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Abstract

As the number of cores in high-performance computing environments keeps increasing, faults are becoming common

place. Checkpointing addresses such faults but captures full process images even though only a subset of the process image

changes between checkpoints.

We have designed a high-performance hybrid disk-based full/incremental checkpointing technique for MPI tasks to capture

only data changed since the last checkpoint. Our implementation integrates new BLCR and LAM/MPI features that comple-

ment traditional full checkpoints. This results in significantly reduced checkpoint sizes and overheads with only moderate

increases in restart overhead. After accounting for cost and savings, benefits due to incremental checkpoints significantly

outweigh the loss on restart operations.

Experiments in a cluster with the NAS Parallel Benchmark suite and mpiBLAST indicate that savings due to replacing

full checkpoints with incremental ones average 16.64 seconds while restore overhead amounts to just 1.17 seconds. These

savings increase with the frequency of incremental checkpoints. Overall, our novel hybrid full/incremental checkpointing is

superior to prior non-hybrid techniques.

1 Introduction

Recent progress in high-performance computing (HPC) has resulted in remarkable Terascale systems with 10,000s or

even 100,000s of processing cores. At such large counts of cores, faults are becoming common place. Reliability data of

contemporary systems illustrates that the mean time between failures (MTBF) / interrupts (MTBI) is in the range of 6.5-40

hours depending on the maturity / age of the installation [17]. The most common causes of failure are processor, memory

and storage errors / failures. Table 1 presents an excerpt from a Department of Energy (DOE) study that summarizes the

reliability of several state-of-the-art supercomputers and distributed computing systems [17, 21]. When extrapolating for

current systems in such a context, the MTBF for peta-scale systems is predicted to be as short as 1.25 hours [26].

In such systems, frequently deployed checkpoint/restart (C/R) mechanisms periodically checkpoint the entire process
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System # Cores MTBF/I Outage source

ASCI Q 8,192 6.5 hrs Storage, CPU
ASCI White 8,192 40 hrs Storage, CPU

PSC Lemieux 3,016 6.5 hrs
Google 15,000 20 reboots/day Storage, memory

Jaguar@ORNL 23,416 37.5 hrs Storage, memory

Table 1: Reliability of HPC Clusters

image of all MPI tasks. The wall-clock time of a 100-hour job could well increase to 251 hours due to the C/R overhead of

contemporary fault tolerant techniques implying that 60% of cycles are spent on C/R alone [26]. However, only a subset of

the process image changes between checkpoints. In particular, large matrices that are only read but never written, which are

common in HPC codes, do not have to be checkpointed repeatedly. Also, coordinated checkpointing for MPI jobs, which is

commonly deployed, requires all the MPI tasks to save their checkpoint files at the same time, which leads to extremely high

I/O bandwidth demand.

Contributions: This paper contributes thefirst incremental checkpointing mechanism for MPI tasks that is trans-

parently integrated into an MPI environment . In contrast, prior solutions only operated insingle processenvironments

[13, 16, 18, 38] or used hash-based blocks and required anew APIto indicate when to checkpoint and drain in-flight mes-

sages [1] instead of our hardware assisted fully transparent scheme. Our incremental checkpoints are complementary tofull

checkpoints to capture only data changed since the last checkpoint. The implementation, while realized over LAM (Local

Area Multicomputer)/MPI’s C/R support [31] through Berkeley Labs C/R (BLCR) [11], is in its mechanisms applicable to

any process-migration solution,e.g., the OpenMPI FT mechanisms [19, 20]. BLCR is an open source, system-level C/R

implementation integrated with LAM/MPI via a callback function. The original LAM/MPI+BLCR combination [30] only

provides full C/R mechanisms.

This paper contributes a hybrid full/incremental C/R solution to significantly reduce the size of the checkpoint file and

the overhead of the checkpoint operations. Besides the original nodes allocated to an MPI job, it assumes the availability of

spare nodes where processes (MPI tasks) may be relocated after a node failure. The paper further reduces the overhead of

the restart operation due to roll-back after node failures,i.e., restoration from full/incremental checkpoints on spare nodes,

which only moderately increases the restart cost relative to a restore from a single, full checkpoint. After accountingfor cost

and savings,savings due to incremental checkpoints significantly outweigh the loss on restart operations for over novel

hybrid approach.

We conducted a set of experiments on an 18-node dual-processor (each dual core) Opteron cluster. We assessed the

viability of our approach using the NAS (NASA Advanced Supercomputing) Parallel Benchmark suite and mpiBLAST.

