WINNOWING : Protecting P2P Systems Against
Pollution By Cooperative Index Filtering

Kyuyong Shin, Douglas S. Reeves, Injong Rhee, Yoonki Song
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206
Email: kshin2, reeves, rhee, ysong2 @ncsu.edu

Abstract—Pollution (i.e., sharing corrupted files, or contami-
nating index information with bogus index records) is a de facto
problem in many file sharing Peer-to-Peer (P2P) systems. Since
pollution squanders network resources and frustrates users with
unprofitable downloads (due to polluted files) and unproductive
download requests (due to bogus index records), the future
success of file sharing based P2P systems is questionable unless
properly addressed.

In this paper, we propose a novel anti-pollution scheme called
winnowing. Winnowing aims to purify the index records (i.e. the
information on files or the publishers) held by each index node
in the system, so that download attempts based on these index
records are more likely to yield satisfactory results. To attain this
goal, index nodes block bogus publish messages by verifying the
publisher and the contents of the publish message upon receipt
of a keyword or content publish message. Second, index nodes
collect feedback from the users who have downloaded files via
their index records. The collected feedback is then processed and
reflected in the matching index record in a novel way. Careful
consideration is given to reducing the impact of false feedback,
and malicious index nodes.

Publish message verification has been implemented on top of
the latest eMule client and extensive data has been collected from
the Kad network, using this modified client. The measurement
results are summarized in this paper. The the findings from the
measurement study are incorporated into our analytical model,
which is used to investigate the performance of user feedback
mediation. The model demonstrates the effectiveness of user feed-
back mediation: fast convergence to near-optimal performance
and insensitivity to various pollution attacks including the attacks
which attempt to bypass winnowing.

I. INTRODUCTION

Peer-to-Peer (P2P) systems have emerged as a dominant
way to exchange information in the Internet. Unfortunately, the
information currently shared in P2P systems frequently turns
out to be mislabeled or corrupted, wasting network bandwidth,
user time, and storage space. For example, Liang et al. [1]
showed that up to 80% of the copies of popular files in
the KaZaA network are contaminated. This contamination is
caused in part by pollution techniques that are intentionally
introduced by copyright holders [1-3]. Because pollution was
not considered in the design of P2P systems, they are highly
vulnerable to such intentional attacks [2].

Substantial research has been done on the prevention of
pollution in P2P systems. Several modeling techniques [3-5]
have been introduced, which are useful in understanding the
proliferation of pollution. Some previous work [1,2,6,7] has

given general ideas on how pollution can be reduced. Peer
reputations [8, 9] and object reputations [10] are the major
solutions proposed thus far in this literature. Unfortunately,
no reputation technique to date has been notably successful
in practice at preventing or minimizing pollution. There may
be multiple reasons for this failure, including the cold start
problem for newcomers [11], vulnerability to Sybil attacks [1,
12, 13], and the complexity of implementation of proposed
reputation systems [1,10]. As a result, it has been found that
a random based selection approach is most effective under
severe pollution [4]. In addition, the fact that the version
popularity of a title follows a Zipf distribution in most file
sharing P2P systems [1] strongly indicates that users tend to
select a file based on its popularity, which is also confirmed
by our measurements on the Kad network [14] as indicated in
section VI-A.

This paper addresses the pollution problem in DHT-based
P2P systems, with a focus on the Kad network. We propose
a novel anti-pollution scheme, called winnowing. Winnowing
directly aims to reduce the number of fruitless requests to
download non-existing files and the number of downloads of
polluted files by offering “clean” (valid, pointing to unpolluted
files) index records to requesting peers. To attain this goal,
index nodes first detect (and ignore) bogus publish messages
by verifying the publisher and the contents of the publish
message upon receipt of a publish message. Second, index
nodes collect feedback from the users who have downloaded
files via their index records. The feedback is processed in a
novel way to increase the likelihood that index records point-
ing to polluted files will quickly be eliminated or disregarded.
Careful consideration is given to reducing the impact of false
feedback, and malicious index nodes.

The key insight behind winnowing is that the downloads
of polluted files can be greatly reduced if index nodes
aggressively maintain clean or valid index records. Publish
message verification frustrates any attempts to insert bogus
index records (pointing to non-existing files or publishers) into
the system. User feedback mediation helps prospective users
to efficiently find unpolluted files with the help of index nodes
and other downloaders. Winnowing has the following benefits:

¢ It can sharply reduce the number of bogus index records

pointing to non-existing files in a P2P system. Our
measurements (during Summer 2008) have shown that

between 27% and 35% of the index records currently
shard in the Kad network are bogus, which have been
successfully filtered out by winnowing.

e It is easy to implement, completely distributed, and
scalable. Winnowing does not require any trusted third
parties, centralized servers, or complex security mecha-
nisms. Random numbers (cryptographic nonces) are used
instead for security purposes

o It converges quickly, and provides considerable immunity
to pollution even when accompanied by Sybil attacks.

o It does not have the “cold start” problem as newcomers
can immediately benefit from the efforts of index nodes
and former downloaders to maintain clean index records.

We implement publish message verification on the latest
version of eMule client '. Using this modified client, extensive
data has been collected from the Kad network. The results are
summarized in this paper and the findings from the measure-
ment study are incorporated into our analytical model which
is used to study the performance of user feedback mediation.
The model demonstrates the effectiveness of user feedback
mediation: fast convergence to near-optimal performance and
insensitivity to various pollution attacks.

The remainder of this paper is as follows: In section II, some
P2P terminology and a brief overview of the Kad network
are introduced. Existing pollution strategies are discussed in
the latter part of the section. Section III briefly describes
and analyzes existing methods of anti-pollution approaches.
Section IV presents the basic protocol description of winnow-
ing. Some security considerations are discussed in section V.
The results of the measurement and analysis are presented
in section VI and VII respectively. Section VIII discusses
limitations of the proposed method and possible solutions.
Finally, section IX concludes this paper.

II. BACKGROUND

In this section, some P2P terminology and a brief overview
of the Kad network, the largest DHT-based P2P network in
existence, will be introduced, emphasizing on the publish
and search mechanisms. Existing pollution strategies will be
discussed in the latter part of this section.

A. Basic P2P Terminology

Here, we investigate pollution problems in the DHT-based
file sharing P2P networks, focusing on the distribution of
movies or songs. A specific file, whether a movie or song or
something else, is referred to as a fitle. There may be different
versions of a title, and for one version of a title, multiple
copies could exist if the version is downloaded and shared by
many users in the network. There can also be many decoys,
which appear to be versions of the title, but which do not in
fact exist in the network, or which contain corrupted/lower-
quality content. Each file has metadata, which is structured
information that describes the file. Metadata includes the file
name, the file size, and the file type or format, etc [1,14]. A

Thttp://emulemorph.sourceforge.net/

keyword is a single token extracted from the metadata of a file,
usually from the file name. It must be composed of at least
three characters [14]. Each file might have many keywords. A
key is an identifier used to store and retrieve information in
and from the DHT, and has the same bit size as all Kad_IDs.
There are two types of keys, a content key and a keyword key.
A content key may be generated by hashing the entire content
of a file, whereas a keyword key is obtained by hashing a
keyword of the file. A user is an operator of a P2P client
application, whereas a peer (or interchangeably a node) is the
client application itself. A user is called a content owner (or
alternatively a publisher) when the user contributes a file to the
P2P network. A user downloading a file from the the network
is referred to as a downloader.

kk1=HASH(“dragon”), keyword publish (kk1)
<keyword key1, content key, metadata>

Fig. 1. A high level abstract overview of the publish mechanism
in a DHT-based P2P system. In this example, we assume that the
publisher wants to publish a movie file, “Dragon War.mpg”. First,
the publisher hashes the entire content to get the content key (ck)
of the file and sends content publish messages to the content key
owner(s). Second, the publisher hashes each keyword (i.e. “dragon”
and “war”) to get a keyword key (kk) and sends keyword publish
messages to the keyword key owner(s) of each keyword.

