level notion of
interoperability and (2) grounds alignment in messaging.

We consider software development as involving conceptual
modeling, formalization, and methodology. Our program of re-
search addresses all three with respect to service engagements:
this paper focuses on the formalization and operationalization
of commitments; our recent (and ongoing) work addresses
modeling and methodology [8], [37].

1.1

Any software architecture must be undergirded by a matching
notion of interoperability. We advocate the fundamental intu-
ition expressed by Parnas [28] that architectural connectors
be treated not as control or data flow constructs but as
assumptions made by each component about the others. Much
of the subsequent work on architecture has regressed from
Parnas’ insight by primarily considering connectors at the level
of control and data flow—or equivalently message order and
occurrence, e.g., [15].

In contrast, our approach models the assumptions the agents
make of each other in terms of their commitments toward
one another [35]. Commitments yield a simple, declarative
characterization of business interoperability that proves suffi-
ciently expressive for the cases of interest. Several researchers
recognize the value of commitments in modeling business
applications and are developing tools supporting their use [22],
[30], [40]. Singh et al. [37] describe additional aspects of
commitments with respect to business service engagements.

Formally, a commitment is an expression of the form
C(debtor, creditor, antecedent, consequent), where debtor
and creditor are agents, and antecedent and consequent are
propositions. This expression means that the debtor commits
(to the creditor) to bringing about the consequent if the
antecedent holds. For example, C(EBook, Alice, $12, BNW)
means that EBook commits to Alice that if she pays $12,
EBook will send her a copy of Brave New World (BNW).

Business-Level Interoperability



Agents interact by sending each other messages. We model
a physical interaction such as sending a package as a message.
A distinguishing feature of our approach is that it assigns a
meaning to each message in terms of how it affects the state
of a conversation, in particular, including how it affects the
commitments among the agents involved. For example, offer
from EBook to Alice may activate the above commitment.

Now imagine that, at some point during their interaction,
Alice infers that EBook is committed to sending her the book
she paid for, but EBook infers no such commitment. Thus
Alice and EBook fail to work together and are thus not interop-
erable. In general, a key requirement for successful interaction
is that the interacting agents remain aligned, meaning that any
commitment that a creditor infers the debtor infers as well.

1.2 Challenges

Our challenge is to guarantee alignment in asynchronous
settings. Asynchrony promotes loose coupling among the com-
ponents, and is natural in systems with significant communica-
tion delays. A robust solution that accommodates asynchrony
would also apply in synchronous settings. Guaranteeing align-
ment in asynchronous settings is nontrivial: the agents may
not observe the same messages in the same order. A naive
approach to computing commitments in such settings would
lead to misalignments, as the following examples illustrate.

Example 1: (Fig. 1(A)). EBook sends Alice (a message that
expresses) an offer that if she pays $12, then EBook will
deliver to her a copy of the book Brave New World. Alice sends
EBook a rejection of the offer. Upon receiving the rejection,
EBook resends the offer. I
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Fig. 1. Scenarios (B), (C), and (D) end in misalignment.

EBook’s offer creates a commitment from EBook to Alice
for BNW in return for $12. In Example 1, Alice and EBook
remain aligned by observing the messages in the same order.

Example 2: (Fig. 1(B)). EBook makes Alice an offer. Not
seeing a response from Alice, EBook resends the offer. Sup-
pose, in the meantime, Alice rejects EBook’s offer. Then the
rejection crosses EBook’s repetition of the offer. I

What ought EBook and Alice to infer about the offer at
the end of Fig. 1(B)? Upon Alice’s rejection, EBook may
infer that its offer no longer exists. But, having seen an offer
last, Alice may infer that the offer holds. That is, Alice infers
a commitment from EBook whereas EBook does not infer
that commitment. This misalignment occurs because Alice’s
rejection and EBook’s offer crossed in transit. Notice that
Fig. 1(B) indicates a race condition: the mutual order of offer
and rejection matters for EBook but is invisible to Alice.

Example 3: (Fig. 1(C)). EBook makes an offer. Alice ac-
cepts and pays for it. EBook cancels the offer by sending a
message that crosses Alice’s payment. |

In Example 3, upon sending the payment, Alice infers that
EBook is committed to sending her a copy of the book.
Because Alice accepted EBook’s offer, she treats EBook’s
cancellation as spurious. But EBook sees the payment after
it has canceled, so it considers the payment late. Thus Alice
infers EBook’s commitment for BNW, but EBook does not.
Hence we have misalignment.

Example 4: (Fig. 1(D)) Here, EBook sends an offer, but in
the meantime Alice sends a rejection. I

In Example 4, EBook sees the rejection last and infers that
its offer was rejected, whereas Alice infers the offer exists she
sees the offer last. We allow Alice to reject an offer before
receiving it for generality. This helps us handle scenarios
where messages arrive unexpectedly, analogous to when one
receives a group reply to an email before the original email.

Distribution can cause misalignment by having some agents
be better informed about some events than others.

Example 5: Alice commits to Rob that if the sky is clear
at 5SPM, she will meet him at the lake. At 5SPM, Rob observes
(as a message from the environment) that the sky is clear,
and infers that Alice is committed to meeting him at the lake.
However, Alice cannot see the sky, and thus does not infer the
same commitment. Rob and Alice are thus misaligned. |

Most services engineering approaches consider only syn-
chronous interactions as underlying their methodologies. Thus
their results do not apply in real-life distributed settings.

1.3 Contributions and Organization

This paper proposes an approach that ensures alignment
among agents. More specifically, this paper

o Motivates (commitment) alignment as a key notion of
business-level interoperability suited to service engage-
ments; building on commitment reasoning [36], it char-
acterizes alignment in a rigorous manner.

o Proposes an operational semantics for computing snap-
shots from messages. Each agent proceeds independently
of others, based solely on the messages it observes.

e Guarantees alignment under realistic assumptions of
asynchrony with reliable pairwise-ordered queues.

We evaluate the contributions of this paper by modeling
a number of realistic scenarios. In contrast with existing
approaches, we obtain intuitive results for these scenarios.

Section 2 introduces our technical framework. Section 3
develops the background to specify the meanings of service
engagements. Section 4 informally introduces the principles
underlying alignment. Section 5 formalizes multiagent com-
munication and alignment. Section 6 proves that our method
guarantees alignment. Section 7 discusses the relevant litera-
ture. Section 8 discusses some important directions.

2 TECHNICAL FRAMEWORK

We assume all (positive) atoms are stable: if an atomic propo-
sition becomes true, it stays true forever. In English, stability



corresponds to sentences such as the book has been delivered
and the payment has been made [36] or sentences that include
an explicit timestamp, such as the book is delivered by 3PM.
However, a commitment is inherently not stable, because it
may be discharged, canceled, or released.

