Fast Matching for All Pairs Similarity Search

Amit Awekar and Nagiza Samatova
North Carolina State University, Raleigh, NC.
Oak Ridge National Laboratory, Oak Ridge, TN.
Email: acwekar@ncsu.edu, samatovan@ornl.gov

Abstract Data Set
[Preprocessing Phase reorders records and record components]

All pairs similarity search is the problem of finding all T
pairs of records that have a similarity score above the FOFQaChrecord'frfmtheﬁ“mthe"’“
specmed Fhresho_ld. Many real—worlq §yst(_ams]lke search en Matching Phase finds and outputs matching pairs
gines, online social networks, and digital libraries fresoily for given record by querying the inverted index

have to solve this problem for data sets having millions

of records in a hlgh dimensional space, which are often [IndexingPhase adds a part of given record to the inverted index
sparse. The challenge is to design algorithms with feasible

time requirements. To meet this challenge, algorithms havejgyre 1. Overview of the framework common across
been proposed based on the inverted index, which maps eaghcent exact algorithms for the APSS

dimension to a list of records with the non-zero projection

along that dimension. Common to these algorithms is a

three-phase framework of data preprocessing, pairs matc
ing, and indexing. Matching is the most time-consumin
phase. Within this framework, we propose fast matchin
technique that uses the sparse nature of real-world dat)
to effectively reduce the size of the search space through HOWever, recentezact algorithms for the APSS [7],
a systematic set of tighter filtering conditions and heigist (8] [9], [10] have performed even faster than the heuristic
optimizations. We integrate our technique with the fasiest Methods because of their ability to significantly prune the
date algorithm in the field and achieve upt& X speed-up similarity score computation by taking advantage of thé fac

on three large real-world data sets. that only a small fraction of alb(n?) pairs typically satisfy
the specified similarity threshold. These exact algorithms

depend on thénverted indexwhich maps each dimension
to the list of records with non-zero projection along that

dimension.
Many real-world systems frequently have to search for all . .
y y q y We observe that the exact algorithms based on the in-

pairs of records with similarity above the specified thrédho verted index share a common three-phase framework of data

This problem is referred as thal pairs similarity search : . X -phas

(APSYS). Similarity between two records is defined via preprocessing, pairs matching and indexing (please, tefer
S . Lo Figure 1 for the framework overview). The preprocessing

some similarity measure, such as the cosine similarity of hase reorders the records and the components within each

the Tanimoto coefficient. For example, similar web pages ar8 P

suggested by Web search engines to improve user experienrc:eecOrd based on some specified sort order, such as the

O . : , . maximum value or the number of non-zero components in
[1]; similar users in an online social network are potential P

candidates for new friendship and collaboration [2]; andthe record. The matching phase identifies, for a given record

- I . —corresponding pairs with similarity above the threshold by
similar publications are recommended as related reading$.) . . :
by digital libraries [3] querying the inverted index. The indexing phase then ugdate

A . , , the inverted index with a part of the query record. The
All pairs similarity search is a compute-intensive problem matching and indexina ohases relv on filtering conditions
Given a data set witlw records in ad-dimensional space, 9 9p y g

wheren < d, the najve algorithm for the APSS will and heuristic optimizations derived from the ordered rdsor

L . 5 . and components within each record.
compute the similarity between all pairs @(n” - d) time. - . . .
Such a solution is not practical for data sets with millions 1h€ matching phase dominates the computational time. It

of records, which are typical in real-world applications. searches for similar pairs in the inverted index and congpute
similarity score of pairs found. Therefore, improving the

Nagiza Samatova is the corresponding author. performance of any solution to thé PSS would require

h'_I'herefore, manyheuristic solutions based on hashing [4],
gshingling [5], or dimensionality reduction [6] have been
roposed to address this problem.

