
Fast Matching for All Pairs Similarity Search

Amit Awekar and Nagiza Samatova
North Carolina State University, Raleigh, NC.

Oak Ridge National Laboratory, Oak Ridge, TN.
Email: acwekar@ncsu.edu, samatovan@ornl.gov

Abstract

All pairs similarity search is the problem of finding all
pairs of records that have a similarity score above the
specified threshold. Many real-world systems like search en-
gines, online social networks, and digital libraries frequently
have to solve this problem for data sets having millions
of records in a high dimensional space, which are often
sparse. The challenge is to design algorithms with feasible
time requirements. To meet this challenge, algorithms have
been proposed based on the inverted index, which maps each
dimension to a list of records with the non-zero projection
along that dimension. Common to these algorithms is a
three-phase framework of data preprocessing, pairs match-
ing, and indexing. Matching is the most time-consuming
phase. Within this framework, we propose fast matching
technique that uses the sparse nature of real-world data
to effectively reduce the size of the search space through
a systematic set of tighter filtering conditions and heuristic
optimizations. We integrate our technique with the fastest-to-
date algorithm in the field and achieve up to6.5X speed-up
on three large real-world data sets.

1. Introduction

Many real-world systems frequently have to search for all
pairs of records with similarity above the specified threshold.
This problem is referred as theall pairs similarity search
(APSS). Similarity between two records is defined via
some similarity measure, such as the cosine similarity or
the Tanimoto coefficient. For example, similar web pages are
suggested by Web search engines to improve user experience
[1]; similar users in an online social network are potential
candidates for new friendship and collaboration [2]; and
similar publications are recommended as related readings
by digital libraries [3].

All pairs similarity search is a compute-intensive problem.
Given a data set withn records in ad-dimensional space,
where n ≤ d, the naïve algorithm for theAPSS will
compute the similarity between all pairs inO(n2 · d) time.
Such a solution is not practical for data sets with millions
of records, which are typical in real-world applications.

Nagiza Samatova is the corresponding author.

Figure 1. Overview of the framework common across
recent exact algorithms for the APSS

Therefore, manyheuristic solutions based on hashing [4],
shingling [5], or dimensionality reduction [6] have been
proposed to address this problem.

However, recentexact algorithms for theAPSS [7],
[8], [9], [10] have performed even faster than the heuristic
methods because of their ability to significantly prune the
similarity score computation by taking advantage of the fact
that only a small fraction of allΘ(n2) pairs typically satisfy
the specified similarity threshold. These exact algorithms
depend on theinverted index, which maps each dimension
to the list of records with non-zero projection along that
dimension.

We observe that the exact algorithms based on the in-
verted index share a common three-phase framework of data
preprocessing, pairs matching and indexing (please, referto
Figure 1 for the framework overview). The preprocessing
phase reorders the records and the components within each
record based on some specified sort order, such as the
maximum value or the number of non-zero components in
the record. The matching phase identifies, for a given record,
corresponding pairs with similarity above the threshold by
querying the inverted index. The indexing phase then updates
the inverted index with a part of the query record. The
matching and indexing phases rely on filtering conditions
and heuristic optimizations derived from the ordered records
and components within each record.

The matching phase dominates the computational time. It
searches for similar pairs in the inverted index and computes
similarity score of pairs found. Therefore, improving the
performance of any solution to theAPSS would require

optimization of these two tasks in the matching phase.
In this paper, within the observed framework, we present

the fast matching technique that reduces the effective size
of the inverted index and the search space; the size of
the search space is defined as the actual number of record
pairs evaluated by the algorithm. The proposed matching
incorporates (a) the lower bound on the number of non-zero
components in any record and (b) the upper bound on the
similarity score for any record pair. The former allows for
reducing the number of pairs that need to be evaluated, while
the latter prunes, or only partially computes, the similarity
score for many candidate pairs. Both bounds require only
constant computation time. We integrate our fast matching
technique with the fastest-to-dateAll Pairs algorithm [9]
to derive the proposedAP T ime Efficient algorithm.