Below, x, y, z are agents; «, [ are atomic propositions; p,
q are conjunctions of atomic propositions, , s, t, u, v, w are
(possibly nonatomic) propositions; V, A, -, — are the usual
connectives; T and L are the constants for truth and falsity,
respectively; F is the usual propositional inference symbol. To
simplify notation, we treat T and L as atomic propositions.

The nonterminals Snapshot (of an agent’s state), Commit-
ment, and Message are the most important ones.

L;. Snapshot — {Base}

Ly. Base — Commitment | Atom | Stative(DNF, CNF)
Ls. Commitment — C(Agent, Agent, DNF, CNF)

L,. Content — Atom | = Atom | Stative(DNF, CNF)
Ls. Stative — created | released | canceled

L. DNF — And | And V DNF

L;. CNF — Or | Or A CNF

Ls. And — Content | Content A And

Lg. Or — Content | Content V Or

Lio. Message —> Declare(Agent, Agent, News)

L;;. News — Atom | Atom A News

Lis. Message — Bi(Agent, Agent, DNF, CNF)

L;3. Message —> Tri(Agent, Agent, Agent, DNF, CNF)
Lis. Bi — Create | Cancel | Release

Lis. Tri — Assign | Delegate

2.1

An expression C(z,y,r,u) denotes an active commitment
[36]. When its consequent u holds, the commitment is dis-
charged and does not hold any longer. If its antecedent r
holds, then C(z,y,r,u) is detached, and the commitment
C(z,y, T,u) holds. C(x,y, T,u) entails C(x,y,r, u) so the
latter continues to hold as well [36]. An unconditional com-
mitment is merely a special case where the antecedent equals
T. Table 1 enumerates the commitments in our examples.

Reasoning about Commitments

TABLE 1
Commitments used as running examples in this paper

Commitment

cA C(Alice, EBook, BNW, $12)

cs C(EBook, Alice, $12, BNW)

cuA C(Alice, EBook, T, $12)

cuB C(EBook, Alice, T, BNW)

cG C(EBook, Alice, $12, GamblingTips)
S
C(
C(

Name

co EBook, Alice, $12, BNW A GamblingTips)
c1 EBook, Alice, $12 \V coupon, BNW)
ca EBook, Alice, $12 A coupon, BNW)

Postulates B;—Bg are from Singh [36]. The remaining pos-
tulates are original. For brevity, we omit agents when they can
be understood. When a postulate uniformly involves the debtor
x and creditor y, we write C(r,u) instead of C(z,y,r, u).

B;. DISCHARGE. u — —C(r, u)
Bo. DETACH. C(r A s,u) Ar — C(s,u)

B3. AUGMENT. From C(r,u), s+ r, st/ u infer C(s,u)

By4. L-DISJOIN. C(r,u) A C(s,u) — C(r V s, u)

Bs. R-CONJOIN. C(r,u) A C(r,v) = C(r,u A v)

Bg. CONSISTENCY. —~C(r, L)

B7. NONVACUITY. From r b w infer =C(r, u)

Bg. WEAKEN. C(r,u Av) A —u — C(r,u)

Consider Table 1. Intuitively, ¢y is stronger than cg (an
additional book for the same price); c; is stronger than cg
(two ways to obtain a book instead of one); cg is stronger than
co (fewer conditions need to be satisfied in order to obtain a
book). Definition 1 captures this intuition.

Definition 1: C(x,y,r,u) is stronger than C(z,y,s,v), or
C(z,y,r,u) = C(z,y, s,v), if and only if s - r and u - v.

For example, ¢y *= cg. If C(z,y,r,u) = C(z,y,s,v) but
Cz,y,s,v) # Clz,y,r,u), Cla,y,r,u) is strictly stronger
than C(x,y,s,v) or C(x,y,r,u) = C(z,y,s,v). B3 and Bg
capture strength: if c¢; holds, then by Bj, cg holds as well.
Similarly, if ¢g holds, then by Bg, cg holds—unless BNW
holds already, in which case according to B, cg cannot hold.

2.2 Message Types for Commitment Operations
Table 2 introduces the message types by which agents can
bring about the well-known operations on commitments [35].

TABLE 2
Messages and their effects

Message Sender Receiver  Effect
Create(z,y,r,u) T Y Clz,y,7,u)
Cancel(z,y,r,u) T y -C(z,y,r,u)
Release(z,y,r, u) y T =C(z,y,r,u)
Delegate(z, y, z, 7, u) T z C(z,y,r,u)
Assign(z,y, z,7,u) y x C(z, z,7,u)
Declare(z, y, p) T y D

Table 2 also introduces Declare, by which a suitably em-
powered agent [16] brings about facts relevant to a given
service engagement, such as the antecedent or consequent of
a commitment. For example, making a payment or delivery
would cause the detach or discharge of some commitments
in Table 1. A forwarded or copied Declare carries the same
weight as the original. An observation is a Declare from Env,
the environment agent.

Below let ¢ = C(z,y, 7, u). To reduce clutter, the examples
below use Create(c) instead of Create(z,y,r,u). And, simi-
larly, Delegate(c, z), Assign(c, z), Release(c), and Cancel(c).

3 UNDERSTANDING SERVICE ENGAGEMENTS
VIA COMMITMENTS

Traditional approaches describe a service engagement in terms
of the occurrence and relative order of specific messages.
The engagement of Fig. 2 begins with EBook sending Alice
an offer. Alice may either accept or reject the offer. If she
rejects it, the engagement ends; if she accepts it, EBook
sends her the book. Next, Alice sends EBook the payment.
Because an FSM ignore the meanings of the messages, it
defines compliance on low-level considerations, sometimes
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Fig. 2. A purchase engagement as a finite state machine.
Each message is tagged with its sender and receiver
(here and below, E is EBook; A is Alice).

unintuitive: Alice fails to comply if she sends the payment
before she receives the book. In contrast, we build on com-
mitment protocols [43], which describe messages along with
their business meanings. Table 3 shows our specification.

TABLE 3
A purchase engagement expressed in terms of
commitments

Domain-Specific Message
Offer(E, A, $12, BNW)

Accept(A, E,BNW, $12)
Reject(E, A, $12, BNW)

Commitment-Oriented Message

Create(E, A, $12, BNW)
Create(A, E, BNW, $12)
Release(E,A $12, BNW)

Deliver(E, A, BNW) Declare(E, A, BNW)
Pay(A, E,$12) Declare(A, E, $12)
EBook Alice EBook Alice
Offer(g, cs|— Creay,
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W S
Ye@’\’l\ Cus
o Pay®12—| ol 02

| Deliyg, ~cg
r{Bl\/ W
)~

(A) (B)

Fig. 3. An enactment of the engagement of Table 3 in
terms of (A) domain-specific messages and (B) commit-
ments. We show only the strongest commitments at each
point. For example, because cyg > ¢g, cyg is sufficient.

