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  

Abstract—Security inspection and testing requires experts in security who think like an attacker. Security experts need 

to know code locations on which to focus their testing and inspection efforts. Since vulnerabilities are rare occurrences, 

locating vulnerable code locations can be a challenging task. We investigated whether software metrics obtained from 

source code and development history are discriminative and predictive of vulnerable code locations.  If so, security 

experts can use this prediction to prioritize security inspection and testing efforts. The metrics we investigated fall into 

three categories: complexity, code churn, and developer activity metrics.  We performed two empirical case studies on 

large, widely-used open source projects: the Mozilla Firefox web browser and the Red Hat Enterprise Linux kernel. The 

results indicate that 24 of the 28 metrics collected are discriminative of vulnerabilities for both projects. The models using 

all the three types of metrics together predicted over 80% of the known vulnerable files with less than 25% false positives 

for both projects. Compared to a random selection of files for inspection and testing, these models would have reduced 

the number of files and the number of lines of code to inspect or test by over 71% and 28%, respectively, for both 

projects.  

  

Index Terms-- Software security, Software metrics, Vulnerability prediction, Fault prediction. 

I. INTRODUCTION 

single exploited software vulnerability
1
 can cause severe damage to an organization. 

Annual world-wide losses caused from cyber attacks have been reported to be as high as $226 

billion [2]. Loss in stock market value in the days after an attack is estimated at $50 million to 

$200 million per organization [2]. The importance of detecting and mitigating software 

vulnerabilities before software release is paramount.  

Experience indicates that the detection and mitigation of vulnerabilities is best done by 

engineers specifically trained in software security and who “think like an attacker” in their daily 
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work [3].  Therefore, security testers need to have specialized knowledge in and a mindset for 

what attackers will try.  If we could predict which parts of the code are likely to be vulnerable, 

security experts can focus on these areas of highest risk. One way of predicting vulnerable 

modules is to build a statistical model using software metrics that measure the attributes of the 

software products and development process related to software vulnerabilities.  Historically, 

prediction models trained using software metrics to find faults have been known to be effective 

[4-10].   

However, prediction models must be trained on what they are intended to look for.  Rather 

than arming the security expert with all the modules likely to contain faults, a security prediction 

model can point toward the set of modules likely to contain what a security expert is looking for: 

security vulnerabilities.  Establishing predictive power in a security prediction model is 

challenging because security vulnerabilities and non-security-related faults have similar 

symptoms. Differentiating a vulnerability from a fault can be nebulous even to a human, much 

less a statistical model.  Additionally, the number of reported security vulnerabilities with which 

to train a model are few compared to non-security-related faults.  Colloquially, security 

prediction models are “searching for a needle in a haystack.”  

In this paper, we investigate the applicability of three types of software metrics to build 

vulnerability prediction models: complexity, code churn, and developer activity metrics.  

Complexity can make code difficult to understand and to test for security. Frequent or large 

amount of code change can introduce vulnerabilities. Poor developer collaboration can diminish 

project-wide secure coding practices. 

The goal of this study is to guide security inspection and testing by analyzing if Complexity, 

Code churn, and Developer activity (CCD) metrics can be used to (a) discriminate between 
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vulnerable and neutral files, and (b) predict vulnerabilities. For this purpose, we performed 

empirical case studies on two widely-used, large scale open source projects: the Mozilla Firefox
2
 

web browser and the Linux kernel as distributed in Red Hat Enterprise Linux
3
. We analyzed 

Mozilla Firefox and Red Hat Enterprise Linux (each of them containing over two million lines of 

source code), and evaluated the adequacy of using CCD metrics as indicators of security 

vulnerabilities. We also measured the reduction in code inspection effort using CCD metrics 

against random file selection. 

The rest of the paper is organized as follows: Section II defines background terms. Section III 

provides our hypotheses and the methodology for our case studies. In Sections IV and V, we 

provide the results from both case studies. Section VI provides the summary of results from the 

case studies and discusses issues in the use of models in practice. Section VII discusses the 

threats to validity of our study. Section VIII provides related work. Section IX contains 

conclusions and future work. 

II. BACKGROUND 

This section describes the background on discriminative power, predictability, network 

analysis, and the binary classification evaluation criteria that we will use in this paper.  

A. Discriminative Power and Predictability 

This study investigates the discriminative power and predictability of CCD metrics in the 

realm of software security. Discriminative power [11] is defined as the ability to “discriminate 

between high-quality software components and low-quality software components”.  In our study, 

discriminative power is the ability to discriminate the vulnerable files from neutral files. We 

 
2 http://www.mozilla.com/firefox/ 
3 http://www.redhat.com/rhel/ 
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classify a file as vulnerable if it has been fixed post-release for a vulnerability and as neutral file 

if no vulnerabilities have been found at the time of our analysis.  

Predictability [11] is the ability of a metric to identify files that are likely to have 

vulnerabilities with metric values available prior to software release. Note that discriminative 

power is measured for a single metric with the vulnerability information available at the present 

time for the purpose of controlling the metric values by redesign or re-implementation or to 

investigate the feasibility of building prediction models using the given metrics. On the other 

hand, predictability can be measured using single or multiple metrics together and the data 

obtained from past and present is applied to predict the code locations that are likely to have 

vulnerabilities in the future. 

B. Network Analysis 

In this paper, we use several terms from network analysis [12] and provide their meaning with 

respect to developer and contribution networks that will be discussed in Section III.A. Network 

analysis is the study of characterizing and quantifying network structures, represented by graphs 

[12]. A sequence of non-repeating, adjacent nodes is a path, and a shortest path between two 

nodes is called a geodesic path (note that geodesic paths are not necessarily unique).   

Centrality metrics are used to quantify the location of one node relative to other nodes in the 

network. The centrality metrics we use for developer activity are degree, closeness, and 

betweenness. The degree metric is defined as the number of neighbors directly connected to a 

node. The closeness centrality of node v  is defined as the average distance from v  to any other 

node in the network that can be reached from v . The betweenness centrality [12] of node v  is 

defined as the number of geodesic paths that include v .  

Cluster metrics are used to measure the strength of interconnection between groups of nodes. 
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A cluster of nodes is a set of nodes such that there are more edges within a set of nodes (intra-set 

edges) than edges between a set and other sets of nodes (inter-set edges). The cluster metric we 

use for developer activity is edge betweenness [13]. The edge betweenness of edge e is defined 

as the number of geodesic paths that pass through e. Since clusters have many intra-cluster 

edges, edges within clusters have a low betweenness; conversely, edges between two clusters 

have a high betweenness [13]. 

C. Binary Classification Evaluation Criteria 

In this study, we use a binary classification technique to predict files that are likely to have 

vulnerabilities. A binary classifier can make two possible errors: false positives (FP) and false 

negatives (FN). In this study, a FP is the classification of a neutral file as a vulnerable file, and a 

FN is the classification of a vulnerable file as neutral. False positives represent excessive files to 

inspect or test, and false negatives increase the chances of vulnerabilities escaping to the field 

without inspection/testing. A correctly classified vulnerable file is a true positive (TP), and a 

correctly classified neutral file is a true negative (TN).  

For evaluating binary classification models, we use probability of detection (PD) and 

probability of false alarm (PF).  

Probability of detection (PD), also known as recall, is defined as the ratio of correctly 

predicted vulnerable files to actual vulnerable files:  

PD =TP/(TP+FN). 

Probability of false alarm (PF), also known as false positive ratio, is defined as the ratio of files 

incorrectly predicted as vulnerable to actual neutral files: 

PF =FP/(FP+TN). 