Finally, we conduct extensive empirical studies using
three real-world million record data sets derived from infor-
mation on: (a) scientific literature collaboration in Medline
[11] indexed papers, (b) social networks from Flickr [12],
and (c) social networks from LiveJournal [13]. We compare
the performance of ourAP T ime Efficient algorithm
against theAll Pairs algorithm [9] using two well-known
similarity measures: the cosine similarity and the Tanimoto
coefficient. In our experiments, our fast matching technique
reduces the search space by at least an order of magnitude,
and achieve up to6.5X speed up.

The rest of the paper is organized as follows. Defi-
nitions and notations are stated in Section 2. The com-
mon framework and related work is explained in Sec-
tion 3. The fast matching technique and the corresponding
AP T ime Efficient algorithm are described in Section 4.
We extend our algorithm to the Tanimoto coefficient simi-
larity measure in Section 5. The data sets and experimental
results are discussed in Section 6. Finally, Section 7 con-
cludes the paper.

2. Definitions and Notations

In this section, we define the problem and other important
terms referred throughout the paper (please, see Table 1 for
the summary of notations).

Definition 1 (All Pairs Similarity Search): The all pairs
similarity search (APSS) problem is to find all pairs(x, y)
and their exact value of similaritysim(x, y) such thatx, y ∈
V andsim(x, y) ≥ t, where

• V is a set ofn real valued, non-negative, sparse vectors
over a finite set of dimensionsD and |D| = d;

• sim(x, y) : V × V → [0, 1] is a symmetric similarity
function; and

• t, t ∈ [0, 1], is the similarity threshold.

Definition 2 (Inverted Index): The inverted index maps
each dimension to a list of vectors with non-zero projection
along that dimension. A set of alld lists I = {I1, I2,, Id},

Table 1. Notations Used

Notation Meaning
Given a dimensionj

density(j) the number of vectors inV with non-
zero projection along the dimensionj

global max weight[j] x[j] such thatx[j] ≥ y[j] for ∀y ∈ V
Given a vectorx

x.max weight x[k] such thatx[k] ≥ x[i] for 1 ≤ i ≤
d

x.sum
d

X

i=1

x[i]

x′ the unindexed part ofx
x′′ the indexed part ofx
|x| (size ofx) the number of nonzero components in

x

||x|| (magnitude ofx)

v

u

u

t

d
X

i=1

x[i]2

Given a pair of vectors(x, y)

dot(x, y)
X

i

x[i] · y[i]

cos(x, y) dot(x, y)/(||x|| · ||y||)

i.e., one for each dimension, represents the inverted index
for V . Each entry in the list has a pair of values(x, w) such
that if (x, w) ∈ Ik, then x[k] = w. The inverse of this
statement is not necessarily true, because some algorithms
index only a part of each vector.

Definition 3 (Candidate Vectorand Candidate Pair):
Given a vectorx ∈ V , any vectory in the inverted index
is a candidate vector forx, if ∃j such thatx[j] > 0 and
(y, y[j]) ∈ Ij . The corresponding pair(x, y) is a candidate
pair.

Definition 4(Matching VectorandMatching Pair): Given
a vectorx ∈ V and the similarity thresholdt, a candidate
vectory ∈ V is a matching vector forx, if sim(x, y) ≥ t.
We say thaty matches withx, and vice versa. The corre-
sponding pair(x, y) is a matching pair.

During subsequent discussions we assume that all vectors
are of unit length (||x|| = ||y|| = 1), and the similarity
function is the cosine similarity. In this case, the cosine
similarity equals the dot product, namely:

sim(x, y) = cos(x, y) = dot(x, y).

We show the applicability of our algorithms for the Tanimoto
coefficient similarity measure in Section 5.