B. Publishing and Retrieving

Publishing is used to index the information about a file or a
publisher to the node(s) in charge of a portion of the Kad_ID
space. A peer who wants to publish a file (i.e. publisher)
first generates the content key by hashing the file contents.
The publisher locates the node that has the closest Kad_ID
to the content key? through iterative routing [14, 15]. Once
determined, the closest node becomes a content key owner of
the file. The content key owner updates its local index table
with a record <content key, location information>, which
is called a content index record. The location information
includes the basic information on the publisher, such as the
Kad_ID, the IP address, the service (TCP) port number, etc.
In addition, the publisher hashes each keyword of the file
to produce a keyword key, one per keyword. For each such
keyword key, the publisher locates the closest node (keyword
key owner) to the keyword key, in the same way as before,

2Currently, eMule uses a fuzzy algorithm which selects several peers as key
owners (i.e. a tolerance zone). This means the IDs of the key owners are not
necessarily the closest; the details do not affect our method, so we continue
to use the terminology “closest” for simplicity.

and publishes the index information of the file. Each keyword
key owner updates its index table with a record <keyword
key, content key, metadata >; this is termed a keyword index
record. For a given key, up to 10 closest nodes can be selected
as key owners, referred to as a tolerance zone, to deal with
high churn rates. This content publishing followed by keyword
publishing is called a 2-level publishing scheme [14]. Keys are
periodically republished every 5 hours for content keys and 24
hours for keyword keys.

index node

index node

<kk2, ck, metadata>

~
Ha S
W (“a >
N Org Sea,crag‘Jn ,,)\ XY
A (ki
SN 1)
N

downloader

publisher

Fig. 2. A high level abstract overview of the search mechanism
in a DHT-based P2P system. In this example, we assume that the
downloader wants to find the movie file, “Dragon War.mpg”, from
the system. To find the file, first, the downloader hashes a possible
keyword (e.g. “dragon” in this example) to get the keyword key.
Then, sends keyword search messages to the keyword key owner(s).
Second, the downloader selects one content key amongst all possible
content keys returned by the keyword key owner(s) based on the
metadata of each index record and sends content search messsages
to the content key owner(s). Finally, the downloader downloads the
file from the content owner(s) based on the publisher (i.e. location)
information returned by the content key owner(s).

Retrieving file information from the DHT is essentially the
inverse of publishing. A peer wishing to locate a file obtains
a content key through a keyword search. This content key
is then used to obtain location information via a content
search. Finally, the user attempts to download the file from
the publisher(s) based on the location information obtained.

C. Existing Pollution Attacks

Depending on the strategies taken by polluters, pollution can
be classified into three categories; content pollution, metadata
pollution, and index pollution.

Content pollution [1,3,7] changes the contents of a shared
file to degrade its quality by inserting white noise, shuffling
contents, inserting or substituting unrelated information, etc.
Polluters can easily generate multiple fake files which have
the same content hash value (i.e. the same content key) by
exploiting the weakness of the current hash function of the Kad
network, MD4 [16]. Metadata pollution [1,2] tampers with the
metadata of a file rather than its content; as a result, peers
downloading files based on that metadata will obtain content
different from what they expect. Index nodes may unwittingly
store index records pointing to polluted files affected by
content or metadata pollution, which are referred to here as

corrupted index records. Under these two strategies, polluters
indeed upload the corrupted files at their own expenses of
upload bandwidth.

As opposed to the above two, index pollution [17] directly
attacks the index structure of a P2P network. On the one hand,
a polluter can generate a random content key which might not
match any file in the network, and publish the information
<keyword key, random content key, metadata> to the match-
ing keyword key owners. One the other hand, a polluter can
generate an invalid IP address that does not correspond to any
nodes (or an unavailable service port number), and publish the
information <content key, spurious location information> to
matching content key owners. Index nodes may unconsciously
store index records pointing to non-existing files or publishers,
which are referred to here as bogus index records. With index
pollution, users fail to locate the target file (or the publisher)
when relying upon the information in a bogus index record.
Since index nodes in most file-sharing based P2P systems
today do not authenticate or verify publish messages, polluters
easily contaminate the index records [17]. Moreover, polluters
don’t need to transfer any files, which makes this pollution
strategy prevalent in current P2P systems.

III. RELATED WORK

Due to the importance of anti-pollution in P2P systems,
there has been considerable work on the problem, starting
with modeling and measurement. Dumitriu et al. [4] ana-
lyzed the influence of file- and network-targeted attacks on
file sharing networks. They concluded that randomized reply
selection provides considerable immunity to pollution attacks,
but significantly hurts system performance in the absence of
an attack. Kumar et al. [5] developed fluid models to capture
the spread of polluted files, and user behavior. Lee et al. [3]
measured the awareness of real users of polluted files and
incorporated the results into their analytic model, concluding
that awareness is a key factor in pollution dynamics.

One of the major directions in resolving the pollution
problem is peer reputation [8, 9]. EigenTrust [8] calculates
and maintains a global reputation for each peer, based on
the opinion of all other peers who have interacted with that
peer in the past. With Scrubber [9], a peer identifies malicious
peers (who intentionally distribute polluted files) based on its
direct experience, and the peer testimonials given by its neigh-
bors. Scrubber also offers a peer rehabilitation mechanism by
giving incentive to passive polluters who voluntarily remove
polluted content. Its decentralized architecture facilitates easy
deployments. Previous studies [4, 10], however, have shown
that peer reputation approaches do not effectively deal with
index pollution, particularly in a large P2P system. Winnowing
can address index pollution with publish message verification
as indicated in our measurement results in section VI.

Another major direction is object (or file) reputation [10,
18]. Credence [10] is a distributed vote gathering protocol
in which a peer collects votes from its neighbors to assess
the authenticity of the content it wants to download. This
method determines correlation between two peers based on

the similarity of their voting histories. Practical difficulties
of the method are the slow convergence time to find strong
relationships [13], and the use of cryptographic keys to protect
votes. Different from Credence, a downloader in winnowing
needs not individually find such correlation with other users
in that responsible index nodes (i.e. keyword key owners)
evaluate the reputation of an object on behalf of individual
downloaers. LIP [18] is a variant of object reputation. LIP
uses a lifetime and popularity based ranking approach to filter
out polluted files. However, the major assumption that “users
tend to retain a real file longer and delete a fake file more
quickly”, is somewhat controversial if the discoveries in [3,
19] are considered. Costa et al. [13] take a hybrid approach
between the peer reputation and object reputation methods.

Even though reputation systems are the main stream of
anti-pollution in current P2P systems, there do exist some
other approaches. BlackListing [6] is a way to find the IP
address ranges that include the large majority of polluters.
This is done by the use of crawlers specially designed to
collect metadata from P2P networks. This methodology is
efficient and effective. The centralized nature of this approach,
however, could suffer from scalability, fault-tolerance, and
security problems as mentioned in [9]. User Filtering [1, 19]
could reduce a large fraction of pollution if users are aware of
the pollution. This approach is, however, not robust to index
pollution. The Query Result Ranking approach [2], Trust based
approach [1], and Traffic Encryption approach [7] are also
introduced in this literature without implementation.

Recently Wang et al. [20] introduced several attacks that
exploit critical design weaknesses of the Kad routing, which
hinders users from searching the index information itself.
These attacks can be reduced by some minor modifications
of the Kad routing mechanism, most of which are already
implemented in up-to-date eMule clients (e.g. eMule 0.49a).
Moreover, since they are inserting malicious index nodes in the
system, winnowing can handle the attacks with the imbalanced
feedback mechanism explained in section V-B.