The desired result is to have a high PD and a low PF to find as many vulnerabilities as 
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possible without wasting inspection or testing effort.  Having a high PD is especially important 

in software security considering the potentially high impact of a single exploited vulnerability.  

Additionally, we provide precision (P), defined as the ratio of correctly predicted vulnerable files 

to all detected files: 

P =TP/(TP+FP). 

We report P with PD as they tend to trade-off each other. However, security practitioners might 

want a high PD even at the sacrifice of P [14] considering the severe impact of one exploited 

vulnerability. Additionally, precision and accuracy (another frequently used prediction 

performance criterion that measures overall correct classification) are known to be poor 

indicators of performance for highly unbalanced data set where the number of data instances in 

one class is much more than the data instances in another class   [7], [14]. In our case, less than 

1.4% of the files are vulnerable in both projects. A naïve classification that classifies all files as 

neutral would have an accuracy of 98.6%. 

III. RESEARCH HYPOTHESES AND METHODOLOGY 

In this section, we provide the hypotheses for the discriminative power and the predictability 

of the CCD metrics. Although CCD metrics have been known to be effective for fault prediction 

[7], [15], [16], we provide the rationale for why these metrics can also work for vulnerabilities. 

Then, we provide the evaluation criteria for the hypotheses and the methods to test the 

hypotheses and explain prediction modeling techniques.  

A. Hypotheses for Discriminative Power 

1) Code Complexity 

Security experts claim that complexity is the enemy of security [3], [17]. Complexity can lead 

to subtle vulnerabilities that are difficult to test and diagnose [17], providing more chances for 
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attackers to exploit. Complex code is difficult to understand, maintain, and test [18]. Therefore, 

complex code would have a higher chance of having faults than simple code. Since attackers 

exploit the faults in a program, complex code would be more vulnerable than simple code. From 

this reasoning, we set up the following hypothesis on code complexity: 

HIntraComplexity_D: Vulnerable files have a higher intra-file complexity neutral files. 

Highly coupled code has a higher chance of having input from external sources that are 

difficult to trace where the input came from.  Moreover, developers can use interfaces to 

modules implemented by other developers or by a third party without properly understanding the 

security concerns or assumptions of the modules. Therefore: 

HCoupling_D: Vulnerable files have a higher coupling than neutral files. 

Communication by comments between developers is important especially in open source 

projects for which many developers can contribute on the same code segment without central 

control. Novice developers who do not understand security concerns and do not follow secure 

coding practice might comment less often. Furthermore, code developed in a hurry (perhaps 

directly prior to release) might have fewer comments and be more vulnerable. Therefore: 

HComments_D: Vulnerable files have a lower comment density than neutral files. 

Table I defines the complexity metrics we use in this study. Each individual metric has the 

same hypotheses defined as the same way as the hypotheses for its group. For example, 

CountLineCode has the same hypotheses as HIntraComplexity_D. 

1) Code Churn  

 Code is constantly evolving throughout the development process. Each new change in the 

system brings a new risk of introducing a vulnerability [15], [20]. Therefore: 

HCodeChurn_D: Vulnerable files have a higher code churn than neutral files.  
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Code churn can be counted in terms of the number of check-ins into a version control system 

and the number of lines that have been added or deleted by code change. Specifically we break 

down hypothesis HCodeChurn_D into the following two hypotheses: 

HNumChanges_D: Vulnerable files have more frequent check-ins than neutral files.  

HChurnAmount_D: Vulnerable files have more lines of code that have been changed than neutral 

files. 

 

Table II defines the code churn metrics that we use in this study. 

TABLE II 

DEFINITIONS OF CODE CHURN METRICS 
Related Hypothesis Metric Definition 

HCodeChurn_D NumChanges The number of check-ins for a file since the creation of a file 

LinesChanged The cumulated number of code lines changed since the creation of a file 

LinesNew The cumulated number of new code lines since the creation of a file 

 

2) Developer Activity  

Software development is performed by development teams working together on a common 

project. Lack of team cohesion, miscommunications, or misguided effort can all result in security 

problems [3]. Version control data can be used to construct a developer network and a 

TABLE I 
DEFINITIONS OF COMPLEXITY METRICS 

Related Hypothesis Metric Definition 

HIntraComplexity_D 

CountLineCode The number of lines of code in a file 

CountDeclFunction The number of functions defined in a file 

CountLineCodeDecl The number of lines of code in a file devoted to declarations 

CountLinePreprocessor The number of lines of code in a file devoted to preprocessing 

SumEssential The sum of essential complexity, where essential complexity is defined as the 

number of branches after reducing all the programming primitives such as a  for 

loop in a function‟s control flow graph into a node iteratively until the graph cannot 

be reduced any further. Completely well-structured code has essential complexity 1 
[18], [19] 

SumCyclomaticStrict The sum of the strict cyclomatic complexity,  where strict cyclomatic complexity is 

defined as the number of conditional statements in a function 

SumMaxNesting The sum of the MaxNesting in a file, where MaxNesting is defined as the 

maximum nesting level of control constructs such as if or while statements in a 

function 

MaxCyclomaticStrict The maximum of strict cyclomatic complexity in a file 

MaxMaxNesting The maximum of MaxNesting in a file 

HCoupling_D 

SumFanIn The sum of FanIn, where  FanIn is defined as  the number of inputs to a function 

such as parameters and global variables 

SumFanOut The sum of FanOut, where FanOut is defined as the number of assignment to the 
parameters to call a function or global variables 

MaxFanIn The maximum of FanIn 

MaxFanOut The maximum of FanOut 

HComments_D CommentDensity The ratio of lines of comments to lines of code 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 

EDIT) < 

 

9 

contribution network based upon “which developer(s) worked on which file,” using network 

analysis as defined in Section II.  

3.1) Developer Network Centrality 

In our developer network, two developers are connected if they have both made a change to at 

least one file in common during the period of time under study. The result is an undirected, 

unweighted, and simple graph where each node represents a developer and edges are based on 

whether or not they have worked on the same file during the same release. Central developers, 

measured by a high degree, high betweenness, and low closeness, are developers that are well-

connected to other developers relative to the entire group. Refer to [16] for a more in-depth 

example of how centrality metrics are derived from developer networks.  A central developer 

would likely have a better understanding of the group‟s secure coding practices because of 

his/her connections to the other developers of the team. Therefore: 

HDeveloperCentrality_D: Vulnerable files are more likely to have been worked on by non-central 

developers than neutral files. 

 The metrics we used for our hypotheses are shown in Table III. Note that we chose to not 

study DNMaxDegree, DNMinCloseness, and DNMaxBetweenness because, for example, a high 

DNMaxDegree means at least one central developer worked on the file, which is not as helpful 

as knowing that high DNMinDegree denotes that all developers who worked on a file were 

central. Note also that a high turnover rate in a project results in many non-central developers: 

when new developers are added to the project, they initially lack connections to the other 

developers. 
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TABLE III 

MEANING OF DEVELOPER ACTIVITY METRICS 
Related Hypothesis Metric Problematic 

When 

Meaning 

HDeveloperCentrality_D 

DNMinDegree Low 

File was changed by developers who are not 
central to the network 

DNAvgDegree Low 

DNMaxCloseness High 

DNAvgCloseness High 

DNMinBetweenness Low 

DNAvgBetweenness Low 

HDeveloperCluster_D 
DNMaxEdgeBetweenness High File was contributed to by more than one cluster 

of developers, with few other files being worked 
on by each cluster 

DNAvgEdgeBetweenness High 

HContributionCentrality_D 
NumDevs High File was changed by many developers 

CNCloseness High File was changed by developers who focused on 

many other files CNBetweenness High 

 

3.2) Developer Network Cluster 

Metrics of developer centrality give us information about individual developers, but we also 

consider the relationship between groups of developers. In our developer network, a file that is 

between two clusters was worked on by two groups of developers, and those two groups did 

have many other connections in common. Clusters with a common connection, but few other 

connections, may not be communicating about improving the security of the code they have in 

common. Therefore:  

HDeveloperCluster_D: Vulnerable files are more likely to be changed by multiple, separate 

developer clusters than neutral files. 

