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ABSTRACT
We study the problem of schema evolution in the RDF data
model. RDF and the RDFS schema language are W3C stan-
dards for flexibly modeling and sharing data on the web. Al-
though schema evolution has been intensively studied in the
database and knowledge representation communities, only
recently has progress been made on the study of RDFS
schema evolution. Indeed, the flexible nature of RDF poses
novel challenges. In particular, since the data model does
not strictly distinguish data from metadata, schema evolu-
tion is intimately related to data updates. A major issue en-
countered during RDFS database updates is a certain type
of “nondeterminism” exhibited during schema evolution. In
current solutions, such nondeterminism is handled by extra-
logical rules or heuristics. Is it possible to characterize the
class of RDFS updates which are well-behaved, i.e., with
a well-defined semantics avoiding ad-hoc solutions? In this
paper, we present our first steps in a project to formally
reason about such issues in RDF schema evolution. Specif-
ically, we introduce an effective notion of determinism in
RDF schema evolution, formally characterize a large class
of well-behaved updates on RDFS graphs with respect to
this definition, and show that computing such updates is
tractable via a polynomial time algorithm.

1. INTRODUCTION
RDF is a mature W3C standard [23] for flexibly model-

ing graph-like data, which is proving to be a popular and
effective format for creating and sharing data on the web.
As such, large collections of RDF data are becoming more
common. A key feature of RDF is the lack of a strict distinc-
tion between data and metadata, in contrast to traditional
data models. This feature makes RDF naturally suited for
the full spectrum from unstructured to structured data. In-
deed, alongside semistructured data, it is often the case that
traditional hierarchical and relational data are also encoded
and shared in RDF [18]. (Please see the case study given in
the Appendix, Section A.1.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

In this paper, we study the problem of schema evolution
in the RDF data model. The W3C standards provide a ba-
sic vocabulary, the RDF schema language (RDFS) [25], for
indicating how some data objects are to be interpreted as
structural metadata (i.e., as schema elements). In this pa-
per, we focus our attention on schema evolution in RDF data
conforming to the RDFS standard. Although schema evo-
lution has been intensively studied in the database [21] and
knowledge engineering [12, 20] communities, only recently
has progress been made on the study of RDFS schema evo-
lution [14, 15]. The characteristics of RDF data pose novel
challenges. In particular, since the data model blurs data
and metadata, the issue of schema evolution in RDF is inti-
mately related to data updates.

EXAMPLE 1.1. An RDFS database, often called a “graph,”
is essentially a collection of assertions encoded as “triples”
(we give formal definitions in Section 3 below). For example,
consider the set of triples G = {t1, t2, t2, t4}, where

t1 = (loves, subproperty, isFondOf)

t2 = (jack, loves, jill)

t3 = (jack, isFondOf, jill)

t4 = (jill, detests, jack).

RDFS associates a special semantics with the atom subproperty.
In particular, from assertions t1 and t2, the semantics of this
“keyword” permits us to infer triple t3. To consider some
updates of graph G, next suppose we desire to remove the
assertion t4 from G. Here, we face no problems; we simply
remove t4 from G. If, however, we want to remove t3, we are
faced with a choice: we must remove t3 and one or both of
t1 and t2. Which alternative do we choose? Is the choice ar-
bitrary, or is there some way to systematically choose which
set of triples to delete from G, so as to remove assertion t3?
It turns out that this “nondeterminism” during deletion is
inherent in updating RDFS databases.

The semantics of RDFS keywords imposes constraints on
RDFS graphs. In this sense, we argue that schema evolu-
tion in RDFS is essentially data evolution under constraints.
Some updates, such as removing t4 in Example 1.1 above,
are trivial. However, the “nondeterminism” exhibited dur-
ing other updates, such as during the removal of t3 in Ex-
ample 1.1, does not admit a well-behaved semantics. Conse-
quently, in RDFS schema evolution solutions, such nondeter-
minism must be handled by extra-logical rules or heuristics
(e.g., [14, 15]). Is it possible to characterize a broad class of
RDFS updates which are well-behaved, i.e., those updates
with a well-defined semantics avoiding ad-hoc solutions?
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In this paper, we present our first steps towards a frame-
work to formally reason about such questions, to contribute
to the design of principled RDFS schema evolution solu-
tions. In the following sections, we discuss closely related
research (Section 2), and introduce basic notation and defi-
nitions (Section 3). We then proceed as follows:

• we begin by introducing the theory of database depen-
dencies as a tool for reasoning about RDFS schema
evolution problems (Section 4);

• following this, we formally define a notion of determin-
ism in schema evolution (Section 5.1);

• next, we use this notion to precisely characterize a
broad class of well-behaved updates on RDFS graphs
(Section 5.2); and

• finally, we show that computing such updates is tractable
via a polynomial time algorithm (Section 6).

We conclude in Section 7 with a discussion of ongoing and
future research directions in this project.

2. RELATED WORK
The investigation we initiate in this paper builds on and

complements a rich literature on schema and ontology evolu-
tion. Indeed, RDF schema evolution is intimately related to
schema evolution and updates in traditional data models [2,
21] as well as to ontology evolution in richer knowledge rep-
resentation systems [12, 20].1 Each of these topics is quite
mature, and therefore we indicate here only selected recent
references to most closely related research.