IV. OUR APPROACH : WINNOWING

In this section we present the basic protocol description
of winnowing. Winnowing aims to reduce decoy (i.e. bogus
or corrupted) index records in P2P systems®. This is accom-
plished by publish message verification and user feedback
mediation.

A. Publish Message Verification

To prevent index pollution (section II-C), index nodes in
winnowing verify the publisher and the contents of each
(keyword and content) publish message whenever received.
The important principle here is that no information published
is accepted at face value; it is confirmed by the index nodes
before acceptance.

3We focus on keyword index records in this paper, for the sake of brevity
of explanation.

keyword key owner(s) m content key owner(s)

C()NTENT<PUBL ISH_RE,

KEYWORDJ’UBLISH_REQ

UBLISH! ERT:/ER_LBF;Q_

-------- diee=s ®

PUBLISHER_VER_Z7
Pl

——
7
~
I5
15
I
172
Z
=
z
=
z
&
=
&

|_ Loca
R 1-.19]\.'=‘L“351_lll:‘s> ®

SISVERI g~ == S HOLVERLRES

@ WM;

lCONTENT_KEY V22"
<

Publish Message Verification

KEYWO

RD_PUBLISH_REg

KEYWORD_SEARCHJ{E

RD_SEARCH_RES 0®

v woRD SEARCHLRE

CONTENT _SEARCH_REQ

0®

CONTENT_SEARCH_RES

AFR_REQ and RES

P oo >|10®

AFR_REQ and RES

T TTELT LTS ek g O (T P PP PTS 0@
e |06
e e b >0®

User Feedback Mediation

Fig. 3. Message processing in eMule with winnowing. Black solid
arrows are the normal eMule messages; red dashed arrows are
messages added by winnowing. Winnowing uses publish message
verification (O "@) to prevent index pollution and user feedback
mediation (® ~®) to address content and metadata pollution.

1) Publisher Verification: Index nodes must verify whether
the publisher is a member of the network whenever a publish
message is received from a publisher, termed publisher
verification. Since the Kad network adopts the iterative
routing, any peer could send publish messages directly to
matching index nodes once identified. If not verified, one
single polluter, which may or may not be a member of
the network, could repeatedly send bogus publish messages
to the index nodes. This would cause the index nodes to
keep many bogus index records. Publisher verification can
simply be accomplished by sending an application level
hello message to the publisher (O and @), and waiting for
a response. Any publish messages from the publishers with
no response are disregarded. Publisher verification could
reduce the effect of IP spoofing presumably taken by polluters.

2) Message Content Verification: The publisher verification
above cannot refrain polluters from sending publish messages
with bogus information if they join the network as a legitimate
member. To block the bogus publish messages received from
such polluters, index nodes should attempt to verify the content
of each publish message.

Each keyword key owner must verify the content key
in a keyword publish message, which is called content key
verification. A polluter can generate a random content key
which might not match any file in the network, and publish the
information <keyword key, random content key, metadata>
to the matching keyword key owners, which is prevalent in
current P2P systems [17]. Verification of the keyword publish

message is accomplished by issuing content search messages,
using as a target the content key in the keyword publish
message (@). A successful reply indicates the content key
is valid *. Only valid content keys are indexed by matching
keyword key owners. To bypass content key verification, the
polluter may send content publish messages to the matching
content owners corresponding with the random content key.
This, however, costs even more time, efforts, and resources of
the polluter. In addition, since each content publish message is
again verified by the matching content key owner, the effect of
this kind of attack is highly restricted. Moreover, winnowing
will further filter out such bogus index record with user
feedback mediation explained below. Location verification,
performed by each content key owner (®), is very similar.

B. User Feedback Mediation

The verification steps explained above cannot prevent
content and metadata pollution by themselves, as index nodes
are unable to judge the authenticity or quality of file contents.
Therefore, polluters can still store corrupted information
(i.e. corrupted index records) in the P2P system. To deal
with these pollution attacks, an index node makes use of
feedback provided by the users who download files based
on information maintained and provided by the index node.
The index node collects this feedback (through voting) and
disseminates it (in condensed form) to potential downloaders,
along with the other index information. In fact, user feedback
mediation is a kind of reputation and the use of reputation
is a rational choice in a distributed system with malicious
attackers. The novelty of our scheme lies in the way of
implementation of the reputation.

1) User Feedback Collection: To collect user feedback,
each keyword key owner maintains two kinds of lists:
keyword reference lists (KRLs) and content key voter lists
(CKVLs). One KRL is allocated to each keyword key and
one CKVL is assigned to each content key. Once a keyword
key owner receives a keyword search query from a peer P,
it generates a random number R ° and inserts <IP address,
R > into the matching KRL (®). If there is feedback to
a content key from a peer, the keyword key owner checks
the KRL to see whether the peer has ever issued a keyword
search query before. This can be done based on the peer’s
IP address and the random number presented as the proof
of the peer’s keyword search. If yes, then it checks the
mapping CKVL to see whether the peer has previously cast
its opinion to the content key. If not, then it reflects the
feedback by increasing (for a positive vote) or decreasing
(for a negative vote) the voting credits for the content key (®
and ©). Finally, the keyword key owner inserts <IP address,

4Conversely, if there is no reply for the content searches with the content
key within given period of time, the content key will be considered as bogus.
Note that search queries succeeds 99.9% of the time in current eMule [21],
which means the this assumption is rational.

SThis random number (a cryptographic nonce) prevents attackers from using
IP addresses on the outside of their local sub-networks.

R> into the CKVL, preventing the peer from casting the
same vote multiple times. User feedback collection done
by each content key owner is virtually the same (®, @, and @).

2) User Feedback Reports: To help eliminate polluted
content, some fraction of users will report their file download
experiences to the appropriate index nodes. The user feedback
report comprises the automated failure report (AFR) and the
manual judgement report (MJR).

An automated failure report message is automatically gener-
ated and marked as “polluted” by the client program for every
failed download trial (®, @) without any user intervention. The
report is directly sent to the mapping keyword key owner if no
location information is returned for the content key attempted
(®) or to the mapping content key owner if a download trial
with given location information has failed (®@). This failure
could be caused by either a bogus index record not being
properly filtered out by the matching index nodes or by a
stale index record.

If a download attempt is successful, and upon viewing or
listening to the file’s contents, the user may send a manual
judgement report (©®, ®) by simply marking it as either
“clean” or “polluted” at his or her own discretion. This report
is sent directly to both index nodes, keyword key owner (©)
and content key owner (®), so that the results are reflected to
the voting credits for the mapping index records.

3) Voting Credit Update Approaches: With regard to the
voting credit updating, 3 different approaches are envisioned:
Additive Increase Additive Decrease (AIAD), Additive In-
crease Multiplicative Decrease (AIMD), and Multiplicative
Increase Multiplicative Decrease (MIMD). Note that, in all
approaches, the initial amount of voting credits for an index
record is 1, assuming that the original publisher of the file
automatically casts a positive vote.

First, in the ATAD approach, index nodes add or subtract
1 point to or from the amount of voting credits for the index
record (i.e. content key or location information), if a positive
or negative vote is received for a index record. This approach
would be effective when the probability that a downloader
casts a vote is high and the cost of casting a vote is almost
the same regardless of positive or negative. The approach,
however, may not fit well with winnowing if the imbalanced
feedback mechanism (section V-B) is considered. Second, in
the AIMD approach, the amount of voting credits for an index
record increases by one whenever a positive vote is received
and conversely decreases by half for a negative vote. This
approach is effective when more value needs to be given to
a negative vote, which is the case in winnowing due to the
imbalanced feedback. Third, in MIMD approach, the amount
of voting credits for an index record doubles for a positive
vote but decreases by half for a negative vote. This approach
is appropriate when the user feedback rate is relatively low
because it increases the amount of voting credits for the index
records of clean files much faster than AIMD.

