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Abstract

Reputation is a crucial concept in dynamic multiagent environments and not surprisingly has received
considerable attention from researchers. However, despite the large body of related work on reputation
systems, no metrics exist to directly and quantitatively evaluate and compare them. We present a common
conceptual interface for reputation systems and a set of four measurable desiderata that are broadly
applicable across multiple domains. These desiderata employ concepts from dynamic systems theory to
measure how a reputation system reacts to a strategic agent attempting to maximize its own utility. We
study a diverse set of well-known reputation models from the literature in a moral hazard setting and
identify a rich variety of characteristics that they support. We discuss the implications, strengths, and
limitations of our desiderata.

1 Introduction

An agent’s reputation is the aggregation of publicly available information about the agent. Such information
is not necessarily accurate. Trust and reputation are often used in a complementary fashion: an agent
expects positive outcomes when interacting with another agent that has a reputation for being trustworthy.
Some systems are best described as trust systems because therein agents determine whether another agent
will do what it says it will, whereas others are best described as reputation systems because therein agents
determine and propagate their beliefs about other agents. The mechanics of the two kinds of systems exhibit
considerable overlap [Ramchurn et al., 2004].

Reputation is an important concept and computational reputation systems are popular primarily because
there are strong intuitive connections between an agent’s reputation and both the utility that it obtains and the
utility another agent obtains when interacting with it. For example, an agent can obtain more money for the
same products on eBay (http://ebay.com) simply by having a more positive reputation [Houser and
Wooders, 2006]. A rational agent would only build and maintain a positive reputation if doing so maximizes
utility. For example, in commerce environments, an agent can strategically build up and then expend its
reputation in order to monopolize a market [Sen and Banerjee, 2006].

Many authors propose desiderata to motivate their trust and reputation systems [Huynh et al., 2006;
Kamvar et al., 2003; Zacharia and Maes, 2000]. However, we are unaware of a general characterization
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of desiderata for reputation systems that are quantitative, objective, and applicable across a wide range of
domains. We present four desiderata, focusing on what quantitative properties make one reputation system
more effective than another. Devising widely applicable metrics for trust is considered an important open
problem [Barber et al., 2003] and is the focus of this work.

The primary purpose of a reputation system is to handle cases of adverse selection and moral hazard
[Dellarocas, 2005]. Adverse selection occurs when agents have limited ability to change, for example, if a
peer on a file sharing network supports limited upload bandwidth. In this case, other agents want to learn
which agents have favorable attributes (significant upload bandwidth) so that they can choose agents with
whom to interact. Moral hazard arises when one agent must reduce its utility in order to increase another’s
utility. An example of moral hazard is when one agent buys an item expecting it to be at or above a certain
quality, but cannot measure the quality until after the purchase. Here, the seller would face the moral hazard
of producing a lower quality item to reduce its costs.

When dealing with rational agents in a pure moral hazard setting, the game theoretic approach is to
devise a folk theorem, possibly modifying the model to achieve desired equilibria. The analogous approach
when dealing with pure adverse selection is to use probability and statistics to determine agents’ types.
Although these approaches are powerful in pure scenarios, most real-world applications do not cleanly fall
into one of the pure scenarios.

Reputation is only meaningful if it can change over time to increase predictive accuracy in cases of
adverse selection and to incentivize agents to cooperate in cases of moral hazard. Therefore, we approach
reputation from a dynamic systems perspective. As our primary contribution, we motivate and formalize the
following quantifiable desiderata.

Monotonicity. Agents who would provide favorable interactions should acquire better reputations than
agents who would provide less favorable interactions. For example, a seller who always offers high-
quality items at a low price should have a better reputation than an agent who produces defective items
that it advertises as being of high-quality (and thus sells at a high price).

Accuracy. Reputation measurements should be accurate regardless of prior beliefs. For example, if a buyer
incorrectly believes that a seller produces high-quality items, the buyer should quickly learn an accu-
rate reputation value for the seller.

Convergence. Agents’ reputations should converge quickly. For example, it is preferable to be able to learn
after a smaller number (rather than a greater number) of interactions whether a seller offers high or
low-quality products, regardless of past beliefs, provided the seller keeps to its type.

Unambiguity. An agent’s reputation should be asymptotically unambiguous, meaning an agent’s asymp-
totic reputation should be independent of any a priori beliefs about the agent held by some observing
agent. An unambiguous reputation system would, as the number of interactions tends toward infinity,
always yield the same reputation for a given agent regardless of the specific interactions. Consider two
otherwise identical buyers (identical in their valuations for goods of a given quality, utility functions,
capabilities, influence over peers, and so on) initially disagreeing about a seller’s reputation. Both
buyers should converge to an agreement about the seller’s reputation after a sufficiently large number
of interactions, assuming the seller behaves steadily in the same manner with each buyer.

Our desiderata apply to both adverse selection and moral hazard, with or without the propagation and ag-
gregation of reputation information. The measurements from the desiderata can answer a wide range of
questions, such as whether agents would benefit from using a specific reputation system, how stable the
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system is, and how quickly agents can build up or lose their reputation. Rather than examine and compare
reputation systems against a list of possible attacks [Huynh et al., 2006; Kerr and Cohen, 2009; Kamvar
et al., 2003], we look at general dynamical properties of the system as affected by strategic agents. Our
desiderata are useful across many types of reputation systems, regardless of whether the reputation system
combines moral hazard with adverse selection, involves interactions in less clearly defined environments, or
how difficult it is to solve analytically.

Throughout this paper, we distinguish two roles that an agent plays in a reputation system. An agent is
a rater when evaluating others and is a target when it is being evaluated. An agent may take on both roles
of target and rater simultaneously, but for clarity, we refer to the agents as target and rater in the context of
the interaction being discussed.

We apply our desiderata to a diverse group of trust and reputation mechanisms from the literature. Our
desiderata require a utility model, so we have chosen reputation systems that either explicitly define agents’
utilities or can be augmented with a utility without further significant assumptions. In each case, we pair off
a rational target against a rater as defined by the specific trust or reputation mechanism. We primarily focus
on the interaction between two agents, but we examine a few larger settings.

We find that the desirable and undesirable behaviors vary across the mechanisms, validating that our
desiderata are granular enough to distinguish differences between models. The general mechanism proposed
by both Hazard [2008] and Smith and desJardins [2009] exhibits the most favorable results of those studied
when faced with pure moral hazard, although this mechanism does not adapt to a continuous range of
behaviors as easily as some other systems do. Moral hazard was more prominently considered in the design
of this reputation system when compared to the others we examined, so it is not surprising that this reputation
system performs best with respect to our desiderata in a moral hazard situation.

We make an additional contribution in this paper. In order to treat each model as a black box, we present
a common conceptual interface for reputation systems. This interface consists of two functions reflecting
the two fundamental features of a reputation system.

An update function, used by a rater or central reputation system, which returns a target’s new reputation
(when participating in the reputation system under consideration) after the target has performed a
specified action.

A payoff function, which returns the reward that a target can expect (under the reputation system under
consideration) for performing a specified action given its current reputation.

In essence, each reputation system implements the above two functions. In our study we make use of these
functions as a programming interface to uniformly incorporate the various reputation systems.

We find that the main limitations of our methods are the computational complexity of finding the op-
timal strategy for the strategic agent and applying the model to reputation systems that are tightly coupled
with complex interaction systems. The results of our desiderata are sensitive to the environment and our
desiderata require an explicit utility model for the agents.

The remainder of this paper is organized as follows. First, we discuss the related work in comparing
reputation systems in Section 2. We formalize the agent interactions and generic properties of a reputation
system in Sections 3 through 3.1 and then discuss how we apply of dynamic systems theory in Section 3.2.
In Section 3.3, we discuss agent behavior, focusing on how we employ rational agents. Next, we formalize
our method of applying our desiderata (Section 3.4). We describe a basic interaction model with moral
hazard in Section 4.1 that we use to evaluate reputation systems. After describing our selection of models
from the related literature for comparison in Section 4.2, we demonstrate how our methods and desiderata
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are applied to the basic Beta model in Section 4.3. We then apply our desiderata to the chosen models
from the related literature in Section 4.4. Next, in Section 5, we discuss the strengths and limitations of our
desiderata, along with details of how they may be applied to different systems. Finally, we draw conclusions
and discuss future work in Section 6.

2 Current Methods of Evaluating Reputation Systems

The ART testbed [Fullam et al., 2005] is a domain-specific problem for the domain of art purchases designed
to test reputation systems. ART is useful for comparing reputation systems in a situated environment.
However, the ART testbed suffers from some limitations as a general purpose test to compare reputation
systems. One limitation is that the ART testbed does not always align incentives between obtaining a good
reputation and increased utility [Sen et al., 2006]. The ART testbed also suffers from issues of ambiguity
in agent valuations and capabilities, and being limited to a small number of agents [Krupa et al., 2009].
The domain-specific models in ART are both a strength and a limitation. The strength is that ART adds a
practical realism to the measure, but the limitation is that the results depend not just on agents’ reputation
models, but also on how agents model their interactions and the environment outside of reputation. Our
methods are domain independent, isolating the dynamics of the reputation system.

Altman and Tennenholtz [2008] take an axiomatic approach to ranking systems. They prove that, in a
multiagent system in the context of aggregate ratings, independence of irrelevant alternatives is mutually
exclusive with transitivity. An axiomatic system can yield strong proofs, but realistic models or models with
complex interactions often preclude strong results with such modeling due to intractability. Our desiderata
treat a reputation system as a black box, which extends its applicability into the realm of reputation systems
that use complex computations tailored to specific requirements.

Sybil attacks, that is, agents creating pseudonyms in order to artificially manipulate their or others’
reputation, are a frequently studied attack on reputation systems. Resnick and Sami [2007; 2008] use an
information theoretic approach to derive worst case bounds on the damage an agent can wreak. Their method
limits the amount of influence an agent can wield, but does not account for temporally strategic agents, and
focuses on Sybil attacks using randomized actions. Conversely, our desiderata focus on temporally strategic
agents.

Besides the aforementioned exceptions, the related literature on reputation systems typically compares
a performance measure, often utility, of agents under a specific set of defined attacks for each reputation
system. Two surveys indicate the widespread use of this technique. Jøsang et al. [2007] enumerate attacks
and other problems, as well as corresponding solutions in the literature. Hoffman et al. [2009] compare
reputation systems by which particular attacks their systems address.