To our knowledge, the state of the art on systematic stud-
ies of RDFS evolution are [14] and [15]. The present study
directly complements the results of these papers. In particu-
lar, whereas [15] takes a top-down, system-level approach to
RDFS schema evolution and [14] studies formal foundations
for handling nondeterminism in RDFS schema evolution,
we present in this paper our initial results in a bottom-up
investigation into the space of well-behaved deterministic
evolution of RDFS graphs.

Recent closely related studies of instance and schema level
evolution under richer ontology languages include [8, 31]. As
illustrated in Example 1.1, already non-trivial issues arise
during schema evolution for “small” languages such as RDFS,
the focus of the present study

3. PRELIMINARIES
We now introduce our basic notation and definitions.

3.1 RDFS graphs: data model
We introduce an abstraction of the RDF data model, fol-

lowing [7, 13]. We assume an enumerable set of atoms A =
{a, b, c, . . .} (e.g., URIs, unicode literals) and an enumerable
set of blank nodes B = {A,B,C, . . .}, such that A ∩ B = ∅.
An RDFS graph is a finite set G ⊆ (A∪B)×A× (A∪B). A
triple (s, p, o) ∈ G is interpreted as the statement “subject
s stands in relationship p to object o.” In particular, the
predicate p is “meta” data in this triple, in the sense that
the triple can be interpreted as the statement “(s, o) ∈ p,”
1We briefly discuss relational schema evolution in the Ap-
pendix, Section A.2.

for binary predicate p. However, p itself can appear as a
subject or object elsewhere in the graph.

The W3C standards associate a semantics with graphs
which reinforces this reading of triples [24, 25]. In particular,
graphs are viewed as first order formulas, a notion of graph
interpretation is developed, and a corresponding entailment
relation |= is defined on graphs (in the standard sense that
G |= H if every model of G is a model of H). For a finite set
of reserved keywords in A, the standards associate a seman-
tics enforced via |=. For example, keyword sp, interpreted
as “subproperty,” is a transitive relation over “class proper-
ties.” If graph G contains the triples (a, sp, b) and (b, sp, c),
then the semantics of |= ensures that G |= (a, sp, c).

Continuing this interpretation of graphs as first-order for-
mulas, with each RDFS graph G we associate a Boolean
query qG whose body is a conjunction of the (representa-
tions of the) triples in G. In this representation, we use
a single ternary (database) relation symbol g so that each
RDF triple (s, p, o) is translated into subgoal g(s, p, o) of the
query. Each atom of G is represented by a constant in qG,
whereas each blank node of G is represented by a variable
in qG. We call qG the associated query of G.

EXAMPLE 3.1. Let G1 = {(a, sp, b), (b, sp, c)}. Then

qG1() : − g(a, sp, b), g(b, sp, c)

is the associated query of RDFS graph G1. 2

3.2 RDFS graphs: formal semantics
The purpose of this subsection is to define the “meaning”

of an RDFS graph. Specifically, we spell out conditions un-
der which two RDFS graphs represent the “same” graph.
Observe that these conditions are essential for our being
able to test whether the result of an RDFS schema update
is unique. Consider an example.

EXAMPLE 3.2. Let RDFS graph G1 be as in Example
3.1, and let G2 = {(a, sp, b), (b, sp, c), (a, sp, c)}. G1 and
G2 “represent the same” RDFS graph in presence of the
following (transitivity) RDFS rule for sp [13, 24, 25]:

(a, sp, b) (b, sp, c)

(a, sp, c)
2

We now provide formal definitions regarding the semantics
of RDFS graphs. We consider a schema language to be a pair
(V,∆), where V ⊆ A is a finite set of keywords and ∆ is a
finite set of derivation rules in which the only constants men-
tioned are those occurring in V. In this paper, we specifically
study the language LRDFS = (VRDFS ,∆RDFS) with the set
of RDFS keywords VRDFS = {type, prop, sp, class, sc, dom, range},
and derivation rules ∆RDFS , as given in [13]. For example,
the transitivity rule of Example 3.2 for keyword sp is a mem-
ber of ∆RDFS . We discuss the rest of ∆RDFS in Section 4.
Provability (`) using derivation rules, for various fragments
and extensions of LRDFS , has been shown to be sound and
complete with respect to corresponding notions of graph en-
tailment (|=), in the sense that G |= H if and only if G ` H,
for RDFS graphs G and H [24, 28, 13, 19]. In particular, it
has been shown that the semantics of RDFS graphs is com-
pletely defined in terms of ∆RDFS , viewed as a proof system,
in the sense that it holds for arbitrary RDFS graphs G and
H that G |=LRDF S H if and only if G `LRDF S H [24, 28].

We make the notion of provability precise, as follows [13].
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Definition 3.1. Let G,H be RDFS graphs. Define G `LRDF S

H if and only if there exists a sequence of graphs G1, . . . , Gn,
for some n > 1, with G1 = G and Gn = H, and for each
1 < i 6 n, one of the following holds:

• there exists a homomorphism from Gi to Gi−1, i.e.,
there exists a mapping h : (A∪B)→ (A∪B) such that
h|A is the identity and, for each (s, p, o) ∈ Gi it is the
case that (h(s), h(p), h(o)) ∈ Gi−1;

• Gi ⊆ Gi−1; or

• there is an instantiation t1, . . . , tk → t of one of the
derivation rules in ∆RDFS, such that {t1, . . . , tk} ⊆
Gi−1 and Gi = Gi−1 ∪ {t}.

