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We consider service-oriented computing (SOC) environments. Such environments are populated with services
that stand proxy for a variety of information resources. A fundamental challenge in SOC is to select and compose
services to support specified user needs—or to provide additional services. Existing approaches for service se-
lection either fail to capture the dynamic relationships between services or assume that the environments are fully
observable. In practical situations, however, consumers are often not aware of how the services are implemented.
We propose two distributed trust-aware service selection approaches. One is based on Bayesian networks; the
other is built on a beta-mixture model. We experimentally validate our approach through a simulation study.
Our results show that both approaches accurately punish and reward services in terms of the qualities they of-
fer, and further that the approaches are effective despite incomplete observations regarding the services under
consideration.
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1. INTRODUCTION

In service-oriented computing (SOC) [Singh and Huhns 2005] environments, computing resources are mod-
eled as services, which can be used directly or composed into other services. Services are being widely
adopted in modern distributed environments, such as for cloud computing [Amazon.com 2009].

However, there may exist many services with similar functional properties. For example, there are many
practical services providing airline tickets, such as the various airlines and travel agencies. Therefore, distin-
guishing and selecting services with the desired nonfunctional characteristics becomes essential to consumers
(and composed services, which consume their underlying services). We address the problem of selecting ser-
vices based on criteria such as user requirements and service qualities.

We understand quality of service (QoS) in a broad sense to include potentially any service quality of interest
to a consumer, not merely the performance-oriented qualities such as throughput and availability. Further,
in general, the qualities offered by a service instance would vary over time. For example, the latency of a
shopping web service can change with the load it faces.

Traditional SOC approaches do not address service selection as such but only service discovery. Specif-
ically, they seek to capture descriptions of services in a representation such as Web Service Definition Lan-
guage (WSDL), which characterizes the functionality (that is, the methods) a service supports and the ports
where it can be accessed, but not the qualities of service it offers. Even the semantic approaches, such as
OWL-S, which characterize the functionality of a service more precisely than WSDL do not address its qual-
ities. In other words, traditional SOC approaches are confined to considering the functional properties of
services as a basis for matching services to user needs. The functional properties are generally defined for
service types. In a practical setting, however, a successful service enactment episode depends not just on
the service types but on the specific service instances involved. Moreover, the qualities offered by a service
instance might vary over time, sometimes rapidly. Our approach considers service qualities as they apply to
instances.

The research on trust modeling in artificial intelligence provides us with a promising starting point for a
solution to service selection. Trust is a key basis of interaction in an open setting, indicating the relationships
between the parties involved. For example, in a service-oriented context, a party Alice may trust another party
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Bob, because Alice expects Bob will provide a desired service with the expected quality. The trustworthiness
of the parties can be defined by both functional and nonfunctional properties. We define trust-aware service
selection as selecting desired services based on the trust placed in their ability to deliver specified values of
the specified qualities.

Maximilien and Singh [2004] develop a trust-aware approach to select services based on a well-defined
ontology [Maximilien and Singh 2004] that provides a basis for describing consumers’ requirements and
providers’ advertisements. The ontology enables consumers to define nonfunctional properties. Unfortu-
nately, Maximilien and Singh’s approach fails to take service composition into consideration. When services
are composed, the services underlying a composed service may not be shown externally to the consumers.
Service composition can be divided into many scenarios [Menascé 2004] and these scenarios can be nested.
This makes information about service qualities difficult to collect and evaluate. Consequently, service selec-
tion is more complicated with traditional approaches because the consumers may not even know with whom
they are interacting.

Contributions and Relevance to this Issue

An ideal trust-aware service selection approach should support the following operations.

—Selecting service instances to form suitable compositions based on the qualities desired.

—Rewarding and punishing underlying services in an appropriate manner so as to maintain the best informa-
tion as needed to support successful compositions.

This paper provides just such a trust-aware service selection approach. It presents a formal service selection
model in probabilistic terms and develops approaches applying which a consumer may monitor and explore
desired service compositions. This paper shows how our approach rewards and punishes the services involved
dynamically despite incomplete knowledge of the composition. An important contribution is that this paper
shows how to treat the relationships between some key service composition operators and different types of
service qualities in a systematic manner.

In this manner, this paper addresses the themes of adaptive service selection, from the standpoint of service
composition, which has largely been ignored in the literature.

2. RELATED WORK

Milanovic and Malek [2004] compare various modern web service composition approaches. They identify
four necessary requirements for service composition: connectivity, nonfunctional qualities, correctness, and
scalability. However, Milanovic and Malek’s definition of service qualities is not extensible. Our approach,
in contrast, is extensible, and can deal with a changing set of service qualities.

Menascé [2004] studies how qualities of service are aggregated in different service composition scenarios.
However, this approach requires the knowledge of the specific service composition under composition. For
example, service A invokes service B, which may invoke C and D with probability pc and pd, respectively.
This information is not always available because of two reasons. First, the providers have no incentive to
reveal such information. Second, modeling the invocation probabilities is not trivial. By contrast, our service
composition model makes no such assumptions. Our approach monitors and explores the desired services
dynamically.