Of the attacks employed in the related literature, the most common are agents that behave badly a
random percentage of the time [Kamvar et al., 2003; Huynh et al., 2006]; build up a reputation by behaving
positively and then “spend” it by behaving badly [Srivatsa et al., 2005; Kerr and Cohen, 2009; Salehi-Abari
and White, 2009]; open new accounts to reset reputation [Kerr and Cohen, 2009]; launch Sybil attacks [Kerr
and Cohen, 2009; Kamvar et al., 2003; Sonnek and Weissman, 2005]; collude with other agents [Kamvar
et al., 2003; Sonnek and Weissman, 2005; Srivatsa et al., 2005]; and change behavior based on the value
of the transaction [Kerr and Cohen, 2009]. In contrast, instead of devising attacks solely by intuition, we
examine the entire strategy space.

Some of the related work empirically compares more than one reputation system, but such studies com-
prise a small minority of the related work. Kerr and Cohen [2009] and Sonnek and Weissman [2005]
compare several systems across a wide range of attacks, having developed reputation systems to address the
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weakness of others. Of the remaining literature that empirically compares reputation systems, many papers
compare three or fewer other systems [Huynh et al., 2006; Salehi-Abari and White, 2009]. We postulate that
this is in part due to interoperability difficulties between the reputation systems and how some papers do not
adequately specify the relationship between valuations, performance, and reputation, thus requiring major
assumptions about each reputation system. We address this challenge by presenting a common conceptual
interface for reputation systems and discussing how some reputation systems may be implemented using the
interface.

General prescriptive desiderata have also been explored in related work [Dingledine et al., 2000; Huynh
et al., 2006; Kamvar et al., 2003; Zacharia and Maes, 2000] to guide interaction design and compare reputa-
tion systems. Desiderata for trust and reputation systems are not as straightforward [Dingledine et al., 2000]
because trust and reputation are supplemental to primary interaction mechanisms. A primary interaction
mechanism is one, such as a market, that affects agents’ utilities directly. In order for reputation to work,
agents must be long lived, ratings must be captured and distributed, and ratings from the past must guide
future decisions Resnick et al. [2000].

3 Reputation Dynamics

We represent the attributes of an agent, that is, its type including utility functions, valuations, abilities, and
discount factors, as θ ∈ Θ. An agent may know its type and may keep aspects of their type as private
information. The set of all possible agent types, Θ, is dependent upon the system under study. We make
no specific assumptions about the space of Θ and simply use θ as a parameter, treating the internals of the
reputation system as a black box.

The main purpose of a reputation system is to increase the accuracy of beliefs each agent has about
each other agent’s type. An agent’s reputation is a public projection of θ, i.e., it reflects the beliefs of other
agents about it. This paper focuses on how an individual rater would assess a given target, and how that
rating would affect the target’s ability to gain utility in the future. We use the term reputation because in
our analysis it provides the elements of what would be the target’s reputation. We denote an individual
rater’s belief of a target’s type generically as r ∈ R. We emphasize that whereas r may include information
aggregated from the system or other agents, r is the reputation of a target as viewed by a single rater. The
domain of r, R, is defined by the reputation system under examination. The domain may be as simple as a
nonnegative scalar or as complex as the complete set of possible interaction histories with all details. For the
formalisms in this paper, we assume R to be a normed metric space Goffman and Pedrick [1983]. However,
all of the metrics and results may be applied using their discrete counterparts. We use the discrete methods
when evaluating some existing reputation models.

A target’s reputation is computed by measuring outcomes of direct interactions and by obtaining and
aggregating other raters’ experiences and beliefs. The manner by which a rater updates its ratings of a target
drives the dynamics of the reputation system. If a rater a rates a target b as rt at time t, then after a and b
interact at time t+ 1 (or a learns something about b from another rater), a will rate b as rt+1. For example,
suppose a currently believes b’s reputation to be rt, that b sells high-quality products. If a purchases a
product from b at time t + 1 that turns out to be of low-quality, a updates its belief of b’s reputation to
rt+1, that b sells low-quality products. Here rt+1 < rt. We use r′ to indicate the rating after an action or
transmission of information has occurred, which is synonymous with rt+1 in the case of discrete time.
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3.1 Constructing the “Next Reputation” Function, Ω

The idea of this paper is to evaluate reputation systems using a consistent methodology as follows. Given
a reputation system, first determine the Ω function that maps an agent’s current reputation to its next rep-
utation. Once Ω is defined, evaluate properties of Ω to understand key properties of the reputation system,
especially with regard to its dynamism and convergence when faced with a rational target.

The target chooses how to behave given the environment, its own type, and the specific reputation system
employed. The idea is that the target would behave a certain way, taking its current reputation into account
when evaluating its decision. This behavior would cause the rater to assess the target a certain way. Based
on the specific reputation system, the rater would adjust the reputation of the target appropriately after an
observation or new information. Hence the target’s reputation would be mapped from its pre-action value,
r, to its post-action value, r′, based on the target’s type, θ, the parameters of the interaction, g ∈ G, the
environment, ψ ∈ Ψ, and the reputation system, ξ ∈ Ξ. To capture the above intuitions, we define the
function Ω : Θ × G × Ψ × Ξ × R 7→ R that represents how the reputation of a target changes after an
interaction. The target’s decision process is fully captured within the inputs to Ω.

To enable uniformity in assessing different reputation systems, we assume that the rater is rational and
patient, and follows the (typically nonstrategic) actions as prescribed by the reputation system under exami-
nation. This means that a rater does not lie about reputations unless it is part of the process of the reputation
system being examined. For simplicity, we consider the rater’s utility function as a parameter of the in-
teraction. The rater’s utility function is largely governed by the payoff function, which is an input to our
desiderata, either as prescribed by the reputation system, as modeled from the interaction environment, or as
is used by the actual raters in the system. This is clearly an idealization because in most settings the raters
are not strategic agents. However, the idealization systems yields baseline measures of quality and enables
us to compare reputation systems.

When making an observation, a rater may also pass information to other agents, either directly or through
a centralized mechanism. An agent’s reputation can change with respect to a given rater without a direct
interaction. Other than evaluation with a couple of reputation systems in Section 4.4.1, we focus on interac-
tions between two agents. Therefore, for clarity and brevity, we do not explicitly model asynchronous agent
communication in our formalisms. We leave this to be handled by the target’s utility function as a change to
the environment or as collapsed into an update to the target’s reputation with respect to other agents.

Because a target’s type includes the target’s utility function and decision model, the target’s action can
be computed from its type and the other parameters to Ω. Therefore, Ω does not require a parameter for the
target’s action.

A target’s decision model must include all actions available to the target. The actions depend on the
interaction model employed to evaluate the reputation system. Examples of actions are whether to pay
another agent, what quality of item to produce; whether to close the current account and open a new one to
reset the agent’s reputation; whether to lie when rating another agent; and whether to open pseudonymous
accounts controlled by the target itself to manipulate its own reputation (known as Sybil attacks).

Deciding which parts of a reputation system belong in the Ω function and which parts belong in its
parameters is fairly straightforward. Anything that is agent-specific, such as valuations, capabilities, and
discount factors should be an attribute of θ. Anything that is common or fixed across all agents, including
the processes that define costs and interactions, can be incorporated in the environment, ψ. Attributes which
may change from one interaction to another should be specified in g, and the attributes’ domains should be
specified by the environment. The mechanisms of the reputation system itself should be incorporated into Ξ
and into the Ω function itself.
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Throughout this paper, we focus on the process of matching agent types to reputations and how an agent
can strategically manipulate a reputation system. When evaluating reputation systems and describing our
desiderata, we hold the environment, interaction, and reputation system constant. As the other parameters
are held constant, we assume all else remains equal across these interactions, such as the agent relationship
topology, valuations, payoffs, game parameters, and probabilities. Our desiderata treat Ω as a black box.
For brevity and clarity, we therefore omit the parameters held constant and write a target’s reputation update
after the target makes a decision as r′ = Ωθ(r).

We make no assumptions about how or whether an agent’s type can change over time. However, when
evaluating a reputation system, we hold agents’ types constant; the results from the desiderata indicate how
well the system would adapt to changing agent types. Whenever an agent changes its type, a reputation
system that meets the desiderata of ACCURACY and CONVERGENCE would catch up with such an agent
quickly.

3.2 Fixed Points and Reputation Functions

Because reputation systems are supposed to accurately measure targets’ reputations, a desirable reputation
system should yield stable reputations when the targets themselves remain stable. For example, a desirable
reputation system should recognize a seller that provides a good product at a low price with a good reputa-
tion. Conversely, an undesirable reputation system would be one where a good seller might receive a good
or bad reputation only because of luck or strategic reputation manipulation by other agents. An agent’s rep-
utation should follow its type, meaning that a stable agent’s reputation should arrive at a fixed point, ideally
corresponding to its type.

A fixed point of a function is where the output of the function is equal to the input. Fixed points are a
cornerstone of dynamical systems theory [Devaney, 1992]. The properties of fixed points, such as whether
and how they attract or repel, govern the dynamics of systems that have feedback. A reputation is a fixed
point if r = Ω(r), which means that if the reputation were to take the exact value of r, the target’s reputation
would remain at the same value after subsequent interactions in an unchanging environment.

The set of fixed points of Ωθ is {r ∈ R : r = Ωθ(r)}. We define the function χ, which yields the stable
fixed point, if one exists, of a reputation system for a target of type θ, as

χ(θ) = lim
n→∞

Ωn
θ (rinitial), (1)

where Ωn
θ means that the function Ωθ is iterated n times. χ(θ) depends on rinitial, which is the a priori belief

that a rater has of a target, given that the rater has no information about the target other than the fact that
the target exists. The rinitial value is explicitly defined in some systems, and in others it can be assumed to
be the expected value over the probability distribution of possible reputations. For example, Sporas defines
rinitial to be 0, the worst reputation in the domain of r ∈ [0, 3000] [Zacharia and Maes, 2000]. However, the
raters may have differing a priori beliefs or have misinformation about the targets, leading to differing initial
reputations. The desiderata of CONVERGENCE and UNAMBIGUITY, described in Section 3.4, address these
challenges by saying that a reputation system should ideally have only one fixed point and the reputation
should converge toward that fixed point.