Experimental results show that the overhead of our hybrid full/incremental C/R mechanism is significantly lower than that of

the original C/R mechanism relying on full checkpoints. More specifically, experimental results indicate that the costsaved

by replacing three full checkpoints with three incrementalcheckpoints is 16.64 seconds while the restore overhead amounts
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Fig. 1: Hybrid Full/Incremental C/R Mechanism vs. Full C/R

to just 1.17 for an overall savings of 15.47 seconds on average for the NAS Parallel Benchmark suite and mpiBLAST. The

potential of savings due to our hybrid incremental/full C/Rtechnique should even be higher in practice as (1) much higher

ratios than just 1/3 for full/incremental checkpoints may be employed and (2) the amount of lost work would be further

reduced if more frequent, lighter weight checkpoints were employed. Moreover, our approach can be easily integrated with

other techniques, such as job-pause and migration mechanisms [34, 35] to avoid requeuing overhead by letting the scheduled

job tolerate faults so that it can continue executing with spare nodes.

The paper is structured as follows. Section 2 presents the design of our hybrid full/incremental C/R mechanism. Section3

identifies and describes the implementation details. Subsequently, the experimental framework is detailed and measurements

for our experiments are presented in Section 4 and 5, respectively. Our contributions are contrasted with prior work in Section

6. The work is then summarized in Section 7.

2 Design

This section presents an overview of the design of the hybridfull/incremental C/R mechanism with LAM/MPI and BLCR.

We view incremental checkpoints as complementary to full checkpoints in the following sense. Everyn-thcheckpoint will be

a full checkpoint to capture an application without prior checkpoint data while any checkpoints in between are incremental,

as illustrated in Figure 1(b). Such process-based incremental checkpointing reduces checkpoint bandwidth and storage space

requirements, and it leads to a lower rate of full checkpoints.

In the following, we first discuss the schedule of the full/incremental C/R. We then discuss system support for incremental

checkpoints at two levels. First, the synchronization and coordination operations (such as the in-flight message drainage

among all the MPI tasks to reach a consistent global state) atthe job level are detailed. Second, dirty pages and related

meta-data image information are saved at the process/MPI task level, as depicted in Figure 3. We employ filtering of “dirty”
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Fig. 2: Incremental Checkpoint at LAM/MPI

pages at the memory management level,i.e., memory pages modified (written to) since the last checkpoint, which are utilized

at node failures to restart from the composition of full and incremental checkpoints. Each component of our hybrid C/R

mechanism is detailed next.

2.1 Scheduler

We designed a decentralized scheduler, which can be deployed as a stand-alone component or as an integral process of

an MPI daemon, such as the LAM daemon (lamd). The scheduler will issue the full or incremental checkpoint commands

based on user-configured intervals or the system environment, such as the execution time of the MPI job, storage constraints

for checkpoint files and the overhead of preceding checkpoints.

Upon a node failure, the scheduler initiates a “job pause” mechanism in a coordinated manner that effectively freezes all

MPI tasks on functional nodes and migrates processes of failed nodes [34]. All nodes, functional (paused ones) and migration

targets (replaced failed ones), are restarted from the lastfull plus n incremental checkpoints, as explained in Section 2.5.

2.2 Incremental Checkpointing at the Job Level

Incremental Checkpointing at the Job Level is performed in asequence of steps depicted in Figure 2 and described in the

following.

Step 1: Incremental Checkpoint Trigger: When the scheduler decides to engage in an incremental checkpoint, it issues

a corresponding command to thempirun process, the initial LAM/MPI process at job invocation. This process, in turn,

broadcasts the command to all MPI tasks.
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Step 2: In-flight Message Drainage:Before we stop any process and save the remaining dirty pagesand the correspond-

ing process state in checkpoint files, all MPI tasks coordinate a consistent global state equivalent to an internal barrier. Based

on our LAM/MPI+BLCR design, message passing is handled at the MPI level while the process-level BLCR mechanism is

not aware of messaging at all. Hence, we employ LAM/MPI’s job-centric interaction mechanism for the respective MPI tasks

to clear in-flight data in the MPI communication channels.

Step 3: Process Incremental Checkpoint:Once all the MPI tasks (processes) reach a globally consistent state, all the

MPI tasks perform the process-level incremental checkpoint operations independently, as discussed in Section 2.3.

Step 4: Messages Restoration and Job Continuation:Once the process-level incremental checkpoint has been commit-

ted, drained in-flight messages are restored, and all processes resume execution from their point of suspension.

