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ABSTRACT 
A fault-tracking (bug-tracking) system such as Bugzilla contains 
fault reports (FRs) collected from various sources such as 
development teams, test teams, and end-users.  Software or 
security engineers manually analyze the FRs to label the subset of 
FRs that are security fault reports (SFRs), which indicate a 
security problem.  These SFRs generally deserve higher priority 
in fault fixing than the not-security fault reports (NSFRs).  
However, this manual process is time consuming and error-prone 
(e.g. mislabeling an SFR as an NSFR).  To address these 
important issues, we developed a new approach that applies text 
mining natural-language descriptions of FRs to train a statistical 
model on already manually-labeled FRs to identify unlabeled 
SFRs or SFRs that are manually-mislabeled as NSFRs.  A 
security team can use the model to automate the classification of 
FRs for large fault databases to reduce the time that they spend on 
searching for SFRs.  We evaluated the model's predictions on a 
large Cisco software system with over ten million source lines of 
code.  Among a sample of FRs that Cisco software engineers 
manually labeled as NSFRs, our model successfully classified a 
high percentage (78%) of the SFRs as verified by a Cisco security 
team, and predicted their classification as SFRs with a probability 
of at least 0.98.  Our results also indicate that a high percentage 
(77%) of the SFRs identified by our model is associated with 
software components that a code-level statistical model predicted 
to be attack-prone.  Such findings provided valuable insights for 
calling for a future combined approach that exploits both textual 
information of FRs and code-level information of their associated 
software components. 

1. INTRODUCTION 
Software organizations use fault-tracking systems (FTSs) such as 
Bugzilla1 to manage fault reports (FRs) collected from various 
sources including development teams, test teams, and end-users.  
In an FTS, some FRs are security fault reports (SFRs), whose 
associated faults are found to be security problems.  SFRs 
generally deserve higher fix priority than not-security fault reports 
(NSFRs), the subset of FRs that are not believed to have a 
security impact.  Identifying SFRs in an FTS is an important task 
in security practice. However, manually identifying SFRs (often 
conducted by software engineers) is not only time-consuming but 
also error-prone (e.g., mislabeling an SFR as NSFR).  Mislabeling 
SFRs as NSFRs (even to a small extent) can seriously threaten the 
security assurance of the software, and failure to identify and fix 
security faults can cause serious damage to software-system 
stakeholders.  For example, an attack on vulnerable credit card 

data on T.J. Maxx software is estimated1 to cost the company 
$4.5 billion. 

Software engineers with a general reliability background may 
realize that some of the FRs in the FTS associated with their 
software are SFRs, and correctly label them as SFRs.  However, 
they may not recognize the security impact for all the SFRs in the 
FTS and thus mislabel them as NSFRs.  As a consequence, 
security faults can escape into the field in at least three ways. 
First, if software engineers perceive a subtle security fault 
described in an FR as an innocuous not-security fault, then they 
may assign a low priority to the FR or may not submit the FR to a 
security team for a review.  Second, some security faults 
described in FRs are associated with recommended mitigations 
that may be unknown to software engineers.  For example, if a 
SQL parser throws an exception due to input containing a single 
quote, then a software engineer may filter the input for single 
quotes.  However, attackers can write crafty exploits to 
circumvent such filters [2].  A security engineer would realize that 
single quotes can be used in SQL injection attacks and advise that 
the software engineer limit privileges on a database server and use 
prepared statements that bind variables as advised by Howard et 
al. [12].  Third, general reliability problems can also be security 
problems [22].  For example, a fault that causes a system to crash 
can also be a denial-of-service security fault if exploited by an 
attacker.  
Indeed,2a company can designate security engineers from a 
security team to manually identify SFRs from an FTS (instead of 
designating software engineers to do so) or designate security 
engineers to double check the NSFRs manually-labeled by 
software engineers. Doing so can alleviate some of the preceding 
factors to some extent but still cannot eradicate these factors, 
which are mostly due to human nature. In addition, the large 
number of FRs in an FTS precludes security engineers from 
double checking all NSFRs to determine if any SFRs are 
mislabeled as NSFRs.  In summary, there remains a strong need 
of effective tool support for reducing both human efforts and 
human mistakes in this process of identifying SFRs in an FTS. 
With such effective tool support, the security team can elevate the 
priority of each identified SFR and ensure that the described 
security fault receives appropriate fortification efforts, and get 
fixed timely, thus improving the security assurance of the 
software. 
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http://www.informationweek.com/news/security/showArticle.jhtml?artic
leID=199203277 

2 http://www.bugzilla.org/ 



In this paper, we propose a new tool-supported approach that 
applies text mining on natural-language descriptions of FRs to 
learn a statistical model to classify3 an FR as either an SFR or an 
NSFR.  Although FR submitters may not recognize that the fault 
they are describing is a security fault, the natural-language 
description of the fault in the FR may be adequate to indicate that 
the fault is security-related and thus the FR is an SFR.  For 
example, a FR (that is a SFR) may have the following natural-
language description:  

“An attacker can exploit a buffer overflow vulnerability by 
sending excessive input to the username input field.”   

But if FRs submitter do not realize that the fault is an exploitable 
buffer overflow, then they may instead write the following text in 
the FR:  

“The system crashes when receiving excessive input in the 
username input field.”   

While this second description does not have security-related 
verbiage, the FR submitters’ use of the keywords “crash” 
“excessive”, and “input” can provide valuable and sufficient 
language context to indicate that the FR is an SFR, so that the 
security team can timely review the FR and ensure that the 
described security fault is fortified.   

To identify SFRs by exploiting valuable natural-language 
information in FRs, we propose an approach that learns a natural-
language statistical model for classifying an FR as either an SFR 
or NSFR.  We implement our approach based on an industrial text 
mining tool called SAS Text Miner4. We evaluated our model on 
a large Cisco software system that contains over ten million 
source lines of code (SLOC).  We trained our model on four years 
of Cisco SFRs and then applied the model on FRs that were 
labeled as NSFRs by Cisco software engineers.  We also applied 
the model on FRs from three additional large Cisco software 
systems, two of which each consist of over five million SLOC, 
and one of which consists of over 10 million SLOC. 

Combining two different predictive models using different 
sources of information can improve the predictive performance 
over a single model [24].  The predictive model proposed in our 
previous work [9] predicts whether a software component is 
attack-prone based on the following information that is available 
early in the software life cycle: software metrics including code 
churn (added and changed SLOC) and warnings produced by a 
static analysis tool.  We applied our natural-language model on 
FRs associated with attack-prone components to determine 
whether SFRs are more likely to be associated with components 
predicted to be attack-prone. Such empirical findings can shed 
light on whether it is worthwhile of pursuing a future approach 
that exploits both textual information of FRs and code-level 
information of their associated software components. 

In summary, this paper makes the following main contributions: 

• The first approach that learns a natural-language model to 
automate the prediction of SFRs.  We also show how our 

                                                                 
3 We reserve labeling for manually identifying FRs as SFRs or NSFRs and 

classifying for model-based identification of SFRs and NSFRs. 
4 http://www.sas.com/technologies/analytics/datamining/textminer/ 

model can be trained and refined to increase the 
effectiveness of identifying SFRs mislabeled as NSFRs.   