In some reputation systems, the limit expressed by χ(θ) may not exist. This can be caused by a lack of
fixed points, particularly if the domain of possible reputations includes reputations which are impossible to
attain or if Ωθ contains discontinuities with large gaps. The limit expressed by χ(θ) may also not exist if the
reputation system has a repelling (unstable) fixed point and the reputation never converges to single value.
When a target’s reputation oscillates around a single value (i.e., Lyapunov stable with a periodic, toroidal,
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or chaotic orbit), we can use that fixed point as the value for χ(θ) to apply our other desiderata, noting
the caveat that an agent’s reputation will never reach the fixed point, only approximate it. A reputation
system could conceivably have multiple fixed points around which a strategic target’s reputation will orbit.
The appropriate value for χ(θ) in this case is unclear and a marked weakness of the reputation system, but
we have not encountered this behavior in any of the reputation systems we examined. We further examine
repelling fixed points when discussing the CONVERGENCE desideratum in Section 3.4.

Noise in the environment or stochastic agent strategies can also prevent a reputation system from con-
verging to a fixed point. However, given enough Monte Carlo simulations and analysis, the expected values,
moments, and statistical significance can all be propagated through our framework and desiderata. Rather
than finding a fixed point, the result will be a stationary stochastic process.
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Figure 1: Dynamics of a reputation system.

Figure 1 shows an example “cobweb” diagram as used in dynamical systems theory [Devaney, 1992]
for a reputation system with R = [R,R] ∈ <. Because we apply cobweb diagrams to reputation systems
throughout this paper as a basis for discussion, we now briefly describe how to read such diagrams. For
simplicity in graphical illustration of concepts, we focus on real scalar reputations and real scalar projec-
tions of nonscalar reputations throughout this paper, with R representing the worst possible reputation and
R representing the best possible reputation. The bounds of possible reputation values depend on the repu-
tation system and need not be finite. For our discussions of reputation systems with real scalar values, an
unbounded maximum reputation means R =∞.

In our application of cobweb diagrams, the horizontal axis represents the target’s current reputation over
the domain of possible reputation values. The vertical axis represents r′, with the dashed line representing
the target’s next reputation after performing the action as governed by its type, Ωθ(r). The diagonal line rep-
resents unchanging reputation and helps identify fixed points. A fixed point exists wherever an Ωθ function
intersects the diagonal line.

Figure 1 shows two starting points to illustrate how the reputation changes over time. Suppose a target
has a bad reputation, as indicated in this illustration as a low value where the stair-step line starts on the
bottom left. What constitutes a bad reputation depends on the specific reputation system (and the associated
decision model of the targets), but generally we say a target has a bad reputation if another rater believes
the target will likely offer poor-quality products or otherwise behave in an undesirable fashion (we return to
this point in Section 3.3). The target’s subsequent reputation, that is, the target’s reputation after performing
its next action, is the value on the dashed line above the horizontal position indicating the target’s current
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reputation. This value is then used as input for the next interaction. The target begins with reputation r1

and its strategy leads it to perform actions that lead its next reputation to be calculated as r2—and so on,
through the series of steps in the diagram. We can find each successive reputation by moving horizontally
to the diagonal line and then moving vertically to the new location on the dashed line. In this example, the
reputation converges to the (only) fixed point marked by χ on each axis. If the target’s reputation somehow
becomes higher than the fixed point in this graph, the strategic target would “expend” a small amount of its
reputation, for example, by providing poor service. As a result, the target’s reputation would be lowered to
lie below the fixed point. However, once the reputation is below the fixed point, the target would behave
nicely and continue to rebuild its reputation back up to the fixed point. Then it would expend it again, and
so on.
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Figure 2: An ideal reputation system.

Figure 2 depicts an ideal reputation system. The horizontal line represents the ideal case as expressed
by Ωθ(r) = χ. This represents an ideal reputation measurement system because the reputation is measured
accurately in one shot regardless of what the target’s previous reputation was. This ideal case is only useful
if χ depends appropriately on θ—in other words, if χ accurately reflects the type of the target. A reputation
system that always returns the same reputation regardless of behavior may be perfectly precise, but it would
be neither accurate nor useful.
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Figure 3: A good reputation system.
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The dashed line labeled “good” in Figure 3 represents a reputation system that converges to a fixed
value regardless of other raters’ previous beliefs. Targets whose reputations are greatly undervalued build
their reputations slowly, whereas targets with overly inflated reputations slowly converge on an appropriate
reputation without their reputation values bouncing around. These dynamics may be observed by using the
same stepping method as described for Figure 1. Such a reputation system might be indicative of an e-
commerce setting where targets with poor reputations charge low prices for decent-quality products and, as
they build up their reputation, they begin to charge more for their offered level of quality. In this reputation
system, if the target’s reputation is overinflated, it may take advantage of the situation by possibly lowering
the quality of its product slightly or raising the price, until it achieves its equilibrium fixed point reputation.

3.3 Agent Behavior

The key concepts in this paper, particularly the desiderata introduced in Section 3.4, directly apply to any
type of agent decision model. One example of a decision model is an agent that plays strategies based on
a stochastic process. Another example is a malicious agent whose utility function increases with the utility
loss of another agent. However, we primarily focus on rational agents.

When moral hazards exist in an interaction setting, strategic agents can be a major threat to a reputation
system. A strategic agent will do whatever actions lead toward achieving a goal, and would thus exploit
any mechanism or manipulate its reputation if doing so helps achieve the goal. A rational agent is a type
of strategic agent that evaluates all possible future actions and payoffs, which often must be approximated
due to uncertainty and computational complexity, then chooses the immediate action that will lead it to the
largest total payoff (we discuss details of this for our particular experimental evaluation in Section 4.1).
Although the resilience of a reputation system against strategic agents indicates how well the reputation
system may fare in an open real-world setting, much of the related literature on reputation systems does not
discuss strategic agents. Of the papers that do discuss strategic agents (e.g., [Kamvar et al., 2003]), only a
minority formally model strategic agents (e.g., [Jurca and Faltings, 2007]). A rational agent may maximize
its expected utility over its expected lifespan or use intertemporal discounting. Thus a rational agent’s Ω
function is the path of reputation that maximizes its utility.

To consistently quantify the comparison of reputation values in relation to agent types, we focus on the
case when a target is faced by an ideally patient strategic (IPS) agent. We define an IPS agent as a rational
agent that is indifferent to the time of when a specific utility change will occur.

Our motivation for considering IPS agents is as follows. Since the idea of reputation is to help select
agents for future interaction based on their expected future behavior, it is natural that we rate targets in a
manner that places substantial weight on the future utility of the rater. Specifically, if agent a is interacting
with an impatient agent b, then a may perform actions (that affect b) that would be considered socially
detrimental to a patient agent. For example, consider two agents in a situation where they can gain utility
only by cooperating and offering each other favors. Agent a might not provide a favor to b if a believes
that b is not patient enough to return a favor to sustain a mutually beneficial long-term relationship [Hazard,
2008]. In this case, any observing agents (or centralized rating mechanism) should not necessarily observe a
as being impatient or having a low reputation because a is simply protecting itself against agent b. If b were
measuring the reputation of a as the target, b would be unable to distinguish between a myopically greedy
agent and an agent that was simply protecting itself against b’s behaviors. By measuring a target against an
IPS agent, we can ensure the target does not need to apply any “self-defense” measures because the target
has perfect knowledge that the IPS agent will not attempt to take advantage of it for short-term gain. Further,
by definition, an IPS agent values a longer running good reputation more than a less patient agent.
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A patient agent is also more useful for comparing reputation values than an impatient agent because a
patient agent generally offers a larger possible range of behaviors. This notion is supported by the economics
literature (e.g., Fudenberg and Levine [1992]). Suppose b is a reference agent, a rater by which we are
measuring a property of target a. If b is impatient, then b would attempt to take advantage of a whenever
doing so offered a large immediate payoff, regardless of a’s type and behavior. Conversely, if b is ideally
patient, then b’s behavior will reflect b’s belief of a’s type, providing a measurement of a’s type.

Suppose rater b is rational and is interacting with a target a that has type θa. Rater b maximizes its total
utility, Ub, by controlling its strategy, σb, which is a set containing a specific action at each time t, σb,t. At
each time step, b receives utility v(θa, σb,t), which is a function of b’s strategy, b’s type, and a’s type, from
which a’s optimal strategy may be derived. For an IPS agent, the function v should be chosen to represent
typical agents in the system, that is, to represent average valuations and capabilities, or be endowed with
capabilities and valuations the designer feels represent a good benchmark for the system. In this paper, we
use the same valuations across all agents, including IPS agents.

Definition 1 We define an ideally patient strategic agent (IPS agent), b, as having an infinite time horizon
such that b maximizes its average expected total utility as a function of any agent a’s type, θa, as the time
horizon goes to infinity as

E(U b(θa)) = max
σb

lim
τ→∞

1
τ

τ∑
t=0

vθb
(σb,t, θa) = max

σb

lim
γ→1

(1− γ)
∞∑
t=0

γtvθb
(σb,t, θa). (2)

We use an IPS agent’s utility function, given an environment, interaction, and so on for ordering agent
types by preference. If an IPS agent b prefers target a to target c, that means E(U b(θa)) > E(U b(θc)).
In the case of simple favor transactions with pure moral hazard, the IPS agent prefers targets with higher
discount factors because such targets may yield higher payoffs. For example, the IPS agent may achieve
higher payoffs with a patient agent via a trigger strategy, where both agents would follow some schedule of
actions and be punished for deviation [Axelrod, 2000], because a patient agent would be willing to sacrifice
short-term loss to achieve the long-term gain from the schedule of actions. When agents offer products of
differing quality for differing prices with pure adverse selection, the IPS agent prefers agents whose products
maximize value over time.

Evaluating the average expected total utility of an IPS agent is not necessarily always an easy task.
Numerical evaluation methods are useful for approximating the limits. Because the process of backward
induction generally does not apply to infinite horizon games, finding the expected utility as γ → 1 is a
viable approximation as long as the set of interactions is small enough that searching through enough plies
of interactions is tractable.

3.4 Reputation System Desiderata

Reputation systems may be useful and effective even if their behaviors are not close to ideal. This section
examines what makes one reputation system more desirable than another and what can render a reputation
system ineffective.