Wu et al. [2007] model a consumer’s assessment of a service’s quality via a naı̈ve Bayes network, where
the root represents the overall capability of a service and a child represents the capability of a particular
quality of the service. Wu et al. apply a fuzzy representation to express the levels of the service capabilities.
Their approach enables consumers to estimate the overall quality assessment. In contrast, our approach uses
a Bayesian network to model service composition to evaluate each quality of a service separately. Then a
consumer can select services based on its preferences among the various qualities.
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Lin et al. [2008] select services according to the consensus of group preference order of various qualities.
Consumers express their preferences among the values of the qualities in fuzzy terms. Lin et al. use fuzzy
logic to resolve the conflicts between the subjective interpretations of service qualities from each consumer.
Then they aggregate different fuzzy views from both consumers and providers to reach a consensus of pre-
ferred order of quality metrics. Similar to Wu et al. [2007], Lin et al. enable consumers to consider more than
one quality in combination. Our approach treats each quality separately. Consumers express their subjective
preferences in terms of trust. Consumers may show different levels of trust to the same service because of
their subjective interpretations of quality metrics. Also, one can combine others’ subjective trust by inferring
it from their trustworthiness, which reflects the similarity of the subjectiveness.

Yue et al.’s work [2007] is the closest to ours. They propose a Bayesian network-based approach to
model the relationships between elementary services. Yue et al.’s approach constructs web service Bayesian
networks (WSBN) based on the invocations between the services. Then the service composition guidance can
be made from the Markov Blanket [Pearl 1988] of a given service. However, this approach fails to consider
the dynamism of service composition because the relationships are fixed. Our model captures the dynamism
by updating the Bayesian network, which will subsequently affect the trustworthiness of a service.

Liu [2005] views a service-oriented environment as an ecosystem. Via this analogy, Liu tries to explore the
trustworthy service selection and composition problem from three levels: (1) trust: atomic service (service
selection), (2) composition: composite service (service composition), and (3) emergent behavior: network
economy (organizational behaviors, consumer communities, business alliances, and trusted third parties). At
the trust level, Liu points out an ideal trust representation in a service-oriented environment should be (a)
flexible and adaptive to suit diversified needs of agents, and (b) exchangeable so agents can help each other.
Liu adopts XML Topic Maps for knowledge representation. Then she applies collaborative filtering to select
services based on their semantic similarity. At the composition level, Liu suggests using ant crawling for
consumers to discover semantically similar services and further classify those into clusters, thus generating a
new composition plan. Finally, at the emergent behavior level, the topology of the environment evolves based
on low-level interactions between agents. The connections in this topology is defined by a referral network.
A service survives only when it is needed by others. New services are born from composition plans. Useless
services are eliminated. Unfortunately, Liu does not implement or evaluate her ideas. However, we agree
with Liu on the hierarchical view of the trustworthy service selection and composition.

Paradesi et al. [2009] build a trust framework for web service compositions. They adopt the trust repre-
sentation from Wang and Singh [2007] and add operators for combining trust in different types of service
compositions including sequence, concurrent, conditional, and loops. In contrast, instead of service compo-
sitions, we study how quality is composed in these types of service compositions. Our experiments show our
approaches are general enough to deal with various types of quality composition.

3. TRUST-AWARE SERVICE SELECTION MODEL

We imagine trustworthy service-oriented computing as consisting of three important levels.

—Trust. At the trust level, consumers and atomic services discover and interact with each other. Trust is built
from those interactions. Also, trust information (referrals) is exchanged. Consumers and services require a
trust framework that can formalize, aggregate, combine, and update trust. Our previous work supports this
level [Wang and Singh 2006; 2007; Hang et al. 2008; 2009].

—Composition. At the composition level, atomic services are composed into composite services, which
can be further composed into composite services. A trust-aware service composition model is required
so that consumers can express trust information through relationships in the compositions; incorporate
unobserved underlying components; suggest better compositions based on past observations; and integrate
with the trust framework. This paper develops probabilistic solutions for this level.

—Community. After trust is built up at the trust and composition levels, new composite services are born and
3
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Fig. 1. Trustworthy service selection architecture

low reputation services are forgotten. Consumers prefer to interact with reputable services, and avoid those
with a poor reputation. As a result, the system evolves into communities where services interact highly
with each other. Besides, authorities—the dominating services in particular areas—are identified. At this
level, a good measurement (for example, entropy, as Liu [2005] suggests) is needed to determine if the
emergent behavior driven by the trust mechanism improves the overall performance. Although this paper
seeks to lay the groundwork for such communities, it defers specific study of communities to future work.

3.1 Overview

We represent trust based on the beta probability distribution [Evans et al. 2000], which can be integrated with
Wang and Singh’s model [2006; 2007]. Intuitively, the trustworthiness of a service should be estimated based
on both direct and indirect experience. Direct experience means the previous quality of service received from
the service, whereas indirect experience comes from referrals by peers. Some of our previous work addresses
how to model trust from indirect experience [Hang et al. 2009]. This is beyond our present scope.

Estimating trust from direct experience is not straightforward, because some services may not directly
expose details of their composition to their consumers. A consumer may interact with a composed service
without knowing about the services that underlie it. In such a case, evaluating the trustworthiness of a
service is no longer easy. For example, a consumer books an itinerary from a composed travel agent service,
which interacts with other underlying services like flight services, hotel services, and transportation services.
Suppose the consumer is not satisfied with the composed service because of its late response time. The
model should penalize the composed service, as well as some of the underlying ones. If the hotel service, for
instance, is reported to be the cause of an unsatisfactory quality value, the model should reflect the changes
in the way that consumers or other composed services would become reluctant to interact with it. Also, as the
amount of experience of the rater (as captured in the model) increases, the model should be able to suggest
superior compositions.