1. Introduction

optimization of these two tasks in the matching phase. Table 1. Notations Used

In this paper, within th_e observed framework, we prese_nt Notation [Meaning
the fast matching technique that reduces the effective size Given a dimensiory .
of the inverted index and the search space; the size off density(s) the number of vectors i with non-

. . " zero projection along the dimensign
the search space is defined as the actual number of recoret o eami T 2] such thaw[j] = y[j] for vy € V

pairs evaluated by the algorithm. The proposed matching Given a vectorz
incorporates (a) the lower bound on the number of non-zero| =.maz_weight x[k] such thatz[k] >] for 1 <4 <
components in any record and (b) the upper bound on the dd
similarity score for any record pair. The former allows for | z.sum > zfi]
reducing the number of pairs that need to be evaluated, whil i=1
. R z’ the unindexed part aof

the latter prunes, or c_>n|y part_|ally computes, the S|r_myar| 7 fhe indexed part oF
score for many candidate pairs. Both bounds require only|[Tz (size ofz) the number of nonzero components jn
constant computation time. We integrate our fast matching x
technique with the fastest-to-datdi_Pairs algorithm [9] _ o,
to derive the proposed P_Time_Ef ficient algorithm. ||]| (magnitude ofz) 2 z[i]

Finally, we conduct extensive empirical studies using Givenapairio vectorgz, y)
three real-world million record data sets derived from info dot(z,) > ali] - yli]

mation on: (a) scientific literature collaboration in Meti
[11] indexed papers, (b) social networks from Flickr [12],
and (c) social networks from LiveJournal [13]. We compare
the performance of oudP_Time_FE f ficient algorithm
against theAll_Pairs algorithm [9] using two well-known
similarity measures: the cosine similarity and the Tanonot
coefficient. In our experiments, our fast matching techeiqu
reduces the search space by at least an order of magnitu
and achieve up t6.5X speed up.

TR dotz,)/ Tl

i.e., one for each dimension, represents the inverted index
for V. Each entry in the list has a pair of valu@s w) such
that if (z,w) € Iy, thenz[k] = w. The inverse of this
(%atement is not necessarily true, because some algorithms
index only a part of each vector.

Definition 3 (Candidate Vectorand Candidate PaiJ:

The rest of the paper is organized as follows. Defi-
.) . . Given a vectorr € V, any vectory in the inverted index
nitions and notations are stated in Section 2. The com:- . o .
is a candidate vector far, if 35 such thatz[;] > 0 and

mon framework and related work is explained in Sec- j]) € I,. The corresponding paitz, y) is a candidate
tion 3. The fast matching technique and the correspondinélgi? J a P g patr,y

AP_Time_FEf ficient algorithm are described in Section 4. S . : o

We extend our algorithm to the Tanimoto coefficient simi- \I/Deecf;glrt;or; Lx/('\g?]tghtlr?g g?iﬁgﬁndtwfetggg;g Zag)érﬁili\(/jzrt]e
larity measure in Section 5. The data sets and experimentgl y '

results are discussed in Section 6. Finally, Section 7 con\\-/A?Ctory €Visa matchm_g vector fqm, it sim(z,y) = ¢
e say thaty matches withz, and vice versa. The corre-
cludes the paper.

sponding pain(z, y) is a matching pair.
o . During subsequent discussions we assume that all vectors
2. Definitions and Notations are of unit length |(z|| = ||y|| = 1), and the similarity
function is the cosine similarity. In this case, the cosine
In this section, we define the problem and other importansimilarity equals the dot product, namely:
terms referred throughout the paper (please, see Table 1 for
the summary of notations).
Definition 1 (All Pairs Similarity Search The all pairs We show the applicability of our algorithms for the Tanimoto
similarity search 4 PSS) problem is to find all pairgz, y) coefficient similarity measure in Section 5.
and their exact value of similariyim(x, y) such thate, y €

sim(x,y) = cos(x,y) = dot(x,y).