Let us walk through the interaction of Fig. 3. Upon sending
Create(cg), EBook infers cg; upon receiving the message
Alice infers cg. Upon sending Declare($12), Alice infers
that $12 holds. Consequently, she infers that cg is detached
(by Bs), yielding cyg. When EBook receives Declare($12), it
infers cyg. EBook finally sends Declare(BNW), upon which
it concludes that its commitment is discharged (by B1). When
Alice receives Declare(BNW), she draws the same inference.

Notice that Table 3 does not specify any ordering constraints
on messages. In effect, each party can send messages in any
order. Fig. 4 shows some additional enactments of the pur-
chase engagement between Alice and EBook. The enactments
of Figs. 4(B) and 4(C) correspond to the paths that include
the dashed transitions in Fig. 5.

So when is an agent compliant with an engagement? The
answer is simple: an agent complies if its commitments are

EBook Alice

EBook Alice

EBook Alice

Fig. 4. Three possible enactments of the engagement of
Table 3.
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Fig. 5. Expanded set of execution paths for the engage-
ment of Fig. 2.

discharged, no matter if delegated or otherwise manipulated.
Traditional approaches force a tradeoff: checking compliance
is simple with rigid automaton-based representations and
difficult with flexible reasoning. Engagements specified using
commitments find the happy middle, promoting flexibility by
constraining interactions at the business level, yet providing a
rigorous notion of compliance.

Clearly, agents could be misaligned if they interpret mes-
sages incompatibly. In our examples, we treat offer as a
commitment from EBook to ship a book in return for pay-
ment. Let’s imagine that Alice follows this interpretation but
EBook treats an offer as Create(E, A, ack A $12, BNW) or as
Create(E, A, created(A, E, T,$12), BNW). Then, naturally,
Alice and EBook may end up misaligned. Here we assume
the agents agree on the meanings of their messages. Chopra
and Singh [6] address the complementary problem of checking
whether agents’ interpretations of messages are compatible.

4 PRINCIPLES OF ALIGNMENT

The misalignments in Fig. 1 arise due to each agent inferring
naively upon observing a message: inferring C(r,u) from
Create(r,u) and =C(r, u) from Release(r,u) or Cancel(r, u).

Fig. 6 labels each state with the commitment that hold there,
and each transition with the message observed. The dashed
lines show the transitions for Alice (A./) and EBook (E.i).
Although they begin from the same state, —cg, they end up in
different states at the end of A.2 and E.2, respectively.

The traditional way to avoid misalignment would be to syn-
chronize the agents, but synchronization is not viable for real-
life service engagements. Instead, we formulate five principles
of service engagements that are informed by commitments and
distributed systems; show that the principles yield intuitively
correct enactments; and show how to operationalize them. We
begin with three principles that address Fig. 1.
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Fig. 6. State machine annotated with the scenario of
Fig. 1(B). EBook and Alice follow the same machine, but
end up misaligned.

Principle 1: NOVEL CREATION. Create(r,u) has no effect
if a stronger commitment C(s,v) has held before.

Principle 2: COMPLETE ERASURE. Consistency demands
that Release(r,u) or Cancel(r,u) removes all commit-
ments weaker than C(r,u) provided no C(s,v) strictly
stronger than C(r,u) holds; otherwise it is a noop.

Principle 3: ACCOMMODATION. From Release(r,u) and
Cancel(r,u), infer that each weaker C(s,v) held before.
EBook

Alice  EBook

Alice EBook

Alice

Fig. 7. Proposed approach.

Fig. 7 shows how these principles restore alignment to
Fig. 1 (here offer is Create(cg) and reject is Release(cg)).
In Fig. 1(B), Alice infers cg at the end, and EBook does not.
But in Fig. 7(B), neither Alice nor EBook infers cg at the end.
Upon receiving the reject, by COMPLETE ERASURE, EBook
infers being released from the offer. When Alice receives the
offer again, it is a noop because of NOVEL CREATION.

Similarly, in Fig. 1(D), Alice infers cg at the end, and
EBook does not. But in Fig. 7(C), however, neither Alice
nor EBook infers cg at the end. Upon receiving the reject,
by COMPLETE ERASURE, EBook infers being released from
the offer. When Alice receives an offer she already rejected,
ACCOMMODATION ensures that from Alice’s release we can
presume the offer had been made before. And, thus NOVEL
CREATION ensures EBook’s actual offer has no effect. Note
that Figs. 1(A) and 7(A) yield differing outcomes. Fig. 1(A)
ends with EBook and Alice both inferring cg, but Fig. 7(A)
ends with both inferring —cg.

NOVEL CREATION means that resending a Create has no
effect. But we can use identifiers to distinguish offers. To
avoid interference with reasoning about commitments, we
apply identifiers not on commitments but on conditions. In
Example 6, at the end, both Alice and EBook infer that the
$12(41) commitment holds and the $12(ig) commitment does
not. Section 7 returns to this point as semanticity.

Example 6: EBook sends Create(E, A, $12(ig), BNW(ip)).
Alice sends Release(E, A, $12(ip), BNW(ig)). To repeat the
offer, EBook sends Create(E, A, $12(i1), BNW(i1)). |

Note that NOVEL CREATION does not prevent resurrecting a
commitment. A commitment may come to hold again because
of a Create message for a stronger commitment. It is common
practice for a seller to improve its offers, effectively making
stronger commitments, as in Example 7.

Example 7: EBook makes Alice the offer cg. Alice rejects
the offer thus releasing EBook from cg. However, EBook is
persistent, and it makes Alice the stronger offer ¢y (two books
for the same price). This automatically resurrects cg to ensure
consistency. Say, now Alice rejects EBook’s improved offer. |

When Alice sends Release(cp), COMPLETE ERASURE
means that Alice’s rejection also removes cg and cg. In
contrast, Release(cg) has no effect when ¢ holds. In that case,
co continues to hold and re-creates cg.

Principle 4: NOTIFICATION. Whenever a creditor of a com-
mitment learns of a condition that features in the an-
tecedent, it notifies the debtor and whenever a debtor
learns of a condition that features in the consequent, it
notifies the creditor.

The motivation is to make sure that we test for the alignment
of two agents only when both or neither have received vital
information. Thus, a creditor must notify relevant debtors of
(partial) detaches, and a debtor must notify relevant creditors
of (partial) discharges.

Consider Fig. 8(A). Initially, cg = C(Alice, Rob, clear, lake)
holds meaning that Alice commits to Rob that if the sky is
clear, she will meet him at the lake. Rob observes that the
sky is clear—as a message from Env, the environment. Now,
Rob infers cyr = C(Alice, Rob, T, lake) but Alice does not
(maybe because she is in a basement and cannot look at the
sky). Thus, Rob and Alice would appear misaligned but only
because Rob has received vital information that Alice has not.

Alice Rob

Env
Cr Cr
eo\a‘e
o) kc\eaﬁ
Cur
(

A) No notification: misaligned

Alice

Rob Env
Cr Cr
Dec\afe
peciare (cea”)
Curle— (gean)  |CUR

(B) Detach notification: aligned

Fig. 8. Notifying about detaches.

