Hybrid Full/Incremental Checkpoint/Restart for MPI Jobs i n HPC Environments

Chao Wang, Frank Muellet, Christian Engelmartin Stephen L. Scott
! Department of Computer Science, North Carolina State Usitye Raleigh, NC
2 Computer Science and Mathematics Division, Oak Ridge Matibaboratory, Oak Ridge, TN
mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: 91595.7896

Abstract

As the number of cores in high-performance computing enments keeps increasing, faults are becoming common
place. Checkpointing addresses such faults but captutigsrbicess images even though only a subset of the proceggima
changes between checkpoints.

We have designed a high-performance hybrid disk-baseéohfirtkmental checkpointing technique for MPI tasks to oagpt
only data changed since the last checkpoint. Our implentiemtantegrates new BLCR and LAM/MPI features that comple-
ment traditional full checkpoints. This results in sigrafitly reduced checkpoint sizes and overheads with only ratele
increases in restart overhead. After accounting for cost aavings, benefits due to incremental checkpoints signtfica
outweigh the loss on restart operations.

Experiments in a cluster with the NAS Parallel Benchmarkesand mpiBLAST indicate that savings due to replacing
full checkpoints with incremental ones average 16.64 sgsavhile restore overhead amounts to just 1.17 seconds.eThes
savings increase with the frequency of incremental chenkpoOverall, our novel hybrid full/incremental checkpting is

superior to prior non-hybrid techniques.

1 Introduction

Recent progress in high-performance computing (HPC) hsidtesl in remarkable Terascale systems with 10,000s or
even 100,000s of processing cores. At such large countsresctaults are becoming common place. Reliability data of
contemporary systems illustrates that the mean time betfegleires (MTBF) / interrupts (MTBI) is in the range of 6.94
hours depending on the maturity / age of the installatio.[The most common causes of failure are processor, memory
and storage errors / failures. Table 1 presents an excempt & Department of Energy (DOE) study that summarizes the
reliability of several state-of-the-art supercomputend distributed computing systems [17, 21]. When extrajrodafor
current systems in such a context, the MTBF for peta-scaltenys is predicted to be as short as 1.25 hours [26].

In such systems, frequently deployed checkpoint/res@iR) mechanisms periodically checkpoint the entire preces

| System [#Cores| MTBF/Il [Outage source |

ASCIQ 8,192 6.5 hrs Storage, CPU
ASCI White 8,192 40 hrs Storage, CPU
PSC Lemieux 3,016 6.5 hrs

Google 15,000 | 20 reboots/day| Storage, memory|

Jaguar@ORNL | 23,416 37.5hrs Storage, memory|

Table 1: Reliability of HPC Clusters

image of all MPI tasks. The wall-clock time of a 100-hour jalutd well increase to 251 hours due to the C/R overhead of
contemporary fault tolerant techniques implying that 60R6yeles are spent on C/R alone [26]. However, only a subset of
the process image changes between checkpoints. In partitarge matrices that are only read but never written, Wwhie
common in HPC codes, do not have to be checkpointed repgafddb, coordinated checkpointing for MPI jobs, which is
commonly deployed, requires all the MPI tasks to save tHeckpoint files at the same time, which leads to extremelly hig
I/O bandwidth demand.

Contributions: This paper contributes thig'st incremental checkpointing mechanism for MPI tasks tha is trans-
parently integrated into an MPI environment. In contrast, prior solutions only operateddimgle procesgnvironments
[13, 16, 18, 38] or used hash-based blocks and requireelhvaAPIto indicate when to checkpoint and drain in-flight mes-
sages [1] instead of our hardware assisted fully transpad®eme. Our incremental checkpoints are complementdufito
checkpoints to capture only data changed since the laskpbett. The implementation, while realized over LAM (Local
Area Multicomputer)/MPI's C/R support [31] through Ber&glLabs C/R (BLCR) [11], is in its mechanisms applicable to
any process-migration solutioe,g, the OpenMPI FT mechanisms [19, 20]. BLCR is an open souxstes-level C/R
implementation integrated with LAM/MPI via a callback fuimn. The original LAM/MPI+BLCR combination [30] only
provides full C/R mechanisms.

This paper contributes a hybrid full/incremental C/R simlntto significantly reduce the size of the checkpoint file and
the overhead of the checkpoint operations. Besides thnafigodes allocated to an MPI job, it assumes the avaitgluifi
spare nodes where processes (MPI tasks) may be relocatec afode failure. The paper further reduces the overhead of
the restart operation due to roll-back after node failures, restoration from full/incremental checkpoints on spanees,
which only moderately increases the restart cost relatiaerestore from a single, full checkpoint. After accountiogcost
and savingssavings due to incremental checkpoints significantly outwigh the loss on restart operations for over novel
hybrid approach.

We conducted a set of experiments on an 18-node dual-piarcgsach dual core) Opteron cluster. We assessed the
viability of our approach using the NAS (NASA Advanced Sugmenputing) Parallel Benchmark suite and mpiBLAST.
Experimental results show that the overhead of our hybiidriaremental C/R mechanism is significantly lower thaattbf
the original C/R mechanism relying on full checkpoints. Mapecifically, experimental results indicate that the sased

by replacing three full checkpoints with three incremetackpoints is 16.64 seconds while the restore overheadm@isio

Nodes Nodes
lamboot 5 =25 5s] 73] = lamboot L5 1= 231 *s2l 73] -
mpirunespescpescie- mpiruneefeccpecde.

full chkpt - 40 0 0 full chkpt = €0 0 0
! I I incr chkpt !
full chkpt - 41 1 1 pt= ~Q-Q-
| | | incr chkpt= <)== ==Cr=
full chkpt= @)- - 2 - - @ ! P »
111 full chipt- - - 1 - - @
full chipt 3| ? i incr chkpt= -
full chkpt. @)-- 4 - - @ failure 5
failure —m—-
V Iamboot--i---l---..
n nt| n2
lamboote=qeeetecal- 0]
n0| n1| n2 restart = @]Q:D

restart = 4@]— 4@— 4@

(b) New Full/Incr C/R

(a) Old Full G/R
Fig. 1: Hybrid Full/Incremental C/R Mechanism vs. Full C/R

to just 1.17 for an overall savings of 15.47 seconds on aeefaigthe NAS Parallel Benchmark suite and mpiBLAST. The
potential of savings due to our hybrid incremental/full G4&&hnique should even be higher in practice as (1) much highe
ratios than just 1/3 for full/incremental checkpoints magy dmployed and (2) the amount of lost work would be further
reduced if more frequent, lighter weight checkpoints wargplyed. Moreover, our approach can be easily integratéal wi
other techniques, such as job-pause and migration mechafigl, 35] to avoid requeuing overhead by letting the scleetu
job tolerate faults so that it can continue executing witarspodes.