V andsim(z,y) > t, where 3. Common Framework
« V is a set ofn real valued, non-negative, sparse vectors
over a finite set of dimension® and |D| = d; The basic idea behind the exa¢PSS algorithms based
o sim(z,y) : V xV —[0,1] is a symmetric similarity on the inverted index is similar to the way information
function; and retrieval systems answer queries [14]. Every vector in the
o t,t €10,1], is the similarity threshold. data set is considered as a query and the corresponding

Definition 2 (Inverted Index The inverted index maps matching pairs are found using the inverted index. Most of
each dimension to a list of vectors with nhon-zero projectionthe time, however, the information retrieval system reggiir
along that dimension. A set of alllists I = {11, I,, I}, only top# similar pairs, while theAPSS requiresall

Algorithm 1: Inverted index based framework common
across recent exaetPSS algorithms

Input: V, t, D, sim, Q, II

Output: MATCHING_PAIRS_SET
1 MATCHING_PAIRS_SET = {);
2 = P ,V1<i<d;

[+ The inverted index is initialized

to d enpty lists. */

3 Arrange vectors irt/ in the order defined by;
4 Arrange components in each vector in the order

defined byllI;
5 Computesummary_statistics;
6 foreach z € V using the order defined b do
7 C = set of candidate pairs correspondingito
found by querying and manipulating the inverted
index I;
foreach candidate pair(z,y) € C do
sim_max_possible = upper bound on

sim(z, y);
10 if sim_max_possible > t then
11 sim_actual = sim(z,y);
12 if stm_actual > t then
13 MATCHING_PAIRS_SET =

MATCHING_PAIRS_SET U
(x,y, sim_actual)

14
15
16 | foreachi such thatz[i] > 0 using the order defined

by IT do
17 if filtering_condition(x[i]) is true then
18 | Add (z,z[i]) to the inverted index;

19
20
21 return MATCHING _PAIRS _SET

matching pairs. The framework can be broadly divided3 3
into three phases: data preprocessing, pairs matching, and

indexing (please, refer to Algorithm 1 for details).

3.1. Preprocessing

during the matching and indexing phases to save time and
memory. The time spent on preprocessing is negligible
compared to the time spent on matching.

3.2. Matching

The matching phase scans the lists in the inverted index
that correspond to the non-zero dimensionszinfor a
given vectorz € V, to find candidate pairs (lines 7-
15, Algorithm 1). Simultaneously, it accumulates a patrtial
similarity score for each candidate pair. Bayardb al.

[9] and Xiao et al. [10] used the hash-based map, while
Sarawagiet al. [7] used the heap-based scheme for score
accumulation.

Givent, Q, IT andsummary_statistics, various filtering
conditions are derived to eliminate candidate pairs thét wi
definitely not satisfy the required similarity thresholdese
pairs are not added to the sét (line 7, Algorithm 1).
Sarawagiet al. [7] identified the part of the given vector
x € V such that for any candidate vectgre V to have
sim(x,y) > t, the intersection o) with that part must be
non-empty. Bayardet al. [9] computed a lower bound on
the size of any candidate vector to match with the current
vector as well as any remaining vector. Our fast matching
technique further tightens this lower bound.

Some of the candidate pairs can be safely discarded by
computing an upper bound on the similarity score. Xiao
et al. [10] used the Hamming distance based method for
computing such an upper bound. But their technique and for-
mulation of the APSS problem is specific to binary vectors
only. Bayardoet al. [9] used the vector size and maximum
component value to derive a constant time upper bound.
We further tighten this upper bound in our fast matching
technique. Finally, the exact similarity score is computed
for the remaining candidate pairs, and those having scores
above the specified threshold are added to the output set.

Indexing

The indexing phase adds a part of the given vector to
the inverted index so that it can be matched with any of
the remaining vectors (lines 16-20 Algorithm 1). Sarawagi
et al. [7] unconditionally indexed every component of each

The preprocessing phase reorders vectors using a permvector. Instead of building the inverted index incremdwgtal

tation() defined ove (lines 1-5, Algorithm 1). Bayardet

they built the complete inverted index beforehand. Bayardo

al. [9] and Xiaoet al. [10] sorted vectors on the maximum et al. [9] and Xiaoet al. [10] used the upper bound on the

value within each vector. Sarawagii al. [7] sorted vectors

possible similarity score with only the part of the current

on their size. The components within each vector are alswector. Once this bound reached the similarity threshoiel, t

rearranged using a permutatibhdefined overD. Bayardo
et al.[9] observed that sorting the dimensions/inbased on

remaining vector components were indexed.