Since edges and files have a many-to-many relationship, we use the average and maximum of 

edge betweenness on the developer network as provided in Table III.  

3.3) Contribution Network 

A contribution network [21] is a quantification of the focus made on the relationship between a 

file and developers instead of relationship between developers as in developer networks. The 

contribution network uses an undirected, weighted, and bipartite graph with two types of nodes: 

developers and files. An edge exists where a developer made changes to a file, where the weight 
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is equal to the number of check-ins that developer made to the file. If a file has high centrality, 

then that file was changed by many developers who made changes to many other files – referred 

to as an “unfocused contribution.” [21]  Files with an unfocused contribution would not get the 

attention required to prevent the injection of vulnerabilities. Therefore: 

HContributionCentrality_D: Vulnerable files are more likely to have an unfocused contribution than 

neutral files. 

Note that developers with high centrality can work with many people, but still work on one 

small part of the system. Being a central developer means being central in terms of people and 

not necessarily central in terms of the system. Contribution networks, on the other hand, are 

structured around the system. 

Table III provides the meaning of the contribution network metrics. 

B. Evaluation of Hypotheses for Discriminative Power 

To evaluate the discriminative power of the metrics, we test the null hypothesis that the means 

of the metric for neutral files and vulnerable files are equal.  Since our data set are skewed and 

have unequal variance (See Fig. 3 in Section IV), we used the Welch‟s t-test [22]. The Welch t-

test is a modified t-test to compare the means of two samples and is known to provide good 

performance for skewed distributions with unequal variance. To see the association direction (i.e. 

positively or negatively correlated), we compared the means and medians of the measures of 

CCD metrics for the vulnerable and neutral files. Our hypotheses for discriminative power are 

considered to be supported when the results from the Welch‟s tests are statistically significant at 

the p<0.05 level (p<0.0018 with a Bonferroni correction for 28 hypotheses tests) and when the 

associations are in the direction prescribed in the hypotheses defined Section III.A. In addition to 

the significance, we present the magnitude of the differences in measures between vulnerable 
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files and neutral files for representative metrics using boxplots.  

C. Evaluation of Hypotheses for Predictability 

We hypothesize that a subset of CCD metrics can predict vulnerable files at reasonable 

prediction performance, specifically 70% PD and 25% PF. Since there are no universally 

applicable standards for the threshold of high prediction performance, we use these average 

values found from the fault prediction literature [7], [23], acknowledging that desirable level of 

PD and PF depends on varying domains and business goals. We hypothesize that: 

HComplexity_P: A model with a subset of complexity metrics can predict vulnerable files. 

HCodeChurn_P: A model with a subset of code churn metrics can predict vulnerable files. 

HDeveloper_P: A model with a subset of developer activity metrics can predict vulnerable files. 

HCCD_P: A model with a subset of combined CCD metrics can predict vulnerable files. 

Note that we select the subset of the metrics using the information gain raking method instead 

of testing every subset of the metrics (see Section III. E) because prediction performance from a 

few selected metrics are known to be as good as using a large number of metrics [7].  

Additionally we investigate whether the individual metrics can predict vulnerable files. 

QIndividual_P: Can a model with individual CCD metric predict vulnerable files? 

D. Measuring Inspection Reduction 

Practitioners must consider how effective the prediction model is in reducing the effort for 

code inspection even when reasonable PD and PF are achieved. Even though we use PD and PF 

as the criteria to test our hypotheses on predictability, we further investigate the amount of 

inspection and reduction in inspection by using the CCD metrics, which is related to cost and 

effort, to describe the practicality of using CCD metrics. We use the number of files and the lines 

of code to inspect as partial and relative estimators of the inspection effort. Such measures have 
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been used as cost estimators in prior studies [24], [25]. In our definition, overall inspection is 

reduced if the percentage of lines of code or the percentage of files to inspect is smaller than the 

percentage of faults identified in those files [24], [25]. For example, if we randomly choose files 

to inspect, we need to inspect 80% of the total files to obtain 80% PD. If a prediction model 

provides 80% PD with less than 80% of the total files, the model reduced the cost for inspections 

compared to a random file selection. The two cost measurements are formally defined as below: 

File Inspection (FI) ratio is the ratio of files predicted as vulnerable (that is, the number of files 

to inspect) to the total number of files for the reported PD: 

FI = (TP+FP) / (TP+TN+FP+FN). 

For example, PD=80% and FI=20% mean that within the 20% of files inspected based on the 

prediction results, 80% of vulnerable files can be found. 

LOC Inspection (LI) ratio is the ratio of lines of code to inspect to the total lines of code for 

the predicted vulnerabilities. First, we define lines of code in the files that were true positives, as 

TPLOC, similarly with TNLOC, FPLOC, and FNLOC. Then LI is defined as below: 

LI = TPLOC+FPLOC / (TPLOC+TNLOC+FPLOC+FNLOC). 

While FI and LI estimate how much effort is involved, we need measures to provide how 

much effort is reduced. We define two cost-reduction measurements. 

File Inspection Reduction (FIR) is the ratio of the reduced number of files to inspect by using 

the model with CCD metrics compared to a random selection to achieve the same PD. 

FIR = (PD – FI) / PD. 

LOC Inspection Reduction (LIR) is the ratio of reduced lines of code to inspect by using a 

prediction model compared to a random selection to achieve the same PV.  

LIR = (PV – LI) / PV 
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where PV is defined as below. 

Predicted Vulnerability (PV) ratio is the ratio of the number of vulnerabilities in the files 

predicted as vulnerable to the total number of vulnerabilities. First, we define the number of 

vulnerabilities in the files that were true positives, as TPVuln, similarly with TNVuln, FPVuln, and 

FNVuln. Then PV is defined as below: 

PV = TPVuln / (TPVuln+ FNVuln). 

E. Prediction Models and Experimental Design 

We used Logistic regression to predict vulnerable files. Logistic regression computes the 

probability of occurrence of an outcome event from given independent variables by mapping the 

linear combination of independent variables to the probability of outcome using the log of odds 

ratio (logit). A file is classified as vulnerable when the outcome probability is greater than 0.5. 

We also tried other four classification techniques including  J48 decision tree [26], Random 

forest [27], Naïve Bayes [26], and Bayesian network [26] that have been effective for fault 

prediction. Among those, J48, Random forest, and Bayesian network provided similar results to 

Logistic regression, while Naïve Bayes provided higher PD with higher FI than other techniques. 

Lessmann et al. also reported that no significant difference in prediction performance was found 

between the 17 classification techniques they investigated [28]. Therefore, we only present the 

results from Logistic regression in this paper. 

To validate a model‟s predictability, we perform next-release validation for Mozilla Firefox 

where we had 34 releases and 10x10 cross-validation [26] for the RHEL4  kernel where we only 

had a single release. For next-release validation, data from the most recent three previous 

releases are used to train against the next release (i.e. train on releases R-3 to R-1 to test against 

release R). Using only recent releases was to accommodate for process change, technology 
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change, and developer turnovers. For 10x10 cross-validation, we randomly split the data set into 

ten folds and use one fold for testing and the remaining folds for training, rotating each fold as 

the test fold. Each fold was stratified to properly distribute vulnerable files to both training and 

test data set. The entire process is then repeated ten times to account for possible sampling bias 

in random splits and the results are averaged.  