• An extensive empirical evaluation of the proposed approach 
on four large Cisco software systems.  Two systems each 
consist of over five million SLOC and the other two systems 
each consist of over ten million SLOC.  Our results indicate 
that our model can identify seven times more SFRs from an 
FTS of one system than randomly selecting FRs from the 
FTS.  Among a sample of FRs that Cisco software engineers 
originally labeled as NSFRs, our model successfully 
identified a high percentage (78%) of the SFRs as verified by 
a Cisco security team, and predicted their classification as 
SFRs with a probability of at least 0.98. 

• The first exploratory empirical study of correlating the 
results of a code-level predictive model for predicting attack-
prone components and our model for predicting SFRs.  Our 
results also indicate that a high percentage (77%) of the 
SFRs identified by our model is associated with software 
components that a code-level statistical model predicted to 
be attack-prone. Such findings provided valuable insights for 
calling for a future combined approach that exploits both 
textual information of FRs and code-level information of 
their associated software components. 

The rest of this paper is organized as follows.  Section 2 provides 
background.  Sections 3 and 4 detail our approach and case study 
setup.  Section 5 presents the results. Section 6 provides a 
discussion of the results. Section 7 provides related work.  Section 
8 discusses the threats to validity, and Section 9 concludes. 

2. TEXT-MINING OVERVIEW 
Information retrieval (IR) is the discipline of retrieving 
information, via a query, in unstructured data, especially in 
textual documents such as an FR as we investigate in this study 
[11].  Text mining is a type of natural-language processing that 
parses terms (i.e., words and phrases) from a document to create a 
term-by-document frequency matrix.  Table 1 shows a simple, 
hypothetical term-by-document matrix.  A document is 
represented by a vector (column) in the matrix that contains the 
number of times each of the different terms occurs in the 
document.  The matrix provides a quantitative representation of 
the document that can be used for predictive modeling.  The 
models that use such matrices to represent documents are called 
vector space models, and are commonly used for IR [17]. 

Table 1.  A term-by-document frequency matrix. 
Term Document 1 Document 2 Document 3 

Attack 1 0 1 
Vulnerability 1 0 0 
Buffer overflow 3 0 0 

The investigator performing a textual analysis can decide what 
terms to enter into the matrix by creating a pre-defined list of 
terms.  A start list contains terms that are most likely to be 
associated with the documents targeted in a search.  If the terms in 
a document match those in the start list, then those terms are 
entered into the matrix.  A stop list contains terms such as articles, 
prepositions, and conjunctions that are not used in the analysis.  If 
terms in the stop list match those in a document, then those terms 
are not entered into the matrix.  The synonym list contains terms 
with the same meanings (e.g., “buffer overflow” and “buffer 



overrun” have the same meaning).  Terms in a synonym list are 
treated equivalently in a textual analysis.  Therefore, a less-used 
term that is associated with SFRs may be given more weight in 
the predictive model if the term is synonymous with a term that is 
often used with SFRs.     

Weighting functions can be assigned to the terms and their 
frequencies in each vector.  The total weight of a term is 
determined by the frequency weight and the term weight.  We use 
the log frequency weight function to lessen the effect of a single 
term being repeated often in each FR.  The formula for 
calculating the frequency weight of a term with the log function is 
given in Formula 1, where i  represents the term, j represents the 
document, and a represents the frequency of the entry in the term-
by-document matrix [21]. 

                                                        (1) 2 ijL log (a 1ij = )+
We use the entropy term weight function to apply higher weights 
to terms that occur infrequently in the FRs [21].  The formula for 
calculating the term weight of a term with the entropy function is 
given in Formula 2, where n represents the number of documents 
under analysis and pij represents the frequency of term i in 
document j divided by the number of times that term i appears in 
the entire document collection [21]. 
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A statistical model can then estimate the probability that a 
document belongs in a given category based on the weighted 
values in the vector.  In SAS, four statistical approaches are 
available for classifying documents: decision trees, regression, 
neural network, and memory-based reasoning.  Classification is a 
form of prediction [21].  In the context of natural-language 
processing, the classification involves classifying documents into 
predefined categories with a pre-classified training set [21].   

3. APPROACH 
Our approach consists of three main steps.  The first step is to 
obtain a labeled FR data set that contains textual descriptions of 
faults and labels to indicate whether an FR is an SFR or an NSFR.  
The labeled FR data set is required for building and evaluating 
our natural-language predictive model.  The second step is to 
create three configuration files that are used in textual analyses: a 
start list, a stop list, and a synonym list.  The third step is to train, 
validate, and test the predictive model that estimates the 
probability that an FR is an SFR. 

3.1 Textual-Data Preparation 
The textual-data step (Step 1 in Figure 1) prepares labeled data for 
building and evaluating our natural-language predictive model. 
This step includes three sub-steps. First, from an FTS, we obtain 
FRs that were submitted by stakeholders including development 
team, test teams, and end-users.  Second, we distinguish between 
SFRs and NSFRs among the obtained FRs.  In some commercial 
software organizations, an FR contains a label field that indicates 
whether the FR is an SFR. A query on this field in the FTS causes 
all known SFRs to be returned.  If the field is not present in the 
FTS or an insufficient number of FRs are labeled, then manual 
effort from software or security engineers is needed to label a 
subset of all of FRs as SFRs or NSFRs. In the end, we use labeled 
FRs to build and evaluate our natural-language predictive model. 

Finally, using a built-in function in SAS, we enumerate all the 
terms in the labeled SFRs and NSFRs.  These terms are necessary 
for the next step where we construct configuration files. 
Generally, the more labeled data used for building the predictive 
model, the more accurate the predictive model is.  According to 
SAS [21], the minimum count of documents required for natural-
language modeling is 100.   

3.2 Configuration-File Preparation 
After we obtain the terms from the FRs, we select terms from 
them to prepare the start, stop, and synonym lists (Step 2 in 
Figure 1).  To the start list, we manually add terms such as 
“vulnerability” and “attack” from SFRs.  We also include terms 
(from SFRs) that are not explicitly security-related, but can 
indicate a security problem.  For example, “crash” and 
“excessive” are also candidates for inclusion in the start list.   

To the stop list, we add prepositions, articles, and conjunctions 
since they likely have little benefit for indicating a security fault.  
We also include terms from the NSFRs in the stop list.  Terms 
such as “upgrade” and “requirement” may be less likely to be 
associated with security faults.  Stop lists are a standard form for 
information retrieval [4], and have been successfully used with 
natural-language modeling [3].  However, both stop lists and start 
lists are acceptable for information retrieval [21].  SAS Text 
Miner allows either a start list or stop list to be used in the 
analysis, but not both.  In our approach, we tried each type, and 
experienced similar prediction results.   