The paper is structured as follows. Section 2 presents thigrlef our hybrid full/incremental C/R mechanism. Section
identifies and describes the implementation details. Sypkesgly, the experimental framework is detailed and meaments
for our experiments are presented in Section 4 and 5, ragplctOur contributions are contrasted with prior work iacsion

6. The work is then summarized in Section 7.

2 Design

This section presents an overview of the design of the hybliihcremental C/R mechanism with LAM/MPI and BLCR.
We view incremental checkpoints as complementary to fudbogipoints in the following sense. Evemyth checkpoint will be
a full checkpoint to capture an application without prioeckpoint data while any checkpoints in between are incréahen
as illustrated in Figure 1(b). Such process-based incrémhelneckpointing reduces checkpoint bandwidth and steospgce
requirements, and it leads to a lower rate of full checkmint

In the following, we first discuss the schedule of the fuifiemental C/R. We then discuss system support for increahent
checkpoints at two levels. First, the synchronization aadrdination operations (such as the in-flight message dgain
among all the MPI tasks to reach a consistent global statijeajob level are detailed. Second, dirty pages and related

meta-data image information are saved at the process/MRlagel, as depicted in Figure 3. We employ filtering of “dirt

shared
storage

restore in-flight datw resume normal operwon
|

Fig. 2: Incremental Checkpoint at LAM/MPI

pages at the memory management level, memory pages modified (written to) since the last checkpwinich are utilized
at node failures to restart from the composition of full andremental checkpoints. Each component of our hybrid C/R

mechanism is detailed next.

2.1 Scheduler

We designed a decentralized scheduler, which can be deplsya stand-alone component or as an integral process of
an MPI daemon, such as the LAM daemon (lamd). The schedulleisstie the full or incremental checkpoint commands
based on user-configured intervals or the system envirofrsiech as the execution time of the MPI job, storage comtfrai
for checkpoint files and the overhead of preceding checkpoin

Upon a node failure, the scheduler initiates a “job pauseChmaism in a coordinated manner that effectively freezes al
MPI tasks on functional nodes and migrates processes efifabddes [34]. All nodes, functional (paused ones) and ridgra

targets (replaced failed ones), are restarted from thduigilus n incremental checkpoints, as explained in Section 2.5.

2.2 Incremental Checkpointing at the Job Level

Incremental Checkpointing at the Job Level is performedseguence of steps depicted in Figure 2 and described in the
following.

Step 1: Incremental Checkpoint Trigger: When the scheduler decides to engage in an incremental gbietkit issues
a corresponding command to thepirun process, the initial LAM/MPI process at job invocation. Flgrocess, in turn,

broadcasts the command to all MPI tasks.

Step 2: In-flight Message DrainageBefore we stop any process and save the remaining dirty agethe correspond-
ing process state in checkpoint files, all MPI tasks cootdiaaconsistent global state equivalent to an internal damiased
on our LAM/MPI+BLCR design, message passing is handledeiMR| level while the process-level BLCR mechanism is
not aware of messaging at all. Hence, we employ LAM/MPI’'s¢&imtric interaction mechanism for the respective MPIsask
to clear in-flight data in the MPI communication channels.

Step 3: Process Incremental CheckpointOnce all the MPI tasks (processes) reach a globally consistate, all the
MPI tasks perform the process-level incremental checkpperations independently, as discussed in Section 2.3.

Step 4: Messages Restoration and Job Continuatior®nce the process-level incremental checkpoint has beemdem

ted, drained in-flight messages are restored, and all psesgssume execution from their point of suspension.

2.3 Incremental Checkpointing at the Process Level

Incremental checkpointing of MPI tasks (step 3 in Figures2performed at the process level, which is shown in detail
in Figure 3. Compared to a full checkpoint, the incremengalant lowers the checkpoint overhead by saving only those
memory pages modified since the last (full or incrementadckipoint. This is accomplished via our BLCR enhancements
by activating a handler thread (on right-hand side of Figr¢hat signals compute threads to engage in the incremental
checkpoint. One of these threads subsequently saves mibp#ges before participating in a barrier with the otheraldse

as further detailed in Section 3.2.

! checkpoint_req() |
unblocks U BN SR SRR

handler_thr
still running normally run handler functions
—— e c—
other work receives signal, runs handlerss& signal other threads
and ioctl()
I first thread restore:
dirty pages
E """"""""""""" shared resource
block registers/signa A A
registers/signals
I ¢ reg/sig
! | barrier |
cleanup > " mark checkpoint as complete

L l l l l

block in ioctl():

continue normal execution |
[

Fig. 3: BLCR with Incremental Checkpoint in Bold Frame

A set of three files serve as storage abstraction for a chétkgrmapshot, as depicted in Figure 4:

1. Checkpoint file a&ontains the memorgage content.e., the data of only those memory pages modified since the last

checkpoint.

2. Checkpoint file lstores memorpage addressese., address and offset of the saved memory pages for each antry i

file a

3. Checkpoint file @wovers othemeta informatione.g, linkage of threads, register snapshots, and signal irdton
pertinent to each thread within a checkpointed process /tsisK.

incr incr incr
full chkpt chkpt 1 chkpt 2 chkpt 3

PPOOEOEBOD |

) | |
chkpt file b | A0 [[AL [A2 | A3 || A4 || A2 || A4 || A3 || A4 || AL || A5 || A6 |
| 00 |[o1 04 [[05 [06 || O7 || 08 || 09] Olo]|Ol1 |

______________________ 1
|

chkpt file ¢ | Gtructure info of file b _‘

Pi: content of memory page i Ai: address of memory page i
Oi: offset in file a of the corresponding memory page

Fig. 4: Structure of Checkpoint Files

File a andfile b maintain their data in a log-based append mode for suceesgivemental checkpoints. The last full and
subsequent incremental checkpoints will only be disctd(gearked for potential removal) once the next full checkpbis
been committed. Their availability is required for the pdtal restart up until a superseding checkpoint is writieistable
storage. In contrast, only the latest versiorfilef ¢ is maintained since all the latest information is saved asroata-data
record, which is sufficient for the next restart.