Using many metrics in a model does not always improve the prediction performance since 

metrics can provide redundant information [7]. We found this issue to be the case in our study. 

Therefore, we selected only three variables using two variable selection methods: the 

information gain ranking method and the correlation-based greedy feature selection method [26]. 

Both methods provided similar prediction performance. However, the set of chosen variables by 

the two selection methods were different. We present the results using the information gain 

ranking method in this study.   

We performed the prediction on both the raw and log transformed data. For Logistic regression, 

PD was improved at the sacrifice of precision after log transformation. We present results using 

log transformation in this paper. 

Our data is heavily unbalanced between majority class (neutral files) and minority class 

(vulnerable files). Prior studies have shown that the performance is improved (or at least not 

degraded) by “balancing” the data [23], [29]. Balancing the data can be achieved by duplicating 

the minority class data (over-sampling) or removing randomly chosen majority class data (under-

sampling) until the numbers of data instances in the majority class and the minority class become 

equal [23]. We used under-sampling in this study since under-sampling provided better results 

than using the unbalanced data and reduced the time for evaluation.  

Figures 1 and 2 provide the pseudo code of our experimental design explained above for next-
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release validation and cross-validation. The whole process of validation is repeated ten times to 

account for possible sampling bias due to random removal of data instances. The ten times of 

repetition also account for the bias due to random splits in cross-validation. In Figures 1 and 2, 

performance represents the set of evaluation criteria, cost-reduction measurements, and their 

relevant measurements defined in Section II.C and III.D. For next-release validation, the input is 

three prior releases for training a model and one release for testing. For cross-validation, the 

input is the whole data set.  

 

next_release_validation (Set R1, Set R2, Set R3, Set R4) { 

Strain ← R1∪ R2 ∪ R3 

Stest ← R4 

performance ← 0 

repeat 10 times { 

Strain _ vulnerable ← vulnerable files in Strain 

N ← |Strain_ vulnerable| 

Strain_ neutral ← N neutral files remaining after random removal from Strain for under-sampling 

Strain ← Strain_ vulnerable ∪  Strain_ neutral 

V ← select variables using the InfoGain variable selection method from Strain 

Train the model M  on  Strain and variables V 

performance ← performance + prediction performance of M tested on Stest  

} 

           return  performance ← performance / 10 

} 
Fig. 1. Pseudo code for next-release-validation  

cross_validation (Set R) { 

performance ← 0 

           repeat 10 times { 

Randomly split R into 10 stratified bins, B =  

 

for each bin bi { 

Strain ←B – { bi } 

Stest ← bi 

Strain_vulnerable← vulnerable files in Strain 

N ← |Strain_vulnerable| 

Strain_neutral ← N neutral files remaining after random removal from Strain for under-sampling 

Strain ←Strain_ vulnerable  ∪  Strain_ neutral 

V ← select variables using the InfoGain selection method from Strain 

Train the model M  on  Strain  and variables V 

performance ← performance + prediction performance of M tested on Stest  

}  

} 

return  performance ← performance / 100 

} 
Fig. 2. Pseudo code for cross-validation 
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We used the Weka 3.7
4
 with default options for prediction models and variable selection 

except for limiting the number of variables to be selected to three for multivariate predictions. 

IV. CASE STUDY 1: MOZILLA FIREFOX 

Our first case study is Mozilla Firefox, a widely-used open source web browser.  Mozilla 

Firefox had 34 releases at the time of data collection developed over four years. Each release 

consists of over 10,000 files and over two million lines of source code.  

A. Data Collection 

To measure the number vulnerabilities fixed in a file, we counted the number of bug reports 

that include the details on vulnerabilities and on how the vulnerabilities have been fixed for the 

file. We collected vulnerability information from Mozilla Foundation Security Advisories 

(MFSAs)
 5

. Each MFSA includes bug ids that are linked to the Bugzilla
6
 bug tracking system. 

Mozilla developers also add bug ids to the log of the CVS version control system
7
 when they 

check in files to the CVS after the vulnerabilities have been fixed. We searched the bug ids from 

the CVS log to find the files that have been changed to fix vulnerabilities, similar to the approach 

found in other studies [30]. The number of MFSAs for Firefox was 197 as of 2 August, 2008. 

The vulnerability fixes for the MFSAs were reported in 560 bug reports.  Among them, 468 bug 

ids were identified from the CVS log. Although some of the files were fixed for regression, all 

those files were also fixed for vulnerabilities. Therefore, we counted those files as vulnerable.  

To collect complexity metrics, we used Understand C++
8
, a commercial metrics collection 

tool. We limited our analysis to C/C++ and their header files to obtain complexity metrics, 

 
4 http://www.cs.waikato.ac.nz/ml/weka 
5 http://www.mozilla.org/security/announce/ 
6 http://www.bugzilla.org/ 
7 https://developer.mozilla.org/en/Mozilla_Source_Code_Via_CVS 
8 http://www.scitools.com 
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excluding other files types such as script files and make files. We obtained code churn and 

developer activity metrics from the CVS version control system. 

At the time of data collection, Firefox 1.0 and Firefox 2.0.0.16 were the first and the last 

releases that had vulnerability reports. The gap between Firefox releases ranged from one to two 

months. Since each release had only a few vulnerabilities (not enough to perform analysis at each 

Firefox release), we combined the number of vulnerabilities for three consecutive releases, and 

will refer to those releases as a combined release, denoted by R1 through R11 in this paper. For 

each release, we used the most recent three combined releases (RN-3 to RN-1) to predict 

vulnerable files in RN. We collected metrics for 11 combined releases. Table IV provides the 

project statistics for the combined 11 releases.  

TABLE IV 
PROJECT STATISTICS FOR MOZILLA FIREFOX 

No. Firefox Release # of Files LOC Mean LOC Files with 

Vulns. 

Total 

Vulns. 

Vulns. per 

File 

% of Files 

with Vulns. 

R1 1.0 / 1.0.1 / 1.0.2  10,320 2,060,908 200 70 84 0.008 0.678 

R2 1.0.3 / 1.0.4 / 1.0.5 / 1.0.69 10,321 2,063,960 200 123 134 0.013 1.192 
R3 1.0.7 / 1.5 / 1.5.0.1 10,321 2,064,747 200 93 159 0.015 0.901 

R4 1.5.0.2 / 1.5.0.3 / 1.5.0.4 10,956 2,226,540 203 100 138 0.013 0.913 

R5 1.5.0.5 / 1.5.0.6 / 1.5.0.7 10,961 2,230,313 204 109 153 0.014 0.994 

R6 1.5.0.8 / 2.0 / 2.0.0.1 10,961 2,232,890 204 87 124 0.011 0.794 

R7 2.0.0.2 / 2.0.0.3 / 2.0.0.4 11,060 2,294,287 207 114 162 0.015 1.031 

R8 2.0.0.5 / 2.0.0.6 / 2.0.0.7 11,060 2,299,054 208 55 72 0.007 0.497 
R9 2.0.0.8 / 2.0.0.9 / 2.0.0.10 11,076 2,301,398 208 14 15 0.001 0.126 

R10 2.0.0.11 / 2.0.0.12 / 2.0.0.13 11,077 2,301,832 208 84 110 0.010 0.758 

R11 2.0.0.14 / 2.0.0.15 / 2.0.0.16 11,080 2,304,048 208 27 46 0.004 0.244 

B. Discriminative Power Test and Univariate Prediction Results 

Table V also shows the results of hypotheses testing for discriminative power and the 

univariate prediction using Logistic regression for individual metrics from release R4, the first 

test data set that uses the most three recent releases to train a prediction model. In Table V, the 

plus sign in the Association column indicates that the vulnerable files had a higher measure than 

neutral files. DNAvgDegree was the only sign that did not completely agree with its hypothesis. 