In Fig. 8(B), the bold dot on Rob’s lifeline indicates that
Rob must notify Alice of clear. The state at the dot, where
Rob infers cyg but Alice does not, is deemed irrelevant for
judging alignment. Hence, we avoid a false negative claim
about alignment. The case where a debtor notifies a creditor
of a discharge is analogous.

Note that if none of the parties learn of the relevant con-
ditions, they might remain aligned without making progress.
For example, if Rob never learns about clear, he would not
infer cyr. But he and Alice would remain aligned. We defer
the problem of ensuring progress to future work.

Principle 5: PRIORITY. When two agents may take conflict-
ing actions, they must agree ahead of time as to whose
action has priority.



It is possible that a debtor cancels a commitment concurrently
with the creditor detaching it. Recall Example 3 where Alice’s
payment crosses EBook’s cancellation. Fig. 9(A) annotates
that example with commitments. If EBook’s cancellation and
Alice’s payment cross, they become misaligned—Alice infers
cy whereas EBook does not. The reason is that receiving
Cancel(cg) has no effect on Alice because she already infers
cy, and cy > cg. Receiving Alice’s payment has no effect on
EBook because it has no commitment to detach.

EBook Alice
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EBook Alice
Ce Dec\are ]
Cangg 121 812,00
. ©)al$12,c, $12
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EBook
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Alice

A) No priority:misaligned B) Detach priority C) Cancel priority

Fig. 9. Race between cancel and detach.

There is no fundamental reason to prefer either the creditor’s
or the debtor’s viewpoint. They simply must agree on what
takes priority: cancel over detach, or detach over cancel. The
choice may depend upon the domain, e.g., in keeping with
the practices of a specific industry. Detach priority means that
the debtor considers its cancellation to be overridden by the
detach. Cancel priority means that the creditor considers its
detach to be overridden by the cancellation.

Our theory can handle whichever alternative a service
engagement specifies. Consider C(r A s,u). Under detach
priority, if the debtor observes Declare(s) (a detach) after it
has canceled C(rAs, u), it must send Create(r, u). In Fig. 9(B),
EBook creates cy. Alternatively, under cancel priority, if the
creditor detaches C(r A s, u) by sending Declare(s), and then
observes a cancellation for C(r A s, u), the creditor must send
Release(r, u). In Fig. 9(C), Alice releases EBook from cy.

5 FORMALIZING ALIGNMENT

Agents communicate by messaging. Below m, m’, mg, ...
are variables over messages. Assumptions Al-A5 model
reliable, asynchronous communication. Distributed systems
algorithms routinely make Assumptions Al-A4, e.g., [20].
Assumption A5 simplifies our technical development.

Al. Communication is point-to-point. Below m(z,y) indi-
cates a message m from x to y.
An agent observes all and only those messages that it
sends or receives. Observations are ordered serially.
A3. Messaging is reliable and noncreative. Messages are
neither created nor destroyed by the infrastructure.
Messaging is ordered. Any two messages sent by an
agent to the same recipient are received in order.
AS. All observations pertain to messages. Observations of

the environment are treated as messages from Env.

A2.

A4.

An agent x’s observation sequence (mo,...,My), de-
scribes the sequence of messages x observes in a particular
execution. For an observation sequence o of the form (..., m)
and message m’, we define the concatenation of o with m’ as
(...,m,m’) and write it as o;m/'.

Let A be a system of k agents. Then, O =[Oy, ...,Of_1]
is an observation vector over A, where the O;s are the
observation sequences, one for each of the k agents. In other
words, an observation vector is a snapshot of the system.
Below, o is a variable over observation vectors; o, etc. are
variables over a particular agent’s observation sequence. A3
and A4 impose validity requirements on vectors.

Definition 2: An observation vector O is valid if and only
if (1) if m(x,y) occurs in O, then m(x,y) occurs in O,; and
(2) if mq(z,y) occurs in O, and mg(x,y) precedes m1(x,y)
in O, then mq(x,y) precedes m1(x,y) in O,.

Conditions (1) and (2) in Definition 2 capture A3 and A4,
respectively. In other words, a valid observation vector is
a valid snapshot of the system meaning that a message is
received only if (previously) sent and messages between a
sender and a receiver are received in the order in which they
were sent. This paper considers only valid observation vectors.

An agent’s observation sequence represents the agent’s
snapshot at the granularity of the engagement (i.e., ignoring
low-level aspects of the agent’s state). Then, in essence, an
observation vector corresponds to a consistent set of snapshots.
O 4, the set of all possible observation vectors for system A,
corresponds to the set of all possible executions of .A.

5.1

Our definition of alignment exploits the inherent asymmetry
of a commitment. Specifically, two agents are aligned if and
only if whenever one infers a commitment in which it is the
creditor, the putative debtor also infers the same commitment.
Alignment requires agreement only from a creditor to a debtor:
a debtor inferring a commitment does not mean the creditor
must infer the same commitment.

In a distributed system with asynchrony, message transmis-
sion is asymmetric: the sender is aware of a message before
the receiver is. When a message and a commitment “flow”
in the same direction, the situation is particularly simple. For
example, Alice infers a commitment when she receives an
offer from EBook. But at that point, EBook is already inferring
the commitment, so Alice and EBook remain aligned. As we
explain next, we need to finesse our definition with guiescence
and integrity. Definition 3 states that an observation vector is
quiescent if and only if every sent message has been received.

Definition 3: An observation vector O € O 4 is quiescent if
and only if Vx,y € A, if m(z,y) occurs in O,, then m(z,y)
occurs in O,,.

We verify alignment only at quiescent observation vectors
to ensure the agents are “synced” up when we do so. For
example, as in Fig. 3(B), suppose Alice pays in response
to EBook’s offer, thereby creating a stronger (unconditional)
commitment from EBook. EBook learns of this only when it
receives the payment from Alice. But while the payment is
in transit, Alice and EBook would appear to be misaligned.
Quiescence avoids this false negative. If even at quiescence,
Alice and EBook were to disagree, we would have a problem
on our hands.

We verify alignment only at snapshots of agents where each
has forwarded all vital information to the relevant parties. In

Quiescence and Integrity



Fig. 8(B), it would be premature to consider alignment before
Rob notifies Alice of clear. In this sense, Rob’s notifying
Alice of clear is integral with receiving Declare(clear) from
Env. Similarly, in Fig. 9(B), EBook sending the Create is
integral with receiving Declare($12). We disregard intervening
observations from the point of view of alignment because they
are not integral.