We now have the tools to give an operational semantics
for RDFS graphs, via provability in LRDFS .

Definition 3.2. Given an RDFS graph G, the ∆RDFS-
closure of G is the graph cl(G) obtained by repeated appli-
cation of the rules of ∆RDFS to G, adding new triples to G
until no new triples are generated.

We collect the following useful observations, which follow
immediately from the Definitions 3.1 and 3.2.

Proposition 3.1. For an arbitrary RDFS graph G:

1. cl(G) is unique, finite, and can be computed in time
polynomial in the size of G,

2. cl(G) ⊇ G,

3. cl(G) |=LRDF S G, and

4. G |=LRDF S cl(G).

Proof. (1) Clearly cl(G) is finite, since the RDFS rules
only introduce a finite set of new atoms, and therefore the
set of all possible derived triples is finite.2

Next, suppose cl(G) were not unique, i.e., there exist two
distinct closure graphs C1 and C2. Without loss of gener-
ality, we can then suppose that there exists a triple t ∈ C1

such that t 6∈ C2. By definition of cl(G), there exists a proof
G `LRDF S t. Since the same proof holds for all closures of
G, we conclude that C2 can not be a closure of G, a contra-
diction. Hence, our assumption is in error, and we conclude
that cl(G) must be unique.

Finally, that cl(G) can be computed in O(|G|2) time has
been observed in [19, 28].

(2) By Definition 3.2, we have that cl(G) contains G.
(3) By Definition 3.1 and (2), we have that cl(G) `LRDF S

G. Since `LRDF S is sound with respect to |=LRDF S , we have
that cl(G) |=LRDF S G.3

(4) By Definitions 3.1 and 3.2, we have that G `LRDF S

cl(G). Since `LRDF S is sound with respect to |=LRDF S , we
have that G |=LRDF S cl(G).

A variety of other normal forms for RDFS graphs have
been proposed (e.g., [7, 13]). Most reasoning tasks associ-
ated with these alternate RDFS graph representations, how-
ever, are intractable. Computing ∆RDFS-closures, on the

2In particular, note that |cl(G)| 6 (|A(G)| + |B(G)| +
|VRDFS |)3.
3This is also clear at the semantic level, since by (2) we have
that G is contained in its closure, and therefore any model
of the closure must also be a model of G itself.

other hand, is tractable, as we observed in Proposition 3.1.
Hence, we take the semantics of an RDFS graph G to be
cl(G). Determining entailment G |=LRDF S H, however, is
still intractable in the presence of blank nodes.

Proposition 3.2. Given RDFS graphs G and H, it is
the case that G |=LRDF S H iff qH contains qcl(G).

This result follows directly from Proposition 3.1 and Defini-
tion 3.1. As an immediate corollary, we have from standard
results on complexity of query containment [2] that

Corollary 3.1. |=LRDF S is NP-complete.

Note that Propositions 3.1 and 3.2 and Corollary 3.1 are
variations of standard results on RDFS (e.g., [13]). We give
them here in this form for their utility in the sequel.

We say that two RDFS graphs G and H are equivalent,
denoted G ≡LRDF S H, when it holds that G |=LRDF S H
and H |=LRDF S G. In the absence of blank nodes, deter-
mining if G ≡LRDF S H is tractable, since this amounts to
computing and comparing the ∆RDFS-closures of G and H.
As observed above, however, in the presence of blank nodes,
determining if G ≡LRDF S H is, in general, intractable.

3.3 The Schema Evolution Problem
As we saw in Section 1, schema evolution in RDFS is

induced by graph updates. In this section, we develop a
general formulation of the schema evolution problem.

Let an update action α be one of t[+] or t[−] (denoting
addition or deletion, respectively), for some triple t.4 Our
concern here is defining the semantics of updating a graph
G with action α, which we denote (G,α). In other words,
(G,α) is an RDFS graph capturing the update α on G. As
we observed in Section 1, the impact of update actions can
be quite subtle [14, 15, 20]. A primary issue is understanding
the interaction of actions and ∆RDFS . Our interest here is in
characterizing RDFS-expressible update graphs, i.e., update
graphs expressible as unique well-defined RDFS graphs.

Problem statement: Given an RDFS graph G and an
update action α, does there exist an RDFS-expressible up-
date graph (G,α)?

As we saw in Example 1.1, such update graphs do not
always exist.

4. RDFS SEMANTICS VIA DEPENDENCIES
We next show how to recast the semantics of RDFS graphs

in terms of data dependencies and chase [2]. This perspec-
tive is instrumental for establishing our main results.

4.1 Dependencies and chase
We assume reader familiarity with the basic notions of

dependencies and chase; please see [2] for details. Here, we
define the notions used in the sequel.

Query equivalence under dependencies. Given a
query Q, we denote by Q(D) the answer to Q on database
D. Further, given a set Σ of embedded dependencies [2], we
say that D |= Σ if D satisfies Σ. For queries Q and P , we say
that Q is equivalent to P under Σ (denoted Q ≡Σ P ) if for
every database D such that D |= Σ we have Q(D) = P (D).
Q ≡ P is defined as Q ≡Σ P for Σ = ∅.
4For a brief discussion of evolution of relational data en-
coded in RDF, please see the Appendix, Section A.2.
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Chase. Assume a conjunctive query (CQ query) Q() :
− ξ(X̄) and an embedded tuple-generating dependency (tgd)
[2] σ : φ(Ū , W̄ ) → ∃V̄ ψ(Ū , V̄ ), such that atoms in σ may
involve constants. (See Section 4.2.) Assume w.l.o.g. that
Q has none of the variables V̄ . The chase of Q with σ is
applicable if there is a homomorphism h from φ to ξ such
that h cannot be extended to a homomorphism h′ from φ∧ψ
to ξ. In that case, a chase step of Q with σ and h is a rewrite
of Q into Q′() : − ξ(X̄) ∧ ψ(h(Ū), V̄ ).