We discuss the reason in Section VI. 27 of the 28 metrics showed a statistically significant 

 
9 The vulnerabilities for Firefox 1.0.5 and Firefox 1.0.6 were reported together. Therefore, we considered those two versions as one version.  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO 

EDIT) < 

 

19 

difference between vulnerable and neutral files using the Welch‟s t-test after a Bonferroni 

correction as shown in Table V. We also compared the mean and median of each measurement 

for vulnerable and neutral files to find the association direction (positive or negative). Fig. 3 

shows the boxplots of comparisons of log scaled measures between vulnerable and neutral files 

for the three representative metrics from each type of CCD metrics: CountLineCode, 

NumChanges, and NumDevs. The medians of the three metrics for the vulnerable files were 

higher than the ones for the neutral files, as we hypothesized. 

     

Fig. 3. Comparison of measures for vulnerable and neutral files 

In Table V, the means of PD and PF are averaged over ten repetitions of predictions for R4 

according to the algorithm provided in Fig. 1 and presented with standard deviations. We test 

whether individual metrics can predict vulnerable files at over 70% PD with less than 25% PF as 

described in Section III.C. N(QP) represent the number of predictions that satisfy our criteria in 

the 80 predictions (ten repetitions for each of the eight combined releases). NumChanges and 

CNCloseness satisfied our criteria in all 80 predictions. CountLineCodeDecl, LinesChanged, and 

NumDevs satisfied our criteria in over half of the predictions. Most metrics provided very small 

variations between predictions except for CommentDensity, Linesnew, and DNMinBetweenness.  

Note that we provide N(Qp) instead of averaging the prediction results across all releases because 

averaging the results for different data sets can mislead the interpretation of the results from each 

data set [31].  
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TABLE V 

RESULTS OF DISCRIMINATIVE POWER TEST AND UNIVARIATE PREDICTION MOZILLA FIREFOX 

  Discriminative Power Predictability 

     Mean for R4 Std. for R4  

Related Hypothesis Metric Welch-t Associati

on 

HD* PD* PF* QP* PD PF N(QP)* 

 Complexity          

HIntraComplexity_D 

CountLineCode  +  82 28 X 0.4 0.9 1 

CountDeclFunction  +  87 68 X 0.0 0.0 0 

CountLineCodeDecl  +  79 25  0.0 0.8 47 

CountLinePreprocessor  +  76 26 X 0.9 0.9 0 

SumEssential  +  86 60 X 0.3 3.0 0 

SumCyclomaticStrict  +  86 60 X 0.0 1.2 0 

MaxCyclomaticStrict  +  87 68 X 0.0 0.0 0 

SumMaxNesting  +  82 53 X 0.0 0.0 0 

MaxMaxNesting  +  82 53 X 0.0 0.0 0 

HCoupling_D 

SumFanIn  +  87 57 X 0.0 0.0 0 

SumFanOut  +  86 62 X 0.0 0.0 0 

MaxFanIn  +  87 57 X 0.0 0.0 0 

MaxFanOut  +  86 62 X 0.0 0.0 0 

HComments_D CommentDensity X – X 59 45 X 15.4 21.8 0 

 Code Churn          

HNumChanges_D NumChanges  +  86 23  0.8 1.2 80 

HChurnAmount_D 
LinesChanged  +  85 25  0.3 1.4 76 

LinesNew  +  88 58 X 0.9 9.1 0 

 Developer Activity          

HDeveloperCentrality_D 

DNMinDegree  –  74 84 X 4.2 1.0 0 

DNAvgDegree  + X 98 77 X 0.0 0.9 0 

DNMaxCloseness  +  100 95 X 0.0 0.1 0 

DNAvgCloseness  +  100 95 X 0.0 0.0 0 

DNMinBetweenness  –  53 45 X 0.5 30.7 0 

DNAvgBetweenness  –  99 87 X 0.3 0.8 0 

HDeveloperCluster_D 
DNMaxEdgeBetweenness  +  88 30 X 0.0 0.0 0 

DNAvgEdgeBetweenness  +  88 30 X 0.0 0.0 0 

HContributionCentrality_D 
NumDevs  +  84 24  1.5 1.6 58 

CNCloseness  +  82 22  0.0 0.0 80 

CNBetweenness  +  64 9 X 0.0 0.0 20 

*. HD:  Hypothesis test for discriminative power, PD: Probability of detection, PF: Probability of false alarm, QP: Question for predictability, 

N(QP): Number of predictions that provided over 70% PD with less than 25% PF from 80 predictions 

 

Note that a single metric can provide such a high PD and a low PF. We further investigate the 

predictability of CCD metrics when they are used together in a model in the following subsection. 

C. Multivariate Prediction Results 

  Although metrics can have low predictability individually, combining metrics into a model 

can result in better predictability [32]. Therefore, we created four types of models using 

complexity, code churn, developer activity, and combination of the CCD metrics. From each set 

of the metrics, three variables were selected as we explained in Section III.E. 

Fig. 4 shows PD, PF, FI, LI, FIR, and LIR across releases where the results from each release 
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were averaged over the results from the ten repetitions of next-release validation using Logistic 

regression. All the models with code churn, developer activity, and combined CCD metrics 

provided similar results across releases; PD was between 68% to 88%% and PF was between 

17% to 26%; File Inspection Ratio (FI) was between 17% to 26% resulting in 66% to 80% 

reduction in the files to inspect; Line Inspection Ratio (LI) was between 49% to 65% resulting in 

16% to 42% of reduction in lines of code to inspect. The models using complexity metrics 

provided 76% to 86% PD and 22% to 34% PF.  FI for the models using complexity metrics was 

between 22% to 34% resulting in 61% to 72% reduction in file inspection.  LI for the models 

using complexity metrics was much higher than LI for the other models (74% to 85%) resulting 

in only 7% reduction in code inspection at best. In the worst case, 3% more code required to 

inspect than the percentage of lines of code chosen by random selection.  Note that PF and FI 

showed almost identical performance for all models. We discuss the similarity between PF and 

FI in Section VI. 

The three types of models generally provided consistent PD except for R5 and R10. The 

models using complexity metrics provided lower PD than other models, but provided consistent 

results even in R5 and R10. Instead, PF from the models using complexity metrics suddenly 

increased in R10. We conjecture the reason of the sudden decrease in performance for R10 is 

because the number of vulnerable files in R10 suddenly increases when the model was trained 

with recent two releases (R8 and R9) with relatively few vulnerabilities, and the model trained 

from the past trend did not work properly. However, we were not able to find out any particular 

reason of the sudden decreases in performance for R5. All the prediction results from the three 

types of models gradually improved as the system matures, but the results from models using 

complexity metrics stayed constant or degraded. 
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Fig. 4. Prediction results for Mozilla Firefox across releases 

Table VI provides detailed results for release R4 including standard deviations. The models 

with code churn metrics and combined CCD metrics satisfied our prediction criteria in over 90% 

of predictions out of 80 predictions (ten repetitions for each of the eight combined releases). All 

of the models satisfied our criteria in over 50% of the 80 predictions. Standard deviations in PD 

and PF were less than 3 in all models for release R4. Interestingly, no multivariate models were 

noticeably better than some of the best univariate models.  
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TABLE VI 

RESULTS OF MULTIVARIATE PREDICTION FOR  MOZILLA FIREFOX  

 Predictability for R4  Inspection Costs for R4 

 Mean  Standard Dev.  Costs Cost Reduction 

 PD PF P PD PF N(HP) PV FI LI FIR LIR 

Complexity 79 25 3 0.7 0.8 40 84 26 79 68   6 

Code churn 84 23 3 1.2 1.3 76 88 23 59 72 33 
Developer activity 85 26 3 1.7 2.8 62 88 26 59 69 34 

Combined CCD 85 24 3 1.8 1.7 74 89 24 61 72 31 

The amount of files to inspect reduced by 68% to 72% depending on the models for R4. The 

amount of lines of code to inspect reduced by 31% to 34% with code churn, developer activity, 

and combined CCD metrics, and only 6% with complexity metrics for release R4. 