In addition, memory pages savedfile aby an older checkpoint can be discharged once they are eahitua subsequent
checkpoint due to page modifications (writes) since thedhstkpoint. For example, in Figure 4, memory page 4 saved
by the full checkpoint can be discharged when the first ineneta checkpoint saves the same page. Later, the same page
saved by the first incremental checkpoint can be dischardemhwt is saved by the second incremental checkpoint. In our
on-going work, we are developing a garbage collection thfeathis purpose. Similar to segment cleaning in log-stited
file systems [28], the file is divided into segments (each afa¢gize as they represent memory pages) that are written
sequentially. A separate garbage collection thread tréoése segments within the file, removes old segments (marked
appropriately) from the end and puts new checkpointed megmata into the next segment. As a result, the file morphs into
a large circular buffer as the writer thread adds new segsierthe front and the cleaner thread removes old segmemis fro
the end toward the front (and then wraps around). Meanwtitieckpointile bis updated with the new offset information

relative tofile a.

2.4 Modified Memory Page Management

We utilize a Linux kernel-level memory management modubg thas been extended by a page-table dirty bit scheme
to track modified pages between checkpoints [35]. This ismgished by duplicating the dirty bit of the page-tablergnt
(PTE) and extending kernel-level functions that acces®Pte dirty bit so that the duplicate bit is set, which incurgliggble

overhead (see [35] for details).

2.5 MPI Job Restart from Full+Incremental Checkpoints

Upon a node failure, the scheduler coordinates the regtaration on both the functional nodes and the spare nodess, Fi
the process ofmpirunis restarted, which, in turn, issues the restart commantl thbeanodes for the MPI tasks. Thereafter,
recovery commences on each node by restoring the last iecracheckpointimage, followed by the memory pages from
the preceding incremental checkpoints in reverse sequgnteethe pages from the last full checkpoint image, as degiict
Figure 5. The scan over all incremental checkpoints andeteflill checkpoint allows the recovery of the last storeice
of a page,.e. the content of any page only needs to be written once forréstart. After process-level restart has been
completed, drained in-flight messages are restored, arideaffrocesses resume execution from their point of suspensi
Furthermore, some pages saved in preceding checkpointbeaywalid (unmapped) in subsequent ones and need not be

restored. The latest memory mapping information savethetkpoint file ¢s also used for this purpose.

incr incr incr
full chkpt chkpt 1 chkpt 2 chkpt 3

Pi: content of memory page i restart

Fig. 5: Fast Restart from Full/Incremental Checkpoints

3 Implementation Issues

Our hybrid full/incremental checkpoint/restart mechamis currently implemented with LAM/MPI and BLCR. The
overall design and implementation allows adaptation of guolution to arbitrary MPI implementations, such as MPICH
and OpenMPI. Next, we present the implementation detailsefull/incremental C/R mechanism, including the MPldkev

communication/coordination realized within LAM/MPI arttetprocess-level fundamental capabilities of BLCR.

3.1 Full/incremental Checkpointing at the Job Level

We developed new commanidsn_full_checkpoinandlam.incr_checkpointo issue full and incremental checkpoint com-
mands, respectively. The decentralized scheduler refeagetcommands to tmepirunprocess of the MPI job. Subsequently,
mpirunbroadcasts full/incremental checkpoint commands to eaPhtiakks. At the LAM/MPI level, we also drain the in-

flight data and reach to a consistent internal state befavegsses launch the actual checkpoint operation (see step 2 i

Figure 2). We then restore the in-flight data and resume nlooperation after the checkpoint operation of the process ha

completed (see step 4 in Figure 2).

3.2 Full/incremental Checkpointing at the Process Level

We integrated several new BLCR features to extend its pgle®| checkpointing facilities, including the new commda
cr_full_checkpointindcr_incr_checkpointo trigger full and incremental checkpoints at the processliwithin BLCR. Both
of these commands write their respective portion of the @sssnapshot to one of the three files (see Section 2 and Figure
4).

Figure 3 depicts the steps involved in issuing an incremeftackpoint in reference to BLCR. Our focus is on the
enhancements to BLCR (large dashed box). In the figure, tiovesffrom top to bottom, and the processes and threads
involved in the checkpoint are placed from right to left. &ites performed in the kernel are surrounded by dotteddin
A callback thread (right side) is spawned as the applicatimisters a threaded callback and blocks in the kernel antil
checkpoint has been committed. Whepirun invokes the newly developedt_incr_checkpointtcommand extensions to
BLCR, it provides the process id as an argument. In respaémser_incr_checkpointmechanism issues aoctl call, thereby
resuming the callback thread that was previously blockethénkernel. After the callback thread invokes the individua
callback for each of the other threads, it reenters the kemne sends a signal to each thread. These threads, in r&spons
engage in executing the callback signal handler and thear #re kernel through anotherctl call.

Once in the kernel, the first thread saves the dirty memorgpagodified since the last checkpoint. Then, threads take
turns saving their register and signal information to theaktpoint files. After a final barrier, the process exits thekéand
enters user space, at which point the checkpoint mecharasradmpleted.

The commandr_full_checkpointperforms similar work, except that once the kernel is emtetiee first thread saves all

the non-empty memory pages rather than only the dirty ones.

3.3 Restart from Full+Incremental Checkpoints at Job and Piocess Levels

A novel command lam_fullplusincr_restart has been developed to perform the restart work at the jobl eith
LAM/MPI. Yet another command;r_fullplusincr_restart, has been devised to support the restart work at the proeesk |
within BLCR. In concert, the two commands implement theagdtom the three checkpoint files and resume the normal

execution of the MPI job as discussed in Section 2.

4 Experimental Framework

Experiments were conducted on a dedicated Linux clustepcised of 18 compute nodes, each equipped with two AMD

Opteron-265 processors (each dual core) and 2 GB of membe/nddes are interconnected by two networks, both with 1

Gbps Ethernet. The OS used is Fedora Core 5 Linux&86vith our dirty bit patch as described in Section 2. We edésh
LAM/MPI and BLCR with our hybrid full/incremental C/R mechism of this platform.
For all following experiments we use the MPI version of theB\Riite [37] (version 3.3) as well as mpiBLAST [1]. NPB
is a suite of programs widely used to evaluate the performahparallel system, while the latter is a parallel impletatéion
of NCBI BLAST, which splits a database into fragments andritiistes the query tasks to workers by query segmentation

before the BLAST search is performed in parallel.

5 Experimental Results

Experiments were conducted to assess (a) overheads dsdogith the full and incremental checkpoints, (b) full and
incremental checkpoint file size and memory checkpointdudiwvis the main source of the checkpointing overhead), (c)
restart overheads associated with the full and incremehtdtkpoints, and (d) the relationship between checkpoiatval
and checkpoint overhead.