We now show how to state integrity constraints on obser-
vations in general. Section 6 specifies the integrity constraints
relevant to alignment. Let S(O,.) be the snapshot of agent
immediately upon x observing O,. (Section 6 formalizes the
computation of S(0).)

|m[P]m’], is an integrity constraint on the observations
of agent x. Here, m is the trigger (message received), P is
the precondition, and m’ is the effect (message sent). The
interpretation is that when a trigger message m arrives if the
precondition holds, then the receiving agent must send the
effect message m’. Message m’ is an enabled effect of m
with respect to an observation sequence o and a constraint
|m[P]m’], if and only if P € §(0).

Definition 4: An observation sequence O, is integral with
respect to a set of constraints if and only if for any prefix
o;m of Oy, there exists a prefix o’ of O, such that o;m is a
prefix of o’ and o’ includes an interleaving of all of the enabled
effects of m with respect to o and the stated set of constraints.

An observation vector is integral with respect to a set of
constraints if and only if each observation sequence in it is
integral with respect to the set of constraints.

Definition 4 identifies enabled messages as those the agent
must send based on the integrity constraints. An observation
sequence is not integral unless all messages enabled in it have
been observed. Notice that, to be integral, O, simply must
contain the enabled effects (for every prefix of O,); there is
no restriction that the enabled effects must occur immediately
after the trigger. This means that x may make extraneous
observations between the trigger and its enabled effects that
are directly relevant for the purposes of integrity.

5.2 Agent Snapshots and their Local Maintenance

This section may safely be skipped on a first reading. It
formalizes the treatment of agent snapshots, and describes an
algorithm for an agent to locally maintain its snapshot.

The snapshot of an agent reflects its local state correspond-
ing to an observation sequence. In syntactic terms, a snapshot
is a finite data structure. In semantic terms, a snapshot yields
a potentially infinite set of propositions that an agent may
logically infer from its observations. To enable how an agent’s
snapshot progresses based on its observations, we introduce
two update operators called addition & and subtraction S,
which respectively “add” or “subtract” a proposition to or its
snapshot. These operators ensure that the resulting represen-
tation is consistent according to the postulates of this paper,
and that only the essential (i.e., minimal) changes are made
due to each message. We now describe one way in which to
implement the update operators.

As Section 2 describes, let S be a set of base propositions,
i.e., atoms, commitments, or statives. Thus S represents the

snapshot of an agent arising from a sequence of observations.
In semantic terms, the state of the agent is [\S], the deductive
closure of its snapshot. We extend I to apply to snapshots:
S F p means p € [S]. We assume that + respects all of the
postulates asserted in this paper: By to Bys.

Let o be an atom and 3 be a base proposition. Then we
define the above operators logically to capture that they modify
a snapshot minimally while forcing the introduction of newly
received observations: (1) S & 8+ £; (2) From S F ~ and
BA~y Linfer S® B8 F v; (3) From C(r,u) < C(s,v) and
S+ C(r,u) infer S & C(s,v) - C(r,u); (4) From C(r,u) <
C(s,v) and St/ C(r,u) infer S © C(s,v) I/ C(s,v).

Operationally, these operators can be realized as follows:

. S@(al/\.‘./\ak):(S@al).‘.@ak

e S®B=(SU{B}\x(S))Ua(S,B,T), where

— x(9) is the set of commitments in S

- o(S,8,«a) is the set of commitments in S that
result from [ being substituted by «, and is given
by {C(r,u) : r = s|2, u = v|B, C(s,v) € S,
uZz T,uz Lru}

e S6C(s,v) =5 1if (3C(r,u) € S and C(r,u) > C(s,v))

e S6C(s,v) =9\ {C(t,w) : C(s,v) = C(t,w)} if

(AC(r,u) € S and C(r,u) = C(s,v))

5.3 Alignment

Now we are in a position to formalize alignment. Definition 5
considers the observations of creditors and debtors from the
same integral and quiescent observation vectors. It says that
if a creditor infers a commitment from its observations, then
the debtor must infer the same commitment from its own
observations. As Section 5 explains, when a debtor infers a
commitment that the creditor does not, no harm is done, and
alignment is unaffected.

Definition 5: A multiagent system A is aligned, written
[A)], if and only if YO € O4 such that O is quiescent and
integral, for all agents = and y that belong to .4, we have that
if C(z,y,7,u) € S(O,) then C(z,y,r,u) € S(Oy).

6 FORMALIZING THE PRINCIPLES

Let S(o;) be the current snapshot of x. Then we compute
S(oz;m) from S(o,) via one or more applications of the
above update operators. The specific applications of the oper-
ators depend upon the semantics of the message m.

As the base case, constraint S; tells us that at the outset no
specific proposition holds other than T.

S1. 8(() =A{T}

Below, So expresses the semantics of Declare(p), namely,
that p holds upon observing Declare(p). Notice that by the
syntax of Declare(p), p is a conjunction of one or more atoms.
A well-formed Declare(p) must be consistent, meaning that for
no atom (8 must both 8 and —3 occur within p.

S2. S(o; Declare((ar A...Aag))) = S(0) @ (ar A... Aay)

We introduce three stative propositions—created(x, y, 7, u),
released(x, y, r, u), and canceled(z, y, r, u)—each
corresponding to the occurrence of the eponymous
commitment operation. The above propositions are stable,



meaning that once they become true, they remain true
forever. Our formalization does not require propositions
corresponding to the occurrence of DELEGATE and ASSIGN.
We adopt postulates Bg—B;3 in addition to B;—Bg.

Bgy. From created(r,u) and C(r,u) = C(s,v) infer
created(s, v)

From released(r,u) and C(r,u) = C(s,v) infer
released(s, v)

From canceled(r, ) and C(r,u) > C(s,v) infer
canceled(s, v)

released(r, u) — created(r, u)

canceled(r,u) — created(r, u)

Bi:.

Bio.

Let’s consider some examples based on the commitments
introduced in Table 1 to see how Bg—Bi3 apply. Suppose
created(cp) holds; by By, created(cg) and created(cg) hold.
Suppose released(cg) holds; by B1o, created(co) holds too; by
B, released(cg) and released(cg) hold; by Bia, created(cg)
and created(cg) hold. We treat canceled commitments on par
with released commitments.

Let’s see how Bg—B3 relate to the principles we introduced
earlier. Bg relates to NOVEL CREATION. It ensures that once
created(r, u) holds, all commitments weaker than C(r,u) are
also considered created. B1y and B;; relate to COMPLETE
ERASURE. If a commitment is released or canceled, all weaker
commitments are simultaneously released or canceled. B15 and
B3 (together with Byy and B1;) capture ACCOMMODATION:
if a commitment has been canceled or released, treat all weaker
commitments as if they had held.

6.1

The messages Create(r,u), Release(r,u), and Cancel(r, )
realize the corresponding two-party operations (eliding the
creditor and debtor since those are understood here).