Consider the line labeled good in Figure 3. The strategic target would eventually attain its fixed point
reputation. However, if Ωθ yields similar curves for all θ, a rater would not be able to distinguish among dif-
ferent targets based on variations in their reputation because they would all end up with the same reputation
value. This may be acceptable when the target has an extremely favorable type, but if other targets’ types
yield the same structure, then a strategic target may be able to gain a better reputation than it deserves. This
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is not to say that a system in which all targets achieve a good reputation is necessarily bad. A mechanism
that incentivizes targets to always behave in a socially beneficial manner, regardless of their type, can be
desirable. However, if target a has a better reputation than target b, then a trustworthy agent c should expect
a to behave at least as well as b in interactions, all else equal, regarding c’s own utility. Relating this concept
back to the ideal reputation system in Figure 2, the horizontal line representing target a’s type would be at a
more desirable reputation value than that of target b’s type.

One reputation is better than another if, with all else equal, the rater expects greater utility interacting
with a target with the better reputation. For an IPS agent, c, entering a relationship of repeated interaction
with agent a, this utility is a function of the other agent’s type, θa, E(U(θa)). A regular rater, however,
would not know a’s type, but only its reputation, and would only evaluate a single transaction. We write
a rater b’s utility of entering an interaction with a as u(χ(θa)). The function u is the payoff function that
yields the value of a single transaction for a given reputation, which is a property of the reputation system
under examination.

E
(U

(θ
))

χ(θ)

No
Reciprocity

Favorable
Agent Types

Figure 4: Parametric plot of E(U(θ)) and u(χ(θ)) with respect to θ.

Figure 4 shows how an IPS agent’s utility changes with respect to the fixed point reputations of a one-
dimensional agent type. In this example, the IPS agent would not interact with unfavorable agent types
because they would try to reduce the IPS agent’s utility for their own gain. At some threshold of θ, an
agent would enter a mutually beneficial relationship with an IPS agent, with more favorable agents bringing
greater utility to the IPS agent. If this parametric plot were not monotonic, an agent with a high reputation
would have a lower expected utility to an IPS agent than an agent with a lower reputation.

Desideratum 1 MONOTONICITY: If, to an IPS rater c, target a’s type is preferable to target b’s type,
then a’s asymptotic reputation should be greater than b’s reputation. More formally, a reputation system is
monotonic if ∀θa, θb ∈ Θ : E(U c(θa)) ≥ E(U c(θb))⇒ u(χ(θa)) ≥ u(χ(θb)). However, if, c is indifferent
across all agent types, that is, ∀θa, θb ∈ Θ : E(U c(θa)) = E(U c(θb)), then the reputation system is
nondiscriminatory, a generally undesirable subset of the otherwise desirable monotonic property.

As in Figure 2, an ideal reputation system would enable a rater to assess a completely unknown target’s
reputation perfectly after one interaction. The closer Ω is to r′ = χ, a horizontal line for one-dimensional
reputation measures, the lower the error is between the target’s current reputation and what it asymptotically
approaches. We define this error as on the domain of possible reputations, R, as follows.
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Definition 2 We define reputation measurement error, ε ∈ [0, 1], at some reputation r for a target of type θ
as the distance between a new reputation Ωθ(r) and the asymptotic reputation χ, normalized with respect
to the maximum distance between any two reputations, as

εθ(r) =
||χ(θ)− Ωθ(r)||

maxx,y∈R ||Ωθ(x)− Ωθ(y)||
. (3)

Definition 3 We define average reputation measurement error (ARME), E(εθ) ∈ [0, 1], as the expected
value of reputation measurement error for target type θ across all possible beliefs of reputation, normalized
over all possible reputations, R, with the exterior derivative of R, dr, as

E(εθ) =
1∫
R dr

∫
R
εθ(r)dr. (4)
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Figure 5: Reputation systems with different amounts of error.

Figure 5 shows two reputation systems, each with one fixed point and the same derivative at the fixed
point. In the reputation system shown by the line labeled fast gain, slow expend, targets with low reputations
quickly improve their reputation, but the reputation can overshoot and would oscillate as it approaches χ. A
reputation system producing the line labeled slow gain, fast expend would have targets gain reputation more
slowly than fast gain, slow expend, and targets that gain overly valued reputations would quickly expend a
significant amount of reputation; some targets would cause large oscillations in their reputation, possibly for
a significant period of time before their reputation stabilizes, if ever. An example of slow gain, fast expend
is the recent major Ponzi scheme by Bernard Madoff, where he had gained a strong reputation throughout
his career and allegedly used his reputation to build the Ponzi scheme.1 Qualitatively, the fast gain, slow
expend reputation system is generally preferable to slow gain, fast expend because it is more stable and
accurate. The ARME provides a quantitative comparison, yielding a lower error for the fast gain, slow
expend reputation system.

Although ARME gives the error for a single target type, an important purpose behind a reputation
system is to deal with different target types. One reputation system may yield low error with targets of bad
reputations whereas another reputation system may yield low error with targets of good reputation. Further,
a system may have mostly good or mostly bad agents, so a reputation system designer should evaluate and
compare reputation systems based on the expected mix of target types.

1http://www.sec.gov/news/press/2008/2008-293.htm
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Desideratum 2 ACCURACY: The average reputation measurement error, E(ε), should be minimized with
respect to the believed distribution of target types, represented by the probability density function f(θ),
where E(ε) =

∫
Θ f(θ) · E(εθ)dθ.

Whereas ARME gives an indication as to how the reputation system performs across all reputations, it
does not give an indication as to how the system performs when a rater’s belief of another’s reputation is
somewhat accurate. To address this situation, we now discuss reputation dynamics around a fixed point.
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Figure 6: Reputation systems with large derivative magnitudes at the fixed point.

A fixed point is said to be attracting if the dynamical system asymptotically converges to the fixed point
when starting near enough to it. A fixed point may also be repelling, meaning that the dynamical system
diverges from the fixed point unless exactly at the fixed point. An example of a repelling fixed point is the
fixed point of the line labeled self-affirming in Figure 6. If a reputation system has a single fixed point,
then over time the accuracy of a target’s reputation increases for an attracting fixed point and decreases for
a repelling fixed point. Dynamical systems may also be attracted to or repelled from a periodic cycle of a
number of points, or end up chaotic, meaning that the value jumps around within a region in an unpredictable
manner [Devaney, 1992].

A fixed point can be attracting on one side and repelling on the other if Ω is tangential to the line r′ = r
or if the derivative is not continuous at the fixed point. Systems whose derivatives are not continuous at
their fixed points can act similar to systems with no fixed points because the reputation moves in only one
direction in each case. However, if a target’s reputation asymptotically approaches the fixed point from the
attracting side but does not cross the boundary of the fixed point, then the system can still exhibit stable
reputations.

In Figure 6 the line labeled self-affirming depicts a reputation system in which a rater’s eventual belief
of a target is completely dependent on its initial belief due to the repelling fixed point. By tracing the
feedback of this function, a reputation below χ would eventually end up at R and a reputation above χ
would eventually end up at R. Such a mechanism is not generally useful for measuring reputation, but may
nevertheless be useful as an interaction mechanism if

• prior beliefs begin at specified values, e.g., when all agents participating in an online auction automat-
ically start with a neutral reputation;

• better reputations incentivize targets to perform in a more socially beneficial manner, e.g., an online
auction that explicitly awards higher payoffs to agents with better reputations; or
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• it is otherwise effective in alleviating moral hazard, e.g., a system in which agents with a low reputa-
tion are permanently banned.

The curve labeled chaotic in Figure 6 shows a repelling fixed point that causes a target’s reputation
to remain persistently unstable. Below the fixed point, the target’s reputation grows quickly. Once the
target’s reputation is above the fixed point, the target’s best strategy is to take actions that quickly reduce
its reputation. A reputation system exhibiting this behavior would likely be ineffective because a target’s
current reputation is usually meaningless with regard to its type. An example of such a system is a peer-
to-peer file sharing service where agents first must upload content before they can download content. In
this case, the agent must first build up its reputation by uploading files to other peers, and then the agent
can expend its reputation by downloading. An agent’s reputation, that is, the amount of data uploaded or
downloaded, functions similar to a currency.

Whether a fixed point is attracting or repelling depends on the derivative at the fixed point [Devaney,
1992]. A fixed point is an attractor if Ω is a local contraction mapping if its Lipschitz constant, the minimum
bound of the scaling factor between successive iterations, is less than 1. As we are looking at local dynamics,
we can express this constraint on the Lipschitz constant as the maximum component of the gradient as
||∇Ω(r)||∞ < 1 at χ, where a target’s reputation eventually converges provided no other fixed points exist
that change the dynamics.2 If ||∇Ω(r)||∞ > 1 at χ, then the fixed point repels. When multiple fixed points
exist, repelling fixed points can create periodic or chaotic dynamics. If ||∇Ω(r)||∞ ≈ 1 at χ, then the
reputations do not change on the fixed point. In this case, a target is incentivized to perform at whatever
reputation level it happens to be at, that is, at whatever level the rater believes it to be at; the target’s
performance at that level simply reinforces the rater’s belief about it.

Attracting fixed points need not converge in a stable manner; a negative derivative causes a reputation
to oscillate about the fixed point whereas a positive derivative approaches the fixed point from one side.
The closer to zero the derivative is, the faster the reputation approaches the fixed point and the quicker the
reputation gains accuracy.

Desideratum 3 CONVERGENCE: At the fixed point, χ(θ), the sequence of utility maximizing reputation
values must be attracting and should converge quickly, that is, ||∇Ω(r)||∞

∣∣
r=χ(θ)

must be less than 1 and
should be minimized.

Although any number of fixed points may exist for a given target type in a given reputation system, the
ideal number is one. If zero fixed points exist, then the reputation values themselves are asymptotically
meaningless. In order for a system to have no fixed points, one of a couple of specific situations must occur.
One is if the reputation is unbounded such that a target can attain an arbitrarily high reputation and the
reputation remains high even if the target behaves in a manner that should yield a low reputation. An example
of a reputation system yielding this behavior would be one where only positive encounters were recorded;
because negative encounters are ignored, a target could simply provide enough positive experiences to build
a good reputation and provide many negative experiences to boost its own profit. Another case where fixed
points may not exist is when Ω is discontinuous, such as a reputation system where agents are incentivized
to oscillate between very good and very bad reputations.