V. CASE STUDY 2: RED HAT ENTERPRISE LINUX KERNEL 

Our second case study has been performed on the Linux kernel as it was distributed in the Red 

Hat Enterprise Linux 4 (RHEL4) operating system. The RHEL4 kernel consists of 13,568 C files 

with over three million lines of code. The details of the project, data collection, and the 

prediction results are described in this section. 

A. Data Collection 

Gathering security data involved tracing through the development artifacts related to each 

vulnerability reported in the Linux kernel. We collected our vulnerability data from the Red Hat 

Bugzilla database and the Red Hat package management system (RPM).  Since some 

vulnerability patches affect only certain releases, we examined each defect report manually to 

ensure that developers had decided that patch was, in fact, required. Instead of scanning 

developer commit logs for defect IDs, we used the RPM system to determine the exact patch that 

was issued to fix each of the 258 known vulnerabilities. Since we are only interested in 

vulnerabilities that existed at the time of release, we did not include vulnerabilities introduced by 

post-release patches (a.k.a “regressions”) in our data set. For the few vulnerabilities that did not 

have all of the relevant artifacts (e.g. defect reports, patches), we consulted the director of the 
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RHSR team to correct the data and the artifacts. We collected vulnerabilities reported from 

February 2005 through July 2008.  

To obtain code churn and developer activity data, we used the Linux kernel source 

repository
10

. The RHEL4 operating system is based on kernel version 2.6.9, so we used all of the 

version control data from kernel version 2.6.0 to 2.6.9, which was about approximately 15 

months of development and maintenance. Table VII provides the project statistics. 

TABLE VII 

PROJECT STATISTICS FOR THE RHEL4 KERNEL 

# of Files LOC Mean LOC Files with Vulns. Total Vulns. Vulns. per File % of Files with 

Vulns. 

13,568 3,068,453 226 194 258 0.019 1.4% 

 

B. Discriminative Power Test and Univariate Prediction Results 

Table VIII provides the results of hypotheses tests for discriminate power and the results of the 

univariate prediction for individual metrics. 27 of the 28 metrics showed a statistically significant 

difference between vulnerable and neutral files using the Welche‟s t-test after Bonferroni 

correction except for CommentDensity. The association directions for DNAvgDegree and 

DNAvgBetweenness did not agree with their hypotheses. We discuss the reason in Section VI.  

In vulnerability prediction, only NumDevs provided over 70% PD with less than 25% PF in 

over half of the 100 predictions for 10x10 cross-validation. RHEL4 had greater standard 

deviations in PD and PF than Mozilla Firefox.  

C. Multivariate Prediction Results 

Table IX provides the results for the multivariate predictions by 10x10 cross-validation using 

Logistic regression. The predictions were performed using the three variables selected by the 

information gain ranking method. The models using code churn, developer activity, and 

combined CCD metrics satisfied our prediction criteria in over 50% of the 100 runs of cross-

 
10 http://git.kernel.org/ 
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validation. However, none of the predictions using complexity metrics satisfied our prediction 

criteria.  When we changed the threshold to 0.4 for binary classification, the models using 

complexity metrics provided 77% PD and 29% PF and 15 of the 100 predictions satisfied our 

prediction criteria. 

TABLE VIII 

RESULTS OF DISCRIMINATIVE POWER TEST AND UNIVARIATE PREDICTION FOR RHEL4 KERNEL 

  Discriminative Power Predictability 

     Mean Std.  

Related Hypothesis Metric Welch-t Associ

ation 

HD* PD* PF* QP* PD PF N(QP)* 

 Complexity          

HIntraComplexity_D 

CountLineCode  +  87 38 X 8.7 2.8 0 

CountDeclFunction  +  94 57 X 4.5 1.5 0 

CountLineCodeDecl  +  87 44 X 9.5 3.8 0 

CountLinePreprocessor X + X 67 41 X 9.5 1.7 0 

SumEssential  +  93 53 X 5.6 2.9 0 

SumCyclomaticStrict  +  93 52 X 5.8 1.9 0 

MaxCyclomaticStrict  +  94 56 X 5.5 2.1 0 

SumMaxNesting  +  90 49 X 6.6 1.2 0 

MaxMaxNesting  +  90 49 X 6.6 1.2 0 

HCoupling_D 

SumFanIn  +  93 52 X 5.0 1.6 0 

SumFanOut  +  92 52 X 6.4 1.7 0 

MaxFanIn  +  93 54 X 5.0 1.3 0 

MaxFanOut  +  93 53 X 5.2 1.2 0 

HComments_D CommentDensity  –  88 75 X 7.9 1.9 0 

 Code Churn          

HNumChanges_D NumChanges  +  83 25  8.8 2.9 27 

HChurnAmount_D 
LinesChanged  +  83 39 X 9.1 2.0 0 

LinesNew  +  90 52 X 6.0 1.3 0 

 Developer Activity          

HDeveloperCentrality_D 

DNMinDegree  –  86 67 X 8.5 2.2 0 

DNAvgDegree  + X 98 59 X 3.7 2.7 0 

DNMaxCloseness  +  98 71 X 7.3 6.9 0 

DNAvgCloseness  +  99 74 X 1.6 1.1 0 

DNMinBetweenness  –  69 63 X 11.8 3.0 0 

DNAvgBetweenness  + X 97 57 X 3.7 1.5 0 

HDeveloperCluster_D 
DNMaxEdgeBetweenness  +  49 11 X 11.2 0.8 4 

DNAvgEdgeBetweenness  +  49 11 X 11.2 0.8 4 

HContributionCentrality_D 
NumDevs  +  80 22  9.1 1.1 84 

CNCloseness  +  99 74 X 1.6 1.1 0 

CNBetweenness  +  92 41 X 6.2 1.3 0 

*. HD:  Hypothesis test for discriminative power, PD: Probability of detection, PF: Probability of false alarm, QP: Question for predictability, 

N(QP): Number of runs in cross-validations that provided over 70% PD with less than 25% PF 

 
 

TABLE IX 

RESULTS OF MULTIVARIATE PREDICTION FOR THE RHEL4 KERNEL 

 Predictability  Inspection Costs 

 Mean Std.  Costs Cost Reduction 

 PD PF P PD PF N(HP) PV FI LI FIR LIR 

Complexity 90 43 3 7.2 6.8 0 92 44 85 51 7 

Code churn 82 24 5 9.2 1.9 59 85 25 58 70 32 
Developer activity 81 23 5 9.2 2.9 76 84 24 58 70 31 

Combined CCD 84 24 5 8.5 2.3 71 87 25 62 71 28 
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The reduction in file inspection compared to a random file selection was between 51% and 

71%. The reduction in lines of code inspection was over 28% for code churn, developer activity, 

and combined CCD metrics and only 7% for complexity metrics.  