3. Common Framework

The basic idea behind the exactAPSS algorithms based
on the inverted index is similar to the way information
retrieval systems answer queries [14]. Every vector in the
data set is considered as a query and the corresponding
matching pairs are found using the inverted index. Most of
the time, however, the information retrieval system requires
only top-k similar pairs, while theAPSS requires all

Algorithm 1 : Inverted index based framework common
across recent exactAPSS algorithms
Input : V , t, D, sim, Ω, Π
Output : MATCHING PAIRS SET
MATCHING PAIRS SET = ∅;1

Ii = ∅ , ∀ 1 ≤ i ≤ d;2

/* The inverted index is initialized
to d empty lists. */

Arrange vectors inV in the order defined byΩ;3

Arrange components in each vector in the order4

defined byΠ;
Computesummary statistics;5

foreach x ∈ V using the order defined byΩ do6

C = set of candidate pairs corresponding tox,7

found by querying and manipulating the inverted
index I;
foreach candidate pair(x, y) ∈ C do8

sim max possible = upper bound on9

sim(x, y);
if sim max possible ≥ t then10

sim actual = sim(x, y);11

if sim actual ≥ t then12

MATCHING PAIRS SET =13

MATCHING PAIRS SET ∪
(x, y, sim actual)

14

15

foreach i such thatx[i] > 0 using the order defined16

by Π do
if filtering condition(x[i]) is true then17

Add (x, x[i]) to the inverted index;18

19

20

return MATCHING PAIRS SET21

matching pairs. The framework can be broadly divided
into three phases: data preprocessing, pairs matching, and
indexing (please, refer to Algorithm 1 for details).

3.1. Preprocessing

The preprocessing phase reorders vectors using a permu-
tationΩ defined overV (lines 1-5, Algorithm 1). Bayardoet
al. [9] and Xiaoet al. [10] sorted vectors on the maximum
value within each vector. Sarawagiet al. [7] sorted vectors
on their size. The components within each vector are also
rearranged using a permutationΠ defined overD. Bayardo
et al. [9] observed that sorting the dimensions inD based on
vector density speeds up theAPSS. The summary statistics
about each record, such as its size, magnitude, and maximum
component value are computed during the preprocessing
phase. They are used later to derive filtering conditions

during the matching and indexing phases to save time and
memory. The time spent on preprocessing is negligible
compared to the time spent on matching.

3.2. Matching

The matching phase scans the lists in the inverted index
that correspond to the non-zero dimensions inx, for a
given vector x ∈ V , to find candidate pairs (lines 7-
15, Algorithm 1). Simultaneously, it accumulates a partial
similarity score for each candidate pair. Bayardoet al.
[9] and Xiao et al. [10] used the hash-based map, while
Sarawagiet al. [7] used the heap-based scheme for score
accumulation.

Givent, Ω, Π andsummary statistics, various filtering
conditions are derived to eliminate candidate pairs that will
definitely not satisfy the required similarity threshold; these
pairs are not added to the setC (line 7, Algorithm 1).
Sarawagiet al. [7] identified the part of the given vector
x ∈ V such that for any candidate vectory ∈ V to have
sim(x, y) ≥ t, the intersection ofy with that part must be
non-empty. Bayardoet al. [9] computed a lower bound on
the size of any candidate vector to match with the current
vector as well as any remaining vector. Our fast matching
technique further tightens this lower bound.

Some of the candidate pairs can be safely discarded by
computing an upper bound on the similarity score. Xiao
et al. [10] used the Hamming distance based method for
computing such an upper bound. But their technique and for-
mulation of the APSS problem is specific to binary vectors
only. Bayardoet al. [9] used the vector size and maximum
component value to derive a constant time upper bound.
We further tighten this upper bound in our fast matching
technique. Finally, the exact similarity score is computed
for the remaining candidate pairs, and those having scores
above the specified threshold are added to the output set.