Each consumer maintains its own local model to guide itself to reward or penalize services based on its
direct interactions with them. Figure 1 shows our architecture. Several services exist in the computational
environment. In one scenario, a consumer maintains models of some or all of the available services. Using
this model, it selects some services and composes them into a composite service. Next, the consumer inter-
acts with and evaluates the composite service in terms of the outcomes with respect to the service qualities of
interest. Based on these outcomes, the consumer applies a learning method to update the model it is maintain-
ing for the services. In an alternative scenario, the consumer may not be responsible for composing services
and would simply select an atomic service or a composite service that another party has composed. In this
case, it would need to learn about the services with less information than in the first scenario. Our approach
handles both of these scenarios.

We now introduce our proposed approaches. Section 3.2 presents the Bayesian approach, which models
4



service compositions via Bayesian networks in partially observable settings. Bayesian approach captures
the dependency of providing good service between composite and underlying services. It also adaptively
updates trust to reflect most recent quality. Section 3.3 describes the Beta-Mixture approach. This approach
can learn not only the distribution of composite quality, but also the underlying services’ “responsibility” in
composite quality without actually observing the underlying performance. These two approaches provide
different information about services. Bayesian approach uses online learning to track the service behavior
over time. It also tells consumers how good service they can expect from composition when the underlying
services are good. Beta-mixture model learns the quality distribution of services and provides how much
each underlying service contributes in the composition.

3.2 Bayesian Approach

3.2.1 Bayesian Network-Based Graph Representation. The purpose of modeling service composition is
to model how a certain quality of a component service can affect the whole composition. For example, the
reliability of a composed travel service may be affected by the reliability of the underlying hotel and flight
services. If the underlying service is not reliable, the composed service is possibly not reliable either. Thus,
the composition model should be able not only to represent the relationships between services, but also to
capture the dependency between them. Of course, it may turn out that the qualities of underlying services do
not influence the composed service. For example, the reliability of the composed service may stay the same
no matter how a particular underlying service performs. In other words, the trustworthiness regarding the
reliability of the composed service would not correspond trivially to the trustworthiness of that underlying
service.

We introduce a Bayesian network-based service selection approach, which can construct models from the
incomplete observations (direct experience) of a consumer. Here, we emphasize incomplete observations
because not all qualities are observable from the consumers’ point of view. For simplicity, we normalize
the qualities to the real interval [0, 1]. Thus we represent an observation of a particular quality of a service
instance d at time t as a real number xt

d between 0 and 1. Some qualities, say, error, can be simply considered
as 1 (positive) or 0 (negative). We write an observation Dt of the whole composition at time t as Dt =
(xt

1, x
t
2, . . . , x

t
d), where d is the number of services in the composition.

A Bayesian network is a directed acyclic graph G = 〈V, R〉 with random variables V as nodes, and edges
R as the direct relationships between variables []. We denote atomic and composite services with uppercase
and lowercase, respectively. An edge from service a to B means B is composed of a. In Bayesian network
terminology, the source node of an edge is the parent of its target. Thus, a is B’s parent and B is a child of
a. Notice that this terminology is opposite to the typical service composition rendition as a figure where the
composite service would be a parent (or ancestor) of the constituent services. We use the Bayesian network
terminology in this paper.

Note that an edge can be only arise from either an atomic or a composite service to a composite service,
because atomic services cannot be composed. A conditional probability associated with each node represents
trust (a probability) of the node variable given its parent trust values. Let each node in the Bayesian network
equal trust, that is, the probability of obtaining a good outcome from the service corresponding to node. The
good outcome in this case depends on a specified quality. An edge represents the relationship of composition.
For example, in Figure 2, the composed hotel service H is composed of the Four Seasons hotel service f ,
that is, f is a parent of H . Then the trust of node H is the probability of obtaining a good outcome in terms
of a particular quality value from H , given f provides a good outcome. T , a travel service, is composed of
hotel service H and car rental service C, which is itself composed of the Enterprise Car Rental service e.

The Bayesian network models the relationships between services. The conditional probability table associ-
ated with each node provides consumers a basis for determining how much responsibility to assign a service
that underlies a service composition. Thus, the consumers can view the conditional probabilities as the level
of trust they place in the services in the composition. One can view trust as a probability, a real number
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from 0 to 1. For example, in Figure 2, trust of the consumer in service T has two parts. One part is the
conditional probability of obtaining a satisfactory quality value from T given obtaining a satisfactory quality
value from H . The other part is the conditional probability of obtaining a satisfactory quality value from T
given obtaining a satisfactory quality value from H . The overall trust placed in T is the marginal probability
P (T ) (that is, the probability of obtaining a satisfactory quality value from T ). P (T ) can be calculated by
marginalizing over all the parents of T . That is, we have

P (T ) = P (T |H = 0, C = 0)P (H = 0, C = 0) (1)
+P (T |H = 0, C = 1)P (H = 0, C = 1) (2)
+P (T |H = 1, C = 0)P (H = 1, C = 0) (3)
+P (T |H = 1, C = 1)P (H = 1, C = 1) (4)

The network can be constructed and trustworthiness of the various providers can be learned from the con-
sumers’ direct experience. Section 3.2.2 explains how trustworthiness as a real number from 0 to 1 can be
learned. Section 3.2.3 describes some drawbacks of this representation and introduces trust as a beta distri-
bution, which is our main trust representation in the proposed approach.