2.3 Incremental Checkpointing at the Process Level

Incremental checkpointing of MPI tasks (step 3 in Figure 2) is performed at the process level, which is shown in detail

in Figure 3. Compared to a full checkpoint, the incremental variant lowers the checkpoint overhead by saving only those

memory pages modified since the last (full or incremental) checkpoint. This is accomplished via our BLCR enhancements

by activating a handler thread (on right-hand side of Figure3) that signals compute threads to engage in the incremental

checkpoint. One of these threads subsequently saves modified pages before participating in a barrier with the other threads,

as further detailed in Section 3.2.
thread1
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blocked in ioctl()

handler_thr

block in ioctl()

run handler functions

checkpoint_req()

unblocks 

handler_thr

incr_checkpoint

still running normally
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and ioctl()

signal other threadsother work

barrier
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cleanup
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first thread restores

dirty pages

 shared resource

 registers/signals

reg/sig

registers/signals

mark checkpoint as complete

continue normal execution

Fig. 3: BLCR with Incremental Checkpoint in Bold Frame

A set of three files serve as storage abstraction for a checkpoint snapshot, as depicted in Figure 4:
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1. Checkpoint file acontains the memorypage content, i.e., the data of only those memory pages modified since the last

checkpoint.

2. Checkpoint file bstores memorypage addresses, i.e., address and offset of the saved memory pages for each entry in

file a.

3. Checkpoint file ccovers othermeta information, e.g., linkage of threads, register snapshots, and signal information

pertinent to each thread within a checkpointed process / MPItask.
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Fig. 4: Structure of Checkpoint Files

File a andfile bmaintain their data in a log-based append mode for successive incremental checkpoints. The last full and

subsequent incremental checkpoints will only be discharged (marked for potential removal) once the next full checkpoint has

been committed. Their availability is required for the potential restart up until a superseding checkpoint is written to stable

storage. In contrast, only the latest version offile c is maintained since all the latest information is saved as one meta-data

record, which is sufficient for the next restart.

In addition, memory pages saved infile aby an older checkpoint can be discharged once they are captured in a subsequent

checkpoint due to page modifications (writes) since the lastcheckpoint. For example, in Figure 4, memory page 4 saved

by the full checkpoint can be discharged when the first incremental checkpoint saves the same page. Later, the same page

saved by the first incremental checkpoint can be discharged when it is saved by the second incremental checkpoint. In our

on-going work, we are developing a garbage collection thread for this purpose. Similar to segment cleaning in log-structured

file systems [28], the file is divided into segments (each of equal size as they represent memory pages) that are written

sequentially. A separate garbage collection thread tracksthese segments within the file, removes old segments (marked

appropriately) from the end and puts new checkpointed memory data into the next segment. As a result, the file morphs into

a large circular buffer as the writer thread adds new segments to the front and the cleaner thread removes old segments from

the end toward the front (and then wraps around). Meanwhile,checkpointfile b is updated with the new offset information

relative tofile a.
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2.4 Modified Memory Page Management

We utilize a Linux kernel-level memory management module that has been extended by a page-table dirty bit scheme

to track modified pages between checkpoints [35]. This is accomplished by duplicating the dirty bit of the page-table entry

(PTE) and extending kernel-level functions that access thePTE dirty bit so that the duplicate bit is set, which incurs negligible

overhead (see [35] for details).

2.5 MPI Job Restart from Full+Incremental Checkpoints

Upon a node failure, the scheduler coordinates the restart operation on both the functional nodes and the spare nodes. First,

the process ofmpirun is restarted, which, in turn, issues the restart command to all the nodes for the MPI tasks. Thereafter,

recovery commences on each node by restoring the last incremental checkpoint image, followed by the memory pages from

the preceding incremental checkpoints in reverse sequenceup to the pages from the last full checkpoint image, as depicted in

Figure 5. The scan over all incremental checkpoints and the last full checkpoint allows the recovery of the last stored version

of a page,i.e., the content of any page only needs to be written once for fastrestart. After process-level restart has been

completed, drained in-flight messages are restored, and allthe processes resume execution from their point of suspension.

Furthermore, some pages saved in preceding checkpoints maybe invalid (unmapped) in subsequent ones and need not be

restored. The latest memory mapping information saved incheckpoint file cis also used for this purpose.

chkpt file a

restart

incr

chkpt 1

P6P5P1P4P3P4P2P4P3P2P1P0

full chkpt
incr

chkpt 2

incr

chkpt 3

Pi: content of memory page i

Fig. 5: Fast Restart from Full/Incremental Checkpoints

3 Implementation Issues

Our hybrid full/incremental checkpoint/restart mechanism is currently implemented with LAM/MPI and BLCR. The

overall design and implementation allows adaptation of this solution to arbitrary MPI implementations, such as MPICH

and OpenMPI. Next, we present the implementation details ofthe full/incremental C/R mechanism, including the MPI-level

communication/coordination realized within LAM/MPI and the process-level fundamental capabilities of BLCR.

3.1 Full/Incremental Checkpointing at the Job Level

We developed new commandslam full checkpointandlam incr checkpointto issue full and incremental checkpoint com-

mands, respectively. The decentralized scheduler relays these commands to thempirunprocess of the MPI job. Subsequently,

mpirunbroadcasts full/incremental checkpoint commands to each MPI tasks. At the LAM/MPI level, we also drain the in-

flight data and reach to a consistent internal state before processes launch the actual checkpoint operation (see step 2 in
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Figure 2). We then restore the in-flight data and resume normal operation after the checkpoint operation of the process has

completed (see step 4 in Figure 2).