S3, S4, and S5 give the semantics of Create(r,u). S3
states that if created(r, u) already holds, then upon observing
Create(r, u), there is no change. S states that if the con-
sequent u already holds, then upon observing Create(r,u),
we simply insert created(r,u). We do not insert C(r,u),
because according to By, C(r,u) does not hold—in effect, it
is immediately discharged. Conversely, S5 states that if neither
created(r, w) nor u holds in the current state, then upon ob-
serving Create(r, u), we insert both C(r, u) and created(r, u).

Ss3. S(o; Create(r,u)) = S(0), if created(r,u) € S(0)

S4. S(o; Create(r,u)) = S(0) @ created(r, ), if u € S(0)

Ss. S(o; Create(r,u)) = (S(0) @ created(r,u)) & C(r, u),

if created(r,u) € S(o) and u & S(0)

According to Sg, upon observing Release(r, u), we remove
all commitments weaker than C(r, u), and insert released(r, u).
S7 analogously gives the semantics of Cancel(r, u).

Se. S(0;Release(r,u)) = (S(0) © C(r,u)) @ released(r, u)

S7. S(o; Cancel(r,u)) = (S(0) © C(r,u)) & canceled(r, u)

Based on the foregoing, we see that S3—S; capture NOVEL
CREATION, COMPLETE ERASURE, and ACCOMMODATION.

Clearly, any implementation of DELEGATE and AS-
SIGN must involve at least two messages. Fig. 10(A)

Commitment Operations

Charlie Alice EBook EBook Rob  Alice
cs | cg ] | [
. Ccg

cg,Chartie)—(¢8 s

d_cg CDelegate( B ace, Ass'\g“(OB’Ro )

’ea,«e(d cs C"eate(a ca)
\CB) d_CB, - B a_cg
Cs

(A) Delegate Pattern (B) Assign Pattern

Fig. 10. The delegate and assign patterns.

exemplifies the message pattern for delegating a com-
mitment with EBook as delegator and Charlie as dele-
gatee. EBook sends Delegate(cg, Charlie) to Charlie. Let
d_cg = C(Charlie, Alice, $12, BNW). Upon its receipt, Char-
lie sends Create(d_cg) to Alice, thus realizing the dele-
gation. Fig. 10(B) exemplifies the message pattern for as-
signing a commitment with Alice as assigner and Rob as
assignee. Alice sends Assign(cg, Rob) to EBook. Let a_cg =
C(EBook, Rob, $12, BNW). Upon its receipt, EBook sends
Create(a_cg) to Rob, thus realizing the assignment.

As we define delegation, it does not involve a notification
from the delegator to the creditor. Such notifications could be
valuable in some practical scenarios [39], but our aim here is to
delineate the core patterns on top of which additional patterns,
such as those involving a notification to the creditor, may
be built. Similarly, assignment does not involve a notification
from the assigner to the assignee.

Ss and Sg treat Delegate and Assign as noops; the subse-
quent Create messages in the above patterns do all the work.
Thus Delegate and Assign are handled through the integrity
mechanism motivated for notifications, and introduced next.

Ss. S(o; Delegate(z, y, z,7,u)) = S(0)

So. S(o; Assign(z,y, z,r,u)) = S(0)

6.2

Each row in Table 4 expresses an integrity constraint on agent
behavior of the form (referring to column headers):

Integrity of Observations

| Trigger|[Precondition] Effect |who
For example, the Delegate Rule
| Delegate(x, y, z, , u)[ T|Create(z, y, 7, u) | .

states that upon receiving a Delegate, the delegatee must send

the specified Create to the creditor.

Recall that NOTIFICATION states that creditors must notify
debtors of detaches, and debtors must notify creditors of
discharges. Two cases arise for each kind.

Detach Posterior. Initially, y infers C(z,y,r A s,u) and
-C(x,y,r,u) A —s, meaning that the commitment is not
detached yet. Next y observes Declare(s) from some
z, thereby detaching C(z,y,r A s,u), and y inferring
C(z,y,r,u). Hence, y must now inform z about the
detach by sending Declare(y, z, s).

Detach Prior. Initially, y infers s and —C(z,y,r,u). Subse-
quently, y observes Create(x,y,r A s,u). Therefore, y
infers C(z,y,r A s,u). C(z,y,r A s,u) is immediately
detached because of s, thereby yielding C(z,y,r, u).



TABLE 4
Constraints on agent behavior to ensure integrity of observation vectors

Name Who  Trigger Precondition Effect

Delegate z Delegate(x,y, z,r,u) T Create(z,y,r,u)
Assign T Assign(z,y, z, 7, u) T Create(z, z, 7, u)
Detach Posterior y Declare(z, y, s) C(z,y,r A s,u) A =C(z,y,r,u) A\ —s Declare(y, z, s)
Detach Prior y Create(z,y,r A s,u) —C(z,y,m,u) A\ s Declare(y, z, s)
Discharge Posterior T Declare(z, z,u) C(z,y,ryu) A —u Declare(z, y, u)
Discharge Prior T Create(z,y,r,u) =C(z,y,r,u) A v where v is the strongest u’ that holds where v - u’  Declare(z, y, v)
Creditor Priority T Declare(z, z, s) canceled(z,y,r A s,u) A =C(z,y,r As,u) A —s Create(z,y,r,u)
Debtor Priority y Cancel(z,y, 7 As,u) s A Clz,y,r As,u) A =C(z,y,r’,u’) such that Release(y, z,r,u)

Clx,y, 7', u') = Cla, y, 7, u)

Hence, y must now inform 2« about the detach by sending
Declare(y, z, s).

Notice that Create(x,y,r,u) is merely a special case of y
observing Create(x, y, 7 As, u), namely, Create(x, y, r AT, u).

Alice Sarah Alice Rob
Cr CRr,Cs clear
Crea
lear, Dec\are(c\ear) SCn)—y clear,
o o\a‘e’ \are(‘?\eaﬂ Cur
Cur clear, clear,
Fig. 11. Detach notifications.

Fig. 11(A) demonstrates Detach Posterior. Here Alice and
Sarah are committed to meeting Rob at the lake if the sky is
clear (cr and cs, respectively). Rob learns the sky is clear and
thus infers that both Alice and Sarah are now uncondition-
ally committed to meeting him (cyr and cys, respectively).
Rob must notify both Alice and Sarah, thus preserving his
alignment with each of them. Fig. 11(B) illustrates Detach
Prior. Here, Rob already infers clear. So when Rob receives
Create(cgr), Rob infers that Alice is unconditionally committed
(cyr). Then, Detach Prior ensures that Rob notifies Alice.

Discharge Posterior. Initially, = infers C(x,y,r,u) and —u.
Next, = observes Declare(u) from some z. As a result,
C(x,y,r, u) is discharged. Hence,  must now inform the
creditor y of the discharge by sending Declare(z, y, u).

Discharge Prior. Initially, x infers wv. Next, x sends
Create(x,y,r,u) such that v + v. Hence, = will not
infer C(x,y,r,v) because v holds. But y may yet in-
fer C(x,y,r,v). Hence, x must send Declare(z,y,v) to
prevent y from inferring C(x,y,7,v).