3.2.2 Parameter (Trust) Estimation. Given an acyclic Bayesian network graph G over d variables, x1,
x2, . . . , xd, the associated joint distribution is written as

P (x1, . . . , xd) =
d∏

i=1

P (xi|xpai) =
d∏

i=1

θi (5)

where θi is the conditional probability P (xi|xpai), and xpai is the set of parent variables of xi. Suppose
the consumer obtains n complete observations, D = {(xt

1, . . . , x
t
d), t = 1, . . . , n}. In a fully observable

environment, θi can be learned from the observed data by maximum likelihood estimation (MLE) [Buntine
1994].

In our model, each parameter θi represents trust—the conditional probability of obtaining a good outcome
from xi given obtaining a good outcome from each of the services in xpai . We assume that all variables xi

are pairwise independent and identically distributed (i.i.d.). θ is the set of all parameters θi. The likelihood
function is defined as the probability of the observations given the parameters. Following Bishop [2006], we
write this as:
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P (D|θ) =
n∏

t=1

P (xt
1, . . . , x

t
d|θ) (6)

=
n∏

t=1

d∏

i=1

θi (7)

=
d∏

i=1

∏
xi,xpai

θ
n(xi,xpai

)

i (8)

=
d∏

i=1

θmi
i (1− θi)li (9)

where n(xi, xpai
) is the number of observations that satisfy the variable assignment, mi = n(xi, xpai

), and
li = n(xpai)−mi. Then, given the observations, the parameters that maximize the likelihood are

θ̂i =
mi

mi + li
.

For example, let a consumer have 10 good outcomes out of 15 interactions with service xi, given that xpai

provides good services. Then we have, mi = n(xi = 1, xpai = 1) = 10 and li = n(xpai = 1) − mi =
15−10 = 5. The consumer can calculate that the estimated trust value θ̂i from these observations is 10

15 . That
is, using MLE, a consumer can estimate the trust value of a service from the consumer’s observations of it.

3.2.3 Bayesian Inference. Note that when the number of observations is small, MLE may yield over-
fitted results. Consider an extreme case where xt

i = 1 for t = 1, . . . , n. That is, all the observations are the
best possible. The parameter θ̂i maximizing the likelihood is n

n = 1, which is not reasonable. Thus, we use
Bayesian inference to treat this problem by introducing a beta distribution P (θi) over the parameter θi as a
conjugacy prior [Bishop 2006, chap. 2].

P (θi) =
Γ(αi + βi)
Γ(αi)Γ(βi)

θαi−1
i (1− θi)βi−1 (10)

Here αi and βi are hyperparameters controlling the distribution of the parameter θi, and Γ(x) =
∫∞
0

ux−1e−udu.
The coefficient Γ(αi+βi)

Γ(αi)Γ(βi)
in Equation 10 ensures

∫ 1

0
P (θi)dθi = 1. We simplify the coefficient to a function

B of the hyperparameters αi and βi, yielding,

P (θi) = B(αi, βi)θαi−1
i (1− θi)βi−1 (11)

The expected value or mean of θi is given by E(θi) = αi

αi+βi
. Bayesian inference uses observations to

update the prior. The parameters θi can be learned using Bayes’ rule.

P (θi|D) =
P (D|θi)P (θi)

P (D)
(12)

That is, the posterior distribution P (θi|D) is proportional to the multiplication of the prior P (θi) and the
likelihood function P (D|θi). Now we combine Equations 9, 11, and 12 to obtain

P (θi|D) = B(mi + αi, li + βi)θm+αi−1
i (1− θi)li+βi−1 (13)
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Note that the posterior distribution is also a beta distribution with hyperparameters mi + αi and li + βi.
Here we assume the values of xi are independent of θi, that is, P (D|θi) = θi. Then the predictive distribution
of xi given the observations D is defined by the mean of θi given the observations D. This enables consumers
to learn the parameters from the observations without the problems caused by MLE in some extreme cases.

P (xi|D) =
∫ 1

0

P (xi|θi)P (θi|D)dθi (14)

=
∫ 1

0

θiP (θi|D)dθi (15)

= E(θi|D) (16)

=
mi + αi

mi + αi + li + βi
(17)

Bayesian inference provides an intuitive way to update trust (a beta distribution) of a service. For example,
let a consumer’s current trust value of service xi be θi = (αi, βi) = (5, 5). Suppose the consumer observes
two new good outcomes and one bad outcome. The consumer can update the trust value by simply adding
the new observations to the previous value. That is, θ̂i = (α̂i, β̂i) = (7, 6). Then the consumer can predict
that the probability of obtaining a satisfactory quality value from the next interaction is 7

13 .
Additionally, to incorporate the dynamism of service behavior, a discount factor γ reduces the impact of

the old information when we calculate the posterior distribution. In other words, instead of Equation 17 we
have:

P (xi|D) =
mi + γαi

mi + γαi + li + γβi
. (18)

The notion of a discount factor is common in trust and reputation systems. The estimate reflects the overall
behavior if it is high; otherwise, the estimate depends more on the recent behavior. Hang et al. [2008] study
the effect of the discount factor on updating trust estimates. Section 4.2 shows how our approach keeps track
of dynamic service behavior in a service composition.

3.2.4 Dealing with Incomplete Data. Quite often in service-oriented settings, some variables may not be
observable, meaning that the data would be incomplete. In this case, we can use expectation maximization
(EM) to calculate optimal parameter estimation [Lauritzen 1995; Singh 1997].