When targets’ reputations are unbounded and the mechanism has no fixed points, all targets could end
up with an unboundedly growing reputation, as in the aforementioned case represented by the saturating
line in Figure 7. If, for all target types, Ω is completely below the diagonal except for the lowest reputation

2For a scalar reputation, this can be expressed more simply as | dΩ
dr

| > 1.
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Figure 7: Reputation systems without meaningful fixed points.

value, as shown by the line labeled dissipating in Figure 7, then all targets would eventually end up with
the worst possible reputation. The dissipating case is similar to the saturating case except that a target’s
reputation continually decreases. Each target’s optimal strategy is to always reduce its reputation, leaving
the reputation system meaningless outside of a target’s a priori reputation. Because a target’s reputation and
thus payoff are both guaranteed to continually decrease, a reputation system with such dynamics is generally
a poor choice from the standpoint of mechanism design. One real-life example of such a situation is certain
vendors at tourist traps. If they provide low-quality goods, tourists do not buy from them, so they increase
the sales pressure. At some level of sales pressure, enough tourists do buy from such vendors just to get
the vendors to stop trying to sell to them, further incentivizing the vendors to increase pressure on selling
low-quality items.

If multiple fixed points exist, then the fixed point that is asymptotically achieved depends on the rater’s
initial beliefs, hence the reputation is ambiguous. Consider the line labeled separating in Figure 7. If the
target’s reputation is above the middle of the reputation domain then the target’s reputation converges to
χ. If the target’s reputation starts below the middle, then it continually receives a lower reputation until it
reaches the lowest possible value. Note that this depends solely on the other rater’s initial belief; if rater
a believes target b has a low reputation, then such a reputation system exaggerates this incorrect yet self-
fulfilling belief. This type of graph might be seen in the following reputation situation. Consider a manager
at a business who highly values his initial opinions and does not like to be proven wrong. If the manager
believes that a new employee will excel, he might give the employee many more opportunities to excel than
to an employee who he believes will not excel. Because of the positive reinforcement in this situation, the
manager’s initial beliefs may become a self-fulfilling prophecy.

Having multiple fixed points is not necessarily a problem for a reputation system. If a target’s reputation
cannot possibly get to a fixed point, the fixed point is irrelevant. On an online auction site, for example, the
reputation dynamics of targets with low reputations do not matter if the site bans a seller’s accounts if the
seller’s reputation drops below a certain threshold. If the reputation system depicted by the aforementioned
separating line from Figure 7 starts all targets off with the maximum reputation then the targets may not ever
reach the lower region because the graph changes shape accordingly with the target’s type (separate diagrams
could be plotted for all values of θ to demonstrate this, much like Figure 4). An example of a reputation
system that can exhibit this kind of behavior is one that values a long positive history significantly more
than recent actions. For a desirable target type, the system might have a fixed point at a high reputation and
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another at a low reputation. In order for a target with a desirable type to achieve the lowest fixed point, it
might need to irrationally expend effort to make outcomes bad enough to diminish its reputation to the point
where it is better to put no effort into the quality of its products. If the target is rational, then this fixed point
will not be reached unless the target’s actions are at least partially driven by a stochastic process and the
target was particularly unlucky, which may happen on occasion within an environment with a large enough
number of agents. In a market with significant competition, few sales, and small profit margins on products,
a target with a favorable type but low reputation may not find it profitable to expend the effort required to
build up to a higher reputation fixed point.

Even if a reputation system has theoretically inaccessible fixed points, in practice it does not necessarily
mean that it is impossible for targets to reach this region; errors and unforeseen cases could make it possible.
A shipment may be lost by an intermediate party who denies responsibility or a bug in software can cause a
rating to be inaccurate with respect to the target being rated. Therefore, it is most desirable for a reputation
system to have one fixed point per target type. If exactly one fixed point exists for a given target type, then
the fixed point is the target’s reputation. The ideally descriptive case is when the mapping between type and
reputation is bijective.

Desideratum 4 UNAMBIGUITY: A target’s reputation should be asymptotically unambiguous, that is, ∀θ ∈
Θ : |{r ∈ R : r = Ωθ(r)}| = 1.

4 Empirical Results

We now apply our desiderata to some important reputation systems. We investigate the reputation measure-
ment aspects of each system. For each system, we briefly review the reputation measure it embodies, discuss
utility considerations, and then directly evaluate the reputation systems on a simplified transaction model
exhibiting moral hazard.

4.1 Experimental Method

We evaluate reputation mechanisms using a simple, stylized interaction mechanism for two reasons. First,
we use a simple model to keep the problem of evaluating optimal reputation strategies tractable in order
to evaluate the reputation mechanism itself; complex markets can require an intractably large number of
evaluations [Fullam and Barber, 2006]. The second reason is that complex markets make it more difficult to
isolate the effects of a single target’s strategy [Kerr and Cohen, 2009].

In each round of our interaction model, a rational agent begins with a specified reputation. The rational
agent begins in the role of target, choosing whether to offer a favor to another agent in the initial role of a
rater that is operating using the reputation system being evaluated. If the rational agent offers the favor, it
incurs a cost of c to itself and the other agent would receive a benefit of b. These roles are then reversed,
where the other agent chooses whether to offer the rational agent a favor with the same payoffs, and the
round is concluded. To show that “gains from trade” are usually possible when agents grant favors to one
another, we examine these variables in the ranges of c ∈ [1, 12] and b ∈ [10, 30].

We evaluate each system with respect to the above desiderata against rational targets across the range of
possible discount factors. A discount factor is how an agent places less value on future events than on present
events. Discount factors arise from combinations of factors such as the uncertainty of a future event occur-
ring and external methods of compounding utility (e.g., investments). Discount factors are widely employed
in decision models across economics and artificial intelligence [Dellarocas, 2005; Ely and Välimäkiz, 2003;
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Hazard, 2008; Jurca and Faltings, 2007; Saha et al., 2003]. We employ the commonly used exponential dis-
counting method. Using this method, each agent multiplies the expected utility of an expected future event
by γt, where γ ∈ [0, 1] is the discount factor and t is the time of the event relative to the present. Discount
factors can directly affect an agent’s optimal behavior and thus reputation.

As we discussed in Section 3.4, an agent’s patience can affect its behavior and ability to observe behavior
in others. Discount factors are a quantitative measurement of patience. A greedy target might rapidly expend
its reputation, whereas a patient target may build and retain its reputation. When evaluating reputation
systems, we investigate behavior across the range of possible discount factors.

In our simulations, the possible strategies of a target are a series of binary decisions. That is, each strat-
egy is a sequence such as 〈favor, favor, nofavor, . . .〉. We limit the length of the strategies we consider via
STRATEGYDEPTH, a parameter of the simulation. For this reason, we write the set of possible strategies
in a regular expression notation as {favor, nofavor}STRATEGYDEPTH. In our simulations, we set STRATEGY-
DEPTH such that the 95% of the total utility over the infinite horizon is captured with respect to the agent’s
discount factor, meaning STRATEGYDEPTH = dlog(1− 0.95)/ log(γ)e.

Algorithm 1 ComputeNextReputation(raterModel, target, targetReputation)
1: bestUtility← −∞
2: nextReputation← targetReputation
3: strategySpace← {favor, nofavor}STRATEGYDEPTH

4: for all s ∈ strategySpace do
5: 〈util, r〉 ← ComputeUtilityAndReputationFromStrategy(raterModel, target, s, targetReputation)
6: if util > bestUtility then
7: bestUtility← util
8: nextReputation← r
9: end if

10: end for
11: return nextReputation

To find the optimal strategy for a given discount factor, we compute the utility gained for each possible
strategy of the entire tree of the extended form game, as outlined in Algorithm 1. Each time the rational
target is given the opportunity to decide whether to offer a favor, both decisions are followed. This algorithm
approximates Ωθ(r) to the depth of the game tree as specified by the constant STRATEGYDEPTH. Because
of the intertemporal discounting, each successive decision yields less utility, and so the utilities of infinitely
long strategies may be approximated when the future expected utility falls sufficiently close to 0 with respect
to the payoffs from the target’s actions in the nearer future. The overall computation of this Markov decision
process is exponential in the number of decisions followed. A rational target’s future expected utility for a
particular reputation, U(r), can be expressed recursively in its Bellman equation form as

U(r) = max
σ

(u(r, σ) + γ · U(N(r, σ))) , (5)

where σ is the agent’s action, u(r, σ) is the utility it expects to get for a given time step, and N(r, σ)
is the agent’s new reputation after it performs σ. The agent’s action will be that which maximizes util-
ity for the current reputation, r, that is, the outermost σ. Algorithm 2, which is used on line 5 in Al-
gorithm 1, evaluates this expression for the model-specific functions raterModel.GetNextReputation and
raterModel.GetExpectedActionPayoff to find the total utility and next reputation of a target that employs a
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particular strategy. Lines 5 through 8 of Algorithm 2 compute the cost that the target occurs if its strategy is
to offer a favor for the given timestep, and line 14 computes the benefit that the target receives gets from the
rater based on the target’s reputation. Between these two payoffs, line 11 updates the target’s next reputation
given its current reputation and most recent action.

The functions raterModel.GetNextReputation and raterModel.GetExpectedActionPayoff express the en-
tire functionality of the reputation system, encompassing the effects of multiple agents if applicable. The first
function, raterModel.GetNextReputation, returns the target’s next reputation with respect to the rater, updated
from its current reputation by the action it performs. The second function, raterModel.GetExpectedActionPayoff,
returns the expected payoff that the target will receive given its reputation and whatever parameters are
used to determine the benefit. In our particular evaluation scenario, the payoff is independent of the
target’s action because the rater does not know the target’s action. However, in other situations, rater-
Model.GetExpectedActionPayoff may be a function of some information about the target’s strategy, for ex-
ample, if the target’s action contains a publicly observable signal such as the fact that a product was shipped
via an impartial third party.