3.3. Indexing

The indexing phase adds a part of the given vector to
the inverted index so that it can be matched with any of
the remaining vectors (lines 16-20 Algorithm 1). Sarawagi
et al. [7] unconditionally indexed every component of each
vector. Instead of building the inverted index incrementally,
they built the complete inverted index beforehand. Bayardo
et al. [9] and Xiaoet al. [10] used the upper bound on the
possible similarity score with only the part of the current
vector. Once this bound reached the similarity threshold, the
remaining vector components were indexed.

4. Fast Matching

In the framework described in Algorithm 1, the matching
phase searches and evaluatesO(n2) candidate pairs. This

phase is critical for the running time. The computation time
of the matching phase can be reduced in three ways:

• traversing the inverted index faster while searching for
candidate pairs,

• generating fewer candidate pairs for evaluation, and
• reducing the number of candidate pairs that are evalu-

ated completely.

We propose two constant time optimizations that achieve
these three goals, while guarantying not to eliminate any
matching pair. Our tighter lower bound on the size of the
candidate vector reduces the effective size of the inverted
index, and the number of candidate pairs that are being
generated. Our tighter upper bound on the similarity score
reduces the number of candidate pairs that are being evalu-
ated completely. First, we will prove the correctness of these
bounds, and later we will show that they are tighter than the
existing bounds.

4.1. Upper Bound on the Similarity Score

Given a candidate pair(x, y), the following constant time
upper bound on the cosine similarity holds:

cos(x, y) ≤ x.max weight ∗ y.sum. (1)

The correctness of this upper bound can be derived from:

x.max weight ∗ sum(y) ≥ dot(x, y) = cos(x, y).

Similarly following upper bound can be derived:

cos(x, y) ≤ y.max weight ∗ x.sum. (2)

Combining upper bounds in 1 and 2, we propose following
upper bound on cosine similarity score:

min(x.max weight ∗ y.sum, y.max weight ∗ x.sum),
(3)

wheremin function selects minimum of the two arguments.
We can safely prune the exact dot product computation of a
candidate pair, if it does not satisfy the similarity threshold
even for this upper bound.

4.2. Lower Bound on the Candidate Vector Size

For any candidate pair(x, y), the following is true:

x.max weight ∗ y.sum ≥ dot(x, y).

For this candidate pair to qualify as a matching pair, the
following inequality must hold:

y.sum ≥ t/x.max weight.

For any unit-length vectory, the following is true:

y.sum ≥ k → |y| ≥ k2.

This gives us the following lower bound on the size of any
candidate vectory:

|y| ≥ (t/x.max weight)2. (4)

The lower bound on the size of the candidate vector avoids
generating the candidate pairs that will not satisfy the
similarity threshold.

4.3. AP Time Efficient Algorithm

The proposedAP T ime Efficient algorithm integrates
both optimizations for the lower and upper bounds with
the fastest-to-dateAll Pairs algorithm [9] (please, refer to
Algorithm 2). The vectors are sorted in decreasing order
of their max weight, and the dimensions are sorted in
decreasing order of their vector density. For everyx ∈ V ,
the algorithm first finds its matching pairs from the in-
verted index (Matching Phase, Lines 6-22) and then adds
selective parts ofx to the inverted index (Indexing Phase,
Lines 23-29). The main difference between the algorithms
AP T ime Efficient and All Pairs is in the tighter
bounds on filtering conditions. The correctness of these
tighter bounds is proven above. Hence, the correctness of
the AP T ime Efficient is the same as the correctness
of the All Pairs algorithm.

4.4. Tighter Bounds

The All Pairs algorithm usest/x.max weight as the
lower bound on the size of any candidate vector. The
AP T ime Efficient algorithm tightens this bound by
squaring the same ratio (Line 8, Algorithm 2).

The All Pairs algorithm uses the following constant
time upper bound on the dot product of any candidate pair
(x, y):

min(|x|, |y|) ∗ x.max weight ∗ y.max weight. (5)

We will consider following two possible cases to prove that
our bound proposed in 3 is tighter than this bound.