The idea here is that, since some variables are not observable, we can consider the variables without data
as latent variables and calculate the expected values of those variables. Let Dobserved and Dmissing be the
observed and missing data, respectively. Then we can infer P (xt

i|Dobserved, θ
t
i), where xt

i ∈ Dmissing and θt
i

is the current parameter estimation using exact inference like variable elimination [Zhang and Poole 1996].
We can complete the counts (that is, mi and li) by P (xt

i|Dobserved, θ
t
i). This is called the E step of the EM

algorithm.
For example, suppose there is a travel service T , which is composed of an underlying hotel service h. If a

consumer observes that T has reliability 1 at time-step t (that is, xt
T = 1) but does not observe the reliability

of h at time t, then we can use the expected reliability of h, P (h = 1, T = 1), as the observation (that is,
xt

h = P (h = 1, T = 1)). The completed data, that is, (xt
T , xt

h) = (1, P (h = 1, T = 1)), can be used
as the observation in the M step to update the parameter estimates by Bayesian inference as described in
Section 3.2.3. The new parameter estimation of θt+1

i can be calculated by the posterior mean of θt
i . The E

and M steps are executed iteratively until the estimation converges [Dempster et al. 1977]. This EM process,
which can be viewed as a sequential (on-line) learning method, can be repeated whenever the consumer
makes new observations.
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Table I. An example observation derived from a consumer’s experience

t xt
f xt

e xt
H xt

C xt
T

1 1 1
2 (0.67) (0.61) 0
3 (0.67) 0 1 0 1

3.2.5 Extended Example. We can implement a sequential approach to construct and learn the service
composition model from observations. Taking the scenario of Figure 2 as an example, Table I shows the
incomplete observations from a consumer in terms of its response time. In the first observation, the consumer
interacts with the hotel service H and obtains a satisfactory response time. The consumer is also aware of the
existing underlying Four Seasons hotel service f and its good response time. In the second observation, the
consumer interacts with the car rental service C but with a bad response time. Here the consumer is not aware
of any underlying services. In the third observation, the consumer directly interacts with the travel service T
with a positive experience. Here the consumer also realizes the presence of the two underlying services H
and C. T reports service H as offering good outcomes and service C as offering bad outcomes. Service C
further reports its bad response time as having been caused by its underlying Enterprise service e.

Table II shows the parameters estimation using Bayesian inference. The parameters are represented as
a pair of hyperparameters αi, βi of the corresponding beta distribution. The numbers in the parentheses in
Table I are the inferred counts to complete the missing data in the E step. For example, n(x2

f = 1) =

E(θ1
f ) =

α1
f

α1
f
+β1

f

= 0.67. Then we can infer n(x2
H = 1) as follows.

n(x2
H = 1) = n(x2

H = 1|x2
f = 1) + n(x2

H = 1|x2
f = 0)

= P (x2
H = 1|x2

f = 1)P (x2
f = 1) + P (x2

H = 1|x2
f = 0)P (x2

f = 0)
= 0.5× 0.33 + 0.67× 0.67 = 0.61

Subsequently, we use the completed data to update the parameter estimation. For example, the new esti-
mation θ2

H (including θ2
H|f=0 and θ2

H|f=1) is given by

(α2
H|f=1, β

2
H|f=1)

= (α1
H|f=1 + n(x2

H = 1, x2
f = 1), β1

H|f=1 + n(x2
H = 0, x2

f = 1))

= (2 + P (x2
H = 1|x2

f = 1)× x2
f , 1 + P (x2

H = 0|x2
f = 1)× x2

f )
= (2.44, 1.22)

(α2
H|f=0, β

2
H|f=0)

= (α1
H|f=0 + n(x2

H = 1, x2
f = 0), β1

H|f=0 + n(x2
H = 0, x2

f = 0))

= (1 + P (x2
H = 1|x2

f = 0)× (1− x2
f ), 1 + P (x2

H = 0|x2
f = 0)× (1− x2

f ))
= (1.17, 1.17)

Note that some parameters may not exist until a particular observation because the consumer may not
be aware of the corresponding random variables. For example, service C is not reported until the second
observation. Further the conditional dependencies may change because some underlying services may be
observed later. For example, θ1

C|e=0 actually means θ1
C in the first observation because service e is not

reported. However, θ2
C changes to θ2

C|e=0 and θ2
C|e=1 is initialized because service e and the dependency on

service C are discovered in the third observation. In these cases, the Bayesian network is updated at the same
9



Table II. Parameter estimation based on the observations of Table I

t θt
f θt

e θt
H|f=0

θt
H|f=1

θt
C|e=0

θt
C|e=1

0 (1,1) (1,1) (1,1)
1 (2,1) (1,1) (2,1) (1,1)
2 (2.67,1.33) (1,1) (1.17,1.17) (2.44,1.22) (1,2) (1,2)
3 (3.33,1.67) (1,2) (1.5,1.17) (3.11,1.22) (1,3) (1,2)

time to reflect the new discovery.

3.3 Beta-Mixture Approach

3.3.1 Finite Mixture Models. Finite mixture models are powerful statistical probabilistic tools for mod-
eling complex data [McLachlan and Peel 2000]. They have been widely used in machine learning, bioinfor-
matics, computer vision, and pattern recognition domains. One of the most popular mixtures for continuous
data is the Gaussian mixture.