VI. SUMMARY OF TWO CASE STUDIES AND DISCUSSIONS 

Table X provides the summary of our hypotheses testing. The hypotheses for discriminative 

power were supported by at least 24 of the 28 metrics for both projects except for 

CommentDensity and DNAvgDegree for Firefox, and CountLinePreprocessor, DNAvgDegree, 

and DNAvgBetweenness for RHEL 4.  Among these, CountLinePreprocessor  and 

CommentDensity were not discriminative of neutral and vulnerable files. DNAvgDegree and 

DNAvgBetweenness disagreed with our hypotheses in the direction of association. While 

DNMinDegree was negatively correlated with vulnerabilities and supported our hypothesis, 

DNAvgDegree was positively correlated in both projects. This means that files are more likely to 

be vulnerable if they are changed by developers who work on many other files with other 

developers on average, but when all of the developers are central, the file is less likely to be 

vulnerable. For DNAvgBetweeenness, we were not able to find any clear reason for the 

hypothesis to not be supported.  

Overall, 80 predictions were performed for the eight releases (R4 – R11) of Firefox with ten 

repetitions to account for sampling bias and 100 predictions for RHEL 4 for 10x10 cross-

validation. In the univariate predictions, 5 of the 28 metrics supported the hypotheses in 50% of 

the total predictions for Firefox and 1 of the 28 metrics for RHEL 4. Considering only the small 

number of metrics satisfied the prediction criteria in univariate prediction, relying on a single 

metric is a dangerous practice. In multivariate predictions, the models using code churn, 

developer activity, and combined CCD metrics supported the hypotheses in over 50% of the total 
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predictions for both project. Even though the models using complexity metrics supported the 

hypotheses in over 50% of the total predictions for Firefox, none of the predictions were 

successful for RHEL 4. Considering this result together with the surprisingly low (even negative) 

inspection cost reduction seen in Fig. 4 of Section IV, although whether lines of code is an 

effective cost measurement depends on situation [25], the effectiveness of complexity metrics as 

indicators of vulnerabilities is weak for the complexity metrics we collected.  

TABLE X 

SUMMARY OF HYPOTHESES TESTING 

 Hypotheses Firefox RHEL 4 

HComplexity_D Vulnerable files are more complex than neutral files. Yes for 13 of 14 metrics. Yes for 13 of 14 
metrics. 

HCodeChurn_D Vulnerable files have a higher code churn than neutral files.  Yes for all 3 metrics. Yes for all 3 metrics. 

HDeveloper_D Vulnerable files are more likely to have been changed by poor 
developer activity than neutral files. 

Yes for 10 of 11 metrics. 
 

Yes for 9 of 11 metrics. 

QIndividual_P Can  a model with individual CCD metric predict vulnerable files?* 5 of 28 metrics satisfied 

the prediction criteria in 

over half of the 80 
predictions. 

1 of 28 metrics satisfied 

the prediction criteria in 

over half of the 100 
predictions. 

HComplexity_P A model with a subset of complexity metrics can predict vulnerable 

files. * 

Supported by 40 of 80 

predictions. 

Supported by 0 of 100 

cross-validations. 

HCodeChurn_P A model with a subset of code churn metrics can predict vulnerable 

files. * 

Supported by 76 of 80 

predictions. 

Supported by 59 of 100 

cross-validations. 

HDeveloper_P A model with a subset of developer metrics can predict vulnerable 
files. * 

Supported by 62 of 80 
predictions. 

Supported by 76 of 100 
cross-validations. 

HCCD_P A model with a subset of combined CCD metrics can predict 

vulnerable files. * 

Supported by 74 of 80 

predictions. 

Supported by 71 of 100 

cross-validations. 

*. The criteria for the hypotheses tests for vulnerability prediction are 70 % PD and 25% PF. 

 

Precision (P) from all the models for both projects was strikingly low with less than five as a 

result of large numbers of false positives. This result is especially interesting because almost all 

of the individual metrics had strong discriminative power according to Welch‟s t-test. This 

discrepancy can be explained from the boxplots in Fig.3 of Section IV where the mean values in 

the individual metrics show clear difference, but the considerable numbers of neutral files are 

still in the expected range of vulnerable files leading to a large number of false positives.  

Organizations can improve P by raising the threshold for binary classification to reduce false 

positives. However, PD can become lower in that case as PD and P tend to trade-off each other. 
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Whether a model that provides high PD and low P is better than a model that provides high P 

and low PD is arguable. An organization may prefer to detect many vulnerabilities because they 

have a large amount of security resources and security expertise. On the other hand, other 

organizations may prefer a model that provides high P that reduces the waste of effort even with 

low PD.  

Preference for high PD and low P requires some caution in terms of cost-effectiveness. From 

the results in Tables VI and IX, organizations are guided to inspect only less than 26% of files to 

find over around 80% of vulnerable files in most models. However, since the projects have a 

large amount of files, the number of files to inspect is still large. For example, Firefox release R4 

has around 11,000 files and the model with combined CCD metrics provided 24% FI identifying 

2,640 files to inspect. If security inspection requires one person-day per file, over seven full 

years would be spent for one security engineer to inspect the 2,640 files. If the files to inspect are 

reduced to 10% of the predicted files (264 files) by further manual prioritization, the overall 

inspection would take essentially a year for one security engineer only to find a further reduced 

set of vulnerabilities. In that case, pursuing high P and low PD might be a more cost-effective 

approach than pursing high PD and low P. However, because the inspection time can greatly 

vary depending on the ability and the number of security engineers involved, organizations 

should use this illustration and our prediction results only to make an informed decision.   

Among the metrics we investigated, history metrics such as code churn and developer activity 

metrics provided higher prediction performance than the complexity. Therefore, historical 

development information is a favorable source for metrics and using historical information is 

recommended whenever possible. However, our result is limited to the metrics that we collected. 

Other complexity metrics may provide better results.  
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We also observed sudden changes in prediction performance in a few releases of Firefox where 

we used next-release validation. This result cannot be observed with cross-validation. Therefore, 

our study reveals the importance of next-release validation to validate metrics for vulnerability 

prediction whenever possible.   

For both projects, PF and FI are almost equal. We believe the reason for this was that the 

percentage of files with vulnerabilities is very low (< 1.4%) and P is also very low. The low 

percentage of vulnerable files means that the total number of files (TP+TN+FP+FN) is almost 

the same as the number of non-vulnerable files (FP+TN). The low P means that the number of 

positive predictions (TP+FP) is very close to FP. Therefore, FI computed by 

(TP+FP)/(TP+TN+FP+FN) and PF computed by FP/(FP+TN) are almost equal. Knowing this 

fact provide us a useful hint to guess the number files to inspect when both the percentage of 

vulnerable files and P are very low. 

Interestingly, NumDevs was effective in the vulnerability prediction in our study while another 

study [33] observed that NumDevs did not improve the prediction performance significantly. 

The two major differences between the studies are (a) their study was closed-source and ours 

was open-source; and (b) they were predicting faults and not vulnerabilities. Although we do not 

know if security vulnerabilities have the same distribution as faults, unless we repeat this study 

for a fault prediction on Mozilla Firefox and the RHEL4 kernel, we cannot draw any conclusions 

on the difference between the commonly effective metrics from the fault prediction and ours. 

VII. THREATS TO VALIDITY 

Since our data is based on known vulnerabilities, our analysis does not account for latent 

(undiscovered) vulnerabilities.  Additionally, only fixed vulnerabilities are publicly reported in 

detail by organizations to avoid the possible attacks from malicious users; unfixed vulnerabilities 
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are usually not publicly available.  However, considering the wide use of both projects, we 

believe the currently-reported vulnerabilities are not too limited to jeopardize our results.   