vector density speeds up thePS'S. The summary statistics 4. Fast Matching

about each record, such as its size, magnitude, and maximum
component value are computed during the preprocessing In the framework described in Algorithm 1, the matching
phase. They are used later to derive filtering conditionphase searches and evaluaf3:?) candidate pairs. This

phase is critical for the running time. The computation timeThis gives us the following lower bound on the size of any
of the matching phase can be reduced in three ways: candidate vectoy:

« traversing the inverted index faster while searching for ly| > (t/x.maz_weight)?. (4)

candidate pairs, . . .
. generating fewer candidate pairs for evaluation, and The lower bound on the size of the candidate vector avoids

generating the candidate pairs that will not satisfy the

« reducing the number of candidate pairs that are evalu®~"~'¢
similarity threshold.

ated completely.

We propose two constant time optimizations that achieve; 3 AP Time Efficient Algorithm
these three goals, while guarantying not to eliminate any - -
matching pair. Our tighter lower bound on the size of the The proposedlP_Time_E f ficient algorithm integrates
candidate vector reduces the effective size of the invertedoth optimizations for the lower and upper bounds with
index, and the number of candidate pairs that are bein¢he fastest-to-datdli_Pairs algorithm [9] (please, refer to
generated. Our tighter upper bound on the similarity scor@lgorithm 2). The vectors are sorted in decreasing order
reduces the number of candidate pairs that are being evalef their max_weight, and the dimensions are sorted in
ated completely. First, we will prove the correctness oséhe decreasing order of their vector density. For everg V,
bounds, and later we will show that they are tighter than thehe algorithm first finds its matching pairs from the in-

existing bounds. verted index (Matching Phase, Lines 6-22) and then adds
selective parts of: to the inverted index (Indexing Phase,
4.1. Upper Bound on the Similarity Score Lines 23-29). The main difference between the algorithms

AP_Time_Ef ficient and All_Pairs is in the tighter
bounds on filtering conditions. The correctness of these
tighter bounds is proven above. Hence, the correctness of
the AP_ Time_FE f ficient is the same as the correctness
cos(x7 y) < x_max_wei‘ght * Y.SUM. (1) of the All_Pairs algorithm.

Given a candidate paitz, y), the following constant time
upper bound on the cosine similarity holds:

The correctness of this upper bound can be derived from:4.4. Tighter Bounds

z.maz_weight x sum(y) = dot(z,y) = cos(z,y). The All_Pairs algorithm uses/z.max_weight as the
Similarly following upper bound can be derived: lower bound on the size .of any cand|daf[e vector. The
AP_Time_E ficient algorithm tightens this bound by
cos(z,y) < y.mazx_weight * x.sum. (2) squaring the same ratio (Line 8, Algorithm 2).

The All_Pairs algorithm uses the following constant

Combining upper bounds in 1 and 2, we propose followingtime upper bound on the dot product of any candidate pair
upper bound on cosine similarity score: (z,7):

min(z.mazx_weight * y.sum, y.max_weight * T.sum), min(|z|, ly|) * x.max_weight x y.max_weight. (5)
.) . (3) we will consider following two possible cases to prove that
wheremin function selects minimum of the two arguments. o, hound proposed in 3 is tighter than this bound.
We can safely prune the exact dot product computation of a c 1lz] <
candidate pair, if it does not satisfy the similarity threlsh » Case Lia| < |y .
' The upper bound in 5 reduces to:

even for this upper bound. || * x.max_weight x y.max_weight.
The upper bound proposed in 2 is tighter than this
bound because:
x.sum < |z| * z.max_weight.
o Case 2:|z| > |y|
z.maz_weight x y.sum > dot(x,). The upper bound in 5 reduces to:
ly| * x.max_weight *x y.max_weight.
The upper bound proposed in 1 is tighter than this
bound because:
y.sum > t/x.max_weight. y.sum < |y| * y.max_weight.
Hence, our upper bound proposed in 3 on the cosine
similarity (Line 17, Algorithm 2) is tighter than the exisg
y.sum >k — |y| > k2. bound.