In general, finite mixture models can be viewed as the superposition of multiple probability density com-
ponents. Suppose there are component distributions. Then the finite mixture model can be formulated as

p(D) =
K∑

k=1

πkpk(D|θk), (19)

where D = {x1, . . . , xN} are the observations, pk is the kth component distribution with parameter θk, and
πk is the mixing coefficient. Mixing coefficients, which are also probabilities, control the portion of each
component in the linear combination of the whole mixture, that is,

∑K
k=1 πk = 1 and 0 ≤ πk ≤ 1.

The mixture distribution is governed by π and Θ. These parameters can be estimated by maximizing the
log likelihood function using the EM algorithm

L(Θ) = ln p(D|πΘ) =
N∑

i=1

ln

{
K∑

k=1

πkp(xi|θk)

}
. (20)

Define binary latent random variable zk as the indicator of if an observation is from component k, where only
one particular zk = 1 while others are zero. Thus, p(zk = 1) = πk, p(z) =

∏K
k=1 πzk

k , and p(D|zk = 1) =
pk(D|θk). Then the distribution can be rewritten as

p(D) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkpk(D|θk) (21)

The E step first uses current parameters Θold to compute the posterior distribution p(z|D, Θold). Then it uses
the posterior distribution to calculate the expectation of the log likelihood function as

Q(Θ, Θold) = EΘold(L|D) =
∑

z

p(z|D, Θold) ln p(D, z|Θ). (22)

In the M step, the expectation is maximized to determine the new parameter Θnew = arg maxΘ Q(Θ, Θold).
Then the log likelihood with new parameters is checked for convergence; otherwise repeat E and M steps.

3.3.2 Beta-Mixture Model. Although our observations (that is, trust values) are continuous, instead of
Gaussian mixture, we use beta-mixture model [Bouguila et al. 2006] for two reasons. First, our trust values
lie between 0 and 1. The beta distribution is designed for the distribution in a certain interval. Second, the
beta distribution can be integrated with our trust framework, which is also based on beta distribution.

10
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Fig. 3. Composition operator f defines how quality is composed in a composition

Quality Sequence Flow Case

Latency SUM MAX SWITCH

Throughput MIN SUM SWITCH

Failure PRODUCT PRODUCT SWITCH

Table III. Composition operator examples of different qualities and their interaction types

For each composition, we use a beta mixture to model the trust distribution. The number of components is
the number of the direct underlying services in the composition. Each component is a beta distribution.

4. EXPERIMENTAL EVALUATION

To simulate different types of compositions, we consider composition operators as commonly defined in
leading business process and scientific workflow approaches. Specifically, we consider the Web Services
Business Process Execution Language (WS-BPEL) [BPEL 2007]. WS-BPEL defines three types of interac-
tions between web services, including sequence, case, and flow (which executes the constituents in parallel).
Let a composition operator be denoted by a function f . That is, xS = f(xsi) means that S is a composite
service and si are its (direct) children. For example, xC = f(xa, xb) is a composition operator of a service
C, which is composed of service a and b, as shown in Figure 3. A composition operator specifies how quality
is composed in a composition. Depending on the type of interactions and quality, composition operators can
be defined differently.

Table III show some examples how some quality metrics are composed in these types of interactions. Let
us briefly discuss five composition operators:

—SWITCH chooses exactly one among all children. The SWITCH operator simulates the composite quality
inherits from one of children. SWITCH chooses a child based on a predefined multinomial distribution.
This corresponds broadly to the case interaction type.

—MAX composes quality by inheriting from the child with the highest quality value. This relates to latency
for flow.

—MIN composes quality by inheriting from the child with the lowest quality. This relates to response time
for flow.

—SUM yields the composite quality value as the sum of the quality values obtained from all children. This
relates to response time for flow.

—PRODUCT yields the composite quality value as the product of the quality values obtained from all children.
This relates to failure (which we can think of as the inverse of availability) for flow.

Note that our approach is not limited to the above operators.
11



Fig. 4. Trust estimation of composite service C for the SWITCH operator

In following experiments, we consider a basic scenario as shown in Figure 3, where f can be SWITCH,
MAX, MIN, SUM, or PRODUCT. In each experiment, the underlying services a and b are first initialized to
separate beta distributions. At each time-step, the quality values of a and b are sampled based on these
distributions. Then the composite quality is calculated by the composition operator f .

4.1 Bayesian Approach Evaluation

To evaluate our Bayesian approach, we follow the setting described in Section 4 and initialize the hyper-
parameters (α, β) of the underlying services a and b as (10, 5) and (2, 8), respectively. (Table I shows an
example observation.) Service a on average offers better quality than service b. For the SWITCH operator, the
probabilities of choosing service a and b are 0.8 and 0.2, respectively. There are total 100 observations. The
Bayesian approach goes through the partial observations in order and learns the quality and dependencies of
all services online.

4.1.1 Comparison: Naı̈ve Approach. We introduce a naı̈ve approach for comparison. The naı̈ve approach
is the same as the Bayesian approach except that it does not use EM algorithm. Consequently, it lacks the
ability of dealing with missing observations. With the naı̈ve approach, the (conditional) trustworthiness
cannot be learned if quality is not observed. Although the composite quality is always observable, the naı̈ve
approach still fails to learn it because the composite trust is marginalized from conditional trust. We show
how the naı̈ve approach suffers with missing observations.