To the synonym list, we add synonyms based on examinations of 
the enumerated terms from SFRs and NSFRs.  FR submitters may 
use security-related verbiage such as “buffer overflow” or “buffer 
overrun” to describe the same fault.  By including such terms in 
the synonym list, the predictive model can identify different terms 
in the same context to reflect the same type of faults.  

We next use SAS Text Miner to generate a term-by-document 
frequency matrix from the terms in FRs based on the start, stop, 
and synonym lists.  The matrix is a quantified format of the 
natural language descriptions in the FRs.  If we include a large 
number of FRs in the analysis, the term-by-document frequency 
matrix can become large.  A large matrix can hinder the 
predictive modeling in text mining analysis [7].  We reduce the 
size of the matrix by choosing the singular value decomposition 
(SVD) option in SAS.  SVD determines the best least squares fit 
to the weighted frequency matrix, based on a preset number of 
terms, k [21].  High (30-200) values of k are useful for prediction 
whereas small (2 to 50) values of k are more effective for 
clustering similar documents [21]. We use 200 for the value of k 
for our analyses, which are for prediction instead of clustering.  

3.3 Predictive Modeling 
Next, we use the term-by-document matrix as the independent 
variable (i.e., the input variable) in our predictive model.  The 
dependent variable (i.e., the value that we are trying to predict) is 
the label (SFR or NSFR) of an FR.  We apply SAS Text Miner to 
construct a trained model based on the term-by-document matrix. 
The recall and precision of the trained model enable us to judge 
whether we need to reassess the content of the configuration files 
or the value of k for SVD.  If the results are satisfactory, then the 
trained model is usable and we can feed a new FR data set (e.g., 
FRs without labels) to the model for predicting their labels.  



 
Figure 1. Summary of approach.

We next describe the training, validation, and test data sets used 
for training the model, the application of our trained model on 
new FRs, and retraining of the model with corrected mislabeling 
(when the initial training data have mislabeled data).  

3.3.1 Training, Validation, and Test Data Sets 
First, we train, validate, and test the model using the FR data set 
that we earlier prepared (Step 3 in Figure 1), and divide the FR 
data set into three smaller data sets: the training, validation, and 
test data sets [19]. The training data set is used for preliminary 
model training.  The validation data set is used for selecting the 
optimum configuration options (such as weights for the term 
vector in the matrix).  The test data set is used for an assessment 
of the model for the data that have not been used to train or 
validate the model.  The proportions of FRs allocated to the 
training, validation, and test data sets are 60%, 20%, and 20%, 
respectively, as recommended by SAS [21].   
Cubranic and Murphy [8] found that the correct predictions 
increase from 27% to 30% as the training set is increased from 
50% to 90% of the data set size.  Their results indicate that the 
percentage of the training data set does not greatly influence their 
predictions.  Their analyses did not appear to include a validation 
set. 

3.3.2 Application of Trained Model on new FRs 
Given new FRs (e.g., FRs without labels) (Step 4 in Figure 1), our 
built predictive model then estimates the probability that an FR is 
an SFR.  In our setting, the probability ranking is a list of FRs 
sorted in descending order of the estimated probability of being 
an SFR.  A security team can start their assessments of the FRs at 
the top of the probability ranking and continue until they reach a 
pre-defined probability threshold.  The threshold indicates that 
SFRs with probabilities below the threshold may exist, but that 
there are only few of them.   

We determine the probability threshold with the following 
analysis approach.  We first assess the probabilities of SFRs.  If 
all the SFRs have higher probabilities than the NSFRs, we assign 
the threshold as the lowest probability associated with an SFR.  If 
some NSFRs have higher probabilities than some SFRs, the 
threshold must be made based on the security team’s available 
resources.  Based on the results from the test set, we can 
determine the lowest estimated probabilities assigned to SFRs.  
The security team should look at the lowest probability of an SFR 
in the test set and then match that probability to the probability 
ranking of the FRs that they intend to assess.  If there are too 
many FRs above that probability to assess, then the security team 
should use the threshold with the next to lowest probability.   

3.3.3 Model Retraining with Corrected Mislabeling  
One inherent challenge in our research context is the (un)certainty 
of the labeling of SFRs (by software engineers) initially used for 
training the model.  The first author’s empirical investigations 
(with security teams in software organizations other than Cisco) 
have revealed that SFRs are sometimes mislabeled as NSFRs by 
software engineers.  If we train the model on SFRs mislabeled as 
NSFRs, the model may classify security-related verbiage as not 
security-related, and, as a consequence, incorrectly predict that an 
SFR with security-related verbiage is an NSFR.  Therefore, the 
model’s accuracy would likely be improved if security engineers 
from a security team review each FR used to train the model to 
ensure that its label is correct.  To address this issue, we select a 
subset of the NSFRs (Step 5 in Figure 1) from the FTS.  Then, we 
submit the NSFRs to a security team (Step 6 in Figure 1) for them 
to check for mislabeling. If any true SFRs exist among the 
mislabeled NSFRs (which are thus mislabeled) then we add or 
subtract terms (Step 7 in Figure 1) from the original 
configuration-files that appear in the SFRs and NSFRs that were 
reviewed by the security team.  We then retrain the model with 
the subset of NSFRs that is now correctly labeled (Step 8 in 



Figure 1).  The verbiage between SFRs that contain explicit 
security verbiage (e.g., attack) may be different than SFRs that 
are mislabeled as NSFRs which do not contain explicit security 
verbiage. By training the model on SFRs that are mislabeled as 
NSFRs (in addition to true NSFRs) the model can identify SFRs 
with terms that software engineers are likely to use to describe 
security faults when they do not realize the problem is security-
related (Step 9 in Figure 1).   

3.3.4 Summary of Approach 
In summary, there exist two types of SFRs in an FTS.  The first 
type of SFR includes FRs that contain security-related diction 
(e.g., “attack”).  These SFRs are either recognized by software 
engineers or are FRs that software engineers submit to a security 
team to verify that the FR is a SFR.  These SFRs may be 
manually labeled or unlabeled by software engineers in an FTS.  
The second type of SFR is an FR that describes a security fault, 
but is mislabeled as an NSFR because software engineers do not 
recognize the fault as a security fault.  The second type of SFR 
does not include the security-related diction that exists in the first 
type of SFR, but likely includes other verbiage such as “crash,” or 
“excessive.”   

To build a predictive model that identifies SFRs mislabeled as 
NSFRs, we first need to build the Trained Model (see Figure 1).  
The Trained Model classifies SFRs that are recognized by 
software and security engineers.  The terms from these SFRs are 
incorporated into the configuration files to determine which terms 
indicate security faults.  These configuration files are important 
for making the Trained Model be a security-related model.  If the 
SFRs in the FTS are unlabeled, then a security team can use the 
Trained Model to identify the unlabeled SFRs.   

When we apply the Trained Model to the FTS, we will likely 
obtain both types of SFRs.  Obtaining the second type of SFR and 
having the security team verify the FR as an SFR enables us to 
create a new training set containing only SFRs mislabeled as 
NSFRs and true NSFRs.  We modify the configuration files from 
the Trained Model to more closely resemble the terms used in 
SFRs mislabeled as NSFRs.  The new training set is used to train 
the Retrained Model (see Figure 1) to specifically classify SFRs 
that are mislabeled as NSFRs and is likely to be more apt at 
classifying the second type of SFR than the first type of SFR.  A 
security team can use the Retrained Model to automate the 
classification of SFRs mislabeled as NSFRs (the second type of 
SFR) in the FTS.  