• Case 1:|x| ≤ |y|
The upper bound in 5 reduces to:

|x| ∗ x.max weight ∗ y.max weight.
The upper bound proposed in 2 is tighter than this
bound because:

x.sum ≤ |x| ∗ x.max weight.
• Case 2:|x| > |y|

The upper bound in 5 reduces to:
|y| ∗ x.max weight ∗ y.max weight.

The upper bound proposed in 1 is tighter than this
bound because:

y.sum ≤ |y| ∗ y.max weight.
Hence, our upper bound proposed in 3 on the cosine
similarity (Line 17, Algorithm 2) is tighter than the existing
bound.

4.5. Effect on Matching Phase

For a given vectorx, our proposed lower bound on
the size of a candidate vector is inversely proportional to
x.max weight. The vectors are sorted in decreasing order
by max weight. Hence, the value of the lower bound on the
size of the candidate increases monotonically as the vectors
are processed. If a vectory does not satisfy the lower bound
on the size for the current vector, then it will not satisfy this
bound for any of the remaining vectors. Such vectors can
be discarded from the inverted index.

Like All Pairs, our implementation uses arrays for rep-
resenting lists in the inverted index. Deleting an element
from the beginning of a list will have linear time overhead.
Instead of actually deleting such entries, we just ignore these
entries by removing them from the front of the list (Line 10,
Algorithm 2). Because of our tighter lower bound on the size
of the candidate, more such entries from the inverted index
are ignored. This reduces the effective size of the inverted
index, thus, resulting in faster traversal of the inverted index
while finding candidate pairs.AP T ime Efficient also
generates fewer candidate pairs as fewer vectors qualify to
be candidate vectors because of the tighter lower bound on
their size.

Computing the exact dot product for a candidate pair
requires linear traversal of both vectors in the candidate
pair (Line 20, Algorithm 2). The tighter constant time
upper bound on the similarity score of a candidate pair
prunes the exact dot product computation for a large number
of candidate pairs. In our experiments we observed that
AP T ime Efficient reduces the search space by at least
an orders of magnitude (please, refer to Figure 4).

For the special case of binary vectors, where all
non-zero values within a given vector are all equal,
AP T ime Efficient will not provide any speed up over
All Pairs because our optimizations depend on the vari-
ation in the values of different components within a given
vector.

5. Extension to the Tanimoto Coefficient

In this section, we extendAP T ime Efficient algo-
rithm for the Tanimoto coefficient, which is similar to the
extended Jaccard coefficient for binary vectors. Given a
vector pair(x, y), the Tanimoto coefficient is defined as:

τ(x, y) = dot(x, y)/(||x||2 + ||y||2 − dot(x, y)).

First, we will show thatτ(x, y) ≤ cos(x, y). Without loss
of generality, let||x|| = a · ||y|| anda ≥ 1. By definition, it
follows that:
cos(x, y)/τ(x, y) = (||x||2+||y||2−dot(x, y))/(||x||∗||y||),
= (a2 + 1)/a− cos(x, y),
≥ (a2 + 1)/a− 1,

Algorithm 2 : AP T ime Efficient Algorithm
Input : V , t, d, global max weight, Ω, Π
Output : MATCHING PAIRS SET
MATCHING PAIRS SET = ∅;1

Ii = ∅ , ∀ 1 ≤ i ≤ d;2

Ω sorts vectors in decreasing order bymax weight;3

Π sorts dimensions in decreasing order by density;4

foreach x ∈ V in the order defined byΩ do5

partScoreMap = ∅;6

/* Empty map from vector id to
partial similarity score */

remMaxScore =7
d∑

i=1

x[i] ∗ global max weight[i];