Given a set Σ of tgds as described above, a Σ-chase se-
quence C is a sequence of CQ queries Q0, Q1, . . . such that
every query Qi+1 (i ≥ 0) in C is obtained from Qi by a
chase step Qi ⇒σ Qi+1 using a dependency σ ∈ Σ. A chase
sequence Q = Q0, Q1, . . . , Qn is terminating if D(Qn) |= Σ,

where D(Qn) is the canonical database for Qn. In this case
we say that (Q)Σ = Qn is the (terminal) result of the chase.

Chase of CQ queries under sets of “weakly acyclic” tgds
(without constants) terminates in finite time [10]. All chase
results using arbitrary embedded dependencies, for a given
CQ query, are equivalent in the absence of dependencies [10].

The following result is immediate from [2, 9, 10].

Theorem 4.1. Given CQ queries Q1, Q2 and set Σ of
embedded dependencies without constants. Then Q1 ≡Σ Q2

iff (Q1)Σ ≡ (Q2)Σ, assuming both chase results exist. 2

4.2 ∆RDF S as tuple-generating dependencies
We use the W3C standards for the semantics of RDFS

graphs [24] to come up with the following eight embedded
tgds with constants from VRDFS .

σ1 : ∀x : g(x, type, prop)→ g(x, sp, x)
σ2 : ∀x, y, z : g(x, sp, y) ∧ g(y, sp, z)→ g(x, sp, z)
σ3 : ∀w, x, y, z : g(x, sp, y) ∧ g(z, x, w)→ g(z, y, w)
σ4 : ∀x : g(x, type, class)→ g(x, sc, x)
σ5 : ∀x, y, z : g(x, sc, y) ∧ g(y, sc, z)→ g(x, sc, z)
σ6 : ∀x, y, z : g(x, sc, y) ∧ g(z, type, x)→ g(z, type, y)
σ7 : ∀w, x, y, z : g(x, dom, y) ∧ g(z, x, w)→ g(z, type, y)
σ8 : ∀w, x, y, z : g(x, range, y) ∧ g(z, x, w)→ g(w, type, y)

Here, w, x, y, z are variables, and each of the remaining
arguments (e.g., sp) is a constant in VRDFS . Each of σ1

through σ8 is interpreted on an RDFS graph G as “if, for
some consistent set of variable bindings, each clause of the
left-hand side of σi holds in G, then the right-hand side also
holds in G.” We refer to σ1, . . . , σ8 collectively as Σ∗.

Generally, given a V we say that an embedded tgd with
constants from V is a keyword tgd (w.r.t. V). All the el-
ements of Σ∗ above are keyword tgds, w.r.t. VRDFS , by
definition. To our knowledge, keyword tgds have not been
singled out for study in the literature. (Cf. [11] for a state
of the art discussion of dependencies with constants.) We
say that a keyword tgd is deterministic if its left-hand side
consists of a single relational atom, and is nondeterministic
otherwise.

We are now ready to establish the main result of this sec-
tion, which is that for an arbitrary RDFS graph G, with
associated query qG, computing cl(G) amounts to comput-
ing the terminal chase result (qG)Σ∗ using the set Σ∗ =
{σ1, . . . , σ8}. This result allows us to prove the main result
of this paper (Theorem 5.3, below).

We begin by formally associating each of the eight RDFS
derivation rules of [13] with a separate keyword tgd in Σ∗.
The bijective mapping, which we call µ∗, is straightforward

(for instance, the transitivity rule for sp is associated with
keyword tgd σ2) and is omitted due to the space limit.

Proposition 4.1. For an RDFS graph G and its associ-
ated query qG, consider rule r ∈ ∆RDFS such that for the
keyword tgd σ = µ∗(r), σ ∈ Σ∗, chase of qG with σ is ap-
plicable. Let q′ be the result of applying σ to qG. Then q′ is
the associated query of RDFS graph G′ such that G′ can be
obtained from G in one entailment step using the rule r.

The converse of Proposition 4.1 (i.e., constructing q′ from
G′) also holds and is omitted due to the space limit.

As an immediate corollary, we obtain our main result:

Theorem 4.2. Given an RDFS graph G and its associ-
ated query qG, qcl(G) and (qG)Σ∗ are isomorphic.

In the remainder of the paper, we will use Theorem 4.2
to compute cl(G) via (qG)Σ∗ . Note that it is immediate
from Theorem 4.2 that for an arbitrary RDFS graph G,
the terminal chase result (qG)Σ∗ always exists and is unique
(it is enough to recall from Proposition 3.1 that cl(G) is
unique and finite). Interestingly, existence and uniqueness
of (qG)Σ∗ can be obtained independently by reasoning on ar-
bitrary (as opposed to just RDFS) graphs and on arbitrary
schema languages L = (V,∆), as long as ∆ in L can be as-
sociated (analogously to our association µ∗ between ∆RDFS

and Σ∗) with a set of only full (and possibly keyword) tgds
and (possibly keyword) egds on a database schema with a
single relational atom. The latter observation is the first ex-
ample of our use of generic tools (specifically L and database
chase) to solve our RDFS-specific problem.