Throughout this paper, we mainly focus on the analysis

of AIMD and MIMD approaches, considering that (1) more
value should be given to a negative vote due to the imbalanced
feedback of winnowing (the reason for the use of AIMD) and
(2) it’s difficult to expect extremely high user feedback in real
P2P systems (the reason for the use of MIMD).

V. SECURITY ANALYSIS OF WINNOWING

The purpose of winnowing is to utilize the index structure
of a P2P system to remove decoy index records; non-polluted
files will then be easily located by downloaders through
the remaining valid index records. The obvious response of
polluters will be to preserve decoy index records as long as
possible.

A. Reverse Voting Attack

A likely target of attack will be the user feedback mediation
mechanism of winnowing. That is, malicious nodes will lie
(i.e., vote positively for decoy index records and vote neg-
atively for clean index records). This is referred to here as
reverse voting. Such users may also attempt to amplify the
impact by forging false identities (i.e., resorting to the Sybil
attack [12]).

Winnowing addresses this problem by the 1P/24 prefix based
binning strategy with weighted voting. In this approach, one
IP/24 address prefix ® is mapped into a bin, and the weight
of a vote in the same bin decreases as the number of votes
in the bin increases. This prevents multiple votes in the same
IP range from being weighted too much. The motivation for
this approach is that it has been found that the majority of
users in P2P systems are benign, and only a small faction of
users in a restricted IP range are polluters. This was shown
in previous work [6] and confirmed in our own measurement
results VI-A. In addition, note that attackers can easily change
or create their IDs (i.e. Sybil nodes) with little cost, but the
use of multiple IP addresses outside of their local sub-nets is
highly restricted due to the nonce, R, explained in IV-B1.

B. Index Node Insertion Attack

Alternatively, attackers can try to insert themselves as an
index node of the target file so that they can easily falsify
the index records as they wish. This will be possible if an
attacker intentionally manipulates its Client ID so that the ID
matches the hash of a keyword or a content key of the target
file. Once the attacker becomes the index node(s) of the target
title and returns only decoy index records whenever asked,
a clean copy of the desired file cannot be located by benign
requesters. Attackers may use the Sybil attack to enhance the
effectiveness of the attack.

To deal with this problem, winnowing adopts a so called
imbalanced feedback mechanism in which the size of voting
messages differs based on whether the voting is positive or
negative. That is, the size of a positive vote is very small (e.g.
a few tens of bytes) whereas the size of a negative vote is

61P/24 prefix is used for the binning strategy here based on our observation,
but any range of prefixes of IP addresses could be applicable depend on the
circumstance.

relatively large (e.g. a few megabytes). This technique has two
unique advantages. First, it penalizes malicious index nodes in
that index nodes with decoy index records will suffer from a
high volume of negative votes in terms of quantity. Second,
the technique makes it more difficult for attackers to cast many
reverse votes for clean index records since that will consume
their own resources. Note that even though the size of negative
vote is large, it will not burden compliant users much. This
is because since winnowing converges fast, the number of
negative votes which benign users need to cast will be very
small in normal case. However, active polluters need to cast
many negative votes to nullify user feedback mediation offered
by winnowing, which demands exorbitant upload bandwidth.

C. Keyword Index Hijacking

A final attack is simply to create malicious index nodes
(i.e. keyword owners in this case) which own a portion of
the keyword address space, and fail to provide any keyword
index records for selected files. By doing so, the attacker
prevents legitimate users from finding a content key for the
title. Unfortunately, the imbalanced feedback mechanism of
winnowing won’t help against this kind of attack, since no
search results are provided. We believe such attacks will be
difficult and expensive, given the degree of redundancy of
keyword index records in current systems. For instance, it has
been found that there are an average of 19 keyword key owners
for a single keyword in the KAD network [21], and each title
is indexed by a number of keywords. In addition, Kad network
adopt a so called o query (i.e. loose concurrent lookup) [14]
where three searches for one search request are launched in
parallel to avoid stale routing table entries, which could further
reduce the effect of this type of attack.

VI. MEASUREMENT RESULTS

To check the effectiveness of winnowing and for better
understanding of the Kad network, partial functionalities of
winnowing, the publish message verification (section IV-A),
is implemented on top of the up-to-date eMule client (0.49a
MorphXT version 11.0 [22]). Even though the winnowing
client does not implement user feedback mediation (section
IV-B), it suffices to understand the index pollution problem
in the Kad network and how efficiently winnowing deals with
the problem.

Five mp3 songs are investigated in the measurement. The
first 4 famous songs (17 ~ Ty) were selected from the Top
10 Songs [23] in June of 2008. The last one (T5) is selected
for comparison from the late 1970’s billboard charts, which
hit #1 at that time but is relatively less popular nowadays.

To collect results, we inserted the winnowing clients into
the Kad network. First, for the keyword key owners, one
keyword per each title (K7;) is extracted from the file name
and hashed into the 128-bit keyword key. Then, the client
ID of the mapping keyword key owner is configured to have
the same key value as the keyword key. By doing that, each
winnowing client can receive keyword publish messages for
the mapping keyword. Each keyword key owner verifies the

(%)

contentkey search failure rate

total number of keyword publish messages

U

- -
= e e i
7230 0o 0 040 0930

S~
Ta Ts

30 % oeso 1330 ie30
time of the day

(a) total # of keyword publish messages

%0 oea 1330 im0
time of the day

(b) content key verification failure rate per hour

fraction of distinct IPs of the publishers

(c) CDF of publishers of failed ones

PDF of copies (log scale)

---T T

1 2 —T,

content key verification failure rate (cumulative)

S

T, —T, o, T

%o om0 1330 1830
time of the day

(d) cumulative content key verification failure rate

o 10" 1c
contentkey number (ordered by popularity - log scale)

(e) top 100 content keys passed

content key number (ordered by popularity — log scale)

(f) top 100 content keys failed

Fig. 4. Keyword publish statistics in the Kad network

publisher whenever it receives a keyword publish message
by sending a KADEMLIA_HELLO_REQ message (i.e. PUB-
LISHER_VERI_REQ). Content key verification follows for
the keyword publish message which has passed the pub-
lisher verification by sending KEDEMLIA_SEARCH_REQ
(i.e. CONTENT_KEY_VERI_REQ) messages. If any reply
is returned within 45 seconds, the content key is treated as
successful and will not be tested further in following keyword
publications. The failed content keys, however, are continually
being verified. Only the content keys which have never passed
the content key verification throughout the measurement pe-
riod are marked as bogus. Second, for each content key owner,
the topmost popular content key (i.e. version) amongst all
content keys of each title is selected. The content key must
pass the two verifications by the matching keyword key owner.
The topmost popular content key is then configured as its client
ID. Content key owners carry out the publisher verification and
location verification in a similar way. Data is collected for 48
hours for keyword publish messages and 10 hours for content
publish messages, thus reflecting a twice long time period of
the normal republish cycle.

A. Keyword Publish Statistics

Figure 4(a) shows the total number of keyword publish
messages received by each keyword key owner. It clearly
demonstrates the time of day effect on the total number of
keyword publish messages. It also describes load inequalities
in keyword key owners by an order of magnitude.