Out of the NPB suite, the BT, CG, FT, LU and SP benchmarks wepesed to class C data inputs running on 4, 8 or 9
and 16 nodes, and to class D data inputs on 8 or 9 and 16 node® I$4S benchmarks have 2D, others have 3D layouts
for 22 or 32 nodes, respectively. The NAS benchmark EP is exposed te €aB and E data inputs running on 4, 8 and 16
nodes. All the other NAS benchmarks were not suitable forexgperiments since they execute for too short a period to be
periodically checkpointed, such as IS, as depicted in Eidifa), or they have excessive memory requirement, sucheas th
benchmarks with class D data inputs on 4 nodes.

Since the version of mpiBLAST we used assigns one proceseandster and another to perform file output, the number
of actual worker processes performing parallel input isttital process number minus two. Each worker process reads
several database fragments. With our experiments, wesetpiBLAST-specific argumentise-virtual-fragswhich enables

caching of database fragments in memory (rather than leeedge) for quicker searches.

5.1 Checkpointing Overhead

The first set of experiments assesses the overhead incuresth @ne full or incremental checkpoint. Figures 7(a), 8(a)
9(a) and 10(a) depict the base execution time of a job (beadhnwithout checkpointing while Figures 7(b), 8(b), 9(lmda
10(b) depict the checkpoint overhead. As these results,gsheweheckpoint overhead is uniformly small relative todkerall
execution time, even for a larger number of nodes. Prior i@k already compared the overhead of full checkpointintpwi
the base execution, and the ratio is below 10% for most NPBHrearks with Class C data inputs. Figure 6 depicts the
measured overhead for single full checkpointing relatvéhe base execution time of NPB with Class D data inputs and
MpiBLAST (without checkpointing). The ratio is below 1%,0&pt for MG, as discussed in the following.

MG has a larger checkpoint overhead (large checkpoint big)the ratio is skewed due to a short overall execution time

(see Figure 8(a)). In practice, with more realistic and kEmcheckpoint intervals, a checkpoint would not be necatesit

O Execution time B Full checkpoint overhead

100%

99%

98%

97%

96%

95%

94%

93%

92%
2e 2 =e ®o 29
=% 8g 23 2g %

mpiBLAST.4
mpiBLAST.8
mpiBLAST.16

Fig. 6: Full Checkpoint Overhead of NPB Class D and mpiBLAST

within the application’s execution. Instead, the appl@matvould have been restarted from scratch. For longer ruitis w

larger inputs of MG, the fraction of checkpoint/migratioveshead would have been much smaller.

1200 60
Don 4 nodes @ Full chkpt

M on 8/9 nodes — MIncr. chkpt
Oon 16 nodes

%3
(=}

1000

'S
<

800

600

[
(=1

400

Checkpoint overhead (seconds)
w
(=]

S

Job execution time (seconds)

200

(=1

0 <+ 9 o T o © % o« v T ® © T o \©
E B - ¥ U o FE EBE - 2 2 Z & & =
BT cG FT Is LU MG Sp meoa 5 S0 g EER S =322

(a) Job Execution Time (b) Checkpoint Time

2000 9
1800 :fnucliik:?t[- 8 [~ @From full chkpt
E 1600 E 7 | B From full+3incr. chkpt
E 1400 § 6
% 1200 bt
2 1000 5’
I $a
£ 800 z
I3 3
4 600 i
2 %2
S 400 K
200 1
0 0
<+ @ © < ® © T o WOV T 0 O T A O vo@v«z\ovw_\ovoo»oz::»o
= = - O el R = I - -V [B G G R = - 5 5 = =
m m E 8 8 8 E E E = a v B & m m E S 0 8 [l: . E o 2 3 I
(c) Checkpoint File Size (d) Restart Time

Fig. 7: Evaluation with NPB Class C on 4, 8/9, and 16 Nodes

Figures 7(b), 8(b), 9(b) and 10(b) show that the overhead@timental checkpointing is smaller than that of full check
pointing, so the overhead of incremental checkpointingss Isignificant. Hence, a hybrid full/incremental checkpog
mechanism reduces runtime overhead compared to full clegadipg throughout, i.e., under varying number of nodes and

input sizes.

10

12000

%3
=}

@ Full chkpt
M Incr. chkpt

@on 8/9 nodes
W on 16 nodes

'
O

—
=3
=3
8

[SSREN
wn O

8000

w
=1

6000

[
(=1

4000

—
v

Job execution time (seconds)
Checkpoint overhead (seconds)
[5°
W

—
=]

2000

w

=1

BT CG LU MG SP BT CG LU MG SP
(a) Job Execution Time on 8/9 and 16 Nodes (b) Checkpoint Time on 16 Nodes

O Full chkpt @ From full chkpt
M Incr. chkpt

M From full+3incr. chkpt

1800
1600
1400
1200
1000
800
600
400
200

—
(=}

—
S

_ =
=

Checkpoint file size (MB)

= o

Restart overhead (seconds)
oo

BT CG LU MG SP BT CG LU MG SP
(c) Checkpoint File Size on 16 Nodes (d) Restart Time on 16 Nodes

Fig. 8: Evaluation with NPB Class D

5.2 Checkpointing File Size

Besides overhead due to checkpointing, we assessed thad famitprint of the checkpointing file. Figures 7(c), 8(c),
9(c) and 10(c) depict the size of the checkpoint files for oree@ss of each MPI application. Writing many files of such
size to shared storage synchronously may be feasible fortégndwidth parallel file systems. In the absence of sufficie
bandwidth for simultaneous writes, we provide a multi-staglution where we first checkpoint to local storage. After
local checkpointing, files will be asynchronously copiedh@red storage, an activity governed by the scheduler. chpg
operation can be staggered (again governed by the schitatereen nodes. Upon failure, a spare node restores data fro

the shared file system while the remaining nodes roll backgutie checkpoint file on local storage, which results in less

network traffic.
100000 045 13
Hon 4 nodes 04
Mon 8 nodes M Incr. chkpt 11+
10000 Clon 16 nodes 035 +

09

g
g

025 -

2

8
4
o

Job exccution time (seconds)
Checkpoint overhead (seconds)
Checkpoint file size (MB)
<
S