4.2. Lower Bound on the Candidate Vector Size

For any candidate paitz, y), the following is true:

For this candidate pair to qualify as a matching pair, the
following inequality must hold:

For any unit-length vectoy, the following is true:

4.5. Effect on Matching Phase Algorithm 2: AP_Time_Ef ficient Algorithm
Input: V, t, d, global_max_weight, Q, 11

Output: MATCHING _PAIRS_SET

For a given vectorz, our proposed lower bound on

the size of a candidate vector is inversely proportional to1 MATCHING_PAIRS_SET = (;
x.max_weight. The vectors are sorted in decreasing order2 I, = 0,V 1<i<d;

by maz_weight. Hence, the value of the lower bound on the 3 Q sorts vectors in decreasing order byix_weight;
size of the candidate increases monotonically as the \&ector II sorts dimensions in decreasing order by density;
are processed. If a vectgrdoes not satisfy the lower bound s foreach 2 € V in the order defined by do

on the size for the current vector, then it will not satisfisth 6
bound for any of the remaining vectors. Such vectors can
be discarded from the inverted index.

Like All_Pairs, our implementation uses arrays for rep- 7
resenting lists in the inverted index. Deleting an element
from the beginning of a list will have linear time overhead.
Instead of actually deleting such entries, we just ignoesé¢h
entries by removing them from the front of the list (Line 10, 8
Algorithm 2). Because of our tighter lower bound on the size
of the candidate, more such entries from the inverted index
are ignored. This reduces the effective size of the inverted
index, thus, resulting in faster traversal of the invertedieix
while finding candidate pairsAP_Time_FE f ficient also
generates fewer candidate pairs as fewer vectors qualify to

10

be candidate vectors because of the tighter lower bound dh

their size. 12

Computing the exact dot product for a candidate pair
requires linear traversal of both vectors in the candidat&®
pair (Line 20, Algorithm 2). The tighter constant time
upper bound on the similarity score of a candidate paig5
prunes the exact dot product computation for a large number
of candidate pairs. In our experiments we observed that
AP_Time_E f ficient reduces the search space by at least
an orders of magnitude (please, refer to Figure 4).

For the special case of binary vectors, where all
non-zero values within a given vector are all equal17
AP_Time_FEf ficient will not provide any speed up over
All_Pairs because our optimizations depend on the vari-
ation in the values of different components within a given
vector.

18
5. Extension to the Tanimoto Coefficient 19
20

In this section, we extendl P_T'ime_Ef ficient algo-
rithm for the Tanimoto coefficient, which is similar to the
extended Jaccard coefficient for binary vectors. Given &

vector pair(z,y), the Tanimoto coefficient is defined as: 22
23

7(w,y) = dot(x,y)/([[x|* + |lyl* — dot(z,y)). 24

First, we will show thatr(z,y) < cos(z,y). Without loss 2

of generality, let|z|| = a - |Jy|| anda > 1. By definition, it

follows that:

cos(z,y)/m(w,y) = (2] +[|yl[*—dot(x,y))/(l[«[|[lyl), 2’
(a® +1)/a — cos(x,y), 28

> (a2 +1)/a—1, 29
30

26

partScoreMap = ;
/+* Empty map fromvector id to
partial simlarity score */

remMaxScore =
d

Z x[i] * global_max_weight[i];

=1

minSize = (t/z.max_weight)?;

/+ Lower bound on m ni num si ze of
candi date i s now squared */

foreachi: z[i] > 0, in the reverse order defined by

IT do
Iteratively remove(y, y[i]) from front of I;
while |y| < minSize;
foreach (y, y[i]) € I; do
if partScoreMap{y} > 0 or
remMazxScore > t then
partScoreMap{y} =
partScoreMap{y} + x[i] * y[i];

remMaxScore = remMaxScore —

global_maximum_weightl[i] * x[i];