Figure 4(b) presents the content key verification failure rates
per hour with respect to the total number of keyword publish
messages which have passed the publisher verification. The

average failure rate was 1.60% for the publisher verification
(graph is not shown) and 7.69% for the content key verification
respectively. Interestingly, similar to 4(a), the content key
verification failure rate also shows the time of day effect but
exactly in reverse. This indicates that some fixed amount of
bogus keyword publish messages continue to be published by
polluters. Thus, when there exists a relatively high number of
legitimate keyword publishes, the rate is low, but as the number
of legitimate keyword publishes decrease, the rate increases.

Figure 4(c) plots the cumulative distribution function (CDF)
for the fraction of keyword publish messages failed with
respect to the fraction of distinct IPs of the publishers. In this
figure, IPs are reordered according to the number of keyword
publish messages they advertised (the most, the first). As
indicated, more than 60% of failed keyword publish messages
are published from less than 20% of IPs for the 4 famous mp3
songs. This clearly shows that there exists a small fraction of
users who cast massive bogus keyword publish messages for
the famous songs. In fact, we identified two IP/24 ranges in
which most polluters reside, which appear in all the 4 mp3
songs. It is, however, not true for the last less popular song.

The pollution so far is described in terms of the total number
of keyword publish messages received by each keyword key
owner. It is noted, however, that there exist multiple keyword
publish messages for the same content key. In addition, each
keyword key owner receives the keyword publish messages
not only for the target keyword, but also for the keywords
whose hash values are numerically close enough to its client
ID. Since a user first sends a keyword search message to find a
title, and the results include only the content keys whose file

name includes the keyword, we need to consider the index
pollution level in terms of distinct content keys. Figure 4(d)
demonstrates the cumulative content key verification failure
rates with regard to the total number of distinct content keys
whose file name truly includes the target keyword. This falls
in the range from 27% to 35%. Meaning that, if a user sends
a keyword search message with the keyword “Kr,” to find
the title of “I3”, up to 35% of content keys amongst all the
content keys returned are bogus, therefore the user cannot find
any location information with the content keys.

Finally, version popularity of each target song is investi-
gated. In the Kad network, the number of keyword publish
messages for a content key represents the popularity of the
version (i.e. content key) because there must be a keyword
publish message whenever a version is downloaded. To check
the popularity, content keys are ordered based on the number
of keyword publish messages received during the measurement
period. Figure 4(e) demonstrates the PDF on a log-log scale
for the number of copies with respect to the top 100 content
keys which have passed the content key verification. The near
linearity of the curves confirms that the version popularity of
a title in the Kad network follows a Zipf distribution, which
additionally confirms the results of previous studies [1,9] on
other P2P systems. Similar examination was made for the
content keys failed in the content key verification. Figure 4(f)
shows the PDF on a log-log scale for the number of copies
with respect to the top 100 content keys failed. The results
shows that most bogus content keys are published only once.

B. Content Publish Statistics

Similar measurements are conducted for content publish
messages, but only the results for the statistics of users who
have downloaded the same version in the same IP/24 ranges
are shown here because the results are most relevant to the
analytic models in section VIIL.

TABLE I
THE NUMBER OF USERS PER [P/24

users / IP24 T1 T2 T3 T4 T5
1 21,362 | 6,827 | 4,292 | 14,110 | 708
2 2,435 190 101 1,075 4
3 397 20 2 117 0
4 66 0 1 16 0
5 11 0 0 4 0
6 4 1 0 1 0
7 1 0 0 2 0
>8 5 0 0 1 0

Table I shows the number of users in each IP/24 for the
topmost popular content key of each title. Interestingly, the
average number of users per IP/24 range who have downloaded
the same version was only 1.1. Note that the data was collected
for 10 hours, which is twice longer than the content republish
cycle, meaning that the actual number might be lower.

VII. MODEL BASED ANALYSIS AND RESULTS

In this section, we develop an analytical model for winnow-
ing to study the relative performance of the approach, focusing

on user feedback mediation (section IV-B). The model extends
previous analytical models [3-5] and captures the dynamics
of the proliferation of the good and bad copies of a single
title in the system. Here, the model is briefly described and
compared with previous models (the random selection model
and the popularity based selection model in [3-5]). Notation
used in this analysis is shown in table II.

TABLE II
SUMMARY OF NOTATIONS IN THIS SECTION
M total # of fresh users joining the network
At user arrival rate at time ¢ (M A; users join the system at time ¢)
Gt # of good copies currently shared in the network at time ¢
NG | # of good versions (assume N = Go)
Bz # of bad copies currently shared in the network at time ¢

NE | # of bad versions (assume NZ = By)

AtG # of users downloading a good version at time ¢
AtB # of users downloading a bad version at time ¢
R # of retrials at time ¢

VtG total amount of voting credits of good versions at time ¢

V;B total amount of voting credits of bad versions at time ¢

Pa probability that a user recognizes the pollution

Ps probability that a user shares a file after download

Do probability that a user casts a vote after download

« weighting factor([0.1])

L maximum slackness (time from download to authenticity check)

A. Analytic Models

Initially, there exist G different good versions fed by
benign users and By different bad versions introduced by
polluters for the target title in the system. Let M be the total
number of non-malicious, fresh users joining the system to
download a version of the target title (users with intent to
download only desired titles). The users arrive the system with
the rate of A; at time ¢. When a user queries for the title,
the matching keyword key owner returns to the user a list of
versions (content keys) available in the system. Then, the user
selects one from the list at its own discretion. We will make
the following assumptions about user behavior.

o The initial benign users and polluter(s) who have intro-
duced the incipient versions never leave the system and
the versions keep being copied by other users.

e Once a user has downloaded a version, the authenticity
of the version is checked within j hours, which is an
independent and identically distributed (i.i.d.) random
variable with an upper bound L.

o If the version is authentic, the user decides whether to
share it with probability p,. If polluted, then the user
immediately deletes it and tries another download by
issuing a new query until a valid copy is obtained.

« When checking the authenticity of a version, users might
fail to detect the pollution of a bad version (false negative)
with the probability 1 — p,. For the authentic ones,
however, no false positive is assumed.

« For attack models, there exists only one intentional pol-
luter for the target title, but the polluter could operate
multiple machines (polluting peers) with different IP
addresses. Without loss of generality, the initial bad
versions (Bg) are introduced by this polluter.

In addition to the above assumptions, for simplicity, we
only focus on how efficiently users can find a good version
in the system rather than how fast they can download it. So,
we assume that it equally takes one time slot (one hour) for
all users to download a copy (including the query request
and response time). In this sense, for winnowing, only the
user feedback mediation (section IV-B) done by (matching)
keyword key owners will be considered. Initially, no attacks
except the initial bad copies are considered to develop each
model, but will be discussed further later in section VII-B.

1) Random Selection Model: When a user sends a keyword
search message, the matching keyword key owner returns a
list of possible versions of the title currently available in the
system. In the random selection model, it is assumed that
the user randomly selects one from the list. So, the initial
probability that the user selects a good version is W As
a consequence, at time ¢, the number of users downloading a
good version is

NG
A = M g @
and the number of users downloading a bad version is
NB
A =MN——"= 2
‘NG 1 NB @)

Since the downloaded copies are immediately shared in most
file sharing P2P systems including the Kad network, the
number of good copies shared at time ¢+ 1 would be G;+A¢.
Some of the users, however, might decide either not to share
their downloaded good copies or leave the system (with
probability 1 —p,). Assume that such decision happens within
j time slots with equal probability 1/L. Then, the number of
good copies shared in the network at time ¢ 4 1 is

AG
(1 fps)Z%. 3

Jj=1

Giy1 =Gy +AtG —

With regard to bad copies, a downloaded bad copy will be
deleted if the user detects the pollution (p,) or decides not
to share it (1 — ps) after pollution detection failure. Thus, the
number of bad copies shared in the network at time ¢ + 1 is

L
AB .
Bip1 =B+ AP = (pa+ (1= pa)(1 = ps)) D T @
=1

If a user detects that the downloaded copy is polluted (with
probability p,), the user immediately deletes it and issues a
new search query. So, the number of retrial at time ¢ + 1 will
be

AP
Ryt =pay — 77 5)
Jj=1

If the retrials are considered, the equation 1 and 2 need to be
updated as seen below.