5
e
e
b

0.05 -

e

Class C Class D Class E C4 C8 C.16 D4 D8 D.16 E4 ES8 E.16 C4 C8 C.16 D.4 D.8 D.16 E4 E8 E.16
(a) Job Execution Time (b) Checkpoint Time (c) Checkpoint File Size
Fig. 9: Evaluation with NPB EP Class C/D/E on 4, 8 and 16 nodes

Overall, the experiments show that:

11

14000 100

I

12000 -

@ Full chkpt
M Incr. chkpt

10000 -

8000 -

6000

4000

Job execution time (seconds)

2000

Checkpoint overhead (seconds)

4(6) 8(10) 16(18) 4(6) 8(10) 16(18)
Number of workers (number of compute nodes) Number of workers (number of compute nodes)
(a) Job Execution Time (b) Checkpoint Time

10000

N

O Full chkpt @ From full chkpt
M Incr. chkpt M From full+3incr. chkpt

(=)}

1000

w

IS
T

100

w
T

¥

10

Checkpoint file size (MB)
Restart overhead (seconds)

(=1

4(6) 8(10) 16(18) 4(6) 8(10) 16(18)
Number of workers (number of compute nodes) Number of workers (number of compute nodes)
(c) Checkpoint File Size (d) Restart Time

Fig. 10: Evaluation with mpiBLAST

. the overhead of full/incremental checkpointing of thelNt® is largely proportional to the size of the checkpoirgil
. the overhead of full checkpointing is nearly the same wittimme of the execution of the job;

. the overhead of incremental checkpointing is nearly #mesat any interval; and

A W N P

. the overhead of incremental checkpointing is lower theat of full checkpointing (except some cases of EP, which
are lower than 0.45 seconds, which is excessively shoregifiired at this sort rate, one can employ full checkpointing

only).

The first observation indicates that the ratio of commumicadverhead to computation overhead for C/R of the MPI job
is relatively low. Since checkpoint files are, on averagggdathe time spent on storing/restoring checkpointsdaifdisk
accounts for most of the measured overhead. This overhdadfigr reduced by the potential savings through increident
checkpointing.

For full/incremental checkpointing of EP (Figure 9(b))iiamental checkpointing of CG with Class C data inputs (FEgu
7(b)) and incremental checkpointing of mpiBLAST (Figurgl)), the footprint of the checkpoint file is small (smallaat
13MB), which results in a relatively small overhead. Thus theckpoint overhead mainly reflects the variance of the
communication overhead inherent to the benchmark, whicreases with the node count. However, the overall checkpoin
overhead for these cases is smaller than 1 second. Hencejwdoation overhead of the applications did not signifiyant

contribute to the overhead or interfere with checkpointifignis indicates a high potential of our hybrid full/incrental

12

checkpointing solution to scale to larger clusters, and axesfanalyzed our data structures and algorithms to assitaitity
for scalability. Due to a lack of large-scale experimemtaplatforms flexible enough to deploy our kernel modificasiocnew
BLCR features and LAM/MPI enhancements, such larger scgderaments cannot currently be realized, neither at Nation
Labs nor at larger-scale clusters within universities vehee have access to resources.

The second observation about full checkpoint overheadgeainadlicated that the size of the full checkpoint file remains
stable during job execution. The benchmarks codes do nota# or free heap memory dynamically within timesteps
of execution; instead, all allocation is performed duringialization, which is typical for most parallel codes ¢expt for
adaptive codes [36]).

The third observation is obtained by measuring the checifite size with different checkpoint intervals for incrental
checkpointing, i.e., with intervals of 30, 60, 90, 120, 150 480 seconds for NPB Class C and intervals of 2, 4, 6, 8, 10 and
12 minutes for NPB Class D and mpiBLAST.

Thus, we can assume the time spent on checkpointing is cinsthis assumption is critical to determine the optimal
full/incremental checkpoint frequency.

The fourth observation verifies the superiority and jussifiee deployment of our hybrid full/incremental checkpwigt

mechanism.

5.3 Restart Overhead

Figures 7(d), 8(d) and 10(d) compare the restart overheadrdfybrid full/incremental solution from one full checkipb
plus three incremental checkpoints with that of the origgmdution restarting from one full checkpoint. The resutfidicate
that the wall clock time for restart from full plus three ironental checkpoints exceeds that of restart from one feltkpoint
by 0-253% depending on the application, and it is 68% lartyeriseconds) on average for all cases. The largest adalition
cost of 253% (10.6 seconds) was observed for BT under claspiis for 16 nodes due to its comparatively large memory
footprint of the incremental checkpointing. Yet, this dvead is not on the critical path as failures occur signifiyaless
frequently than periodic checkpoints., our hybrid approach reduces the cost along the criticdd patheckpointing. For
mpiBLAST and CG, the footprint of incremental checkpoigtia comparatively so small that the overhead of restartiogf
full plus three incremental checkpoints is almost the sasihat of restarting from one full checkpoint. Yet, the tineeed
by three incremental checkpoints over three full checkiois 16.64 seconds on average for all cases. Even for BT under
class D inputs for 16 nodes (which has the largest restattlass ratio), the saving is 23.38 seconds while the loss i€ 10
seconds. We can further extend the benefit by increasingntnemental checkpointing count between two full checkioin

We can also assess the accumulated checkpoint file size dfibokeckpoint plus three incremental checkpoints, which
is 185% larger than that of one full checkpoint. Howeverpuss fliscussed, the overhead of restarting from one full {hicee

incremental checkpoint is only 68% larger. This is due tofthlewing facts:

13

1. a page saved by different checkpoints is only restoreé;onc
2. file reading for restarting is much faster than file writfiog checkpointing; and

3. some pages saved in preceding checkpoints may be invalideed not be restored at a later checkpoint.

5.4 Benefit of Hybrid Full/Incremental C/R Mechanism

Figure 11 depicts sensitivity results of the overall sasiftpe cost saved by replacing full checkpoints with incretak
ones minus the loss on the restore overhead) for differemtyaun of incremental checkpoints between any adjacent fidso
Savings increase proportional to the number of incremeatt@tkpoints (as the y axis in the figure is on a logarithmiehas
but the amount of incremental checkpoints is still limitgddtable storage capacity (without segment-style cleantipg

results are calculated by using the following formulae:

Su=nx (05— 0) ~ (Rpsn, — Ry)

whereS,, is the saving withn incremental checkpoints between two full checkpointg, is the full checkpoint overhead,
O; is the incremental checkpoint overhedg;.,,, is the overhead of restarting from futiincremental checkpoints and
Ry is the overhead of restarting from one full checkpoint. F@iBLAST and CG, we may even perform only incremental
checkpointing after the first full checkpoint is capturedially since the footprint of incremental checkpoints s small
that we will not run out of drive space at all (or, at least, féowery long time). Not only should a node failure be the
exception over the set of all nodes, but the lower overheaa sihgle incremental checkpoint provides opportunities to
increase checkpoint frequencies compared to an applicationing with full checkpoints only. Such shorter incrertan
checkpoint frequencies reduce the amount of work lost whesstart is necessitated by a node failure. Hence, the hybrid
full/incremental checkpointing mechanism effectivelguees the overall overhead relative to C/R.