4.1.2 Experimental Results. Figure 4 shows that the Bayesian approach outperforms the naı̈ve approach
for the SWITCH operator. The Bayesian approach estimates the trustworthiness well regardless of the amount
of missing observations. In contrast, the accuracy of the naı̈ve approach, which is low for 40% missing
observations and quite low for 80% missing observations. Similar results are shown in Figure 5 and 6 for
conditional trust. Figure 7 shows the average errors of the observations for all composition operators with
40% and 80% missing observations using the Bayesian and naı̈ve approaches.

Now we evaluate how the Bayesian approach identifies the underlying services’ influence on the composi-
tion based on conditional trust. In order to highlight the difference, we choose different hyperparameters of

12



Fig. 5. Conditional trust estimation of composite service C and good service a for the SWITCH operator

Fig. 6. Conditional trust estimation of composite service C and bad service b for the SWITCH operator
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Fig. 7. Prediction errors of Bayesian and Naı̈ve approach with 80% missing data for all composition operators

Fig. 8. Conditional trust in composite service C for the MAX operator

services a and b than in the above; specifically, we a’s hyperparameters to (10, 10) and b’s to (6, 8). Figure 8
compares the conditional trust in C given a and b with overall trust in C for the MAX operator. In 77% of
the observations, service a yields better performance than service b. In other words, in the MAX composition,
77% of the composite quality comes from service a. The conditional trust in C given a means if service a
performs well, what the probability of service C performs well is. We know when a performs well, the MAX
operator tends to select a more. Therefore, the conditional trust in C given a is much higher than overall trust
in C. In contrast, since the MAX operator mostly selects a, the conditional trust in C given b is extremely
close to the overall trust in C. However, those 23% observations that come from b make the conditional trust
in C given b higher than overall trust in C.

As we would expect, the MIN operator selects b 77% of the time. As Figure 9 shows, the conditional trust
14



Fig. 9. Conditional trust in composite service C for the MIN operator

placed in C given b is much higher than the conditional trust in C given a and the overall trust in C. The
conditional trust in C given a is slightly higher than overall trust in C because of those 23% observations
from a.

4.2 Dealing with Dynamic Behavior

This experiment examines the Bayesian approach’s ability of tracking the dynamic behavior of services. We
introduce two dynamic behavior profiles:

—The random walk profile models the general predictable behavior of a service. The random walk service
changes behavior every period. Its current behavior xt depends on the previous behavior xt−1, and is
defined as xt = xt−1 + ψU(−1, 1), where ψ is a real number between 0 and 1, and U(−1, 1) represents
the uniform distribution from −1 to 1. In our setting, the random walk service changes behavior every ten
time-steps, and ψ = 0.8.

—The cheating profile models a service that turns bad once its reputation is built. Its behavior is defined as
xt = 1 when t ≤ d/2, and xt = 0 otherwise, where d is the total number of observations. We set the
discount factor γ = 0.6. The total number of observations is 100.

We follow the setting from Section 4 but replace underlying service b with a random-walk service. Fig-
ure 10 shows how our trust values predict the actual behavior of the random walk service with 0%, 20%, and
40% missing data. The result shows that our approach captures the dynamism of the random walk service,
although the missing data does slow down the convergence noticeably. Figure 11 shows a similar result of
tracking a cheating service.

4.2.1 Summary of Bayesian Approach. The above experiments show our Bayesian approach can (1)
model the relationships of the service composition; (2) distinguish the good and bad services in partial ob-
servable setting; and (3) extract the conditional probabilities in the relationships. In the second simulation,
our approach tracks the random walk and cheating underlying services adaptively.

15



Fig. 10. Trust in a random-walk underlying service

Fig. 11. Trust in a cheating underlying service
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Actual FCM-MM Beta-Mixture
α β π α β π α β π

SWITCH 20 20 .45 17.46 18.31 .52 19.87 20.37 .5
2 9 .55 3.24 19.36 .48 2.39 13.46 .5

(K-S test) .90 .99 .99

SUM 20 20 16.42 5.59 .41 17.33 6.22 .31
1 6 42.04 32.08 .59 44.49 29.63 .69

(K-S test) N/A .31 .40

PRODUCT 20 20 10.43 65.45 .64 10.43 65.45 .43
5 9 15.44 45.91 .36 12.50 48.85 .57

(K-S test) N/A .25 .65

MIN 3 4 5.82 15.32 .54 4.42 6.52 .96
5 4 17.01 15.28 .46 5.38 69.52 .04

(K-S test) N/A .54 .97

MAX 3 4 13.47 18.29 .39 107.09 295.96 .06
4 4 28.47 15.05 .61 9.98 7.13 .94

(K-S test) N/A .61 .91

Table IV. Actual and estimated parameters by FCM-MM and Beta-Mixture, and their K-S test goodness-of-fit measurements

4.3 Beta-Mixture Approach Evaluation

Following the setting described in Section 4, we apply our beta-mixture approach to model the composite
distribution with different types of composition operators. The number of mixture components is known
to be two because C has two direct children a and b. For each experiment we sample 100 observations.
Note that in this experiment, the quality of the underlying services a and b is totally unobservable. The only
information from which the beta-mixture approach can learn is the composite quality.

4.3.1 Comparison: FCM-MM Approach. To enable comparison, we introduce the FCM-MM approach.
This approach uses Fuzzy C-Means Clustering (or FCM) [Bezdek 1981] to partition the observations into
two clusters. The portion of each cluster is calculated as our π. Then the Method of Moments (MM) [Fielitz
and Myers 1975] is adopted to estimate the beta parameters α and β of each component based on clustered
observations.