3.2 Full/Incremental Checkpointing at the Process Level

We integrated several new BLCR features to extend its process-level checkpointing facilities, including the new commands

cr full checkpointandcr incr checkpointto trigger full and incremental checkpoints at the process level within BLCR. Both

of these commands write their respective portion of the process snapshot to one of the three files (see Section 2 and Figure

4).

Figure 3 depicts the steps involved in issuing an incremental checkpoint in reference to BLCR. Our focus is on the

enhancements to BLCR (large dashed box). In the figure, time flows from top to bottom, and the processes and threads

involved in the checkpoint are placed from right to left. Activities performed in the kernel are surrounded by dotted lines.

A callback thread (right side) is spawned as the applicationregisters a threaded callback and blocks in the kernel untila

checkpoint has been committed. Whenmpirun invokes the newly developedcr incr checkpointcommand extensions to

BLCR, it provides the process id as an argument. In response,thecr incr checkpointmechanism issues anioctl call, thereby

resuming the callback thread that was previously blocked inthe kernel. After the callback thread invokes the individual

callback for each of the other threads, it reenters the kernel and sends a signal to each thread. These threads, in response,

engage in executing the callback signal handler and then enter the kernel through anotherioctl call.

Once in the kernel, the first thread saves the dirty memory pages modified since the last checkpoint. Then, threads take

turns saving their register and signal information to the checkpoint files. After a final barrier, the process exits the kernel and

enters user space, at which point the checkpoint mechanism has completed.

The commandcr full checkpointperforms similar work, except that once the kernel is entered, the first thread saves all

the non-empty memory pages rather than only the dirty ones.

3.3 Restart from Full+Incremental Checkpoints at Job and Process Levels

A novel command,lam fullplusincr restart, has been developed to perform the restart work at the job level with

LAM/MPI. Yet another command,cr fullplusincr restart, has been devised to support the restart work at the process level

within BLCR. In concert, the two commands implement the restart from the three checkpoint files and resume the normal

execution of the MPI job as discussed in Section 2.

4 Experimental Framework

Experiments were conducted on a dedicated Linux cluster comprised of 18 compute nodes, each equipped with two AMD

Opteron-265 processors (each dual core) and 2 GB of memory. The nodes are interconnected by two networks, both with 1
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Gbps Ethernet. The OS used is Fedora Core 5 Linux x8664 with our dirty bit patch as described in Section 2. We extended

LAM/MPI and BLCR with our hybrid full/incremental C/R mechanism of this platform.

For all following experiments we use the MPI version of the NPB suite [37] (version 3.3) as well as mpiBLAST [1]. NPB

is a suite of programs widely used to evaluate the performance of parallel system, while the latter is a parallel implementation

of NCBI BLAST, which splits a database into fragments and distributes the query tasks to workers by query segmentation

before the BLAST search is performed in parallel.

5 Experimental Results

Experiments were conducted to assess (a) overheads associated with the full and incremental checkpoints, (b) full and

incremental checkpoint file size and memory checkpointed (which is the main source of the checkpointing overhead), (c)

restart overheads associated with the full and incrementalcheckpoints, and (d) the relationship between checkpoint interval

and checkpoint overhead.

Out of the NPB suite, the BT, CG, FT, LU and SP benchmarks were exposed to class C data inputs running on 4, 8 or 9

and 16 nodes, and to class D data inputs on 8 or 9 and 16 nodes. Some NAS benchmarks have 2D, others have 3D layouts

for 23 or 32 nodes, respectively. The NAS benchmark EP is exposed to class C, D and E data inputs running on 4, 8 and 16

nodes. All the other NAS benchmarks were not suitable for ourexperiments since they execute for too short a period to be

periodically checkpointed, such as IS, as depicted in Figure 7(a), or they have excessive memory requirement, such as the

benchmarks with class D data inputs on 4 nodes.

Since the version of mpiBLAST we used assigns one process as the master and another to perform file output, the number

of actual worker processes performing parallel input is thetotal process number minus two. Each worker process reads

several database fragments. With our experiments, we set the mpiBLAST-specific argument-use-virtual-frags, which enables

caching of database fragments in memory (rather than local storage) for quicker searches.