Table 2 presents detailed measurements on the savinggefrinatal checkpointing, the overhead of restart from flulsp
incremental checkpoints, the relationship between thelgi@nt file size and restart overhead, and the overall biginefn
the hybrid full/incremental C/R mechanism. The benchmaressorted by the benefit. The table shows that (1) the cost
caused by restart from one full plus one incremental cheickp@which isR; 1, - Ry) is low, compared to the savings by
replacing full checkpoints with incremental ones (whicldis - O;), and can be ignored for most of the benchmarks; (2) the
restart cost is nearly proportional to the file size (exchpt some pages are checkpointed twice at both full and iremésth
checkpoints but later only restored once and thus lead toima eost); (3) for all the benchmarks, we can benefit from the
hybrid full/incremental C/R mechanism, and the perfornaingprovement depends on the memory access characteoistics
the application.

Naksinehaboomt al. provide a model that aims at reducing full checkpoint ovathky performing a set of incremental

checkpoints between two consecutive full checkpoints.[Z#Ey further develop a method to determine the optimal rermb

14

1000

——-CG.D
—=—SP.D
100 —BTD
—~ mpiBLAST
‘g —-LUD
§ -¢(CG.C
< 10t ——FT.C
ED —-e-BT.C
'5 -=-MG.D
n —+—LU.C
——SP.C
1 L
0.1
1 2 3 4 5 6
Number of incremental checkpoints between two full checkpoints
Fig. 11: Savings of Hybrid Full/Incremental C/R Mechanism for NPB and mpiBlast on 16 Nodes
| Benchmarks [CGD | SPD | BT.D | mpBLAST | LUD [CG.C | FT.C | BI.C | MGD | LUC [SPC |
Savings of O - Oy) 36.20 6.73 7.79 3.34 2.81 1.85 1.69 1.22 1.51 0.38 0.28
Restart overhead
of 0.03 1.28 3.45 0.01 0.59 0.01 0.20 -0.02 0.81 0.02 0.04
(Ryy1, - Ry)
File increases caused
by 1 incr. chkpt 17.26 | 1151.88 | 1429.14 10.45 561.46 | 2.10 | 384.41| 100.67 | 1205.23| 41.09 | 80.98
(MB)
Benefit of hybrid C/R (S1) | 36.17 5.45 4.34 3.33 2.21 1.84 1.50 1.25 0.70 0.36 0.24

Table 2: Savings by Incremental Checkpoint vs. Overhead on &start

of incremental checkpoints between full checkpoints. Tolatain

]

wherem is the number of incremental checkpoints between two cartsedull checkpointy is the incremental checkpoint
overhead ratiof = O,/Oy), P; is the probability that a failure will occur after the secadidi checkpoint and before the

next incremental checkpoint, aids additional recovery cost per incremental checkpointthvifie data from Table 2, we

9.92
— |2
" [Pi W

. Since0 < P; < 1, a lower bound forn is 8.92, which indicates the potential for even more sigaificsavings than just

can determine

15

those depicted in Figure 11.
Overall, the overhead of the hybrid full/incremental C/Ramanism is significantly lower than the original periodital

C/R mechanism.

6 Related Work

Checkpoint/Restart: C/R techniques for MPI jobs frequently deployed in HPC emwvinents can be divided into two
categories: coordinated (LAM/MPI+BLCR [30, 11], CoChe8R], etc.) and uncoordinated (MPICH-V [3, 4]). Coordinated
techniques commonly rely on a combination of OS support &xkpoint a process image.(, via the BLCR Linux module
[11]) or user-level runtime library support. Collectivernmunication among MPI tasks is used for the coordinatedigiant
negotiation [30]. Uncoordinated C/R techniques generally on logging messages and possibly their temporal andear
asynchronous non-coordinated checkpointing, MPICH-V [3, 4] that uses pessimistic message logging. Taméwork

of OpenMPI [2, 19] is designed to allow both coordinated andaordinated types of protocols. However, conventional
C/R techniques checkpoint the entire process image leadinigh checkpoint overhead, heavy 1/0 bandwidth requimgie
and considerable hard drive pressure, even though only seslf the process image of all MPI tasks changes between
checkpoints. With our hybrid full/incremental C/R mechanj we mitigate the situation by checkpointing only the rfiedi

pages and at a lower rate than required for full checkpoints.

Incremental Checkpointing: Recent studies focus on incremental checkpointing [13,185, TICK (Transparent In-
cremental Checkpointer at Kernel Level) [13] is a systemelleheckpointer implemented as a kernel thread. It support
incremental and full checkpoints. However, it checkpoor$y sequential applications running on a single proceasdb

not use inter-process communication or dynamically loateded librariesln contrast, our solution transparently supports
incremental checkpoints for antire MPI job with all its processes. Pickpi6] is a page-level incremental checkpointing
facility. It provides space-efficient techniques for autditally removing useless checkpoints aiming to minimigztihe use

of disk space that differ from our garbage collection threazhnique. Yiet al. [38] develop an adaptive page-level incre-
mental checkpointing facility based on the dirty page casé threshold heuristic to determine whether to checkpawt

or later, a feature complementary to our work that we couldpadvithin our scheduler component. However, Pickpt and
Yi's adaptive scheme are constrained to C/R of a single pmgest as TICK was, while we cover an entire MPI job with all
its processes and threads within processes. Agatall [1] provide a different adaptive incremental checkpoigtmecha-
nism to reduce the checkpoint file size by using a secure hastion to uniquely identify changed blocks in memory. Thei
solution not only appears to be specific to IBM’s compute riagtael on BG/L, it also requires hashes for each memory page
to be computed, which tends to be more costly than OS-levsl-dit support as caches are thrashed when each memory

location of a page has to be read in their approach.