4. CASE STUDY SETUP 
We next describe the four large Cisco systems under study, the 
research questions that we intend to answer using studies of these 
systems, and our study design to address these questions. 

4.1 Four Cisco Software Systems 
We analyzed four large Cisco software systems, referred to as 
Systems A, B, C, and D.  Details of these systems are 
confidential.  Each system is implemented primarily in the C 
programming language.  Systems A and B consist of over ten 
million SLOC each and Systems C and D consist of over five 
million SLOC each.  Cisco’s FTS contains all FRs associated with 
these software systems, and these reports document both faults 
and failures in the software systems.  Each FR contains a field 
that is manually filled (initially by software engineers) to label the 

FR as an SFR.  A security team can then evaluate a labeled SFR 
to either verify that the FR is in fact an SFR, or, if not, reset the 
field to indicate an NSFR.  Each FR also contains a summary text 
field and a larger description text field.  Our natural-language 
analyses focus on these two text fields of FRs that have a severity 
rating of 1, 2, or 3, out of the range of 1-6 where severity 1 has 
the most detrimental impact on the system.    

4.2 Research Questions 
In our studies, we address the following research questions: 

• RQ1: How effective is our model at classifying unlabeled 
SFRs of a given system if the model is trained on an FR 
data set from the same system? 

• RQ2: Do software engineers fail to recognize that some FRs 
are SFRs?   

• RQ3: How effective is our model at classifying SFRs that 
are manually-mislabeled as NSFRs?  And, how much 
negative impact would training the model on SFRS 
manually-mislabeled as NSFRs cause on applying our 
approach? 

• RQ4: How effective is our model at classifying unlabeled 
SFRs in a given system if the model is trained on an FR 
data set from a different system? 

• RQ5: How well do the classification results produced by 
our FR-level model align with the attack-prone-component-
classification results produced by our previous model based 
on code-level metrics [9]?  Can the two models be used 
sequentially to improve the SFR identification rate? 

The answer to RQ1 helps us to assess the effectiveness of our 
approach when applied to cases where the submitter describes a 
security problem in the FR description, but does not label the FR. 
The answer to RQ2 helps us to determine whether the Cisco 
security team should review the Cisco FTS for SFRs that are 
manually-mislabeled as NSFRs by software engineers.   
The answer to RQ3 helps us to determine whether our approach is 
effective in automatically classifying SFRs that software 
engineers manually-mislabel as NSFRs.  If such FRs exist, then 
we should include the terms associated with these SFRs in our 
model, since they describe real security problems, but do not 
explicitly use security-related verbiage (e.g., attack). 
The answer to RQ4 helps us to assess the effectiveness of our 
approach in identifying SFRs in other systems that the model was 
not trained on.  The results can indicate whether software 
engineers can obtain assistance from our approach in 
automatically labeling all the unlabelled FRs of other systems.  
Using a common model across systems would reduce training and 
modeling efforts and result in providing additional training data 
across systems for the model. 
The answer to RQ5 helps us to assess the effectiveness for 
prioritizing security inspections of FRs based on sequentially 
applying the results of the attack-prone component predictive 
model and the natural language predictive model. 
The metrics used to measure the effectiveness of the model are 
the quantity of SFRs identified by the model and the quantity of 
SFRs identified by randomly selecting FRs from a FTS.  We use a 
lift curve to represent the benefit of using the model. 



4.3 RQ1 Study Setup 
We first queried the Cisco FTS for manually-labeled SFRs 
associated with System A for the past four years.  Next, we 
randomly sampled System A’s FRs that were manually-labeled as 
NSFRs by software engineers.  The samples of SFRs and NSFRs 
are equal in counts to provide the model with enough data to 
classify both SFRs and NSFRs accurately.  We call the data set of 
SFRs and NSFRs for System A the Afeasibility data set.  We 
randomly partition Afeasibility into training, validation, and test data 
sets.  We call the model that is trained on the Afeasibility data set the 
“trained” model.  The intent of the trained model is to predict 
SFRs that were previously submitted by software engineers.  The 
results would not indicate whether the model correctly predicts an 
SFR that was mislabeled as an NSFR.  The initial results are used 
to calibrate the model and provide an assessment of the predictive 
power of natural-language FR descriptions.   

4.4 RQ2 Study Setup 
We randomly sampled FRs (from System A) that were manually-
labeled as NSFRs by software engineers.  We call this data set 
Apilot.  We applied the trained model on Apilot to estimate the 
probability that a manually-labeled NSFR is an SFR.  We then 
submitted Apilot to the security team for them to review the same 
content (that the model used for prediction) to determine whether 
any of the manually-labeled NSFRs are actually SFRs.  We did 
not reveal the estimated probabilities to the security team to 
reduce potential bias in their analyses. Based on prior discussions 
with the security team, we estimated that security engineers 
would require approximately 175 person-hours to analyze Apilot 
and determine whether the manually-labeled NSFRs are actually 
SFRs.  At least two members from the security team 
independently reviewed each FR.  If two security engineers 
disagreed on their evaluations of a manually-labeled FR, then 
they discussed their differences and reached an agreeable 
consensus.  We compared their evaluations with the model’s 
estimated probabilities to evaluate the model’s predictions.  

A study where neither the researchers nor participants know 
which data comprises the experimental group and which 
comprises the control group is a double-blind case study [15].  
Our analysis of NSFRs with the Cisco security team is a double-
blind case study.  The experimental group contained manually-
labeled NSFRs that have high probabilities of being SFRs, 
according to the model.  The control group contains the manually-
labeled NSFRs that have low probabilities of being a SFR.  We 
did not provide the security team with probabilities estimated by 
the model to reduce bias in their analyses.  This is the first blind.  
The second blind is that we did not pre-select FRs before running 
the model.  Reading the FRs before running the model may have 
resulted in selecting FRs that closely resemble SFRs the model 
might correctly classify. 
Having the security team evaluate each FR in Apilot enables us to 
be certain of the label of each FR in Apilot.  We then retrain the 
model on Apilot to determine whether a model trained on SFRs 
mislabeled as NSFRs can be useful for the specific purpose of 
identifying those SFRs that are manually-mislabeled as NSFRs.  
We allocate Apilot in the 60% (training), 20% (validation), 20% 
(test) proportions as with the trained model.  We refine the start 
list and synonym list from Afeasibility, based on the evaluations by 
the security team.  We call the model that is trained on Apilot the 
“retrained” model. 