5. WELL-BEHAVED SCHEMA UPDATES
Towards resolving the schema update problem introduced

in Section 3.3, we next introduce a broad class of updates,
and show that they are well-behaved in the sense that they
result in unique and well defined RDFS graphs. The crucial
notion is that of determinism.

5.1 Varieties of determinism
The following notion of a derivation will prove essential.

Definition 5.1. Let G be an RDFS graph and t ∈ cl(G).
A derivation of t is a finite sequence of ∆RDFS rules, such
that matches, via some fixed mapping µ, for all atoms of each
rule in the sequence are in cl(G), with t being the final right
hand side inference. We call the derivation deterministic if
each rule applied is deterministic. Finally, t is said to be
non-derivable if (G− {t}) 6|=LRDF S t.

We first introduce a strong notion of determinism.

Definition 5.2. Let G be an RDFS graph and t ∈ cl(G).
If every possible derivation of t in G is deterministic, we
say t is strictly deterministic in G. Otherwise, we say t is
strictly nondeterministic in G.

EXAMPLE 5.1. We give an example to illustrate strict
determinism and its limitations. Let G = {t1, t2, t3} where

t1 = (a, type, class)

t2 = (class, sc, myClass)

t3 = (myClass, sc, class)
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Trivially, t1 is strictly deterministic in G, since it is non-
derivable. Next, consider t = (a, sc, a). There is a determin-

istic derivation of t in G, namely t1
σ4==⇒ t. Note, however,

that t is strictly non-deterministic. For example, t can be
derived non-deterministically from G using two applications
of the non-deterministic rule σ6:

t1, t2
σ6==⇒ (a, type, myClass)

(a, type, myClass), t3
σ6==⇒ t1

t1
σ4==⇒ t

Note that t is deterministically derivable from t1, and, fur-
thermore, all other derivations of t in G make essential (in
a sense which we will make precise below) use of t1.

Clearly, strict determinism is too rigid. In particular,
strict determinism disallows derivations which are “essen-
tially” deterministic, as illustrated in Example 5.1. Towards
a more relaxed notion of determinism, we introduce a few
more definitions. For graph G and t ∈ cl(G), we say H ⊆ G
is t-minimal if H |=LRDF S t and, for every t′ ∈ H, it holds
that (H − {t′}) 6|=LRDF S t. Furthermore, for triple t∗ ∈ G,
let detpaths(t∗, t) denote the set of all t′ ∈ G such that t′

participates in a deterministic derivation of t from t∗.

Definition 5.3. Let G be an RDFS graph and t ∈ cl(G).
We say t is deterministic in G if for every t-minimal H ⊆ G,
there exists a non-derived t∗ ∈ G such that

(H − detpaths(t∗, t)) 6|=LRDF S t.

Otherwise, we say t is nondeterministic in G.

We limit our inspection to t-minimal subsets, since strict
supersets of t-minimal sets may admit multiple unrelated
derivations of t. Furthermore, we require that t∗ be non-
derived, since otherwise t∗ might itself be nondeterminis-
tically derived. (Note that every deterministically derived
triple must ultimately be derived from a non-derivable triple.)

Observe that every strictly deterministic triple is also de-
terministic. The converse, however, is not necessarily true.
For example, triple t of Example 5.1 is deterministic in G
but not strictly deterministic. Towards capturing a wide
range of well-behaved updates, in the sequel we focus on
schema evolution involving deterministic triples.

5.2 Deletion
We next introduce two notions of deletion. The first, a

“conservative” notion of deletion, focuses on maximal preser-
vation of the semantics of the original graph. The second
notion of deletion focuses on “aggressive” removal of infor-
mation during deletion.

5.2.1 Conservative deletion
We first present results on conservative deletion, where

“conservative” means deletions which minimally impact the
semantics of a graph.

Definition 5.4. Let G be an RDFS graph and t be a
triple. A candidate update graph for (G, t[−]) is a graph CG
over the atoms and blank nodes occurring in G and VRDFS,
such that

1. CG 6|=LRDF S t, and

2. for any subset H ⊆ cl(G) such that H 6|=LRDF S t, it is
the case that CG |=LRDF S H.

Note that the set of candidate update graphs is always finite,
since VRDFS and the set of atoms and blank nodes occurring
in any RDFS graph is always finite. Recall that we want to
choose as our actual update graph some unique, well-defined
graph. Fortunately, if the set of candidate graphs is not
empty, then there is always a unique maximal graph.

Definition 5.5. Let G be an RDFS graph and t be a
triple. An update graph for (G, t[−]) is a RDFS graph UG
where

1. UG is a candidate update graph for (G, t[−]), and

2. |cl(G)	 UG| 6 |cl(G)	CG|, for any candidate update

graph CG for (G, t[−]).5

Note that an update graph does not necessarily exist.

EXAMPLE 5.2. Consider again graph G1 of Example
3.1 and t = (a, sp, c). By condition (2) of Definition 5.4,

any candidate update graph for (G1, t
[−]) must model both

(a, sp, b) and (b, sp, c). However, any such graph would not
satisfy condition (1) of the definition. We conclude that no

update graph exists for (G, t[−]).