/* Remai ni ng maxi mum scor e t hat
can be added after processing
current di nension */

foreach y: partScoreMap{y} > 0 do

if partScoreMap{y} + min(sum(y’) *

x.max_weight, sum(zx) * y'.max_weight) >t

then

/* Tighter upper bound on the

simlarity score */
s = partScoreMap{y} + dot(z,y');
if s>t then

MATCHING_PAIRS SET =
MATCHING _PAIRS SET U

(x,y,8)

maxProduct = 0;
foreach i: z[i] > 0, in the order defined byl do
max Product = max Product 4+ x[i] %
min(global_max_weight[i], x.max_weight);
if maxProduct >t then

x[i] = 0;

31 return MATCHING_PAIRS_SET

> 1+ (a—1)2/a, Table 2. Data Sets Used

> 1 Data Set n=d Total Non-zero| Average
Given the similarity threshold for the Tanimoto coeffi- _ Components | Size
cient, if we runAP_Time_Ef ficient algorithm with the Medline | 1565145| 18722422 11.96
o e . Flickr 1441433 22613976 15.68
same threshold value for the cosine similarity, then thel wi LiveJournal | 4598703 77402652 16.83

not filter out any matching pairs. The only change we have
to make is to replace the final similarity computation (Line
20 of Algorithms 2) with the actual Tanimoto coefficient 6.1. Data Sets
computation as follows:
Out of the three data sets, one comes from the scien-
s =T7(2,y)- tific literature collaboration information in Medline inged
papers [11]. The rest come from the popular online social
6. Experiments networks, Flickr [12] and LiveJournal [13]. These data
sets were chosen, because they represent variety of large-
scale web-based applications like digital libraries aniihen
social networks, that we are primarily interested in. The

1e+06 r—— Viedine observed distribution of the vector sizes in the data sets
100000 L * 15 LiveJoll:JIrlglgrl - is the power law d|str|buF|on [_17] (p_lease, refer to Figure
2). These data sets are high dimensional and sparse (please,
z 10000 ¢ refer to Table 2). The ratio of the average size of vector
5 1000 | to the total number of dimensions, is less theor?. All
g these characteristics are common across data sets geherate
. 100 ¢ and used by many large-scale web based applications [9],
10 L] [18]. These applications have to solve the APSS problem for
e high-dimensioanl data sets with millions of records; which
1 1 10 100 1000 10000 100000 are often sparse. Therefore, our fast matching techniglle wi
Vector Size be relevant for other similar data sets as well.
Figure 2. Distribution of vector sizes 6.1.1. Medline. This data set was selected to investigate

possible applications for large web-based scientific digit

We empirica"y evaluate the effectiveness of our fastlibraries like PUbMed, ACM Dlgltal Library, and CiteSeer.

matching technique. We use the following abbreviations inSuch digital libraries help users to find similar publicato
figures for each algorithm: and authors. We used the data set prepared by the Auton

e AP : All_Puairs algorithm by Bayardcet al. [9]; and]Ic__a(tj)_ of Ca_rneglfe Merl]lon Uﬁlverhsny. W_e ?re |ntﬁr(;sted_ n

« APT : AP Time_Ef ficient algorithm. inding pairs of authors that have similar collaboration

patterns. Each vector represents the collaboration patter

We performed experiments on three real-world data setan author over the space of all authors. Two authors are
for both the cosine similarity and the Tanimoto coefficient.considered to be collaborators if they write at least two
Results for both similarity measures are quite similar. |npapers together. Similar strategies were used in previous
this paper, we present results only for cosine similaritywork [9] to eliminate accidental collaborations. We use the
for the sake of brevity. More details about results for theweighing scheme of Newman [19] to derive the weight of
Tanimoto coefficient can be downloaded from the Web [15].collaboration between any two authorsklauthors have co-
Many practical applications need pairs with relativelythig authored a paper, then it adtlg(k — 1) to the collaboration
similarity values [3], [2], [10], [1]. Hence, we varied the weight of each possible pair of authors of that paper. All
similarity threshold from 0.8 to 0.99 in 0.05 increments. vectors are then normalized to unit-length.