4.5 RQ3 Study Setup 
The security faults associated with System A may be specific for 
that software system.  Additionally, the software engineers for 
System A may have different writing styles and diction for 
describing faults than software engineers from other software 
systems.  To investigate these possibilities, we randomly sampled 
six months of fault reports from Systems B, C, and D and 
combined them into one data set that we call BCD.  We tested if 
the trained model, constructed using data from System A, can 
effectively identify SFRs for three different Cisco software 
systems.  If the model that is trained on System A is predictive for 
Systems B, C, and D, then the model may be applicable for many 
other Cisco software systems.  Table 2 provides a summary of our 
two models, and the three data sets used to train, validate, and test 
the models.  The “Train” column represents the data set that was 
used to train the model, the “Validate” column represents the data 
set used to validate the model, and the “Test” column represents 
the data set used for the model’s evaluation. 

Table 2.  Summary of models and data sets. 
 Data sets 
Model name Train Validate Test 

Afeasibility

ApilotTrained Afeasibility Afeasibility

BCD 
Retrained Apilot Apilot Apilot

4.6 RQ4 Study Setup 
In our previous work [9], we created a statistical model that  
predicts attack-prone components.  We refer to this model as the 
component model in this paper.  In our previous study, this 
component model identified 76% of System A’s attack-prone 
components.  At Cisco, a component is a group of functionally-
related source code files.  The independent variables of this model 
are the count of warnings produced by static analysis tools, the 
count of code churn (i.e., added and changed SLOC) and size, and 
the count of faults found by manual inspections.  The dependent 
variable is a binary value indicating whether the software 
component is attack-prone or not.  An attack-prone component in 
our previous study is a component that had at least one known 
SFR.  The results of the component model are shown in Figure 2.  
The areas of the regions in Figure 2 are proportional to the count 
of components in those regions.  The true positive (TP) region 
represents components that the model correctly predicted as 
attack-prone.  The false positives (FP) region represents 
components that the model predicted to be attack-prone, but there 
were no known SFRs associated with the components.  The false 
negative (FN) region represents components that are not predicted 
to be attack-prone by the model, but do have at least one SFR (as 
verified by the security team) associated with them.  The true 
negative (TN) region represents components that are correctly 
predicted to be not attack-prone, since they have no known SFRs 
associated with them. 
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Figure 2. A visualization of System A components as classified 
by the attack-prone component predictive model where non-
shaded regions indicate attack-prone components. 

In the rest of this paper, an SFR denotes a verified SFR unless 
otherwise stated.  The SFR is either verified by the Cisco security 
team before the case study began or is verified as an SFR by the 
security team during our analyses. 

In this study for RQ4, we examine how the SFRs in Apilot are 
distributed over the regions (see Figure 2) produced by the 
component model.  Each FR pertains to a specific component, so 
there is a direct link between the predictions of the two models.  
We perform an empirical evaluation to determine if most of the 
SFRs identified by the natural-language model are associated with 
components predicted to be attack-prone.  If so, then the FRs 
associated with predicted attack-prone components can be 
focused areas for  software engineers to invest their FR-labeling 
effort (for preparing the FR data set required for training the 
natural-language model) or for security engineers to invest their 
FR-reviewing effort (for finding manually-labeled NSFRs that are 
actually SFRs). An equal number of FRs were randomly selected 
from the TP, FP, and TN regions of the component model to 
create Apilot.  The components in the FN region are excluded from 
the analysis because there are too few components in the FN 
region for statistical reliability.    

5.1 Lift Curves and Tables  
We measure the effectiveness of the model with lift curves, which 
quantify how much the model improves the rates of identifying 
SFRs, compared to randomly selecting and analyzing FRs from 
the FTS.  The lift curves for the trained model tested on Afeasibility, 
Apilot, and BCD, and the retrained model tested on Apilot are shown 
in Figure 3.  We explain the details of these results in later 
subsections.  The lift curve x-axis represents the FRs sorted in 
descending order of likelihood of being an SFR, as predicted by 
the model, and then divided into ten deciles, where the leftmost 
decile contains the FRs with the highest likelihood of being an 
SFR.  The y-axis represents the percentage of total SFRs (called 
the “cumulative” percentage) contained in a given decile that is 
identified by the model.  The lift curves are cumulative in the 
sense that the counts of SFRs and FRs are aggregated within each 
of the ten deciles.  An accurate model is one in which the highest 
SFR rate occurs in the first decile, the second highest in the 
second decile, and so on.  The horizontal dashed lines in Figure 3 
are baselines that represent the SFR rates for the data set’s 
deciles, assuming a model is not used and that SFRs are found 
randomly.  The overall SFR rate is equal to the count of SFRs 
divided by the count of all FRs.  For a given decile, the difference 
between the cumulative SFR rate that is derived from the model 
and the baseline rate represents the effectiveness of the model’s 
predictions for that decile.  The specific values on the y-axis in 
Figure 3 are not disclosed in order to conceal the Cisco SFR rate.   

5. RESULTS 
In the feasibility study for the Afeasibility data set, we found that the 
neural-network model identified at least five percent more SFRs 
than the decision tree, regression, or memory-based reasoning 
predictive models, and we therefore use a neural network for our 
predictions.  We also found that a model with a start list and 
synonym list identified approximately the same count of 
manually-labeled SFRs as a model with a stop list.  We chose to 
use a start list and synonym list for our analyses because we 
suspect that continually updating the start list is more feasible for 
a limited number of security faults than managing a large stop list. 

If the model classifies an SFR as an NSFR, or if the model 
classifies an NSFR as an SFR, then the result is a 
misclassification.  As discussed in Section 4.6, we now define the 
correct classifications and misclassifications for the natural-
language model.  A true positive (TP) is a verified (by a security 
engineer) SFR that is correctly predicted by the model.  A false 
positive (FP) is a verified NSFR that is incorrectly predicted to be 
an SFR.  A false negative (FN) is a verified SFR that is 
incorrectly predicted to be an NSFR.  A true negative (TN) is a 
verified NSFR that is correctly predicted to be an NSFR.  The 
success rate of the model is the number of verified classifications 
divided by the total number of classifications [24].  Model 
precision is the proportion of correctly classified SFRs divided by 
the sum of SFRs and NSFRs that have been determined by the 
model to be SFRs (i.e., exceeding a minimum probability).  In our 
setting, recall is the percentage of verified SFRs that the model 
predicts (above a minimum probability).  The formulas for the 
success rate, precision, and recall are provided below.   

In Table 3, we show the cumulative SFR lift values for each 
decile for each data set shown in Figure 3.  The cumulative lift 
value in the first decile is equal to the SFR rate of the model in 
the first decile divided by the overall SFR rate [19].  The 
cumulative lift value in the second decile is equal to the 
cumulative SFR rate of the model divided by the overall SFR rate 
for the second decile, and so on.  The rest of this section compares 
the model’s predictions to randomly selecting FRs from the FTS. 
 
 
 
 
 
 



 
Figure 3. Lift curves for case study results. 