5.1 Checkpointing Overhead

The first set of experiments assesses the overhead incurred due to one full or incremental checkpoint. Figures 7(a), 8(a),

9(a) and 10(a) depict the base execution time of a job (benchmark) without checkpointing while Figures 7(b), 8(b), 9(b) and

10(b) depict the checkpoint overhead. As these results show, the checkpoint overhead is uniformly small relative to theoverall

execution time, even for a larger number of nodes. Prior work[34] already compared the overhead of full checkpointing with

the base execution, and the ratio is below 10% for most NPB benchmarks with Class C data inputs. Figure 6 depicts the

measured overhead for single full checkpointing relative to the base execution time of NPB with Class D data inputs and

mpiBLAST (without checkpointing). The ratio is below 1%, except for MG, as discussed in the following.

MG has a larger checkpoint overhead (large checkpoint file),but the ratio is skewed due to a short overall execution time

(see Figure 8(a)). In practice, with more realistic and longer checkpoint intervals, a checkpoint would not be necessitated
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Fig. 6: Full Checkpoint Overhead of NPB Class D and mpiBLAST

within the application’s execution. Instead, the application would have been restarted from scratch. For longer runs with

larger inputs of MG, the fraction of checkpoint/migration overhead would have been much smaller.
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Fig. 7: Evaluation with NPB Class C on 4, 8/9, and 16 Nodes

Figures 7(b), 8(b), 9(b) and 10(b) show that the overhead of incremental checkpointing is smaller than that of full check-

pointing, so the overhead of incremental checkpointing is less significant. Hence, a hybrid full/incremental checkpointing

mechanism reduces runtime overhead compared to full checkpointing throughout, i.e., under varying number of nodes and

input sizes.
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Fig. 8: Evaluation with NPB Class D

5.2 Checkpointing File Size

Besides overhead due to checkpointing, we assessed the actual footprint of the checkpointing file. Figures 7(c), 8(c),

9(c) and 10(c) depict the size of the checkpoint files for one process of each MPI application. Writing many files of such

size to shared storage synchronously may be feasible for high-bandwidth parallel file systems. In the absence of sufficient

bandwidth for simultaneous writes, we provide a multi-stage solution where we first checkpoint to local storage. After

local checkpointing, files will be asynchronously copied toshared storage, an activity governed by the scheduler. Thiscopy

operation can be staggered (again governed by the scheduler) between nodes. Upon failure, a spare node restores data from

the shared file system while the remaining nodes roll back using the checkpoint file on local storage, which results in less

network traffic.
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Fig. 9: Evaluation with NPB EP Class C/D/E on 4, 8 and 16 nodes

Overall, the experiments show that:
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Fig. 10: Evaluation with mpiBLAST

1. the overhead of full/incremental checkpointing of the MPI job is largely proportional to the size of the checkpoint file;

2. the overhead of full checkpointing is nearly the same at any time of the execution of the job;

3. the overhead of incremental checkpointing is nearly the same at any interval; and

4. the overhead of incremental checkpointing is lower than that of full checkpointing (except some cases of EP, which

are lower than 0.45 seconds, which is excessively short. If required at this sort rate, one can employ full checkpointing

only).

The first observation indicates that the ratio of communication overhead to computation overhead for C/R of the MPI job

is relatively low. Since checkpoint files are, on average, large, the time spent on storing/restoring checkpoints to/from disk

accounts for most of the measured overhead. This overhead isfurther reduced by the potential savings through incremental

checkpointing.

For full/incremental checkpointing of EP (Figure 9(b)), incremental checkpointing of CG with Class C data inputs (Figure

7(b)) and incremental checkpointing of mpiBLAST (Figure 10(b)), the footprint of the checkpoint file is small (smaller than

13MB), which results in a relatively small overhead. Thus, the checkpoint overhead mainly reflects the variance of the

communication overhead inherent to the benchmark, which increases with the node count. However, the overall checkpoint

overhead for these cases is smaller than 1 second. Hence, communication overhead of the applications did not significantly

contribute to the overhead or interfere with checkpointing. This indicates a high potential of our hybrid full/incremental
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checkpointing solution to scale to larger clusters, and we have analyzed our data structures and algorithms to assure suitability

for scalability. Due to a lack of large-scale experimentation platforms flexible enough to deploy our kernel modifications, new

BLCR features and LAM/MPI enhancements, such larger scale experiments cannot currently be realized, neither at National

Labs nor at larger-scale clusters within universities where we have access to resources.

The second observation about full checkpoint overheads above indicated that the size of the full checkpoint file remains

stable during job execution. The benchmarks codes do not allocate or free heap memory dynamically within timesteps

of execution; instead, all allocation is performed during initialization, which is typical for most parallel codes (except for

adaptive codes [36]).

The third observation is obtained by measuring the checkpoint file size with different checkpoint intervals for incremental

checkpointing, i.e., with intervals of 30, 60, 90, 120, 150 and 180 seconds for NPB Class C and intervals of 2, 4, 6, 8, 10 and

12 minutes for NPB Class D and mpiBLAST.