In fact, for any triple t that is nondeterministic in graph
G, it is the case that no update graph exists for (G, t[−]).
However, when such an update graph does exist, it is unique.

Theorem 5.1. Let G be an RDFS graph and t be a triple.
An update graph for (G, t[−]) exists if and only if t 6∈ cl(G)
or t is deterministic in G. Furthermore, when it exists, the
update graph is unique.

Proof. (⇐) Suppose t 6∈ cl(G). We argue that cl(G) is

an update graph for (G, t[−]). Since t 6∈ cl(G), clearly cl(G)
satisfies condition (1) of Definition 5.5. Furthermore, we
have that trivially cl(G) uniquely satisfies condition (2) of
Definition 5.5 .

Suppose t is deterministic in G. Let Ancestors(t) =S
t∗∈G detpaths(t∗, t) and let UG = cl(G) − Ancestors(t).

Clearly UG satisfies condition (1) of Definition 5.5, since it
fulfills condition (1) of Definition 5.4 by the removal of all
ancestors of t, and fulfills condition (2) trivially since t is
deterministic. We further argue that UG is the only candi-
date update graph satisfying condition (2) of Definition 5.5.
Indeed, suppose that C′ is a candidate update graph differ-
ent from UG such that |cl(G)	C′| 6 |cl(G)	UG|. The only
way this is possible is if C′ contains one of the ancestors of t.
Since t is deterministic, this would imply that C |=LRDF S t,
a contradiction.

(⇒) Suppose t ∈ cl(G) and t is nondeterministic in G.
Furthermore, suppose for sake of contradiction that there
exists a candidate update graph C for (G, t[−]). By condi-
tion (1) of Definition 5.4, it must be the case that C does
not model t. For this to hold, since t is nondeterministic,
it must be the case that, in some derivation of t, there ex-
ists a nondeterministic rule in ∆RDFS with instantiation
t1, . . . , tm → t′, for t1, . . . , tm, t

′ ∈ cl(G) and m > 1, such

5Where 	 is the symmetric difference operator, defined as
A	B = (A−B) ∪ (B −A).
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that, C does not model some ti, 1 6 i 6 m. Otherwise, C
would indeed model t. By condition (2) of Definition 5.4,
however, C must model any strict subset of t1, . . . , tm, a con-
tradiction, since one of these subsets is {ti}. We conclude
that our assumption that C exists is in error, and hence there
is no deterministic candidate update graph (and hence no

deterministic update graph) for (G, t[−]).

To summarize, an RDFS-expressible update graph exists
only when t is deterministic, which essentially means that
it is possible to uniquely extract t from the graph. Fur-
thermore, when an update graph does exist, it is unique.
Note that the update graph may be quite large (since we
are working with closures). Finding and maintaining a suit-
able reduction of the update graph is an interesting issue
which we leave open for further study.

5.2.2 Aggressive deletion
We next present results on aggressive deletions. By ag-

gressive, we mean deletions that potentially have more “im-
pact” on the semantics of a graph, in the sense that asser-
tions retained during conservative deletion may be lost. The
benefit of this approach is that we no longer need to deal
with full closures of graphs.

Define a lossy candidate update graph for (G, t[−]) just as
in Definition 5.4 except that now in condition (2) we only
consider subsets H ⊆ G. Similarly, define a lossy update
graph for (G, t[−]) just as in Definition 5.5 except that now
in condition (2) we only consider the symmetric differences
of UG and CG with the original graph G.

We note that the set of lossy candidate update graphs
is also finite. Furthermore, any candidate update graph is
a lossy candidate update graph. We want to choose for
our actual update graph some unique, well-defined graph.
Fortunately, among the set of lossy candidate graphs, there
is a unique maximal graph in the the original graph. Indeed,
it is straightforward to extend the proof of Theorem 5.1 to
establish that lossy update graphs are also well-behaved.

Theorem 5.2. Let G be an RDFS graph and t be a triple.
A lossy update graph for (G, t[−]) exists if and only if t 6∈
cl(G) or t is deterministic in G. Furthermore, when it exists,
the lossy update graph is unique.

In particular, when it exists, we have from the proof that the
lossy update graph for (G, t[−]) is G−

S
t∗∈G detpaths(t∗, t).

We now provide an illustration of the difference between
update and lossy update graphs.

EXAMPLE 5.3. Consider RDFS graph G = {t1, t2} where

t1 = (Max, type, Dog)

t2 = (Dog, sc, Mammal)

Then, cl(G) =

{(Max, type, Dog), (Dog, sc, Mammal), (Max, type, Mammal)},

the update graph for (G, (Max, type, Dog)[−]) is

{(Dog, sc, Mammal), (Max, type, Mammal)},

and the lossy update graph for (G, (Max, type, Dog)[−]) is

{(Dog, sc, Mammal)}.

5.3 Deterministic unchase
In this subsection, we establish a tight connection between

“unchase” and computing update graphs. Unchase, which
was introduced in [3], can be intuitively understood as “un-
doing” chase steps. Here, we restrict our scope to unchase
using deterministic keyword tgds. Formally, given a CQ
query Q and a deterministic keyword tgd σ as specified in
Section 4, deterministic unchase of Q using σ is applicable
if there exists a homomorphism h from all of σ to the body
of Q. Let s(X̄) be the subgoal of Q that is the image of the
right-hand side of σ under h; then the deterministic-unchase
step of Q with σ is a query Q′ resulting from removing s(X̄)
from the body of Q.