NG

AS = (MM + R))——2—
t (t + t)NG—I—NB

(6)

B
NE + NP
Note that under the random selection model, the probability

that a user selects a good version remains constant over time.
So does the probability that a user selects a bad version.

AP = (MM + Ry) ©)

2) Popularity Based Selection Model: If users base their
download selection purely on versions, the download experi-
ences of former users are useless for new arrival users. If the
experiences are shared, however, the probability that a new
arriving user selects a good version could increase. In fact, in
most file sharing P2P, when an inquiry is made, index nodes
return a list of versions with information regarding how many
copies of each version are available in the network.

In the popularity based selection model, it is assumed that
a user selects one version from the list based on its popularity.
That is, the probability that a version is selected is proportional
to the number of its copies currently shared in the network.
So, the probability that a user selects a good version at time ¢
is =Gt Thus, at time ¢, the number of users downloading

Gi+Bew >
a good version is

G

AF = (M), + Rt)m ®)
and the number of users downloading a bad version is
AP — (MM +R) =2 ©)
G: + Bt

The fact that the popularity of versions of a title follows a
Zipf distribution in the Kad network (section VI-A) strongly
indicates that Kad users act as those in this model.

3) Voting Credit Based Selection Model (winnowing): In
winnowing, each keyword key owner collects user feedback
for each version (content key) via voting from users who have
downloaded the version. Upon request, the index nodes return
a list of versions with the voting credits for each version
to the requesting user. Initially each version gets 1 point
when published regardless of its authenticity assuming that
the original publisher of the version automatically casts a
positive vote for the version. Under this model, it is assumed
that users select a version from the list based on the voting
credits of the version. That is, the probability that a version is
selected is proportional to the amount of its voting credits. As
a consequence, at time ¢, the number of users downloading a
good version is

VG
AY = (M)‘t+Rt)7VG+VB (10)
and the number of users downloading a bad version is
AP = (M + Rt)ivgvf —. (11)
t + ‘/t

With regard to the voting credit update approaches, AIMD and
MIMD are analyzed and evaluated here due to the reasons
discussed in section IV-B3.

e AIMD approach: The amount of voting credits of a
version increases by one whenever a positive vote is
received and conversely decreases by half for a negative
vote. Without loss of generality, a user can cast its vote
after checking the authenticity of the downloaded version.
If the probability that a user casts its vote after download
is Py, then the total amount of voting credits for all good
versions at time ¢ 4+ 1 will be

L AG
G _ G t+1—j
Vi =V p)~

Jj=1

(12)

Next, how much will voting credits be reduced if there
is one negative vote? Since there are NP bad ver-
sions and the total amount of voting credits for all bad
versions at time ¢ is V2, one negative vote reduces
1

B
the credits by % * 5 on average. So, the amount of

voting credits after reﬂectlng the first negative vote is
VB — 2‘1/\[3 = VtBQQ NB . If one more negative vote
is reﬂected then the amount of Votlng credits will be

B2NEP B2NEP B (2N —1)
\% 2NB -V (2NB)2 =VpB “eNEE In this way, the
total amount of final voting credits for all bad versions

after n negative votes will be Vf’% = Vt (1
2]\%)" Since there are
L B
A
EN —) ILU
y = PaPv I

j=1
possible effective negative votes (nFV) at time ¢ and a
portion (1 — p,) of users who fail to detect the pollution
will cast a positive vote with the probability p,. Thus,
we have

vt =vP(

- 2]3]5)”§N + (1= pa)po Z Atf :
o (13)
MIMD approach : The amount of voting credits for a
version doubles for a positive vote but decreases by
half for a negative vote. We can simply calculate the
amount of voting credits that are increased by one positive
vote. Since there are N good versions and the total
amount of voting credits for all good versions at timGe
t is V., one positive vote increases the credits by NG
on average. So, the total amount of voting credits for
all good versions after reflecting the first positive vote is
VG + G _ VGN +1
NS No t
voting credits with n p0s1t1ve votes will be V,¢ (1—|—N%JG)”.
Since there are

. After similar iteration, the final

L AG
nFr § Ztl=g
= Do I

j=1

possible effective positive votes (nFF) at time ¢, we get

T)n{”
N,

v

Vi =vea+ (14)

By the way, with bad versions, one positive vote and one
negative vote offset each other with regard to V%, and
the number of possible effective negative votes is

YN AP
n peps Y~ = (1 —pa)puz —
j=1

j=1

AB
(2pa — 1)po Z %”

j=1

In this case, if nZY > 0, then Vt+1 decreases but increases
otherwise. So, we have
EN
Vt (1 - 2NB)nt

Vi =
i {Vt(l +

Using these results, the effectiveness of user-mediated feed-
back is now examined for a specific scenario.

when ntE N>o0
. (15)
otherwise.

B. Analytical Results

1) The scenario: For numerical comparison, values
of key parameters were set as follows: M = 20,000,
Go = 25, By = 500, and L = 48. These values were
adapted from previous studies [3-5]. With regard to the
user arrival rate (\;), RedHat 9 Torrent tracker trace [24]
is used to reflect the realistic user interest and arrival rate.
The metric for comparison is goodput;, which is defined
as the ratio of the number of good copies (G;) to the
total number of copies (G; + B;) shared in the system
at time t (i.e. goodput; = ﬁ). The final goodput
refers to goodput; where t = 600 [5]. Unless otherwise
specified, these basic settings were used to generate all results.

2) Without other attacks except By: Figure 5(a) shows
goodputs of the different models, as a function of time, under
perfect conditions (p, = 1, ps = 1, p, = 1). The upper
bound that is shown would be achieved if each user always
selected a good (non-polluted) file version; the lower bound
is if each user always selected a bad (polluted) file version.
This is possible if there exists an omnipotent big brother in
the system who lets users know what versions are authentic
whenever asked, which is the upper bound of any reputation
system. The lower bound is the reverse case, so that the
probability that a user selects a good copy is always 0, which
is the ultimate objective of polluters. As seen in this graph,
if no pollution attack except By is performed, winnowing
with either AIMD or MIMD reaches optimal performance
much faster than either the popularity based approach or the
random selection approach. The random selection approach
does not reach the optimal performance level even under
perfect conditions.

Perfect conditions are obviously unrealistic in real
systems. Therefore, the relative performance of each
approach is investigated under more realistic conditions
(pa = 0.8, ps = 0.6, p, = 0.6). In this case, p, and ps
are adapted from the previous work [3—5] whereas p; is set
under the assumption that users who decide to share the

oore
i
i

oaL

0.7h

o6l

o5

goodput

‘-e -upper bound
—lower bound
——random selection
—— popularity based
—e—winnowing (AIMD)
—=— winnowing (MIMD)

o.al

o3

i
1

n

i
oz
"

i

- 300
time (hours)

(a

=

Goodputs under perfect conditions (pg = 1,ps = 1,py = 1)

pe s 2 T 1L J LA d

e B R e

sz'E casee 40000000 0000000000000000%
-

/ /]

| seoe®

o
@
T

[LIEE S

°
3
T

o
o
T

goodput

‘-e -upper bound B
—+—random selection
—+— popularity based =
—e—winnowing (AIMD)
—=—winnowing (MIMD)

e L ey e

) 100 200 500 200 500 600

time (hours)
(b) Goodputs under realistic conditions (p, = 0.8, ps = 0.6, p, = 0.6)

Fig. 5. Results without attacks except the initial pollution (Bp)

downloaded file will willingly cast their votes (i.e. ps = py).
Figure 5(b) demonstrates goodputs of the different models, as
a function of time, under the realistic conditions. With 60%
user feedback, winnowing with AIMD or MIMD outperforms
the other two approaches by an even larger margin. In
addition, since MIMD approach increases the probability that
a good version is selected more rapidly than MIMD approach
under low user feedback, MIMD approach slightly beats
AIMD approach if no other pollution attack is considered. In
fact, winnowing beats the other two with as low as 20% user
feedback (graphs are not shown).