Thus, we can assume the time spent on checkpointing is constant. This assumption is critical to determine the optimal

full/incremental checkpoint frequency.

The fourth observation verifies the superiority and justifies the deployment of our hybrid full/incremental checkpointing

mechanism.

5.3 Restart Overhead

Figures 7(d), 8(d) and 10(d) compare the restart overhead ofour hybrid full/incremental solution from one full checkpoint

plus three incremental checkpoints with that of the original solution restarting from one full checkpoint. The resultsindicate

that the wall clock time for restart from full plus three incremental checkpoints exceeds that of restart from one full checkpoint

by 0-253% depending on the application, and it is 68% larger (1.17seconds) on average for all cases. The largest additional

cost of 253% (10.6 seconds) was observed for BT under class D inputs for 16 nodes due to its comparatively large memory

footprint of the incremental checkpointing. Yet, this overhead is not on the critical path as failures occur significantly less

frequently than periodic checkpoints,i.e., our hybrid approach reduces the cost along the critical path of checkpointing. For

mpiBLAST and CG, the footprint of incremental checkpointing is comparatively so small that the overhead of restarting from

full plus three incremental checkpoints is almost the same as that of restarting from one full checkpoint. Yet, the time saved

by three incremental checkpoints over three full checkpoints is 16.64 seconds on average for all cases. Even for BT under

class D inputs for 16 nodes (which has the largest restart cost loss ratio), the saving is 23.38 seconds while the loss is 10.6

seconds. We can further extend the benefit by increasing the incremental checkpointing count between two full checkpoints.

We can also assess the accumulated checkpoint file size of onefull checkpoint plus three incremental checkpoints, which

is 185% larger than that of one full checkpoint. However, as just discussed, the overhead of restarting from one full plusthree

incremental checkpoint is only 68% larger. This is due to thefollowing facts:
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1. a page saved by different checkpoints is only restored once;

2. file reading for restarting is much faster than file writingfor checkpointing; and

3. some pages saved in preceding checkpoints may be invalid and need not be restored at a later checkpoint.

5.4 Benefit of Hybrid Full/Incremental C/R Mechanism

Figure 11 depicts sensitivity results of the overall savings (the cost saved by replacing full checkpoints with incremental

ones minus the loss on the restore overhead) for different number of incremental checkpoints between any adjacent full ones.

Savings increase proportional to the number of incrementalcheckpoints (as the y axis in the figure is on a logarithmic base),

but the amount of incremental checkpoints is still limited by stable storage capacity (without segment-style cleanup). The

results are calculated by using the following formulae:

Sn = n × (Of − Oi) − (Rf+ni
− Rf )

whereSn is the saving withn incremental checkpoints between two full checkpoints,Of is the full checkpoint overhead,

Oi is the incremental checkpoint overhead,Rf+ni
is the overhead of restarting from full+n incremental checkpoints and

Rf is the overhead of restarting from one full checkpoint. For mpiBLAST and CG, we may even perform only incremental

checkpointing after the first full checkpoint is captured initially since the footprint of incremental checkpoints is so small

that we will not run out of drive space at all (or, at least, fora very long time). Not only should a node failure be the

exception over the set of all nodes, but the lower overhead ofa single incremental checkpoint provides opportunities to

increase checkpoint frequencies compared to an application running with full checkpoints only. Such shorter incremental

checkpoint frequencies reduce the amount of work lost when arestart is necessitated by a node failure. Hence, the hybrid

full/incremental checkpointing mechanism effectively reduces the overall overhead relative to C/R.

Table 2 presents detailed measurements on the savings of incremental checkpointing, the overhead of restart from full plus

incremental checkpoints, the relationship between the checkpoint file size and restart overhead, and the overall benefit from

the hybrid full/incremental C/R mechanism. The benchmarksare sorted by the benefit. The table shows that (1) the cost

caused by restart from one full plus one incremental checkpoints (which isRf+1i
- Rf ) is low, compared to the savings by

replacing full checkpoints with incremental ones (which isOf - Oi), and can be ignored for most of the benchmarks; (2) the

restart cost is nearly proportional to the file size (except that some pages are checkpointed twice at both full and incremental

checkpoints but later only restored once and thus lead to no extra cost); (3) for all the benchmarks, we can benefit from the

hybrid full/incremental C/R mechanism, and the performance improvement depends on the memory access characteristicsof

the application.