Given a set of deterministic keyword tgds Σ, a Σ-unchase
sequence U is a sequence of CQ queries Q0, Q1, . . . such that
every query Qi+1 (i ≥ 0) in U is obtained from Qi by a
deterministic-unchase step using some σ ∈ Σ. Observe that
such a sequence U always terminates in finite time, that is,
there exists an n ≥ 0 such that U = Q0, . . . , Qn and no
deterministic-unchase steps using Σ are applicable to Qn.
We call the query Qn the (terminal) result of the determin-
istic unchase of Q0 using Σ, and denote Qn by (Q)UΣ .

Consider a Σ-unchase sequence U = Q0, . . . , Qn with the
following property. Assume for the moment n ≥ 2 in U
for ease of exposition. Consider an i ∈ {0, . . . , n − 2}, and
suppose (I) the (deterministic) unchase step Qi ⇒ Qi+1 in U
removes from Qi a subgoal si that is the image of the right-
hand side of some σ ∈ Σ under a homomorphism h, such
that h maps the left-hand side of σ to a subgoal si+1 (of both
Qi and Qi+1). We call this si+1 the source of si at unchase
step i in U . Let (II) the unchase step Qi+1 ⇒ Qi+2 in U
remove from Qi+1 the subgoal si+1. Now we say that U =
Q0, . . . , Qn, with n ≥ 0, is an underivation of some subgoal
s0 of Q0 if (I) implies (II) in U for all i ∈ {0, . . . , n − 2}.
Let Qn in underivation U be the result of removing subgoal
sn−1 from Qn−1 in U ; then we call the source sn of sn−1 (at
unchase step n− 1 in U) the root of U .

Intuitively, an underivation U of s0 in Q0, with root sn,
can be visualized as a “path” s0 → s1 → sn−1 → sn in the
query Q0. Here, each si is the subgoal being removed from
Qi in the ith step of the underivation U , with 0 ≤ i ≤ n−1.

We now relate specific triples in an RDFS graph G with
those subgoals of qG that are involved in underivation of a
subgoal of qG using the set Σ∗det of deterministic keyword
tgds for RDFS, introduced in Section 4.2. (Recall that qG
is the associated query of G.) Given a triple t0 in G and its
associated subgoal s0 in qG, let U = Q0, . . . , Qn be an under-
ivation of s0 in qG, with root sn, and with subgoal si being
removed at the ith step of U , for 0 ≤ i ≤ n− 1. Let each of
these si, for i ∈ {0, . . . , n}, be associated with a triple ti in
the graph G. Denote by detUnchaseSequence(G, t0,Σ

∗
det)

the set {t0, . . . , tn}. We define detUnchase(G, t0,Σ
∗
det) as

the union of all sets detUnchaseSequence(G, t0,Σ
∗
det). It

is easy to see that given G, Σ∗det, and triple t0 ∈ cl(G),
detUnchaseSequence(G, t0,Σ

∗
det) is always finite and unique.

Then the following holds:

Theorem 5.3. Triple t is deterministic in RDFS graph G
if and only if t ∈ cl(G) and (G−detUnchase(G, t,Σ∗det)) 6|= t.

It is easy to see that for a triple t and RDFS graph G,
the complexity of computing detUnchase(G, t) is O(d× n),
where d is the number of dependencies in Σ∗det and n is the
number of triples in cl(G).
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5.4 Addition
Unlike deletions, adding triples to a graph is always well-

behaved. (In contrast, in richer schema systems this is not
always the case, cf. [12, 20]). Hence, we have the following
direct semantics for adding assertions to a graph.

Definition 5.6. Let G be an RDFS graph and t be a
triple. The update graph for (G, t[+]) is G ∪ {t}.

Trivially, the update graph for a triple addition is always
unique and finite.

6. COMPUTING UPDATE GRAPHS
In this section, we give a direct algorithm for computing

update graphs for deletion. In the case of deleting ground
triples from RDFS graphs (i.e., triples without blank nodes),
the algorithm runs in PTIME. The algorithm requires com-
puting entailment, and hence, the case of deleting a triple
with blank nodes is intractable (recall Corollary 3.1). The
algorithm makes essential use of Theorems 5.1 and 5.3.

Our method is given in Algorithm 6.1. The key step
is computing the deterministic unchase of the triple to be
deleted. The correctness of the algorithm follows directly
from Theorems 5.1 and 5.3. The cost of line (1) is the cost
of computing deterministic unchase, which requiresO(|G|)2)
time to compute cl(G) (see Proposition 3.1 and [19, 28]), and
then O(|cl(G)|) time to unchase t (we consider the set of de-
pendencies to be constant). The cost of line (2) is again
the cost of computing cl(G). Finally, the cost of line (3) is
the cost of computing entailment, which in the worst case
is NP-complete (cf. Corollary 3.1). In the case of a ground
t, however, the cost of checking entailment is dominated by
the cost of computing the closure [19]. In summary, we have

Theorem 6.1. For an RDFS graph G and a ground triple
t, the cost of computing the update graph (G, t[−]) is O(|G|2).

Of course, Algorithm 6.1 is rather naive, and quite open
to optimization. For example, it might be possible to avoid
computing the full closure of G. We leave such optimization
issues open for further investigation.