Alice Rob Sarah
CR,Cs CrR Cs
lake Oe Declare(lake) lake
re,,
e )
lake

Fig. 12. Discharge notification.

Fig. 12 illustrates Discharge Posterior. Alice is committed to
both Rob and Sarah to be at the lake (cg and cs, respectively).

When Alice gets to the lake, she discharges those commit-
ments. Discharge Posterior ensures that Alice informs both
Rob and Sarah accordingly, so that they each may consider
their respective commitments discharged.

Below, we formalize the implications of detach priority and
cancel priority for a commitment C(z,y,r A s, u).

Creditor Priority. Initially, = infers canceled(x,y,r A s, u)
and —C(z,y,r A s,u) A —s. Note that canceled(z,y,r A
s,u) does not entail =C(x, y,r A s, u) because a commit-
ment once canceled may come to hold again implicitly if
a stronger commitment is subsequently created. Next, x
receives Declare(s) from some agent z. If C(x, y,rAs, u)
had not been canceled, it would have been detached. But
y may not know about the cancellation yet. Therefore, the
debtor must act as if the commitment has been detached,
in essence giving priority to the creditor. Hence, the
debtor = must now send Create(x,y, 7, u).

Debtor Priority. Initially, (as a creditor) infers s and
C(z,y,r A s,u). Therefore, it also infers C(x,y,r, u).
Next, y observes Cancel(z,y,r A s,u). It could be
that = sent Cancel(z,y,r A s,u) without knowing that
s holds, and therefore x may not infer C(z,y,r, u).
To avoid this possible misalignment, y must now send
Release(y, =, r, ). However, y need not send the release
if a commitment strictly stronger than C(z,y, 7, u) holds.
Sending the release would then be ineffective because of
COMPLETE ERASURE.

Fig. 9(B) illustrates the case of detach priority to fix the
misalignment of Fig. 9(A), whereas Fig. 9(C) illustrates the
case of cancel priority.

It could be that in the case of detach priority, Alice cheats
by sending the payment even after receiving the cancellation.
Analogously, in the case of cancel priority, EBook could cheat
and get away with it. In settings where the parties are mutually
untrustworthy, we can imagine the use of techniques such as
secure mediators to ensure that neither party deceives the other.

It is important to realize that the above rules are weak and
locally executable constraints on an agent’s behavior because
they only call for an agent to send messages. Specifically,
they involve neither receiving a message nor synchronizing
with another agent.

6.3 Proof of Correctness

Now it remains to show that under the assumptions we have
made, the formalization of commitment operations we have



proposed guarantees that any multiagent system is aligned. No-
tice that a commitment is strengthened only through a Create
or through a Declare that serves to detach. A commitment is
removed or weakened only through a Release or a Cancel, or
through a Declare that serves to discharge.

Theorem 1: For any multiagent system .4, under (i)
assumptions A1-A4 and (ii) the snapshot computation given
by S1—Sg, the notification rules of Table 4 guarantee
alignment, that is, [.A).

Proof: A is aligned at the outset, i.e., in the observation
vector of empty sequences, when no agent has made any
observations. Our proof is by mathematical induction on the
height of a commitment expression (defined as the height of
the nested statives it encloses) and by mathematical induction
on the size of an observation vector (defined as the sum of the
lengths of the observation sequences in it).

First, consider a commitment expression of height zero, i.e.,
an expression containing no stative expression. Inductively,
assume that A is aligned up to a quiescent, integral observation
vector O. Consider two agents, x and y in A.

Next, expand O to a quiescent, integral observation vector
O’ = O; OA. There are two possible threats to alignment: (1)
if y infers a new commitment as creditor that its debtor does
not; and (2) if y continues to infer a commitment as creditor
that it previously inferred, but its debtor no longer does.

For (1), consider a commitment added by vy, i.e.,
Cz,y,m,u) € S(O,) \ S(Oy). Without loss of generality,
assume C(z,y,r,u) is maximally strong, i.e., no other com-
mitment added by y is strictly stronger than C(z,y,r, u).
This means OyA includes receiving a (partial or total) detach
(Declare) or a Create. For a detach, by integrity, y would have
sent a message Declare((ay A. . .Aay)) to x, which would have
landed within O2 to ensure the quiescence of O%. A Create
would have originated from z. In either case, the quiescence
of O ensures that O}, - C(x,y,r, u).

For (2), consider a commitment not added by y but removed
by z, ie., C(z,y,r,u) € S(Oy) and C(z,y,7,u) € S(Oz) \
S(0L). Without loss of generality, assume C(x,y,r,u) is
maximally strong, i.e., no other commitment removed by x
is strictly stronger than C(z,y, 7, u).

Because C(z,y,r,u) € S(O,), by our inductive hypothesis,
C(z,y,r,u) € S(Oy). Hence, if C(z,y,r,u) & S(O), this
means O2 includes receiving a (partial or total) discharge
(Declare) or Release, or sending a Cancel. The Release would
be sent by y, thus C(z,y,7,u) € S(O, ). The Cancel would be
sent to y and the discharge would be propagated to y to ensure
integrity. Therefore, by quiescence, C(z,y,r,u) & S(Oy).

The above establishes the base case for commitment ex-
pressions. The inductive step on commitment expressions of
height i + 1 follows trivially by, in essence, repeating the
above argument where one or both of r and u may contain a
stative expression of height h. O

7 RELEVANT LITERATURE

This paper synthesizes ideas from software engineering in
distributed computing and multiagent systems for formalizing
service engagements at a high level. Below, we review the
related literature from these fields.
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Existing work on interoperability treats the assumptions each
component makes of another solely at the level of messages
[1], [5], [13]. Such approaches—inspired by the software com-
ponents literature [7], [42]—typically check for two properties,
namely, that each service is ready to receive any messages
that may be sent to it by others (safety), and that there are
no deadlocks (liveness). Such considerations are undoubtedly
valuable, but are far from adequate in properly enacting service
engagements among autonomous parties.

Commitment alignment captures a form of business-level
interoperability that is appropriate for service engagements.
Determining both business-level (in terms of alignment) and
message-level (in terms of flow) interoperability are important.
For example, EBook and Alice may be aligned but dead-
locked if EBook expects to receive the message corresponding
to payment first and Alice expects to receive the message
corresponding to the delivery of the book first. Conversely,
EBook and Alice may never deadlock, but may nonetheless
become misaligned. Business-level interoperability pertains to
the meaning of an interaction, whereas message-level interop-
erability pertains to how the agents are implemented.

The correct execution of a distributed application often
requires strong guarantees, such as causal delivery [33], from
the communication substrate. In comparison, we make weak
assumptions that are readily supported by existing systems.

Much attention has been devoted to abstractions, e.g.,
[27], to facilitate programming distributed applications. Our
approach falls into this theme but focuses on service engage-
ments. It frees the programmer from the burden of reasoning
about commitments and constitutes the essential elements of
a business-level middleware, as Section 8 describes.