Naksinehaboonet al. provide a model that aims at reducing full checkpoint overhead by performing a set of incremental

checkpoints between two consecutive full checkpoints [24]. They further develop a method to determine the optimal number
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Fig. 11: Savings of Hybrid Full/Incremental C/R Mechanism for NPB and mpiBlast on 16 Nodes

Benchmarks CG.D SP.D BT.D mpiBLAST LU.D CG.C FT.C BT.C MG.D LU.C SP.C

Savings of (Of - Oi) 36.20 6.73 7.79 3.34 2.81 1.85 1.69 1.22 1.51 0.38 0.28
Restart overhead

of 0.03 1.28 3.45 0.01 0.59 0.01 0.20 -0.02 0.81 0.02 0.04
(Rf+1i

- Rf )
File increases caused

by 1 incr. chkpt 17.26 1151.88 1429.14 10.45 561.46 2.10 384.41 100.67 1205.23 41.09 80.98
(MB)

Benefit of hybrid C/R (S1) 36.17 5.45 4.34 3.33 2.21 1.84 1.50 1.25 0.70 0.36 0.24

Table 2: Savings by Incremental Checkpoint vs. Overhead on Restart

of incremental checkpoints between full checkpoints. Theyobtain

m =

⌈

(1 − µ) × Of

Pi × δ
− 1

⌉

wherem is the number of incremental checkpoints between two consecutive full checkpoint,µ is the incremental checkpoint

overhead ratio (µ = Oi/Of ), Pi is the probability that a failure will occur after the secondfull checkpoint and before the

next incremental checkpoint, andδ is additional recovery cost per incremental checkpoint. With the data from Table 2, we

can determine

m =

⌈

9.92

Pi

− 1

⌉

. Since0 < Pi < 1, a lower bound form is 8.92, which indicates the potential for even more significant savings than just
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those depicted in Figure 11.

Overall, the overhead of the hybrid full/incremental C/R mechanism is significantly lower than the original periodicalfull

C/R mechanism.

6 Related Work

Checkpoint/Restart: C/R techniques for MPI jobs frequently deployed in HPC environments can be divided into two

categories: coordinated (LAM/MPI+BLCR [30, 11], CoCheck [32], etc.) and uncoordinated (MPICH-V [3, 4]). Coordinated

techniques commonly rely on a combination of OS support to checkpoint a process image (e.g., via the BLCR Linux module

[11]) or user-level runtime library support. Collective communication among MPI tasks is used for the coordinated checkpoint

negotiation [30]. Uncoordinated C/R techniques generallyrely on logging messages and possibly their temporal ordering for

asynchronous non-coordinated checkpointing,e.g., MPICH-V [3, 4] that uses pessimistic message logging. The framework

of OpenMPI [2, 19] is designed to allow both coordinated and uncoordinated types of protocols. However, conventional

C/R techniques checkpoint the entire process image leadingto high checkpoint overhead, heavy I/O bandwidth requirements

and considerable hard drive pressure, even though only a subset of the process image of all MPI tasks changes between

checkpoints. With our hybrid full/incremental C/R mechanism, we mitigate the situation by checkpointing only the modified

pages and at a lower rate than required for full checkpoints.

Incremental Checkpointing: Recent studies focus on incremental checkpointing [13, 16,18]. TICK (Transparent In-

cremental Checkpointer at Kernel Level) [13] is a system-level checkpointer implemented as a kernel thread. It supports

incremental and full checkpoints. However, it checkpointsonly sequential applications running on a single process that do

not use inter-process communication or dynamically loadedshared libraries.In contrast, our solution transparently supports

incremental checkpoints for anentire MPI job with all its processes. Pickpt[16] is a page-level incremental checkpointing

facility. It provides space-efficient techniques for automatically removing useless checkpoints aiming to minimizing the use

of disk space that differ from our garbage collection threadtechnique. Yiet al. [38] develop an adaptive page-level incre-

mental checkpointing facility based on the dirty page countas a threshold heuristic to determine whether to checkpointnow

or later, a feature complementary to our work that we could adopt within our scheduler component. However, Pickpt and

Yi’s adaptive scheme are constrained to C/R of a single process, just as TICK was, while we cover an entire MPI job with all

its processes and threads within processes. Agarwalet al. [1] provide a different adaptive incremental checkpointing mecha-

nism to reduce the checkpoint file size by using a secure hash function to uniquely identify changed blocks in memory. Their

solution not only appears to be specific to IBM’s compute nodekernel on BG/L, it also requires hashes for each memory page

to be computed, which tends to be more costly than OS-level dirty-bit support as caches are thrashed when each memory

location of a page has to be read in their approach.
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A prerequisite of incremental checkpointing is the availability of a mechanism to track modified pages during each check-

point. Two fundamentally different approaches may be employed, namely page protection mechanisms or page-table dirty

bits. Different implementation variants build on these schemes. One is the bookkeeping and saving scheme that, based on

the dirty bit scheme, copies pages into a buffer [13]. Another solution is to exploit page write protection, such as inPickpt

[16], to save only modified pages as a new checkpoint. The pageprotection scheme has certain draw-backs. Some address

ranges, such as the stack, can only be write protected if an alternate signal stack is employed, which adds calling overhead

and increases cache pressure. Furthermore, the overhead ofuser-level exception handlers is much higher than kernel-level

dirty-bit shadowing. Thus, we selected the dirty bit schemein our design, yet in our own implementation within the Linux

kernel.Our approach is unique among this prior work in its ability tocapture and restore anentire MPI job with all its tasks,

including all relevant process information and OS kernel-specific data.Hence, our scheme is more general than language

specific solutions (as in Charm++), yet lighter weight than OS virtualization C/R techniques.