All our implementations are in C++. We used the standard
template library for most of the data structures. We used thé.1.2. Flickr and LiveJournal. These two data sets were
dense_hash_map class from Googlé for the hash-based selected to explore potential applications for large anlin
partial score accumulation [16]. The code was compiledsocial networks. We are interested in finding user pairs
using the GNUgcc 4.2.4 compiler with—O3 option for with similar social networking patterns. Such pairs are
optimization. All the experiments were performed on theused to generate more effective recommendations based on
same 3 GHz Pentium-4 machine with 4 GB of main memorycollaborative filtering [2]. We use the data set prepared by
The code and the data sets are available for download oMlislove et al [17]. Every user in the social network is
the Web [15]. represented by a vector over the space of all users. A user’s

Medline Flickr LiveJournal
1e+06 : : : 1e+07 : : : 1le+07

1e+06
100000 - : : : 1e+06 + —— 100000 : : :
0.8 09 095 0.99 0.8 09 095 0.99 0.8 09 095 0.99
AP —a— APT o AP —a— APT st AP —a— APT o
Figure 3. Ignored Entries from Inverted Index vs. Similarity Threshold for Cosine Similarity
Medline Flickr LiveJournal
1e+08 1e+09 : : : 1e+09
1e+07] 1e+08 |] le+08
. 1le+07
1e+06 1e+07 | . o le+06 | "
100000 - : — 1e+06 : — 100000 - T
0.8 09 095 0.99 0.8 09 095 0.99 0.8 09 095 0.99
AP AP AP
APT APT APT
Actual Matching Pairs Actual Matching Pairs Actual Matching Pairs
Figure 4. Candidate Pairs Evaluated vs Similarity Threshold for Cosine Similarity
Medline Flickr LiveJournal
260 : : : 800 = : ‘ . 650 : : :
240 t] 700 |] 600 f]
220 \\ 688 —] 550 |]
500 f]
200 t] I]
180 |] 500 450 1]
.. 400 |] 400 f
160 350 |
140] 300 f] 200 | ™
120 + . | 200 1 250 e |
100 ‘ : ‘ 100 : » 200 b ‘ : ‘
0.8 09 095 099 0.8 09 095 099 0.8 09 095 099

AP —a— APT AP —+— APT =

AP —a— APT

Figure 5. Runtime in Seconds vs. Similarity Threshold for Cosine Similarity

vector has non-zero projection along those dimensions thath both algorithms. The time spent on data preprocessing was
correspond to the users in his/her friend list. But the wisigh negligible as compared to the experiments’ running timd, an
of these social network links are unknown. So, we appliedvas ignored. Though the indexing phase is also identical
the weight distribution from the Medline data set to assignin both algorithms, the time spent in indexing phase was
the weights to these social network links in the two dataconsidered in the end-to-end running time, as it was not
sets. To ensure that our results are not specific only to theegligible.

selected weight distribution, we also conducted expertsen The number of entries in the inverted index ignored

by generating the weights randomly. The results were similaby AP Time_Ef ficient is two to eight times that

and are available on the Web [15]. of All_Pairs (please, refer to Figure 3). This reduc-
tion provides two-fold benefits: faster traversal of the in-
6.2. Fast Matching Performance verted index and fewer candidate pairs evaluated. The

AP_Time_E ficient reduces the search space by at least
We evaluate the performance of fast matching in##¢_ an order of magnitude (please, refer to Figure 4). Finally,
Time_FE f ficient algorithm based on three parameters: thethe end-to-end speed up is betwdethX and6.5X (please,
size of the inverted index, the size of the search space, anéfer to Figures 5). Even though the search space is reduced
the end-to-end run-time. The preprocessing phase is @#nti by an order of magnitude, we get comparatively less end-

to-end speed up, because some time is still spent traversing@] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating
the inverted index to find candidate pairs and filtering out a similarity measures: a large-scale study in the orkut $ocia
large fraction of them. network,” in ACM SIGKDD '05