minSize = (t/x.max weight)2;8

/* Lower bound on minimum size of
candidate is now squared */

foreach i: x[i] > 0, in the reverse order defined by9

Π do
Iteratively remove(y, y[i]) from front of Ii10

while |y| < minSize;
foreach (y, y[i]) ∈ Ii do11

if partScoreMap{y} > 0 or12

remMaxScore ≥ t then
partScoreMap{y} =13

partScoreMap{y} + x[i] ∗ y[i];
14

remMaxScore = remMaxScore −15

global maximum weight[i] ∗ x[i];
/* Remaining maximum score that

can be added after processing
current dimension */

foreach y: partScoreMap{y} > 0 do16

if partScoreMap{y} + min(sum(y′) ∗17

x.max weight, sum(x) ∗ y′.max weight) ≥ t
then

/* Tighter upper bound on the
similarity score */

s = partScoreMap{y} + dot(x, y′);18

if s ≥ t then19

MATCHING PAIRS SET =20

MATCHING PAIRS SET ∪
(x, y, s)

21

22

maxProduct = 0;23

foreach i: x[i] > 0, in the order defined byΠ do24

maxProduct = maxProduct + x[i] ∗25

min(global max weight[i], x.max weight);
if maxProduct ≥ t then26

Ii = Ii ∪ {x, x[i]};27

x[i] = 0;28

29

30

return MATCHING PAIRS SET31

≥ 1 + (a − 1)2/a,
≥ 1.

Given the similarity thresholdt for the Tanimoto coeffi-
cient, if we runAP T ime Efficient algorithm with the
same threshold value for the cosine similarity, then they will
not filter out any matching pairs. The only change we have
to make is to replace the final similarity computation (Line
20 of Algorithms 2) with the actual Tanimoto coefficient
computation as follows:

s = τ(x, y).

6. Experiments

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

F
re

qu
en

cy

Vector Size

Medline
Flickr

LiveJournal

Figure 2. Distribution of vector sizes

We empirically evaluate the effectiveness of our fast
matching technique. We use the following abbreviations in
figures for each algorithm:

• AP : All Pairs algorithm by Bayardoet al. [9]; and
• APT : AP T ime Efficient algorithm.

We performed experiments on three real-world data sets
for both the cosine similarity and the Tanimoto coefficient.
Results for both similarity measures are quite similar. In
this paper, we present results only for cosine similarity
for the sake of brevity. More details about results for the
Tanimoto coefficient can be downloaded from the Web [15].
Many practical applications need pairs with relatively high
similarity values [3], [2], [10], [1]. Hence, we varied the
similarity threshold from 0.8 to 0.99 in 0.05 increments.

All our implementations are in C++. We used the standard
template library for most of the data structures. We used the
dense hash map class from GoogleTM for the hash-based
partial score accumulation [16]. The code was compiled
using the GNUgcc 4.2.4 compiler with−O3 option for
optimization. All the experiments were performed on the
same 3 GHz Pentium-4 machine with 4 GB of main memory.
The code and the data sets are available for download on
the Web [15].

Table 2. Data Sets Used

Data Set n = d Total Non-zero Average
Components Size

Medline 1565145 18722422 11.96
Flickr 1441433 22613976 15.68

LiveJournal 4598703 77402652 16.83

6.1. Data Sets

Out of the three data sets, one comes from the scien-
tific literature collaboration information in Medline indexed
papers [11]. The rest come from the popular online social
networks, Flickr [12] and LiveJournal [13]. These data
sets were chosen, because they represent variety of large-
scale web-based applications like digital libraries and online
social networks, that we are primarily interested in. The
observed distribution of the vector sizes in the data sets
is the power law distribution [17] (please, refer to Figure
2). These data sets are high dimensional and sparse (please,
refer to Table 2). The ratio of the average size of vector
to the total number of dimensions, is less than10−4. All
these characteristics are common across data sets generated
and used by many large-scale web based applications [9],
[18]. These applications have to solve the APSS problem for
high-dimensioanl data sets with millions of records; which
are often sparse. Therefore, our fast matching technique will
be relevant for other similar data sets as well.