 
 

5.1.1 Identifying SFRs in System A 
RQ1: How effective is our model at classifying unlabeled SFRs of 
a given system if the model is trained on an FR data set from the 
same system? 
The lift curve for the model that is trained, validated, and tested 
on Afeasibility (see Figure 3a) indicates that the chance of finding an 
SFR generally decreases as the model’s estimated probabilities 
decrease.  Although the first decile (associated with the highest 
probabilities) contains some SFRs, the highest percentage of 
SFRs exists in the second decile.  The increase (“lift”) for the first 
decile is only 1.53, and is 1.65 in the second decile, as shown in 
Table 3 for Afeasibility.  The results indicate that a security team 
would identify 1.53 times more SFRs in the first decile with the 
model than by randomly selecting FRs from the FTS.  Therefore, 
this result shows that the verbiage in SFR text fields can be 
successfully used to predict other unlabeled SFRs.  While this lift 
is low, the lift is nevertheless positive, providing enough 
justification to continue our analyses on SFRs mislabeled as 
NSFRs.   
 
Table 3. Cumulative lift values for the for three data sets 

 Data sets 

Decile Afeasibility  Apilot
Apilot 

(retrained) BCD 

1 1.53 3.33 7.00 0.09
2 1.65 3.89 5.00 1.32
3 1.56 2.96 3.33 1.18
4 1.50 2.22 2.50 1.16
5 1.37 1.78 2.00 1.05
6 1.30 1.67 1.67 0.96
7 1.19 1.43 1.43 1.00
8 1.10 1.25 1.25 1.00
9 1.04 1.11 1.11 0.96

10 1.00 1.00 1.00 1.00
 

Our natural-language model has moderate success in 
predicting SFRs that software engineers realize are true 
SFRs. 

 
 
 
 

5.1.2 Identification of SFRs Mislabeled as NSFRs 
RQ2: Do software engineers fail to recognize that some FRs are 
SFRs?   
The security team verified that some†5of the FRs that were 
labeled as NSFRs by software engineers are actually SFRs.  
Figure 3b shows the lift curve when the trained model (i.e., 
trained on Afeasibility) is used to identify SFRs in Apilot.  The 
cumulative lift value for the first decile is 3.33 (see Table 3), 
indicating that security engineers would identify 3.33 times more 
SFRs that are mislabeled as NSFRs by using the model than they 
would by randomly selecting FRs from the FTS.   
The model identified several† types of security faults 
demonstrating that the model does not identify only one type of 
security fault.  One of the SFRs identified in the analysis was also 
reported in the field, thereby indicating that the model can be used 
to identify FRs that are found both internally and externally to 
Cisco.  If the SFRs discovered by the security team had not 
already been fixed, it would have received either an elevated 
priority and would have subjected to a careful security review.   

The lift curve for the retrained model (i.e., retrained on Apilot) 
shows a consistent decrease in lift from the first decile to the tenth 
decile (see Figure 3b).  This result indicates that as the estimated 
probabilities decrease, the likelihood of an SFR also decreases.  
The largest cumulative lift value in our case studies, 7.00, is in the 
first decile for the retrained model.  The language used to describe 
the SFRs in Afeasibility may closely resemble the SFRs mislabeled 
as NSFRs in Apilot, which is likely to be responsible for improving 
the accuracy of the retrained model.  Similarly, the NSFRs in 
Apilot may have resemblance to the NSFRs in Afeasibility.  For each 
run of the model, security engineers can add examined FRs to the 
training and validation sets to improve the model’s accuracy.  
Additionally, a security team can add or subtract terms (collected 
from SFRs identified by the team) to the start and synonym lists.   

As mentioned earlier, Apilot is the only data set in our study in 
which security engineers reviewed each FR in the data set.  We 
are therefore certain which FRs are SFRs and which are NSFRs.  
This certainty improves the retrained model’s results over the 
trained model’s results with two reasons.  First, the certainty can 
improve the model training and validation compared to other 
training and validation data sets that may have SFRs mislabeled 
as NSFRs.  Training the model with SFRs mislabeled as NSFRs 
can result in the model’s misclassifying SFRs as NSFRs.  Second, 
the certainty improves the accuracy of the model in the test data 

                                                                 
5 †The counts, percentages, and types of security faults are confidential. 



set in Apilot compared to evaluations in other test data sets.  If an 
SFR is mislabeled as an NSFR by a software engineer in Afeasibility, 
but the model predicts the FR to be an SFR, then the result is a 
false positive.  The cumulative lift values are decreased due to 
instances where the model is correct, but the labeling of the FR is 
incorrect.  The security engineers’ review of Apilot reduces such 
errors for the retrained model.  We show the misclassification 
rates in Section 5.3. 

Software engineers do manually mislabel SFRs as NSFRs. 

5.1.3 Probability Ranking 
RQ3: How effective is our model at classifying SFRs that are 
manually-mislabeled as NSFRs? And, how much negative impact 
would training the model on SFRS manually-mislabeled as 
NSFRs cause on applying our approach? 

The x-axis in Figure 4 shows the probability ranking when the 
trained model is tested on Apilot.  Approximately 25% of the FRs 
are found to have a greater-than-74.1% probability of being an 
SFR, and 75% of the FRs are found to be below a 50.0% 
probability.  The model predicts that the FRs fall into two 
separate groups: one group with high estimated probabilities of 
being SFRs, and the other group with low estimated probabilities 
(suggesting FRs in the other group to be NSFRs). The group with 
the higher estimated probabilities is small relative to the other.  
This distinction enables a security team to prioritize their 
fortification efforts to a small subset of FRs in the FTS.   
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Figure 4.  Distribution of estimated probabilities from the 
trained model on Apilot. 
The success rate is 68.8% for the trained model and 93.8% for the 
retrained model as shown in Table 4.  The success rates and high 
precision rates (see Table 4) indicate that the model is effective 
for identifying unlabeled and manually-mislabeled SFRs.  The 
misclassification rate for the retrained model is lower than for the 
trained model for the training, validation, and test sets, as shown 
in Table 4.  The identification of SFRs mislabeled as NSFRs in 
Apilot indicates that some of the NSFRs in Afeasibility may actually 
be SFRs.  If the trained model misclassified SFRs with a threshold 
where the probability is greater than 50% in Afeasibility, they are 
considered false positives and the resulting misclassification rate 
increases.  The low misclassification rate from the retrained 
model indicates that a security team can more effectively 
prioritize their fortification efforts to SFRs by using the retrained 
model.   