We also note that the algorithm (and running time) for
computing lossy update graphs is identical to Algorithm 6.1,
with the exception that, in line (2) we set G∗ = G−T ∗. The
correctness of this algorithm follows from Theorems 5.2 and
5.3, as for computing regular update graphs.

7. DISCUSSION
In this paper we have initiated a study of well-behaved

RDFS schema evolution. We characterized a broad class of
updates which are well-behaved, in the sense that update
results are unique and well-defined. Furthermore, we gave a
tractable algorithm for computing updates, when they exist.

There are several immediate directions for further inves-
tigation. We are currently studying variations of update
graphs, which admit efficient maintenance. This study also
includes an investigation into various implementations of
closure graphs proposed in the literature, as well as efficient
implementation of the unchase algorithm on these represen-
tations. In another direction, it is important to study sys-
tem support for identifying and handling non-deterministic
updates, e.g., in the framework of Konstantinidis et al. [15].

Input: RDFS graph G and triple t

Output: Update graph for (G, t[−]) if it exists, and
“None” otherwise

begin
1 let T ∗ denote the set of all triples participating in

the deterministic unchase of t under ∆RDFS

2 let G∗ = cl(G)− T ∗
3 if G∗ |=LRDF S t then

output “None”

else
output G∗

end

Algorithm 6.1: Computing (G, t[−])
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APPENDIX
A.1 Encoding RDF in the relational model (and

vice versa)
A variety of relational encodings have been proposed for

RDF data.

EXAMPLE A.1. Consider the graph

G = {〈author1, name, Shimabukuro〉 ,
〈author1, age, 38〉 ,
〈author1, homeTown, Naha〉 ,
〈author1, genre, poetry〉 ,
〈author1, type, Author〉 ,
〈author2, name, Bulgakov〉 ,
〈author2, age, 44〉 ,
〈author2, genre, fantasy〉 ,
〈author2, type, Author〉}.

Under the property table encoding, we have one relation
per class type [32]. In the case of G, we have one table
named Author:

subject name age homeTown genre

author1 Shimabukuro 38 Naha poetry

author2 Bulgakov 44 ⊥ fantasy

Note that there is missing information for Bulgakov, repre-
sented by a null value. There are a range of variations on
this approach [27, 29]. If we also have type as an attribute,
and encode all triples in a single table, then the property table
approach is essentially the classic universal relation concept
[30]. Note that this encoding works only if subjects take at
most one value on a given attribute, which is too restric-
tive for real-world RDF data. In such a case, we could have
multiple tuples per subject, or model the data in the nested
relational model [2]

An alternative to property tables is the binary schema-
aware or vertical partitioning encoding [1, 29]. In this ap-
proach there is a binary table for each unique predicate. For
our example graph, we have

type

subject object
author1 Author

author2 Author

age

subject object
author1 38

author2 44

homeTown

subject object
author1 Naha

name

subject object
author1 Shimabukuro

author2 Bulgakov

genre

subject object
author1 poetry

author2 fantasy

Note that null-values are not necessary in this encoding.
This is a fairly old idea – see, for example, work on the

decomposition storage and Tarski models [4, 26]. Indeed, the
vertical partitioning approach can be thought of as a decom-
position of the (nested) universal relation corresponding to
G.

Going the other direction, RDF encodings have also been
proposed for relational data, e.g., [17, 18].

EXAMPLE A.2. One natural encoding is the inverse of
the property table approach: for each relation R and for each
tuple t in R, assign a (globally) unique atom tid, generate the
triple 〈tid, type, R〉, and then for each attribute-value pair
A : V of t, generate the triple 〈tid, A, V 〉. If R is empty, and
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it is desired to keep (static) information about R, then one
can emit metadata about R, such as 〈R, type, class〉 and
information about R’s attributes.

Recently, work has appeared on enforcing traditional con-
straints (functional dependencies and inclusion dependen-
cies) on relational data in this RDF encoding [17, 18].

A.2 Relational schema evolution
Relational schema evolution has been intensively studied

for the past few decades [21]. However, many issues remain
open. Typically, systems select a class of schema transfor-
mations, based on real-world experience, for study. Alterna-
tively, generic “metadata” extensions to standard relational
query languages have been proposed and investigated (e.g.,
[16, 33])

EXAMPLE A.3. A recent proposal, in the first class, is
the PRISM system [6]. In PRISM, a set of schema modifi-
cation operators (SMO) is proposed, consisting of:

• create/drop table R,

• rename table R as T ,

• copy table R into T ,

• merge (i.e., union) tables R and S into T ,

• (horizontally) partition table R into S and S̄ on condi-
tion θ,

• (vertically) decompose table R(Ā, B̄, C̄) into tables S(Ā, B̄)
and T (Ā, C̄) ,

• join tables R and S into T on condition θ

• add column C to table R, with constant value or some
function of tuples values in R,

• rename column B to C in table R.

SMOs provide a broad coverage of ways in which relational
schemata may evolve; however, it misses some natural types
of relational schema evolution (e.g, column pivot [5, 22,
33]).

Now, it is straightforward to translate each of these into a
“program” of actions on the RDF encoding of the relations
(see Section 3.3). For example, a drop table R is imple-
mented by dropping each participating tuple t ∈ R, which in
turn amounts to removing all triples mentioning atom tid
(and, if necessary, all triples with subject R).
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