6.1.1. Medline. This data set was selected to investigate
possible applications for large web-based scientific digital
libraries like PubMed, ACM Digital Library, and CiteSeer.
Such digital libraries help users to find similar publications
and authors. We used the data set prepared by the Auton
Lab of Carnegie Mellon University. We are interested in
finding pairs of authors that have similar collaboration
patterns. Each vector represents the collaboration pattern of
an author over the space of all authors. Two authors are
considered to be collaborators if they write at least two
papers together. Similar strategies were used in previous
work [9] to eliminate accidental collaborations. We use the
weighing scheme of Newman [19] to derive the weight of
collaboration between any two authors. Ifk authors have co-
authored a paper, then it adds1/(k−1) to the collaboration
weight of each possible pair of authors of that paper. All
vectors are then normalized to unit-length.

6.1.2. Flickr and LiveJournal. These two data sets were
selected to explore potential applications for large online
social networks. We are interested in finding user pairs
with similar social networking patterns. Such pairs are
used to generate more effective recommendations based on
collaborative filtering [2]. We use the data set prepared by
Mislove et al. [17]. Every user in the social network is
represented by a vector over the space of all users. A user’s

 100000

 1e+06

 0.8 0.9 0.95 0.99

Medline

AP APT

 1e+06

 1e+07

 0.8 0.9 0.95 0.99

Flickr

AP APT

 100000

 1e+06

 1e+07

 0.8 0.9 0.95 0.99

LiveJournal

AP APT

Figure 3. Ignored Entries from Inverted Index vs. Similarity Threshold for Cosine Similarity

 100000

 1e+06

 1e+07

 1e+08

 0.8 0.9 0.95 0.99

Medline

AP
APT

Actual Matching Pairs

 1e+06

 1e+07

 1e+08

 1e+09

 0.8 0.9 0.95 0.99

Flickr

AP
APT

Actual Matching Pairs

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.8 0.9 0.95 0.99

LiveJournal

AP
APT

Actual Matching Pairs

Figure 4. Candidate Pairs Evaluated vs Similarity Threshold for Cosine Similarity

 100
 120
 140
 160
 180
 200
 220
 240
 260

 0.8 0.9 0.95 0.99

Medline

AP APT

 100
 200
 300
 400
 500
 600
 700
 800

 0.8 0.9 0.95 0.99

Flickr

AP APT

 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

 0.8 0.9 0.95 0.99

LiveJournal

AP APT

Figure 5. Runtime in Seconds vs. Similarity Threshold for Cosine Similarity

vector has non-zero projection along those dimensions that
correspond to the users in his/her friend list. But the weights
of these social network links are unknown. So, we applied
the weight distribution from the Medline data set to assign
the weights to these social network links in the two data
sets. To ensure that our results are not specific only to the
selected weight distribution, we also conducted experiments
by generating the weights randomly. The results were similar
and are available on the Web [15].

6.2. Fast Matching Performance

We evaluate the performance of fast matching in theAP
T ime Efficient algorithm based on three parameters: the
size of the inverted index, the size of the search space, and
the end-to-end run-time. The preprocessing phase is identical

in both algorithms. The time spent on data preprocessing was
negligible as compared to the experiments’ running time, and
was ignored. Though the indexing phase is also identical
in both algorithms, the time spent in indexing phase was
considered in the end-to-end running time, as it was not
negligible.

The number of entries in the inverted index ignored
by AP T ime Efficient is two to eight times that
of All Pairs (please, refer to Figure 3). This reduc-
tion provides two-fold benefits: faster traversal of the in-
verted index and fewer candidate pairs evaluated. The
AP T ime Efficient reduces the search space by at least
an order of magnitude (please, refer to Figure 4). Finally,
the end-to-end speed up is between1.4X and6.5X (please,
refer to Figures 5). Even though the search space is reduced
by an order of magnitude, we get comparatively less end-

to-end speed up, because some time is still spent traversing
the inverted index to find candidate pairs and filtering out a
large fraction of them.