Reactive FT vs. Proactive FT: Besides reactive fault tolerance (FT), including the full/incremental C/R technique dis-

cussed so far and reactive migration [23, 27, 10], proactiveFT has recently become a hot research area. The feasibility of

proactive FT has been demonstrated at the job scheduling level [25], within OS virtualization [33] and in Adaptive MPI

[5, 6, 7] using a combination of (a) object virtualization techniques to migrate tasks and (b) causal message logging [12]

within the MPI runtime system of Charm++ applications. Wanget al. [35] provide a live migration mechanism which is

coarser grained than the Charm++ approach as FT is provided at the process level, thereby encapsulating most of the process

context, including open file descriptors, which are beyond the MPI runtime layer. Proactive FT relies on failure predictors

[29, 14, 15], whose accuracy still has to be further developed. Yet, reactive FT is still a requirement for HPC systems, and

our solution improves reactive FT, optionally complemented by proactive support, at reduced overhead due to incremental

process-level checkpoints for all MPI tasks.

Checkpoint Interval Model: Aiming at optimality for checkpoint overhead and rollback time over a set of MPI jobs, sev-

eral models have been developed to determine job-specific intervals for full or incremental checkpoints. Yong [39] presented

a checkpoint model and obtained a fixed optimal checkpoint interval. Based on Youngs work, Daly [8, 9] improved the

model to an optimal checkpoint placement from a first order toa higher order approximation. Liuet al. provide a model

for an optimal full C/R strategy toward minimizing rollbackand checkpoint overheads [22]. Their scheme focuses on the

fault tolerance challenge, especially in a large-scale HPCsystem, by providing optimal checkpoint placement techniques

that are derived from the actual system reliability. As we discussed in Section 5, Naksinehaboonet al. provide a model

to perform a set of incremental checkpoints between two consecutive full checkpoints [24] and a method to determine the

optimal number of incremental checkpoints between full checkpoints. While their work is constrained to simulations based

on log data, our work focuses on the design and implementation of process-level incremental C/R for MPI tasks. Their work
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is complementary in that their model could be utilized to fine-tune our incremental C/R rate. In fact, the majority of their

results on analyzing failure data logs show that the full/incremental C/R model outperforms full checkpointing. Furthermore,

our reverse scanning restart mechanism is superior to the one used in their model.

7 Conclusion

This work contributes a novel hybrid full/incremental C/R mechanism with a concrete implementation within LAM/MPI

and BLCR with the following features: (1) It provides a dirtybit mechanism to track modified pages between incremental

checkpoints; (2) only the subset ofmodifiedpages is appended to the checkpoint file together with page metadata updates for

incremental checkpoints; (3) incremental checkpoints complement full checkpoints by reducing I/O bandwidth and storage

space requirements while allowing lower rates for full checkpoints; (4) a restart after a node failure requires a scan over all

incremental checkpoints and the last full checkpoint to recover from the last stored version of a page,i.e., the content of any

page only needs to be written to memory once for fast restart;(5) a decentralized scheduler coordinates the full/incremental

C/R mechanism among the MPI tasks. Results indicate that theperformance of the hybrid full/incremental C/R mechanism

is significantly lower than that of the original full C/R. Forthe NPB suite and mpiBLAST, the average savings due to

replacing three full checkpoints with three incremental checkpoints is 16.64 seconds — at the cost of only 1.17 seconds

if a restart is required after a node failure due to restoringone full plus three incremental checkpoints. Hence, the overall

saving amounts to 15.47 seconds. Even more significant saving would be obtained if the rate of incremental checkpoints

between two full checkpoints was increased. Our hybrid approach can further be utilized to (1) develop an optimal (or

near-optimal) checkpoint placement algorithm, which combines full and incremental checkpoint options in order to reduce

the overall runtime and application overhead; (2) create and assess applications with varying memory pressure to measure

the tradeoff between full and incremental checkpoints and to provide heuristics accordingly; and (3) combine related job

pause/live migration techniques [33, 34, 35] with incremental checkpoints to provide a reliable multiple-level faulttolerant

framework that incurs lower overhead than previous schemes. Overall, our hybrid full/incremental checkpointing approach

is not only novel but also superior to prior non-hybrid techniques.
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