16

A prerequisite of incremental checkpointing is the avaligbof a mechanism to track modified pages during each check
point. Two fundamentally different approaches may be eygadp namely page protection mechanisms or page-table dirty
bits. Different implementation variants build on theseesoles. One is the bookkeeping and saving scheme that, based on
the dirty bit scheme, copies pages into a buffer [13]. AnoHwdution is to exploit page write protection, such asiokpt
[16], to save only modified pages as a new checkpoint. The pagection scheme has certain draw-backs. Some address
ranges, such as the stack, can only be write protected iftamate signal stack is employed, which adds calling owsthe
and increases cache pressure. Furthermore, the overheadrelevel exception handlers is much higher than kemedi|
dirty-bit shadowing. Thus, we selected the dirty bit schemeur design, yet in our own implementation within the Linux
kernel.Our approach is unique among this prior work in its abilitydapture and restore aentire MPI job with all its tasks,
including all relevant process information and OS kernedafic data.Hence, our scheme is more general than language

specific solutions (as in Charm++), yet lighter weight the® @rtualization C/R techniques.

Reactive FT vs. Proactive FT: Besides reactive fault tolerance (FT), including the fatifemental C/R technique dis-
cussed so far and reactive migration [23, 27, 10], proaciiVéras recently become a hot research area. The feasitfility o
proactive FT has been demonstrated at the job schedulird) [25], within OS virtualization [33] and in Adaptive MPI

[5, 6, 7] using a combination of (a) object virtualizatiorch@iques to migrate tasks and (b) causal message loggifg [12
within the MPI runtime system of Charm++ applications. Waata@l. [35] provide a live migration mechanism which is
coarser grained than the Charm++ approach as FT is providhd arocess level, thereby encapsulating most of the psoce
context, including open file descriptors, which are beydr@MPI runtime layer. Proactive FT relies on failure predist
[29, 14, 15], whose accuracy still has to be further devalopéet, reactive FT is still a requirement for HPC systems] an
our solution improves reactive FT, optionally complemelnity proactive support, at reduced overhead due to increahent

process-level checkpoints for all MPI tasks.

Checkpoint Interval Model: Aiming at optimality for checkpoint overhead and rollbatké over a set of MPI jobs, sev-
eral models have been developed to determine job-speddiovals for full or incremental checkpoints. Yong [39] peesed

a checkpoint model and obtained a fixed optimal checkpotetval. Based on Youngs work, Daly [8, 9] improved the
model to an optimal checkpoint placement from a first ordea tdgher order approximation. Liet al. provide a model

for an optimal full C/R strategy toward minimizing rollbaekd checkpoint overheads [22]. Their scheme focuses on the
fault tolerance challenge, especially in a large-scale KBip&em, by providing optimal checkpoint placement techeg
that are derived from the actual system reliability. As wscdissed in Section 5, Naksinehabatral. provide a model

to perform a set of incremental checkpoints between two exuts/e full checkpoints [24] and a method to determine the
optimal number of incremental checkpoints between fulletipeints. While their work is constrained to simulationséa

on log data, our work focuses on the design and implememntafiprocess-level incremental C/R for MPI tasks. Their work

17

is complementary in that their model could be utilized to {finee our incremental C/R rate. In fact, the majority of thei
results on analyzing failure data logs show that the fudleémental C/R model outperforms full checkpointing. Farthore,

our reverse scanning restart mechanism is superior to taeised in their model.

7 Conclusion

This work contributes a novel hybrid full/incremental C/Reamanism with a concrete implementation within LAM/MPI
and BLCR with the following features: (1) It provides a ditiit mechanism to track modified pages between incremental
checkpoints; (2) only the subsetmibdifiedpages is appended to the checkpoint file together with pa¢gdai updates for
incremental checkpoints; (3) incremental checkpointsglement full checkpoints by reducing I/0O bandwidth and ater
space requirements while allowing lower rates for full dimmints; (4) a restart after a node failure requires a scam alf
incremental checkpoints and the last full checkpoint t@vec from the last stored version of a page, the content of any
page only needs to be written to memory once for fast req@ra decentralized scheduler coordinates the full/inenetal
C/R mechanism among the MPI tasks. Results indicate thaaetfermance of the hybrid full/incremental C/R mechanism
is significantly lower than that of the original full C/R. Ftine NPB suite and mpiBLAST, the average savings due to
replacing three full checkpoints with three incrementaéakpoints is 16.64 seconds — at the cost of only 1.17 seconds
if a restart is required after a node failure due to restoong full plus three incremental checkpoints. Hence, theallve
saving amounts to 15.47 seconds. Even more significantgawild be obtained if the rate of incremental checkpoints
between two full checkpoints was increased. Our hybrid @agin can further be utilized to (1) develop an optimal (or
near-optimal) checkpoint placement algorithm, which corab full and incremental checkpoint options in order touesl
the overall runtime and application overhead; (2) creaté@ssess applications with varying memory pressure to measu
the tradeoff between full and incremental checkpoints androvide heuristics accordingly; and (3) combine relataul |
pause/live migration techniques [33, 34, 35] with incretaéoheckpoints to provide a reliable multiple-level faidterant
framework that incurs lower overhead than previous schei@esrall, our hybrid full/incremental checkpointing appch

is not only novel but also superior to prior non-hybrid teicjues.

References

[1] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and JosedteiM. Adaptive incremental checkpointing for massivedyrallel
systems. INCS '04: Proceedings of the 18th annual international coafiee on Supercomputinpages 277-286, New York, NY,
USA, 2004. ACM.

[2] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, éxdBosilca. Analysis of the component architecture ovedhieaOpen
MPI. In European PVYM/MPI Users’ Group Meetin§orrento, Italy, September 2005.

[3] G.Bosilca, A. Boutellier, and F. Cappello. MPICH-V: Tavd a scalable fault tolerant MPI for volatile nodes.Supercomputing
November 2002.

[4] Bouteiller Bouteiller, Franck Cappello, Thomas Heta#lrawezik Krawezik, Pierre Lemarinier, and Magniette Magte. MPICH-
V2: a fault tolerant MPI for volatile nodes based on pesdimsender based message loggingSipercomputing2003.

18

(5]

(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

S. Chakravorty, C. Mendes, and L. Kale. Proactive fanlktiance in large systems. HPCRI: 1st Workshop on High Performance
Computing Reliability Issues, in Proceedings of the 11tierimational Symposium on High Performance Computer Aechiire
(HPCA-11) IEEE Computer Society, 2005.

S. Chakravorty, C. Mendes, and L. Kale. Proactive faalittance in MPI applications via task migration.liternational Conference
on High Performance Computing006.

S. Chakravorty, C. Mendes, and L. Kale. A fault tolerapoatocol with fast fault recovery. Imternational Parallel and Distributed
Processing Symposiyr2007.