Detecting global properties from local states is an important
problem. The challenge lies in identifying globally consistent
states [20]. We ensure that agents can act locally in a manner
that ensure alignment, thus obviating the need to maintain a
global representation.

Joshi and Misra [18] motivate maximality. A program is
maximal with respect to a specification if it can produce any
execution that satisfies the specification. Our approach reflects
a similar intuition. By capturing and enacting business-level
meanings, we can support a maximal set of enactments of a
service engagement.

Distributed Systems

7.2 Multiagent Systems

We now motivate two important criteria by which to evaluate
approaches for alignment. Current approaches fall into two
main categories, each violating at least one of these criteria.

Autonomy means that no agent should have to obtain ap-
proval from another agent in order to effect a change
in its commitments. An acknowledgment-based approach
requires a debtor to seek the creditor’s approval to effect
a cancellation or discharge. Acknowledgments simplify
analysis because they ensure the agents observe the
relevant messages in the same order [22]. But the price
in terms of tight coupling and violation of autonomy is
too high in our view.



Semanticity means respecting the meaning of commitments.
In particular, inserting identifiers into commitments
means that we cannot reason about them freely. For ex-
ample, from C(ig,z,y,r,u) and C(i1,x,y,r,v) we have
no basis to infer C(ég, z, y,r, uAv) or C(i1, z,y,r, uAv).
We would end up tracking dependencies in some ad hoc
manner. Approaches that require identifiers for commit-
ments [11], [32] thus violate semanticity.

Commitments help formalize agent communications [12]
for business protocols [11] and argumentation [2]. Existing
works ignore the challenges posed by distributed settings.
Many proposals employ a shared commitment-store and rely
on simplified dialog approaches based on turn taking or
acknowledgments [22], [32]. These are incompatible with
autonomy. Our results could lead to more flexible business
and dialog protocols.

Winikoff [40] studies how commitments may be imple-
mented in a distributed setting. However, his solution only
allows for a monotonically increasing set of commitments, and
does not support operations such as DISCHARGE, RELEASE,
and CANCEL.

Whereas we map commitment operations to messages,
some others consider success conditions in greater depth.
Norman and Reed [25] discuss delegation and Jones and
Sergot [16] study institutional power formally, but they don’t
address distribution as we do. We defer synthesizing the above
researchers’ insights with our approach to future work.

Paurobally et al. [29] address alignment, but in terms
of beliefs. But commitment and beliefs are fundamentally
different: commitments are public artifacts whereas beliefs
are private, which makes them inappropriate for open settings
such as in service engagements [34]. Further, in contrast
with commitment alignment, belief consistency is symmetric,
which makes it difficult to achieve in an asynchronous setting.
Further, Paurobally et al. rely on synchronization, which too
is inappropriate in service engagements.

7.3 Software Engineering for Business Processes

Osterweil [26] advocates expanding “software” to include
artifacts such as regulations. We agree: our specifications of
service engagements are higher level than method invocations
or message exchanges, but very much software nevertheless.
To this end, they need—and we provide—both a semantics of
interoperability and a means for realizing it.

Zirpins and Emmerich [44] study production networks (of
services). They formulate patterns that characterize the busi-
ness meanings of the interactions independently of specific
orchestrations. Our work has the same motivation; we go
beyond it in addressing interoperability in a formal manner.

Jonquet et al. [17] propose an integration of grid computing
and multiagent systems. Like us, they take an expansive view
of services, and propose a specification language centered on
interactions among services. Our intuitions are similar, but we
go further in formalizing an approach for interoperability.

Robinson and Purao [30] build on our previous work
on specifying, composing, and operationalizing commitment
protocols [9]. They show how to monitor the discharge of
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a commitment, and conclude how commitments simplify re-
quirements gathering and monitoring, thereby supporting error
recovery. Our approach goes further in operationalizing service
engagements and ensuring alignment.

Cross-organizational business processes are often speci-
fied as workflows over services. Kona et al. [19] provide a
general approach for automatically composing services into
a workflow. In contrast to our approach, workflows make
no allowance for the fact that services are provided by
autonomous agents. Thus workflows apply at the level of
technical services—below the level of service engagements.

Bhattacharya et al. [4] and Narendra et al. [24] propose
an artifact-centric approach for modeling business processes.
Each artifact is associated with a workflow that describes how
it may be manipulated. The dependencies between artifacts are
also modeled. However, there is no explicit characterization
of meaning, as in our approach. In principle, we specify
artifacts and their updates declaratively through the use of
commitments.

Choreographies are increasingly used to express cross-
organizational business processes [14], [31], [38]. A choreog-
raphy specifies constraints on message occurrence and order-
ing. Benatallah et al. [3] formalize similarity and replaceability
relations between choreographies. Foster et al. [13] check for
the correctness of service implementations with respect to
choreographies. Properties analogous to the above would apply
to service engagements and agents, although they would need
to be formalized in a declarative, meaning-driven manner.

Further, choreography-based approaches typically address
state alignment via synchronization or its surrogate, explicit
acknowledgments. For instance, Molina-Jimenez et al. [23] use
lockstep synchronization to ensure consistency among partic-
ipants in a business conversation. However, synchronization
and acknowledgments preclude flexible service enactments.

Mahfouz et al. [21] tie organizational requirements, ex-
pressed as goal models, to message choreographies. They com-
plement our approach, which provides a sound basis enacting
organizational requirements, expressed via commitments.

8 CONCLUSIONS AND FUTURE WORK

Commitment alignment provides a notion of interoperability
that supports the flexibility of service engagements. It obviates
the need for tight coupling or synchronization, which would
be impractical anyway. Our formalization satisfies Section 7’s
properties of autonomy and semanticity.

This paper opens up some important directions for future
work. First, we will study additional forms of alignment, which
would largely be subject to the same principles as above. For
example, delegator-delegatee alignment would ensure that the
delegator could keep tabs on its delegatees, treating them as
subcontractors in a complex service engagements.

Second, we will incorporate the confext of a commitment,
which arises in conceptual treatments of service engagements
[37]. A context sets up the rules of encounter, and may serve
as an arbiter or enforcement authority. For example, we can
model eBay as the context for auctions that happen on its
site. A commitment, as envisaged by Singh [35], includes an



explicit parameter for a context. Aligning with the context
would be critical in ensuring felicitous interactions.

Third, we will identify additional business patterns. For
example, we might create a delegation pattern where the del-
egator explicitly cancels its commitments, thus relinquishing
all responsibility to the delegatee. Singh et al. describe some
such patterns for service engagements [37].

Fourth, this paper leads to a new kind of middleware
centered on commitments. This middleware computes commit-
ments from messages; maintains the snapshot for each agent;
and notifies the appropriate participants automatically based
on the integrity constraints.
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