Table 4. Performance for the trained and retrained models. 
 Misclassification rate 

Model 
(test data set) 

Success 
rate Precision Training Validation Test 

Trained 
(Afeasibility) 

68.8% 73.2% 27.6% 31.2% 31.2%

Retrained 
(Apilot) 93.8% 60.0% 11.9% 10.4% 6.3%

If we raise the threshold to a 97.8% probability for the trained 
model on the Apilot, then 17.1% of the SFRs are found above the 
threshold.  The resulting recall for the SFRs is 77.8% as shown in 
Table 5.  That is, security engineers would identify 77.8% of the 
SFRs in the top 17.1% of the probability ranking.  The percentage 
of NSFRs for the top 17.1% is 63.4%, resulting in a precision of 
21.1%.  While the FP rate seems high, the resulting count of FPs 
is fairly low since the threshold restricts the analysis space to only 
17.1% of all FRs in the sample.  The recall for the retrained 
model, 75.0% (see Table 5), is approximately equal to the recall 
for the trained model, but the FP rate is only 25%.  Additionally, 
19.5% of the FRs in the top 17.1% did not have enough 
information for the Cisco security team to determine if an FR is 
an SFR.   
We tried a threshold of 80.5% in Apilot, and 24.6% of the SFRs 
were located above this threshold.  The recall for SFRs here is 
88.9% in the top 24.6% of the probability ranking, as shown in 
Table 5.  The SFRs below the threshold do not contain diction to 
indicate that the FRs are likely to be SFRs.  The security 
engineers labeled these FRs as SFRs because their experience 
with the software indicates that these faults can be exploited.  
SFR verbiage is not always suggestive of susceptibility to attack.  
Additionally, the FP rate for the trained model tested on BCD is 
96.2% (see Table 5) indicating that a security team would 
encounter many NSFRs at the top of the probability ranking. 

Table 5. Recall for SFRs in the probability ranking. 
Model Test data set Threshold Recall FP 
Trained Afeasibility 50.0% 64.2% 26.7%
Trained Apilot 97.8% 77.8% 63.4%
Trained Apilot 80.5% 88.9% 62.7%

Retrained Apilot 50.0% 75.0% 25.0%
Trained BCD 50.0% 30.0% 96.2%

 
Our natural-language model successfully identifies a high 
percentage (77%) of SFRs manually-mislabeled as NSFRs 
by software engineers.  Also, training our model on SFRs 
that were manually mislabeled as NSFRs substantially 
reduces the effectiveness of the model. 

5.1.4 Results from Three Additional Systems 
RQ4: How effective is our model at classifying unlabeled SFRs in 
a given system if the model is trained on an FR data set from a 
different system? 
The lift curve (Figure 3c) for the trained model that was tested on 
the BCD data set does not demonstrate a decrease in SFR 
identification as the estimated probabilities decrease.  The 
cumulative lift value for the first decile is only 0.09 (see Table 3).  
Furthermore, the precision measured for the trained model is only 
3.7%.  These results are consistent with those of Anvik et al. [3] 
where the precision of their algorithm decreased from 64% to 6% 
when applied to a project whose labeled data were not used to 
train their model. 

The Cisco security team analyzed the FRs in Apilot for Systems A, 
B, C, and D, and identified the types of security faults.  The 
counts and types are not disclosed to protect company 
confidentiality.  A comparison between Systems A and D showed 
that the most prevalent security fault type in A was not present in 
D.  Furthermore, the security fault that dominated in D was 
among the smallest contributors in A.  Therefore, training our 



model on one system’s FR data set is likely to be inadequate to 
predict FRs in a system with different types of security faults. 

The security fault type that dominates in System A comprises 
approximately half of the security fault types in Systems B and C.  
The second most predominant security fault type in Systems B 
and C is the primary security fault type in System D.  This 
analysis shows that the distribution of security fault types 
between Systems A and Systems B, C, and D are not always 
similar.  The comparison of the security faults types indicates that 
the verbiage in the SFRs for System A is too dissimilar from the 
verbiage in Systems B, C, and D to accurately predict SFRs that 
correspond to different security fault types.   

The security faults and natural-language descriptions of 
SFRs among different systems are too different for our 
natural-language model to be successfully applied to a 
different system from the one whose FR data are used to 
train the model. 

5.2 Fit Statistics 
A good statistical practice is to gauge the uncertainties in the 
estimates of a predictive model.  The average squared error (ASE) 
is the average of the square of the difference between the 
predicted outcome and the actual outcome [19].  The ASE is 
calculated during the model training for the validation data set 
[19].  The weights of the terms with the smallest error are used in 
the final predictive equation [19]. We report the ASE in the 
training, validation, and test sets for the trained model on 
Afeasibility and the retrained model on Apilot in Table 6.  The ASE 
for the retrained model is approximately three times less than the 
trained model for the training, validation, and test sets.  These 
results indicate there is more statistical certainty in the estimated 
probabilities for the retrained model than for the trained model.  
The higher statistical certainty in the retrained model may be 
accounted for by the certainty that each SFR is known in Apilot 
from the security team analysis as mentioned in Section 5.1.2. 

Table 6. Fit statistics for the trained and retrained model. 

Model ASE 
training 

ASE 
validation 

ASE 
test AIC SBC 

Trained 0.19 0.22 0.21 562.57 666.02
Retrained 0.07 0.07 0.05 83.07 115.66

We also measure the fit statistics of the model with the Akaike 
Information Criterion (AIC) and the Schwarz Bayesian Criterion 
(SBC).    Both fit statistics assess the model parameters, error sum 
of squares, and the count of FRs.  The AIC and SBC penalize the 
model for additional parameters [20].  The smaller the values of 
the AIC and SBC, the better the statistical fit of the model [19].  
The AIC and SBC values decrease by approximately 85% in the 
retrained model as shown in Table 6 indicating that the 
parameters for the model are a better fit in the retrained than the 
trained model.  We expect to have more reliable predictions with 
retrained model due to the lower ASE. 

5.3 Empirical Evaluation of Sequential 
Modeling 
RQ5: How well do the classification results produced by our FR-
level model align with the attack-prone-component-classification 
results produced by our previous model based on code-level 

metrics [9]?  Can the two models be used sequentially to improve 
the SFR identification rate? 
We examined how the SFRs discovered in Apilot by the natural-
language model are distributed over the TP, FP, and TN regions 
of the component model discussed in Section 4.5.  The largest 
percentage of SFRs, 44%, is associated with software components 
in the FP region (see Figure 2).  The components in this region 
were not associated with any SFRs until the security team 
analyzed Apilot.  The component model’s FP predictions that were 
originally considered erroneous are actually correct, as 
determined by the security team’s reviews of FRs identified by 
our natural-language model.  The agreement between the models’ 
results suggests that a subset of components that software 
engineers and a security team had previously thought was not 
attack-prone actually is attack-prone.  These newly discovered 
attack-prone components should be targeted for security 
fortification, including threat modeling, penetration testing, and 
other security-specific inspections.  
Approximately 33% of the SFRs identified by the natural-
language model are associated with the component model’s TP 
region.    Therefore, the results show that 77% (44% from the FP 
region, 33% from the TP region) of the SFRs are associated with 
components that the component model predicted to be attack-
prone.  The good agreement between the component and natural-
language predictive models indicates that a security team should 
apply the two predictive models sequentially.  First, the security 
team should apply the component model to predict the attack-
prone components.  Then, the FRs associated with predicted 
attack-prone components can be focused areas for  software 
engineers to invest their FR-labeling effort (for preparing the FR 
data set required for training the natural-language model) or for 
security engineers to invest their FR-reviewing effort (for finding 
manually-labeled NSFRs that are actually SFRs).  
Approximately 23% of the SFRs discovered are associated with 
components in the component model’s TN region.  However, the 
natural-language model successfully predicted the existence of all 
the SFRs (as verified by the security team) in the TN region.  
While there is this disagreement between the two models in the 
TN region, this region contains the lowest fraction of the SFRs.  