Algorithm 2 ComputeUtilityAndReputationFromStrategy(raterModel, target, targetStrategy, targetReputa-
tion)

1: utility← 0
2: currentRep← targetReputation
3: for timeStep = 1 to length(targetStrategy) do
4: //target plays its strategy
5: if strategy[timeStep] = favor then
6: //if the target gives a favor on this timeStep, it loses some utility
7: utility← utility − target.γtimeStep−1 · FAVORCOST
8: end if
9: //rater reacts and plays its strategy according to the model

10: //for example, if the target gave a favor above, the rater might respond by raising the target’s reputation
11: currentRep← raterModel.GetNextReputation(currentRep, strategy[timeStep])
12: //depending on the target’s updated reputation, the rater would reward it with a FAVORBENEFIT
13: //the FAVORBENEFIT would add to the target’s utility
14: utility ← utility + target.γtimeStep−1· raterModel.GetExpectedActionPayoff(currentRep, FAVOR-

BENEFIT)
15: end for
16: return 〈utility, newReputation〉

It may be possible to analytically solve some of the models for the optimal solution, but others are
quite complex. We thus use a brute force analysis because it works across all models. However, because
this brute force analysis is costly, we do not explore the region of rational agents with the highest discount
factors (above 0.90 for individual agents and above 0.60 for networks of agents). Unless an unforeseen
phase change exists in any of the reputation models with discount factors greater than 0.90, we expect our
results should be representative of the higher discount factors.
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4.2 Choice of Models

Whereas many reputation systems have been proposed and studied [Ramchurn et al., 2004], little work has
directly compared their effectiveness in general terms. From the body of literature, we choose systems based
on the following criteria.

• The system measures reputation and does not merely aggregate reputations without specifying how
reputation is defined for a given context. Trust propagation is an important topic, but as our reputation
measures examine the entire system, agents need some method of measuring trust.

• The reputation as measured either explicitly characterizes the agents’ utilities or can be used as a basis
for making decisions regarding their interactions.

• The implementation is straightforward and well-defined. This means that we identify papers that
provide sufficient information to recreate their model. This also means that we sought models that did
not require a large number of abstract measurements and parameters and could be applied to simple
interactions without requiring a market.

• The set of systems considered is diverse. To demonstrate the generality of our approach, we consider
models based on different principles and philosophies.

Whereas we omitted some models due to the above criteria, this omission does not necessarily mean that
our measures cannot be applied to them. Kerr and Cohen’s Trunits model [2006] requires a market whereby
agents need to have some input or control with respect to their goods’ prices. Our simple favor experiment
would not adequately explore the Trunits reputation space, but a more complex scenario could meet this
need, albeit with the requirement of further computational complexity to evaluate the optimal strategies.
Similarly, Fullam and Barber’s model [2006] is designed for the complex interactions in the ART testbed
[Fullam et al., 2005]. Other models, such as that described by Zhang and Cohen [2007], focus on large-scale
aggregation. Many of the models focusing on large-scale aggregation resemble or build upon another model
that focuses on individual agents; in Zhang and Cohen’s case, their model resembles the Beta model. Sierra
and Debenham’s information theoretic model [2005] explicitly uses preferences rather than utilities, and is
geared toward richer interactions where agents have many possible actions.

The dynamics of a reputation system are greatly influenced by the relationship between reputations,
capabilities, and utilities. If a good reputation is expensive to build and maintain, but the difference in
utility between having a bad versus a good reputation is small, then even trustworthy agents would not
have an incentive to build up their reputation. This is analogous to diminishing returns seen by a company
when improving the quality of a product that already meets the standards expected in the marketplace. For
example, if agent a in a peer-to-peer environment is requesting a file transfer from agent b, agent a may
not notice any difference in service if b’s upload bandwidth is slightly greater than a’s download bandwidth
versus if b’s upload bandwidth is ten times a’s download bandwidth. For reputation systems (Beta and
Sporas) which do not explicitly provide a utility model, we apply a utility model inspired from empirical
results on online auctions.

4.3 Applying Desiderata to Existing Systems: Beta Model Example

The basic Beta model reputation system is a good exemplary case to apply our desiderata because the
reputation mechanism itself is simple to implement and understand, yet contains a few minor hurdles with
respect to applying our desiderata.
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The Beta model is a frequently studied and extended reputation measure [Jøsang, 1998; Jøsang and
Quattrociocchi, 2009; Teacy et al., 2006; Wang and Singh, 2006, 2007], where agents rate each experience
with another agent as positive or negative. Using this method, raters quantize interactions into positive and
negative experiences and use a beta distribution to indicate the probability distribution that a target will
perform positively in the future. Given a number of positive interactions, α, and negative interactions, β, the
expected probability that a future interaction will be positive is α

α+β , the mean value of the beta distribution.
Reputation systems using this approach typically assume that agents are not rational and have an intrinsic
probability of performing positively or negatively. A target’s reputation is its expected probability of yielding
a positive interaction.

The following steps are the process for applying our desiderata measures to a reputation system. In
each step, we use the interaction model specified in Section 4.1 with the basic Beta model as an illustrative
example.

1. Determine the update function. For the Beta model, the update function is straightforward with respect
to our interaction model. A rater rates the target positively if the target offered a favor, or negatively if the
target did not. A rating, r, consists of a tuple of two nonnegative integers: the total number of positive
interactions, iP,r, and the total number of negative interactions, iN,r. The update function, n, for the Beta
model can be expressed as

n(r, σt) = 〈iP,r + σt, iN,r + (1− σt)〉 , (6)

where σt is the strategy of the target at time t containing 1 if it will offer the favor and 0 if it will not.
When computing an agent’s payoff or plotting an agent’s reputation using the Beta model, we use the

belief of a positive outcome, bP , as the scalar value of an agent’s reputation, as defined by Jøsang [1998].
For a given reputation r, bP can be expressed as

bP (r) =
iP,r

iP,r + iN,r + 1
. (7)

2. Determine the payoff function. Adding utility to the Beta models is relatively straightforward. Because
the transactions are quantized as being positive or negative, we assume that each carries a constant utility.
As reputation is the probability that interacting with the given agent will generate a positive transaction, the
expected utility is simply the probability of each outcome multiplied by the utility of each outcome. From
a strategic agent’s perspective, the main difference between interacting with a single agent using the Beta
model and a population of communicating agents using the Beta model is the number of observations any
given target will have.

The exact relationship between reputation and price can be unclear in some contexts [Resnick et al.,
2006], but Melnik and Alm [2003] have found a multiplicative relationship with sublinear and superlinear
terms between reputation and price on eBay, a major online marketplace. To explore some reputation sys-
tems further, we apply three utility models with respect to reputation. The first is linear, meaning that a
perfect reputation yields full utility, a middle reputation yields half utility, and the worst reputation yields
no utility. We also investigate a sublinear relationship, where the scalar representation of the reputation, bP
in this case, when normalized to the domain [0, 1] yields a utility k · b2P , where k is the maximum benefit.
A sublinear relationship between reputation and utility means that agents strongly favor those with high
reputations. We use the relationship of k ·

√
bP for a superlinear relationship, which offers significant utility

to all agents but those with the lowest reputations.
In our simplified interaction model, the agents alternate in granting favors. One can think of this as

alternating delivery of an item by one agent, followed by payment by the other agent. With the linear
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relationship between reputation and utility, a target with bP = 0.25 would receive half the price for a good
than would a target with a bP = 0.5. The utility, u, of a target of type θ for a favor at time t, can be written
simply as

u(pB, t, θ) = γtθ · bP · FAVORBENEFIT. (8)

3. Integrate Update and Payoff Functions. The update function and payoff function can now be inte-
grated into Algorithms 1 and 2, where n(r, σt) and u(pB(r), t, θ) are used for raterModel.GetNextReputation
and
raterModel.GetExpectedActionPayoff respectively.

4. Run Algorithm 1 Over Domain of Reputations. In the basic Beta model, subsequent ratings affect
an agent’s overall rating less than the previous. We examined a few different numbers of previous obser-
vations, but for the results reported in this paper, we used 10 previous observations. This means that we
ran Algorithm 1 on each possible reputation with 10 observations, from 10 positive and 0 negative observa-
tions, through 0 positive reputations and 10 negative reputations (for other models we divided the reputation
space into 10–100 points). Using other total numbers of observations to cover the full two dimensions of
possible data is a valid approach, but we held the magnitude constant simply to rule out the Beta model’s
nonstationarity.

Algorithm 1 also needs to be run with various discount factors for the strategic target agent. Except
when otherwise noted, we ran discount factors from 0.0 to 0.8 in 0.1 increments.

Finally, the entire set of tests needs to be run with various values of FAVORBENEFIT and FAVORCOST
to determine how consistently the model behaves across the range of favor sizes. For these values, we chose
several combinations across the domains of c and b as outlined in Section 4.1.

5. Evaluate MONOTONICITY.
As our interaction model is focused on moral hazard, an IPS agent would prefer to interact with an agent

with a higher discount factor than with an agent with a lower one. With a more patient agent, the IPS agent
could enter into Nash equilibria in the repeated game that have higher payoffs for both agents. The IPS
could do so using a trigger strategy, not unlike the related repeated prisoner’s dilemma model.

Given that the IPS agent prefers higher discount factors, we can examine whether more preferable strate-
gic target agents have reputations that yield higher utility to raters in the interaction model. The payoff func-
tion maps the target’s reputation to its utility. The payoff functions for the Beta models are strictly monotonic
(linear, square root, and quadratic). We evaluate these results with respect to the ranges of FAVORBENEFIT
and FAVORCOST.

If the rater’s expected utilities are nondecreasing with respect to discount factor, then the reputation sys-
tem is monotonic, as is the case with the Beta model with superlinear pricing. If the utilities are constant,
as is the case with the Beta model with linear and sublinear pricing, then the reputation system is NONDIS-
CRIMINATORY. If the rater utilities ever decrease with respect to increasing discount factor, then the system
is nonmonotonic. Alternatively, if no meaningful asymptotic reputation exists, then the reputation system
cannot be evaluated with respect to monotonicity.

6. Evaluate UNAMBIGUITY. We find UNAMBIGUITY by first examining each pair of successive inputs
to Algorithm 1 for a given agent type (discount factor) and environment (FAVORBENEFIT and FAVOR-
COST). If the line defined by r′ = r is crossed between those two reputation values inclusively, then the
point of intersection is a fixed point. If zero or multiple fixed points exist, then the system fails UNAM-
BIGUITY. Otherwise, we use this unique fixed point value of r when computing the other measures. We
note that if insufficient resolution is used in evaluating possible input reputations with Algorithm 1 then
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additional fixed points may be lost. For our results, we examined higher resolution outputs for subsets of
our experimental results to make sure we were not likely missing any, though it is difficult to guarantee this
numerically for reputation systems that exhibit noisy results.