The best speed up is obtained for the Flickr data set,(3 | | G. councill, L. Bolelli, D. Zhou, Y. Song, W.-C. ke,
because it has a heavy tail in the distribution of vectorssize A. Sivasubramaniam, and C. L. Giles, “Citesgea scalable
(please, refer to Figure 2). Vectors having the long size autonomous scientific digital library,” ilmfoScale '06
typically generate a large number of candidate pairs. But
AP_Time_Ef ficient effectively avoids their generation
and evaluation. In fact, for the Flickr data set, the number o

candidate pairs evaluated byP_Time_E f ficient almost [5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig,
equals the actual number of matching pairs (please refer to “Syntactic clustering of the webComput. Netw. ISDN Syst.

] M. S. Charikar, “Similarity estimation techniques frowund-
ing algorithms,” inSTOC '02

Figure 4). vol. 29, no. 8-13, pp. 1157-1166, 1997.
. [6] R. Fagin, R. Kumar, and D. Sivakumar, “Efficient similgri
7. Conclusion and Future Work search and classification via rank aggregation,” AGM
SIGMOD '03

We described the inverted index based framework com-
mon across recent exact algorithms for all pairs similarity [7] S- Sarawagi and A. Kirpal, “Efficient set joins on simitgr
search. Within this framework, we presented tighter bounds predicates,” inACM SIGMOD "04
on the candidate size and similarity score. These boundsg) A Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-
reduced the search space by at least an order of magnitude similarity joins,” in VLDB '06.
and provided significant speed up for three large real-world
data sets. Our fast matching technique will be relevant for [9] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs
other similar data sets, which are frequent across many web similarity search,” inWWW "07
based systems. [10] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similayi
Incremental formulations of APSS where APSS is per- joins for near duplicate detection,” WWW '08
formed multiple times over same data set while varying
the similarity threshold, is an interesting problem foruiit ~ [11] “Medline literature database of life sciences and kBoin
work. Incremental algorithms would potentially save a lot ﬁ?rlTﬂ'Tformat'on - www.nim.nih.gov/pubs/factsheets/nieel
of repetitive computation across multiple invocations of '
APSS. Parallelizing the solutions for APSS is an importan{12] “Flickr online photo sharing social network : www.flick
unexplored direction. It would enable us to take advantdge o com/.”
high performance computing infrastructure to processlarg
data sets, which otherwise cannot be processed in reagona
time sequentially.

IB]rS] “Livejournal blogging social network : www.livejoush.
com/.”

[14] H. Turtle and J. Flood, “Query evaluation: strategiexl a

8. Acknowledgments optimizations,’Inf. Process. Managgevol. 31, no. 6, pp. 831-
850, 1995.

We thank Paul B_remlyer of NCSU for thoughtful com- 15] “Code and data sets for our algorithms : www4.ncsu.edu/
ments and suggestions. We are also thankful to the Auton ~ ~zcawekar/”
Lab of Carnegie Mellon University and Max Planck Institute
for Software Systems for making their data sets publicly[16] “Google dense hash map library : code.google.com/p/
available. This work is performed as part of the Scientific ~ 900gle-sparsehash/.”
Data Management Center (http_://sdr_nceljter.Ibl.gov) und 17] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
the Department of Energys Scientific Discovery through ° B Bhattacharjee, “Measurement and analysis of onlineasoci
Advanced Computing program (http://www.scidac.org). Oak networks,” inACM IMC '07.
Ridge National Laboratory is managed by UT-Battelle

_[18] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
for the LLC U.S. D.O.E. under contract no. DEACO05 jagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph

000R22725. structure in the web,” i'WWW ’2000

References [19] M. E. J. Newman, “Scientific collaboration networks. ii
shortest paths, weighted networks, and central@hysical

. . L Revi I. 64, no. 016132, 2001.
[1] S. Chien and N. Immorlica, “Semantic similarity between eviewvo no

search engine queries using temporal correlation MWW
'05.