3) Effect of the reverse voting attack: No other pollution
attack except the initial bad versions (By) has been considered
thus far. A polluter, however, could contribute some other ac-
tions such as the reverse voting attack explained in section V-A
to decrease the goodput in the system. Let pollution rate be the
ratio of the number of reverse votes casted by the polluter over
the total number of votes casted in the system over time in
winnowing 7. The attacker may prefer to cast positive votes for
bad versions rather than negative votes for good versions due
to the inequality of size in voting messages. For the purposes

7Similarly, in the popularity based approach, pollution rate is defined as
the number of fake keyword publish messages cast by the polluter to increase
the popularity of polluted versions over the total number of keyword publish
messages generated in the system over time.

of investigation, therefore, the ratio of the number of negative
votes to the number of positive votes is set to 1/2.

-=random selection
% popularity based
- %- winnowing (AIMD)
—=—winnowing (MIMD)| 7

final goodput
*

o CEY 0.2 0.3 0.4 o5 0.6

pollution rate

0.7 0.8

Fig. 6. The effects of the reverse voting attack in winnowing and
the fake keyword publish attack in the popularity based approach.

Figure 6 describes the effectiveness of the reverse voting
attack done by the polluter. As seen in the graph, if not
properly addressed, one polluter could sharply decrease
the final goodputs of all approaches with the exception of
the random selection approach. This result substantiates
the previous study [4], showing that the random selection
approach outperforms most imperfect reputation systems
under severe (around 60% in this case) pollution attacks. In
fact, the index pollution attack is more specific to winnowing
than the popularity based approach. This is because, if the
number of reverse votes is greater than that from normal
compliant users, the voting credits will contribute negatively
to the goodputs in winnowing.

4) Effect of the IP binning strategy: To remedy the prob-
lem, the IP/24 prefix based binning strategy with weighted
voting explained in section V-A is applied Let’s consider the
impact of a reverse vote on V,& 71 and VB 71 with the weighting
factor (o) at time ¢ in winnowing. If one reverse vote is
received for a good version at time ¢,

ak

and, one reverse vote is received for a bad version,

AIMD
MIMD

Vi, =

B ‘/tB 4 Oék
Ve =Y v+ 2
t NB
where k is the order of the vote in the IP/24 bin to which it

belongs.

Figure 7(a), (b), and (c) show the final goodputs as a
function of pollution rate and the weighting factor «. For
fair comparison, this strategy is also applied to the popularity
based approach. As seen in the graphs, all approaches provide
considerable immunity to the attack in terms of the final
goodput with a low « value. Winnowing with AIMD and
MIMD approaches, however, outperform the popularity based
approach. Since measurements in the KAD system have

final goodput

(a) Popularity based approach

pollution rate

final goodput

Rl

ji

il

P :
a pollution rate

(b) winnowing with AIMD

fianl goodput

pollution rate

(c) winnowing with MIMD

Fig. 7.

shown that there are only 1.1 users in the same IP/24 address
range who have downloaded the same file version (see
section VI-B), winnowing (even with a low « value) correctly
reflects overall user feedback. In addition, sybil attacks in the
same IP/24 range will be highly restricted under this strategy.

5) Under the index node insertion attack: The results above
show that winnowing is robust to the reverse voting attack.
Consider instead that the attacker takes advantage of the index
node insertion attack (section V-B). Most DHT-based P2P
systems are susceptible to this attack because it is difficult to
detect, and no penalty can be given to the malicious index node
under current implementation. In winnowing, however, the
imbalanced feedback mechanism can penalize the malicious
index node with negative votes.

l

i
PRV W

Lo

RO0000
0oAN

b

number of negative votes per hour

(@) pa = 0.8,py = 0.6

=
S =eor ———p3 =0 7
o e Bp=o0.2
B acol - B=o0.4a d
- -=- B =0.6
= —-— B =o0.8
=
& sool- —— B =1 4
=
s FoeSs,
= ; TRes
£ ool 4 - 4
= [TPeo_
wol o - T |
= - Soo
e e T mmeaL . CScac,,
>0 oo e o .. Cosocoo

(®) pa =1,pp =1

Fig. 8. # of negative votes received by the attacker under different 3

Let 3 be the ratio of good versions returned by the polluter.
Since the attacker can easily manipulate the voting credits

Effect of weighting factor («) under the reverse voting attack with the IP binning strategy with (p, = 0.8,ps = 0.6, p, = 0.6)

for each version, it can regulate 3 so that only a portion
of good versions can be downloaded by users. Figure 8
demonstrates the number of negative votes received by the
malicious index node (polluter) under different 3 as a function
of time. As seen in the graph, if the polluter tries to decreases
(3, it will be confronted with the higher number of negative
votes. Clearly, the higher the user awareness (p,) and user
feedback (p,), the more penalties are imposed on the attacker
under the same (. Thus, by properly tuning the size of the
negative vote, compliant users could exhaust the resources of
the malicious node, which, to the best of our knowledge, is
a unique contribution of this approach. Moreover, the number
of negative votes will further increase if the attacker tries to
pollute multiple titles or want to run many Sybil index nodes.
As indicated, if index nodes keep only clean index records
(i.e. B = 1), the overhead incurred by the imbalanced voting
mechanism will be negligible, which is a strong incentive
for index nodes to voluntarily remove decoy (i.e. bogus or
corrupted) index records.

VIII. DISCUSSION

In this section, we analyze the overhead for implement-
ing winnowing on the eMule system. We also discuss the
limitations of our approach and possible solutions (to those
limitations).

A. Message Overhead

As seen in the figure 3, the message overhead of winnowing
includes the messages for the publisher verification, the mes-
sage content verification, and the user feedback reports. These
messages are newly added in winnowing along with the basic
messages of eMule. Among these, the message overheads for
publisher verification, the location verification, and the positive
votes are quite negligible in that they are small and used only
for a single round-trip communication between two peers.

The messages for the content key verification and negative
votes, however, could result in heavier overhead. First, the
content key verification accompanies a relatively high number
of subordinate messages to find the matching content key own-
ers through the iterative routing. Based on our measurements,
one content key verification yields 21 KADEMLIA_REQ mes-
sages on average. This overhead could be well absorbed if the

messages are used for the routing table maintenance. In fact,
each peer in the Kad network periodically checks every contact
in its routing table through the KADEMLIA_HELLO_REQ
message in order to detect and delete stale routing entries,
which is normally done once every two hours [20,22]. If a
KADEMLIA_REQ message is sent to one of its contacts for
the content key verification, then the peer does not need to
send a KADEMLIA_HELLO_REQ message again to check
the liveness of the contact. Therefore, the overhead for the
content key verification could compensated by the reduced
overhead for the routing table maintenance. Second, since the
size of a negative vote is larger than that of a positive vote,
sending a negative vote could burden the voter and the system.
Since the number of negative votes sent by non-malicious
users is proportional to the number of decoy index records in
the system, the overhead caused by negative votes on benign
users decreases as decoy index records are removed.