4.3.2 Evaluation Measurement. Here we introduce Kolmogorov-Smirnov test (or K-S test) for goodness-
of-fit measurement. If the p-value from K-S test is higher, the distribution explains the data better. In general,
a p-value higher than 0.05 is considered a good fit. Figure 12 shows the comparison of our beta-mixture
approach and the FCM-MM approach.

4.3.3 Experimental Results. Table IV summarizes the results for all composition operators using the
beta-mixture and FCM-MM approaches. Figure 13, 14, 15, 16, and 17 show the actual quality histogram and
the learned distribution for the SWITCH, SUM, PRODUCT, MIN, and MAX composition operators, respectively.

Since the SWITCH operator follows the setting of a mixture model (that is, each observation comes from one
of the components with a probability), the beta-mixture approach performs quite well in this case, yielding a
p-value close to one. The parameters of each component distribution and the mixing coefficients are estimated
accurately.

For SUM and PRODUCT composition, the beta-mixture approach approximates the composite distribution
fairly well with solid p-values, but yields inaccurate parameter estimation of the underlying components. Note
that the observation histograms from the SUM and PRODUCT operators in Figure 14 and 15 tend to follow a
unimodal distribution, that is, one only one maximum. In this case, it is harder to estimate the parameters
from each component. However, if the quality from the underlying services can be partially observed, the
accuracy of the component parameters can be improved. This is left as future work.

The MIN and MAX operators are similar to the SWITCH operator in the sense that the composite quality
17



Fig. 12. Kolmogorov-Smirnov test comparison for FCM-MM and Beta-Mixture
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Fig. 13. Estimated beta mixture and actual distribution and samples of trust in quality for a SWITCH composition

inherits from one of the components, except that the mixing coefficients are unknown. The p-values show
the beta-mixture approach is still highly promising in estimating the composite quality distribution. Note
that, different from the SWITCH operator, the MIN and MAX operators tend to yield a dominant component,
whose corresponding distribution has highest or lowest means. In this case, the mixing coefficient of that
component is close to one, making the remainder of the mixing coefficients extremely small. In other words,
the distributions of these weaker components are not learned well because of the lack of evidence. For
example, in Table IV, the second component in the MIN case and the first component in the MAX case are
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Fig. 14. Estimated beta mixture and actual distribution of trust in quality for a SUM composition
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Fig. 15. Estimated beta mixture and actual distribution of trust in quality for a PRODUCT composition
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Fig. 16. Estimated beta mixture and actual distribution of trust in quality for a MIN composition
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Fig. 17. Estimated beta mixture and actual distribution of trust in quality for a MAX composition
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dominated. Their corresponding α and β are not accurate. However, the beta-mixture approach can still
distinguish the strong components from weak ones by estimated mixing coefficients. This enables us to know
which of the underlying services are better than others.

4.3.4 Summary of the Beta-Mixture Approach. Our experiments show the beta-mixture approach pro-
vides a powerful way to estimate the quality distribution of composite services without knowing the under-
lying quality. It also accurately estimates the “responsibilities” of each underlying service in contributing the
overall composite quality. However, sometimes the beta-mixture approach has two drawbacks when learning
the parameters of the underlying services. First, when the composite distribution is unimodal, it is difficult
to learn the component distributions. The accuracy in this case may be improved if the observations of the
underlying services are partially observable. Second, the underlying services that are rarely contributing are
difficult to learn because of lack of evidence, but the beta-mixture can correctly identify those services.

5. CONCLUSIONS AND FUTURE WORK

This paper presents two probabilistic approaches for trust-aware service selection that accommodates service
composition. The approaches capture the relationships between the qualities offered by a composite service
and the qualities offered by it constituent services. The trust information can be integrated with our previ-
ous trust model; is learned sequentially from the directed observations; and further combined with indirect
evidence in terms of service qualities. Our approaches can deal with incomplete observations, arising from
the fact that the services underlying a composed service may not be observable. Each consumer maintains
its own knowledge of the environment locally and monitors the quality metrics of the parties with whom it is
interacting. Our model rewards services with good quality values and punishes those with bad quality values.
This paper shows how to model the relationship between service qualities and important service composition
operators.

Our approach is able to accommodate a variety of service composition operators in a uniform manner,
thus covering the situations that arise in scientific and business applications. Our neutral with respect to the
specific qualities considered as long as they can be measured. In particular, it would apply to subjective
qualities such as the quality of user experience or system-level qualities such as privacy preservation of user
data. We would define the appropriate mixtures for the composition operators with respect to such qualities,
and then our approach would apply equally well.

This work suggests important directions for future work. In particular, we expect to study situations where
the inherent nature of the composition operators in consideration has the effect of hiding or diminishing
the information about the constituent services. Section 4.3.3 discusses this situation. We will address this
challenge by considering multiple service compositions, each potentially involving different but overlapping
sets of constituent services, thereby acquiring further information about additional constituent services, even
if they cannot be readily observed directly.

Another direction of interest is to apply Structural EM [Friedman 1998] instead of parameter estimation,
which would learn not only the trust information but also the graph structure. The learned structure can be
used as a basis for suggesting new service compositions.

A third direction of interest is to expand the above methods to deal with situations where the consumers
participate in a social network wherein they may exchange referrals and ratings about services. This indirect
evidence can be aggregated with the trust information, thus helping consumers discover strangers and identify
desired services more quickly than otherwise.
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