If we removed all the FRs from the TN region, then we would 
have removed 26.3% of false positives above the 80.5% threshold 
(see Section 5.1.3).  The decision to include the component 
model’s TN region in the FR analysis is a risk management 
decision.  If the security team has the resources to review the false 
positives (as determined by the natural-language model) from the 
TN region of the component model, then can identify 88.9% of 
the SFRs.  If the security team does not have the resources to 
review false positives from the TN region, they can review FRs 
associated with only the TP and FP regions and obtain 77% of the 
SFRs.   

SFRs manually-mislabeled as NSFRs are more likely to be 
associated with components predicted to be attack-prone.  
Security engineers should prioritize FR-reviewing effort 
first for FRs associated with predicted attack-prone 
components. 



6. DISCUSSION  
We observe that most of the SFRs identified by the trained model 
have estimated probabilities in the second decile (see Figures 3a-
3c) for the Afeasibility, Apilot, and BCD data sets.  The FRs that were 
predicted to be SFRs, but are actually NSFRs in the first decile, 
contain diction that is used in SFRs, but is also commonly used in 
NSFRs.  We analyzed these NSFRs and found three main reasons 
why they were assigned a high probability of being an SFR by the 
models.  First, the NSFRs are general reliability or performance 
problems that fail in the same way as the security faults, but are 
not remotely trigger-able by an attacker.  Second, the not-security 
faults described in these NSFRs were found not to be severe 
enough to cause a security impact on the software system.  Third, 
some NSFRs explained that a security feature was not working 
correctly, rather than that a true security fault existed.  For 
example, the permissions were set too high or too low for an 
object.  While some of the FRs in the first decile are SFRs, there 
exist more NSFRs that describe similar, but not exploitable, 
faults. 

7. RELATED WORK 
Cubranic and Murphy [8] investigated IR in the context of FRs of 
open source FTSs.  They use a Bayesian learning algorithm to 
predict which developer should fix a fault.  Their automated 
technique can reduce the time required by manual analyses to 
triage the FRs.  They evaluated their algorithm on the Eclipse 
FTS and found that the algorithm correctly predicted the most 
appropriate developer to assess a fault for approximately 30% of 
the FRs. 

Anvik et al. [3] expand the work of Cubranic and Murphy [8] to 
determine the most appropriate developer for an FR.  They use 
support vector machines to mine the one-line summary and full 
text description of an FR to create vectors.  The vectors are used 
to predict the software engineer who should resolve the fault.    
Their model reached a precision level of 57% for the Eclipse 
project and 64% for Firefox.  Bettenburg et al. [6] further the 
value of using duplicate bug reports in the Eclipse FTS for 
training machine-learning models.  They observe an accuracy of 
65% when predicting which developer should fix a fault.  Anvik 
et al. [3] and Cubranic and Murphy [8] do not train their model to 
classify SFRs and NSFRs and thus their models may not be 
applicable for identifying SFRs misclassified as NSFRs.     

Jeong et al. [13] use Markov chains to determine which developer 
should fix a fault.  They found that FRs are assigned to developers 
who then reassign the FR to other developers.  Their graph-based 
model shows how the reassignment of FRs reveals developer 
networks.  They evaluated their model on the Eclipse and Mozilla 
projects and found that their model reduces 72% of the 
reassignments within the developer networks. 

Recent research has shown that natural-language information can 
be used to classify root causes of reported SFRs for Mozilla and 
Apache HTTP Server  [14].   Li et al. [14] collected SFRs from 
Mozilla and Apache and used a natural-language model to 
identify the root causes of the security faults.  Based on their 
results, they determined the semantic security faults (e.g., missing 
features, missing cases) comprised 71.9-83.9% of the security 
faults.  These data provide guidance on what types of tools and 
techniques a security team should use to address most of their 

security faults.  Their analyses focus on only SFRs that are 
reported by software and security engineers.  In contrast, we 
apply our model to NSFRs to identify security faults.  
Additionally, Podgurski et al. [16] use a clustering approach for 
classifying FRs to prioritize and identify the root causes of faults, 
but they do not focus on security faults. 

Runeson et al. [18] use natural-language processing to identify 
duplicate FRs on Sony Ericsson Mobile Communications 
software.  Their model identified approximately 67% of the 
detectable duplicate FRs.  Wang et al. [23] used a natural-
language model in addition to execution information of failing 
tests for FRs to determine which reports are duplicates of pre-
existing fault reports in Firefox.  Wang et al. [23] found that when 
adding execution information as an additional factor to the fault 
description, they can increase duplicate FR detection from 43-
72% to 67-93%.  Their results indicate that relying on the text 
alone of FRs may not be adequate for their predictive models.  

8. THREATS TO VALIDITY 
Our study is representative of only four large software systems 
and may not necessarily yield the same results for all software 
systems.  Also, the count of FRs in Apilot is smaller than Afeasibility, 
but we exceeded the minimum count (100) of documents required 
for statistical modeling, according to SAS [21].  Additionally, the 
FRs are randomly selected from the FTS in an effort to have a 
similar SFR representation between Afeasibility and Apilot.  
Furthermore, the model’s estimated probabilities rely on adequate 
textual descriptions in the FRs.  Bettenburg et al. [5] use an SVM 
to determine whether developers agree on FR quality, and they 
found that their model can correctly predict the developer’s FR 
quality rating.  Their results indicate that SVMs can be used to 
indicate FRs that may require additional details required for a 
developer to identify and mitigate the problems.  Such a model 
can be used to mitigate the limitations of low-quality FRs for 
natural-language models. Details of the fit statistics are available 
in our accompanying technical report [10]. 

The selection of terms to include in our start list and synonym list 
is made subjectively.  We do not use an objective and repeatable 
means to define a start list and synonym list but once made the 
lists are available for any additional model we create.  Finally, 
security faults have been shown to be rare events in software 
systems [1].  We have few security faults in our data set.  The 
scarce data reduce the certainty of statistical analyses. 

9. CONCLUSION 
Fault-tracking systems (FTSs) may contain SFRs that are either 
not labeled or are mislabeled as NSFRs.  If the security faults 
associated with the SFRs escape into the field, then the software 
can be exploited by attackers.  To address this issue, we propose a 
novel approach that mines the natural-language text of FRs and 
constructs a statistical model for predicting which FRs are SFRs.   
Our approach identified a high percentage (78%) of SFRs 
mislabeled as NSFRs by software engineers for a large Cisco 
software system.  To increase the accuracy of our model, the 
security team should retrain the model when there are SFRs being 
newly verified by the security team.  But the trained model is not 
recommended to be applied to software systems in which the 
SFRs describe different types of security faults than those that 
were used to train the model.  Lastly, an empirical evaluation of 



using natural-language and component models sequentially 
indicates that we can increase the accuracy of both models’ 
predictions.    In summary, our approach effectively automates the 
identification of SFRs that would otherwise require a substantial 
effort by a security team to manually assess each FR in an FTS to 
determine which FRs are SFRs. 
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