7. Evaluate ACCURACY. After computing the fixed point to determine UNAMBIGUITY, it is relatively
straightforward to calculate ACCURACY by computing the normalized mean absolute distance from each
output of Algorithm 1 to the fixed point reputation for each agent type and environment.

8. Evaluate CONVERGENCE. Computing CONVERGENCE is also straightforward once the fixed point has
been found. The slope may be closely approximated by computing the slope of the line segment between
the points immediately surrounding the fixed point (or averaging the two nearby slopes if the fixed point lies
on the boundary between two line segments).

4.4 Results

Here we discuss the results for each of the models we evaluate. We use our desiderata to compare reputation
systems and find out how well they perform when faced with a strategic target agent. In doing so, we also
validate that our desiderata are granular enough to distinguish differences between reputation systems, and
that our results are intuitive.

Table 1 shows a summary of the reputation systems used and how they map into the model-specific func-
tions for finding the next reputation and computing the expected action payoff. Table 2 shows a summary of
our results discussed in the remainder of this section.

4.4.1 Beta Models Results

The Beta model, as described in Section 4.3, is the foundation for many approaches to reputation systems,
including that proposed by Jøsang’s [1998; 2009] Subjective model, Teacy et al.’s [2006] Travos system, and
Wang and Singh’s [2006; 2007] Certainty model. Most of the differentiation between these models is how
they measure and aggregate uncertainty of reputation, but the underlying measurements are the same. We
refer to this class of reputation systems as the Beta model.

Whereas the Beta models deal with the expected value of the probability that a target is trustworthy,
many Beta models also focus on the uncertainty of this rating. This uncertainty is useful for determining
whether to interact with a particular agent. Uncertainty can be an important element of decision-making for
a risk-averse agent, that is, one who would prefer to avoid transactions that might have a negative outcome,
even if the expected value is positive. To evaluate the effect of uncertainty as measured by the Travos and
Certainty models, we reduce the utility expected from agents of uncertain trustworthiness. In the case of
Travos, we multiply the expected utility by both the probability of a positive transaction and the certainty.
For the Certainty model, we simply multiply the expected utility by the agent’s belief value, as this accounts
for the both probability of a positive transaction and the uncertainty. In both models, certainty is in the range
of [0, 1].

The Beta model and the Subjective model exhibit nearly identical results, and so we examine them
together. This is to be expected as the Subjective model’s belief is α

α+β+1 . We did not examine the Subjective
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Table 1: Summary of reputation systems evaluated.

Reputation
System

Next Reputation Expected Action Payoff
Expected Action

Payoff Graph

Beta Increment the posi-
tive or negative ex-
perience count.

Exponentiate probability of positive
outcome to 0.5, 1, or 2, for super-
linear, linear, and sublinear, respec-
tively, then multiply by favor value
b. The graph shape is due to the
straightforward expected value cal-
culations. reputation

ex
pe

ct
ed

 u
til

ity

superlinear utility
linear utility
sublinear utility

Certainty Increment the
positive or neg-
ative experience
counts, compute
the certainty of
information.

Use Certainty model’s belief in
place of the Beta model’s probabil-
ity of a positive outcome. The graph
curves are due to the additional fac-
tor of uncertainty.

reputation

ex
pe

ct
ed

 u
til

ity

superlinear utility
linear utility
sublinear utility

Discount
Factor

Measure discount
factor. Update
probability dis-
tribution using
Bayesian inference.

If the discount factor is sufficient
to sustain full reciprocity then offer
full favor. The graph is a step func-
tion produced by the cutoff value of
the target’s expected discount factor.

reputation

ex
pe

ct
ed

 u
til

ity

Probabilistic
Reciprocity

Add all accumu-
lated favors to com-
pute total balance.

Multiply the favor value by the prob-
ability of offering a favor. The graph
shape is due to the model’s sigmoid
function.

reputation

ex
pe

ct
ed

 u
til

ity

Sporas Exponentially
dampen old rating
and combine with
new rating.

Use the rating normalized to [0, 1] in
place of the Beta model’s probabil-
ity of a positive outcome. The dis-
continuities in the function’s deriva-
tive arise due to points when the op-
timal strategy changes.

reputation

ex
pe

ct
ed

 u
til

ity

superlinear utility
linear utility
sublinear utility

Travos Increment the pos-
itive or negative
experience counts.
Compute most
probable bin in the
Beta distribution.

Multiply the probability of a posi-
tive outcome by Travos’s probabil-
ity of being in the corresponding bin
in the Beta distribution. Each non-
monotonicity occurs when the repu-
tation value is near the edge of a bin.

reputation

ex
pe

ct
ed

 u
til

ity
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Table 2: Summary of reputation system performances; the values listed are approximate averages across our
experiments.

Reputation Unambiguity Monotonicity Convergence Accuracy
System (slope, lower is better) (error, lower is better)

Beta (superlinear) yes monotonic 0 and 0.9 0.4
Beta (linear, sublinear) yes nondiscriminatory 0.9 0.45
Certainty no − 1 −
Discount Factor yes monotonic < 0.1 0.02
Prob. Reciprocity no monotonic no 0.2
Sporas (superlinear, linear) yes monotonic ≈ 0 0.3
Sporas (sublinear) yes nonmonotonic no 0.4
Travos yes monotonic 0.8 0.2
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Figure 8: Beta and Subjective models.

model’s trust propagation, as it requires significant additional assumptions about beliefs of other agents’
digital signatures, which is not within our present scope.

The quality of the Beta model results varied by the interpretation of the probability of an agent per-
forming positively. Using a linear interpolation of the probability, which is the natural risk-neutral way
of modeling utility, led to results where no agents offered any favors and simply spent their reputations.
The thick line in Figure 8 indicate typical results of such a linear probability-utility relationship, where
all targets’ reputations converged toward the minimal reputation. The sublinear results were the same as
the linear. The Beta model did not fare well on this case; the model fails MONOTONICITY, as all targets’
reputations end up the same. In the superlinear case, that is, where a target is either risk-seeking or is not
harmed as much by negative interactions, the Beta model fares quite well. The superlinear Beta model meets
CONVERGENCE with positive slopes, either slowly with slopes of 0.9 or at the ideal of 0, and also meets
MONOTONICITY by distinguishing higher values of discount factors. The Beta model’s error in ACCURACY

was mostly independent of the probability-utility relationship and ranged from 0.40 to 0.45.
The characteristics of the Certainty model became more pessimistic when evaluating against a group of

three raters as opposed to an individual. The line labeled network, probability in Figure 9 shows the typical
shape when a target is faced with a network of three raters. As shown by the lines labeled individual, belief
and individual, probability, the targets were not incentivized to change their reputation until it crossed a
critical threshold, at which point they would always perform positively. The Certainty model met neither
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Figure 9: Certainty model.

UNAMBIGUITY nor MONOTONICITY, which made it difficult to assess CONVERGENCE and ACCURACY.
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Figure 10: Travos model.

Travos computes uncertainty by subdividing the reputation space into five equal regions, finding the
region containing expected probability of trustworthiness, and measuring certainty as the probability that the
reputation is within the region. Travos normalizes the magnitude of all reputation information communicated
to a rater to prevent one rater’s recommendation from strongly dominating another rater’s recommendation.
However, this mechanism also amplifies small numbers of observations, as the aggregation mechanism
implicitly assumes a relatively large number of observations. Travos did not meet MONOTONICITY, as all
of the parameterizations yielded the same fixed point, which may be due to the normalization, requiring a
significant volume of transactions to change the fixed point. Given that all of the reputations converged to
the same point, the fact that Travos generally met the other desiderata does not carry significant weight in
evaluating the model.

4.4.2 Probabilistic Reciprocity Results

Sen [2002] proposed the Probabilistic Reciprocity model as a way for an agent to experiment with trusting
another agent to see if the first agent reciprocates favors back. Each agent keeps track of the total amount
of utility spent and gained throughout the history of games between itself and other agents, summing the
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utilities of the gains and losses as the balance, B. Agents use this balance to adjust their probability of
performing a favor to another agent. The probability function is written in terms of the cost of the current
favor, c, the expected cost to offer a favor, E(C), as

P (offer favor|B) = 1/
(

1 + exp(
c− βE(C)−B

τ
)
)
. (9)

The parameters β and τ are tunable cooperation constants. We use balance, B, as an agent’s reputation, as
this is the only parameter that encodes reputation information.
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Figure 11: Probabilistic Reciprocity model.

The Probabilistic Reciprocity model, depicted in Figure 11, meets some of the desiderata most of the
time, but does not converge. This figure shows two examples, one where the benefit of the favors is sig-
nificantly larger than the costs (large margins: c = 10, b = 18), and one where the benefit is only slightly
larger than the cost (small margins: c = 10, b = 12). The model generally met MONOTONICITY in every
occurrence we examined, excluding ranges of fixed points where an agent’s initial reputation is too low, such
as the left portion of the line labeled small margins. Figure 11 shows such a range in the lower portion of the
thick line. In these cases, the model fails UNAMBIGUITY because agents would refuse to consider dealing
with an agent with a reputation that is too low, leaving its reputation unchanged. The weakest part of the
model was CONVERGENCE, as the magnitude of the slope at the fixed point, |dΩ

dr |, was far greater than 1 in
all cases, and always negative. This means that an agent’s reputation often changes significantly after every
successive interaction and never converges. Finally, across our various parameterizations, the ACCURACY

of the model was usually around 0.2, but was as low as 0.11 and as high as 0.22. The model’s error was
lowest when parameterized at moderate to large margins, such as c = 10 and b = 18, as opposed to those
with highest or lowest margins (such as either c = 10 and b = 12, or c = 10 and b = 30).

4.4.3 Discount Factor Results

Hazard [2008] and Smith and desJardins [2009] both proposed variations of the Discount Factor model, in
which agents strategically maximize utility while attempting to discover each others’ discount factors. An
agent’s discount factor is a measure of the agent’s patience, weighting how the agent accounts for future
utility by an exponentially decreasing function of time. In this model, the expected value of an agent’s
discount factor is its reputation. An agent with a discount factor close to 0 would be myopic and greedy,
whereas an agent with a discount factor close to 1 would offer favors if it expects the relationship or global
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reputation from offering a favor to be beneficial to itself in the long run. Like the Probabilistic Reciprocity
model, the reputation of the Discount Factor model is explicitly connected with agents’ utilities.