B. Space Complexity

The user feedback mediation of winnowing (section IV-B)
depends on the use of lists to maintain user information, which
includes KRL, CKVL, CRL, and LVL. If the number of users
in a list is too high, these lists increase the space complexity
of the system. The KRL may require the most space, since
every downloader needs to send keyword search messages to
download a file.

To reduce such overhead, we propose the use of Bloom
filters [25,26]. Bloom filters have a strong space advantage
over other data structures for representing sets, while incurring
the risk of false positives. The risks, however, are manageable
by tuning the number of bits of the hash function and the
number of hash functions used over the possible number of
users in the set. Under reasonable assumptions, a Bloom filter
with an estimated 1% false positive rate will require 89% less
storage than that of a complete list.

C. Incentive Mechanisms

The success of winnowing depends on the voluntary partic-
ipation of index nodes and downloaders; index nodes need to
remove decoy index records and downloaders must, to some
degree, share their download experiences with the index nodes.

In winnowing, the imbalanced feedback provides sufficient
incentives for index nodes to purge decoy index records from
their index records. As seen in figure 8, the more decoy
index records the index node holds, the greater the volume
of negative voting messages it will face in winnowing. Thus,
it is in the best interest of index nodes to aggressively remove
decoy index records they hold.

Even though their voting efforts promote their own public
good, we have not addressed the issue of additional incen-
tives for downloaders to provide feedback. Several promotion
methods can be applied. First, automation techniques such
as the automated failure report (section IV-B2) are useful
because they can lower the efforts of participants. Second,
notifications could be used. Pop-up windows could be created
whenever a file download is completed, the downloader deletes

the downloaded file, or the file is first viewed or accessed. This
will remind the downloader to cast their vote.

IX. CONCLUSION

This paper proposes a novel P2P anti-pollution scheme
called winnowing. In winnowing, index nodes make every
effort to maintain their index records as clean as possible,
through publish message verification and user feedback medi-
ation.

Publish message verification of winnowing have been im-
plemented on top of the up-to-date eMule client. The winnow-
ing clients (i.e. index nodes) efficiently block bogus publish
messages with these modifications. Measurements in the Kad
network show: (1) up to 35% of index records of keyword key
owners are bogus where no publisher information is located
from the index records; (2) a significant amount of bogus
keyword publish messages continue to be issued by polluters;
(3) keyword publish (both clean and bogus) messages arrive
in a pattern strongly influenced by the time of day; (4)
version popularity of a title in the Kad network follows a Zipf
distribution; and, (5) the average number of distinct users per
IP/24 address range who have downloaded the same version
of a title is only 1.1.

An analytical model of winnowing has been developed. The
model demonstrates the effectiveness of user feedback medi-
ation. The major findings are: (1) the winnowing approach
converges much faster than random selection and popularity
based selection under a reasonably assumed user feedback
(e.g. 60%) level; (2) most reputation systems are weak to the
reverse voting attack, if not well designed; (3) With the IP/24
prefix based binning strategy with weighted voting, winnowing
provides considerable immunity to the reverse voting attack;
and, (4) winnowing will impose a heavy penalty on attackers
even under the index node insertion attacks, with the use of a
novel technique called imbalanced feedback.

REFERENCES

[1] J. Liang, R. Kumar, Y. Xi, and K. W. Ross, “Pollution in p2p file sharing
systems,” in JEEE INFOCOM’05, Miami, FL, March 2005.

[2] N. Christin, A. S. Weigend, and J. Chuang, “Content availability,
pollution and poisoning in file sharing peer-to-peer networks,” in ACM
EC’05.

[3] U. Lee, M. Choi, J. Cho, M. Y. Sanadidi, and M. Gerla, “Understanding
pollution dynamics in p2p file sharing,” in I/PTPS’06, Santa Babara,
USA, February 2006.

[4] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and W. Zwaenepoel,
“Denial-of-service resilience in peer-to-peer file sharing systems,” in
ACM SIGMETRICS’05, Banff, Alberta, Canada, 2005, pp. 38 — 49.

[5] R. Kumar, D. D. Yao, A. Bagchi, K. W. Ross, and D. Rubenstein,
“Fluid modeling of pollution proliferation in p2p networks,” ACM
SIGMETRICS Performance Evaluation Review, pp. 335 — 346, 2006.

[6] J. Liang, N. Naoumov, and K. W. Ross, “Efficient blacklisting and
pollution-level estimation in p2p file-sharing systems,” in The ASIAN
INTERNET ENGINEERING CONFERENCE, 2005, pp. 1-21.

[7]1 P. Dhungel, X. Hei, K. W. Ross, and N. Saxena, “The pollution attack
in p2p live video streaming: measurement results and defenses,” in the
2007 workshop on Peer-to-peer streaming and IP-TV, Japan, 2007.

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in p2p networks,” in WWW’03,
Budapest, Hungary, 2003, pp. 640 — 651.

[9] C. Costa, V. Soares, J. Almeida, and V. Almeida, “Fighting pollution
dissemination in peer-to-peer networks,” in ACM SAC’07, Seoul, Korea,
2007, pp. 1586 — 1590.

[10]

(11]

[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]
[22]

[23]
(24]

[25]

[26]

K. Walsh and E. G. Sirer, “Experience with an object reputation system
for peer-to-peer filesharing,” in USENIX NSDI’06, San Jose, CA, May
2006.

M. Iguchi, M. Terada, and K. Fujimura, “Managing resource and
servent reputation in p2p networks,” in the 37th Hawaii International
Conference on System Sciences, 2004.

J. R. Douceur, “The sybil attack,” in I[PTPS’02, Cambridge, MA, March
2002.

C. Costa and J. Almeida, “Reputation systems for fighting pollution in
peer-to-peer file sharing systems,” in JEEE P2P’07, 2007.

R. Brunner, “A performance evaluation of the kad-protocol,” Master’s
thesis, University of Mannheim, Sophia-Antipolis, France, 2006.

M. Steiner, T. En-Najjary, and E. W. Biersack, “Exploiting kad: Possible
uses and misuses,” ACM SIGCOMM Computer Communication Review,
vol. 37, pp. 65 — 70, 2007.

MD4. [Online]. Available: http://en.wikipedia.org/wiki/MD4

J. Liang, N. Naoumov, and K. W. Ross, “The index poisoning attack in
p2p file sharing systems,” in JEEE INFOCOM'06, April 2006.

Q. Feng and Y. Dai, “Lip: A lifetime and popularity based ranking
approach to filter out fake files in p2p file sharing systems,” in /[PTPS’07,
February 2007.

F. Benevenuto, C. Costa, M. Vasconcelos, V. Almeida, J. Almeida, and
M. Mowbray, “Impact of peer incentives on the dissemination of polluted
content,” in ACM SAC’06, Dijon, France, 2006, pp. 1875 — 1879.

P. Wang, J. Tyra, E. Chan-Tin, T. Malchow, D. F. Kune, N. Hopper,
and Y. Kim, “Attacking the kad network,” in SecureComm’08, Istanbul,
Turkey, September 2008.

D. Stutzbach and R. Rejaie, “Improving lookup performance over a
widely-deployed dht,” in JEEE INFOCOM’ 06, April 2006.

“emule morph,” May 2008. [Online]. Available: http://emulemorph.
sourceforge.net/

“Top 10 songs,” June 2008. [Online]. Available: http://top10songs.com/
“Redhat 9 torrent tracker trace.” [Online]. Available: http://mikel.tlm.
unavarra.es/~mikel/bt_pam2004/

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, pp. 422 — 426, 1970.
[Online]. Available: http://portal.acm.org/citation.cfm?id=362692

A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” in the 40th Annual Allerton Conference on Communication,
Control, and Computing, 2002, pp. 636—646.