The best speed up is obtained for the Flickr data set,
because it has a heavy tail in the distribution of vector sizes
(please, refer to Figure 2). Vectors having the long size
typically generate a large number of candidate pairs. But
AP T ime Efficient effectively avoids their generation
and evaluation. In fact, for the Flickr data set, the number of
candidate pairs evaluated byAP T ime Efficient almost
equals the actual number of matching pairs (please refer to
Figure 4).

7. Conclusion and Future Work

We described the inverted index based framework com-
mon across recent exact algorithms for all pairs similarity
search. Within this framework, we presented tighter bounds
on the candidate size and similarity score. These bounds
reduced the search space by at least an order of magnitude
and provided significant speed up for three large real-world
data sets. Our fast matching technique will be relevant for
other similar data sets, which are frequent across many web
based systems.

Incremental formulations of APSS where APSS is per-
formed multiple times over same data set while varying
the similarity threshold, is an interesting problem for future
work. Incremental algorithms would potentially save a lot
of repetitive computation across multiple invocations of
APSS. Parallelizing the solutions for APSS is an important
unexplored direction. It would enable us to take advantage of
high performance computing infrastructure to process larger
data sets, which otherwise cannot be processed in reasonable
time sequentially.

8. Acknowledgments

We thank Paul Bremiyer of NCSU for thoughtful com-
ments and suggestions. We are also thankful to the Auton
Lab of Carnegie Mellon University and Max Planck Institute
for Software Systems for making their data sets publicly
available. This work is performed as part of the Scientific
Data Management Center (http://sdmcenter.lbl.gov) under
the Department of Energys Scientific Discovery through
Advanced Computing program (http://www.scidac.org). Oak
Ridge National Laboratory is managed by UT-Battelle
for the LLC U.S. D.O.E. under contract no. DEAC05-
00OR22725.

References

[1] S. Chien and N. Immorlica, “Semantic similarity between
search engine queries using temporal correlation,” inWWW
’05.

[2] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating
similarity measures: a large-scale study in the orkut social
network,” in ACM SIGKDD ’05.

[3] H. Li, I. G. Councill, L. Bolelli, D. Zhou, Y. Song, W.-C. Lee,
A. Sivasubramaniam, and C. L. Giles, “Citeseerχ: a scalable
autonomous scientific digital library,” inInfoScale ’06.

[4] M. S. Charikar, “Similarity estimation techniques fromround-
ing algorithms,” inSTOC ’02.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig,
“Syntactic clustering of the web,”Comput. Netw. ISDN Syst.,
vol. 29, no. 8-13, pp. 1157–1166, 1997.

[6] R. Fagin, R. Kumar, and D. Sivakumar, “Efficient similarity
search and classification via rank aggregation,” inACM
SIGMOD ’03.

[7] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity
predicates,” inACM SIGMOD ’04.

[8] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-
similarity joins,” in VLDB ’06.

[9] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs
similarity search,” inWWW ’07.

[10] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity
joins for near duplicate detection,” inWWW ’08.

[11] “Medline literature database of life sciences and biomedi-
cal information : www.nlm.nih.gov/pubs/factsheets/medline.
html.”

[12] “Flickr online photo sharing social network : www.flickr.
com/.”

[13] “Livejournal blogging social network : www.livejournal.
com/.”

[14] H. Turtle and J. Flood, “Query evaluation: strategies and
optimizations,”Inf. Process. Manage., vol. 31, no. 6, pp. 831–
850, 1995.

[15] “Code and data sets for our algorithms : www4.ncsu.edu/
∼acawekar/.”

[16] “Google dense hash map library : code.google.com/p/
google-sparsehash/.”

[17] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online social
networks,” inACM IMC ’07.

[18] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph
structure in the web,” inWWW ’2000.

[19] M. E. J. Newman, “Scientific collaboration networks. ii.
shortest paths, weighted networks, and centrality,”Physical
Review, vol. 64, no. 016132, 2001.