0

0.7

0 0.7Discount Factor Belief

D
is

co
un

t F
ac

to
r B

el
ie

f'
 impatient
 patient
 Ω=r

Figure 12: Discount Factor model.

Figure 12 shows the results of the Discount Factor model. Across all the parameterizations we examined,
the results were similar to this graph with all lines of the same shape, the only major variation being the
vertical location of the line on the graph. Because the agents in the model are strategic, they choose the
optimal strategy that corresponds to their discount factors. Targets cannot credibly maintain an incorrect
reputation, and their reputations converge quickly. We found that agents with a higher discount factor
always offer better utility to a patient agent, so MONOTONICITY is met. Each agent type also had exactly
one fixed point, so UNAMBIGUITY is also met. The model fared well with the CONVERGENCE desideratum,
with dΩ

dr being small and positive, usually less than 0.1. The error was small, and so this model performed
well with regard to ACCURACY. Across all our parameterizations, the error was between 0.014 and 0.028.

4.4.4 Sporas Results

Zacharia and Maes [2000] propose the Sporas reputation model which measures targets’ reputations ac-
cording to a specified range, with the rater’s reputation influencing the magnitude of the reputation change.
This model employs a dampening function that slows the maximum rate at which a target’s reputation may
change for a given observation as the target’s reputation increases. Zacharia and Maes motivate Sporas
based on online marketplaces and use continuous reputation values.

The Sporas model behavior, depicted in Figure 13, was remarkably similar to that of the Beta model,
even though the Sporas model permitted continuous interactions. Although we were initially surprised at
the similarity, both models’ reputation computations have a linear term of quality. Sporas model did not
meet CONVERGENCE in the sublinear case or when the difference between c and b was large. The error in
ACCURACY for Sporas was slightly better than the Beta model, ranging from 0.20 to 0.45.

5 Discussion

The primary purpose of a reputation system is to provide information to agents about other agents with the
goal of improving social welfare. This goal assumes that if agents know which other agents are trustworthy
and which agents are likely to defraud, then the agents’ utilities would be improved as agents would self-
select transactions with preference toward trustworthy agents. Whereas a possible design goal is to increase
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Figure 13: Sporas model.

trustworthy agents’ utility the most, the primary goal is to inform agents and reduce uncertainty with regard
to some interaction mechanism.

If an interaction mechanism has the property of incentive compatibility, then all strategic targets would
always play honestly according to their valuations. Although incentive compatible systems may have use
for multiagent learning, for example to determine which agents might receive the most benefit from which
products, such systems have little need for an additional system to measure the reputations of targets. If
a reputation measurement system were added in order to measure targets’ reputations for use in an addi-
tional context or situation, incentive compatibility may no longer hold. Whereas our desiderata would work
in measuring reputation in an incentive compatible mechanism, the measurements may have reduced rele-
vance. Alternatively, if the agents in a system exhibit highly specific behavior and are not strategic, then our
desiderata would need to be modified to use the specific behavior in place of the strategic behavior. Such a
system can arise when interactions are only permitted via proxy agents, that is, targets that have a predefined
behavior that act based on a specific set of parameters.

Our desiderata are useful measures for how well a reputation system will hold up against strategic at-
tacks. For example, Kerr and Cohen [2009] outline a number of possible ways that an agent could strategi-
cally improve its utility by being dishonest in a reputation system. Their “reputation lag attack,” achieved by
a target alternating between honest and cheating periods, is applicable when a reputation system that fails to
meet CONVERGENCE because a target can exploit oscillations of its reputation. Similarly, their “value im-
balance attack,” achieved by a target being honest with low-cost goods and dishonest with high-cost goods,
and “reentry attack,” where an agent continually opens new accounts to dishonestly use a new untainted
reputation, both indicate that a reputation system has poor ACCURACY. A reputation system designed for
high ACCURACY would recognize dishonest targets more quickly.

When analyzing pure moral hazard situations, the resulting Nash equilibria are often mixed strategies,
where a target chooses its actions stochastically based on some distribution. If mixed strategies are necessary
or desirable for a particular reputation mechanism, then the reputation system should somehow recognize
when a target is employing a mixed strategy. Detecting whether a mixed strategy is being employed has
some uncertainty to it, as it must be done statistically within some bounds of confidence. If the reputation
system does not collapse a mixed strategy into a single reputation value, a system may fail CONVERGENCE

over some range of behavior even if it is an effective system.
One difficulty in evaluating a reputation measure is if the measurements are nonstationary, meaning that

the reputation measures themselves somehow change over time. Nonstationarity can arise if it becomes
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increasingly more difficult or easy to change a reputation when further measurements are made, as is the
case when interactions are aggregated over the entire lifetime of a target without any sort of dampening—
i.e., without weighting old interactions less than recent ones. Whereas some reputation systems, such as
Amazon Marketplace, Travos, and Certainty, employ nonstationary measures, such reputation systems must
be used with caution because the difficulty of a target changing its reputation becomes increasingly difficult
as a function of the target’s age, as even the oldest interactions count as much as recent ones.

Our desiderata do not always indicate that one reputation system is the best one for a particular situation.
The choice of which reputation system to employ comes down to trade-offs. For example, one system may
offer better CONVERGENCE whereas another may offer better ACCURACY. Having good CONVERGENCE

means that the given system quickly reaches an equilibrium where the reputation is close to the actual value,
but this can be misleading in cases when the reputation dynamics change rapidly close to the fixed point.
A system’s having good ACCURACY means that it corrects a target’s reputation to achieve a reasonably
accurate value quickly, even if the initial reputation is far off. However, raters may be able to only discern a
small amount of information from each transaction in some interaction mechanisms, and so the interaction
model may be detrimental to ACCURACY. If a system does not exhibit UNAMBIGUITY, but the unreasonable
fixed points are impossible to reach by the path a target’s reputation takes, then those unreasonable fixed
points may be ignored. However, if unforeseen events, such as a software glitch, incorrectly push a target’s
reputation into these regions, then the ignored fixed points become extremely important and can possibly
have major negative impacts to the reputation system as a whole.

Reputation systems may work better in one domain than another. A reputation system may work well
in the case of adverse selection, but perform poorly in the case of moral hazard. The effectiveness of a
reputation system may change drastically even with different parameters in the same environment, even if
the only different parameter is the topology of agent relationships. Therefore, when applying our desiderata
to a reputation system, they should be applied to a setting as close to the actual environment as possible. If
parameters of the environment or interactions are known to change quickly or drastically, then the desiderata
should be employed across the range of environments and interactions. One reputation system may perform
well in a certain niche case, but may perform poorly across the full range of interactions.

6 Conclusions and Future Work

The four desiderata we present measure how well a mechanism fares at measuring the reputation of a strate-
gic agent. Of the systems we examined, the one that takes moral hazard as the primary environment in
designing the system, the Discount Factor model, fared the best when evaluated in a moral hazard situation.
The results from applying our desiderata were granular enough to differentiate reputation systems.

We focus on strategic agents because they maximize their own utility and are thus generally more at-
tractive to users. For example, a business would tune the decision models in one of its webservice products
to maximize profit, or a user of a peer-to-peer file sharing service might attempt to change the peer-to-peer
client software to achieve faster downloads. An agent with a high reputation may have considerably greater
ability to cause harm to other agents than an agent with a low reputation, enabling a malicious agent to
strategically build up reputation to maximize the harm it causes. A variation on our measures would be to
use a strategically malicious agent, whose utility is a function of the loss of other agents. Many applications
of reputation systems involving businesses and consumers, particularly those where an autonomous agent
is acting on behalf of the firm or individual, will be faced against rational agents. However, a strong case
may be made for modeling with strategically malicious agents for use in social networks, in businesses that
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might expect malice from extortionists or angry customers or competitors, or in using reputation as a basis
for finding and tracking terrorists.

Collusion, side-payments, and Sybil attacks (using many pseudonyms to boost or reset reputation) are
other exceptions when agents may appear to not act individually rational. However, our desiderata can be
adapted to measure the reputation dynamics given a certain number of colluding raters attempting to boost
the reputation of one scamming agent. To extend these desiderata, the colluding raters should be treated
as one agent in terms of utility. The reputation of the scamming rater, that is, the colluding agent with the
reputation inflated by the other colluding raters, can then be used directly in the desiderata.

The biggest weakness of our desiderata list is the computational complexity required to model reputation
aggregation across a large number of agents and against strategic agents with high discount factors. Because
we simply exhaust all possible actions, a number of states exponential in the number of actions must be
computed. Solving a specific reputation system behavior against a strategic agent may be feasible with
a simple reputation system and lead to an efficient solution, but large and complex reputation systems,
particularly those without closed form solutions and highly domain-specific features (i.e., those having
complex relationships between the reputation system and the interaction model), exacerbate the matter.
Graphing Ω can offer insight into the dynamics of a reputation system, but visualing Ω may be nontrivial for
systems that employ reputations of high dimensions that do not collapse easily to a scalar value. Determining
measurable desiderata that work well in complex scenarios is an interesting and useful avenue for future
work.

Because our desiderata are measured against a rational agent that would take advantage of any weak-
nesses of the reputation system, obtaining conclusive results for a reputation system intended for human
involvement requires a sizeable controlled experiment. Such empirical results would need to deal with the
significant noise in the system and would require sufficient data to conclude that a fixed point of a reputa-
tion is a stationary process. Evaluating currently deployed systems with respect to our desiderata, although
a significant undertaking, would contribute both to the understanding of our desiderata and the reputation
systems.

Whereas our desiderata are useful for ensuring that reputation systems are useful to the agents, strictly
following the desiderata is not always in the best interest of the party that implements the marketplace
or mechanism—as opposed to the agents who interact with each other in context of the marketplace. A
firm setting up an online auction that profits from each transaction has an incentive to maximize targets’
reputations, that is, maximize Ω, such that agents perform transactions before the agents realize that not
all are trustworthy. However, such a practice is not sustainable, and so a firm looking for long-term profits
would need to ensure that the reputation system is useful. Such a firm would need to make trade-offs among
short-term profit, long-term profit, and the various desiderata.

Our desiderata are by no means exhaustive and may be modified or extended for domain-specific pur-
poses. They make a good start toward a general framework for directly comparing the effectiveness of
different reputation systems in a specified situation.
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