J. T. Daly. A model for predicting the optimum checkpointerval for restart dumps. Imternational Conference on Computational
Sciencepages 3-12, 2003.

J. T. Daly. A higher order estimate of the optimum chedkpmnterval for restart dumps-uture Gener. Comput. Sys22(3):303-312,
2006.

Fred Douglis and John K. Ousterhout. Transparent @®aceigration: Design alternatives and the sprite impleatént. Softw.,
Pract. Exper.21(8):757-785, 1991.

J. Duell. The design and implementation of berkeleysldinux checkpoint/restart. Tr, Lawrence Berkeley Naabhaboratory,
2000.

Elmootazbellah N. EInozahy and Willy Zwaenepoel. Méwoe Transparent roll back-recovery with low overhead,itéd rollback,
and fast output commitEEE Trans. Comput41(5):526-531, 1992.

Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, amizieaPetrini. Transparent, incremental checkpointitdernel level: a
foundation for fault tolerance for parallel computers.Sapercomputing2005.

Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, and SPimg Chang. Toward predictive failure management foritisted stream
processing systems. IREE ICDCS June 2008.

Prashasta Gujrati, Yawei Li, Zhiling Lan, Rajeev Thaland John White. A meta-learning failure predictor for 8&ene/L systems.
In ICPP, September 2007.

Junyoung Heo, Sangho Yi, Yookun Cho, Jiman Hong, andgStishin. Space-efficient page-level incremental checkpay. In
SAC '05: Proceedings of the 2005 ACM symposium on Applieghating, pages 1558—-1562, New York, NY, USA, 2005. ACM.
C. Hsu and W. Feng. A power-aware run-time system fohpgrformance computing. I8C 2005.

Shang-Te Hsu and Ruei-Chuan Chang. Continuous chetkmp joining the checkpointing with virtual memory pagi. Softw.
Pract. Exper.27(9):1103-1120, 1997.

Joshua Hursey, Jeffrey M. Squyres, and Andrew Lumsdaincheckpoint and restart service specification for Open. MBchnical
report, Indiana University, Computer Science Departm2006.

Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattaxd &ndrew Lumsdaine. The design and implementation of ghaick/restart
process fault tolerance for Open MPI. 12th IEEE Workshop on Dependable Parallel, Distributed &tetwork-Centric Systems
03 2007.

Oak Ridge National Laboratory. Resources - nationateefor computational sciences (nccs). http://info.ngog/resources/jaguar,
June 2007.

Yudan Liu, R. Nassar, C. Leangsuksun, N. NaksinehapbbrPaun, and Stephen Scott. A reliability-aware approactaf optimal
checkpoint/restart model in hpc environmen@luster Computing, 2007 IEEE International Conference ages 452—-457, Sept.
2007.

Dejan S. Milojicic, Fred Douglis, Yves PaindaveinecRard Wheeler, and Songnian Zhou. Process migrath@®@M Computing
Surveys (CSURB2(3):241-299, 2000.

Nichamon Naksinehaboon, Yudan Liu, Chokchai (Box) hgsuksun, Raja Nassar, Mihaela Paun, and Stephen L. SedtbHRty-
aware approach: An incremental checkpoint/restart madépic environments. ICCGRID '08: Proceedings of the 2008 Eighth
IEEE International Symposium on Cluster Computing and thid @CGRID), pages 783-788, Washington, DC, USA, 2008. IEEE
Computer Society.

A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubbaniam. Fault-aware job scheduling for bluegene/| systdninterna-
tional Parallel and Distributed Processing Symposja04.

lan Philp. Software failures and the road to a petaflopmge. INnHPCRI: 1st Workshop on High Performance Computing Religbil
Issues, in Proceedings of the 11th International Symposiuiigh Performance Computer Architecture (HPCA-1EEE Computer
Society, 2005.

Michael L. Powell and Barton P. Miller. Process migaatin DEMOS/MP. InSymposium on Operating Systems Principtesges
110-119, October 1983.

M. Rosenblum and J. K. Ousterhout. The design and impigation of a log-structured file system. ACM Trans. on Computer
Systems, Vol. 10, No, Eebruary 1992.

R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Nk Vilalta, and A. Sivasubramaniam. Critical event predictfor proactive
management in large-scale computer clustersKD '03: Proceedings of the ninth ACM SIGKDD internationainference on
Knowledge discovery and data minjmages 426—435, 2003.

Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett,ddaw Lumsdaine, Jason Duell, Paul Hargrove, and Eric Rom#he
LAM/MPI checkpoint/restart framework: Systeme-initiatedeckpointing. IrProceedings, LACSI Symposiu@ctober 2003.

19

[31] Jeffrey M. Squyres and Andrew Lumsdaine. A Componenthitecture for LAM/MPI. InEuropean PVM/MPI Users’ Group

Meeting number 2840 in Lecture Notes in Computer Science, pages3879 Venice, Italy, September / October 2003. Springer-
Verlag.

[32] G. Stellner. CoCheck: checkpointing and process ntigmeor MPI. In IEEE, editorProceedings of IPPS '96. The 10th International
Parallel Processing Symposium: Honolulu, HI, USA, 15-181AP96, pages 526-531, 1109 Spring Street, Suite 300, Silver §prin
MD 20910, USA, 1996. IEEE Computer Society Press.

[33] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. LiiS&rxalable, fault-tolerant membership for MPI tasks oo $ystems. In
International Conference on Supercomputipgges 219-228, June 2006.

[34] C. Wang, F. Mueller, C. Engelmann, and S. Scott. A jobseaservice under LAM/MPI+BLCR for transparent fault toleca. In
International Parallel and Distributed Processing Symipag April 2007.

[35] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Preagirocess-level live migration in hpc environments.Skpercomputing
2008.

[36] Andrew Wissink, Richard Hornung, Scott Kohn, and St8weith. Large scale parallel structured amr calculationsgithe samrai
framework. InSupercomputingNovember 2001.

[37] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Cullerchitectural requirements and scalability of the NAS paiddenchmarks.
In Supercomputingl999.

[38] Sangho Yi, Junyoung Heo, Yookun Cho, and Jiman Hong pfidapage-level incremental checkpointing based on erpeecovery

time. InSAC '06: Proceedings of the 2006 ACM symposium on Appliegheting pages 1472-1476, New York, NY, USA, 2006.
ACM.

[39] John W. Young. A first order approximation to the optimeoheckpoint interval Commun. ACM17(9):530-531, 1974.

20