We combined every three releases and predicted vulnerabilities for next three releases for 

Mozilla Firefox. Using this study design, the predictions will be performed on the every
 
third 

release. However, considering the short time periods between releases (one or two months), we 

consider that the code and process history information between the three releases within a 

combined release is relatively similar and those releases share many similar vulnerabilities. This 

decision was made to increase the percentage of vulnerabilities in each release because the 

percentage of vulnerabilities for the subject projects was too low to train the prediction models. 

In fact, once enough training data is cumulated during a few initial releases, one could predict 

vulnerabilities in actual releases rather than in combined releases. Alternatively, we could use 

vulnerability history as a part of metrics together with CCD metrics as was used in [33] instead 

of combining releases. We plan to extend our study to accommodate both of the approaches. For 

Mozilla Firefox, not all of the bug ids for vulnerability fixes were identified from the CVS log, 

which could lead to the lower prediction performance. 

Actual security inspections and testing are not perfect, so our results are optimistic in 

predicting exactly how many vulnerable files will be found by security inspection and testing.  

As with all empirical studies, our results are limited to the two projects we studied. To 

generalize our observations from this study to other projects in various languages, sizes, 

domains, and development processes, further studies should be performed.  

VIII. RELATED WORK 

This section introduces prior studies on the software vulnerability prediction and usages of 

CCD metrics in fault prediction. 
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A. Vulnerability Prediction 

Neuhaus et al. predicted vulnerabilities on the entire Mozilla open source project (not 

specific to Firefox) by analyzing the import (header file inclusion) and function call relationship 

between components [30]. In this study, a component is defined as a C/C++ file and its header 

file of the same name. They analyzed the pattern of frequently used header files and function 

calls in vulnerable components and used the occurrence of the patterns as predictors of 

vulnerabilities. Their model using import and function call metrics provided 45% PD and 70% 

precision, and estimated 82% of the known vulnerabilities in the top 30% components predicted 

as vulnerable. Our model with CCD metrics provided higher PD (over 85%) but lower precision 

(less than 3%) than their work and detected 89% of vulnerabilities (PV) in 24% of files (FI) for 

Mozilla Firefox. We also validated the models across releases to simulate actual use of a 

vulnerability prediction in organizations, while their study performed cross-validation. 

Gegick et al. modeled vulnerabilities using the regression tree model technique with source 

lines of code, alert density from a statistic analysis tool, and code churn information [34]. They 

performed a case study on 25 components in a commercial telecommunications software system 

with 1.2 million lines of code. Their model identified 100% of the vulnerable components with 

an 8% false positive rate at best. However, the model predicted vulnerabilities only at the 

component level and cannot direct developers to more specific vulnerable code locations.  

Shin and Williams investigated whether the code level complexity metrics such as 

cyclomatic complexity can be used as indicators of vulnerabilities at function level [35], [36]. 

The authors performed a case study on the Mozilla JavaScript Engine written in C/C++. Their 

results show that the correlations between complexity metrics and vulnerabilities are weak 

(Spearman r=0.30 at best) but statistically significant. Interestingly, the complexity measures for 
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vulnerable functions were higher than the ones for faulty functions. This observation encourages 

us to build vulnerability prediction models even in the presence of faults using complexity 

metrics. Results of the vulnerability prediction using logistic regression showed very high 

accuracy (over 90%) and low false positive rates (less than 2%), but the false negative rate was 

very high (over 79%). Our study extends these two prior studies by using additional complexity 

metrics such as fan-in and fan-out, and process history metrics including code churn and 

developer activity metrics on two large size projects. 

Walden et al. analyzed the association between the security resource indicator (SRI) and 

vulnerabilities on fourteen open source PHP web applications [37]. The SRI is measured as a 

sum of binary values depending on the existence of the four resources in development 

organizations: a security URL, a security email address, a vulnerability list for their products, 

and secure development guidelines. SRI is useful to compare security levels between 

organizations, but does not indicate vulnerable code locations. Additionally they measured the 

correlation between three complexity metrics and vulnerabilities. The correlations were very 

different depending on the projects, which inhibits our ability to generalize the applicability of 

complexity metrics as an indicator of vulnerabilities. Since the projects were written in PHP and 

have a different domain than ours, their results cannot be generalized to ours.  

B. Fault Prediction with complexity, code churn, and developer metrics 

Basili et al. showed the usefulness of object oriented (OO) design metrics to predict fault-

proneness in a study performed on eight medium-sized information management systems [5]. 

The logistic regression model with OO design metrics detected 88% of faulty classes and 

correctly predicted 60% of classes as faulty. Briand et al. also used OO design metrics to predict 

defects and their logistic regression model classified fault-prone classes at over 80% of precision 
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and found over 90% of faulty classes [6]. Nagappan et al. found that sets of complexity metrics 

are correlated with post-release defects using five major Microsoft product components, 

including Internet Explorer 6 [38]. Menzies et al. explored three data mining modeling 

techniques, OneR, J48, and naïve Bayes,  using code metrics to predict defects in MDP, a 

repository for NASA data set [7]. Their model using naïve Bayes was able to predict defects with 

71% PD and 25% PF. 

Nagappan and Ball investigated the usefulness of code churn information on Windows Server 

2003 to estimate post-release failures [15]. The Pearson correlation and the Spearman rank 

correlation between estimated failures and actual post-release failures were r=0.889 and r=0.929 

respectively for the best model. Ostrand et al. used code churn information together with other 

metrics including lines of source code, file age, file type, and prior fault history [9]. They found 

that 83% of faults were in the top 20% of files ranked in the order of predicted faults using 

negative binomial regression. Nagappan et al. also performed empirical case studies on the fault 

prediction with Windows XP and Windows Server 2003 using code churn metrics and code 

dependency within and between modules [8], [39]. Both studies used a multiple linear regression 

model on principal components and the Spearman rank correlations between actual post-release 

failures and estimated failures were r=0.64 and r=0.68 at the best cases, respectively.  

We use two concepts to measure developer activity: developer networks and contribution 

networks. The concept of a developer network has come from several sources, including [16], 

[40]. Gonzales-Barahona and Lopez-Fernandez were the first to propose the idea of creating 

developer networks as models of collaboration from source repositories to differentiate and 

characterize projects [40]. Meneely et al. applied social network analysis to the developer 

network in a telecommunications product to predict failures in files [16]. They found 58% of the 
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failures in 20% of the files where a perfect prioritization would have found 61%. Pinzger et al. 

were the first to propose the contribution network as a quantification of the direct and indirect 

contribution of developers on specific resources of the project [21]. Pinzger et al. found that files 

that were contributed to by many developers, especially by developers who were making many 

different contributions themselves, were found to be more failure-prone than files developed in 

relative isolation.  Other efforts exist [33], [41], [42] to quantify developer activity in projects, 

mostly via counting the number of distinct developers who changed a file as we did in our study.  

The difference between [33] and ours were discussed in Section VI.  

IX. CONCLUSIONS 

The goal of this study was to guide security inspection and testing by analyzing if Complexity, 

Code churn, and Developer activity (CCD) metrics can indicate vulnerable files. Specifically, we 

evaluated if CCD metrics can discriminate between vulnerable and neutral files, and predict 

vulnerabilities. At least 24 of the 28 metrics supported the hypotheses for discriminative power 

between vulnerable and neutral files for both projects. A few univariate models and the models 

using development history based metrics such as code churn, developer activity, and combined 

CCD metrics predicted vulnerable files with high PD and low PF for both projects. However, the 

models with complexity metrics alone provided the weakest prediction performance, indicating 

that metrics available from development history are stronger indicators of vulnerabilities than 

code complexity metrics we collected in this study. 

Our results indicate that code churn, developer activity, and combined CCD metrics can 

potentially reduce the vulnerability inspection effort compared to a random selection of files. 

However, considering the large size of the two projects, the quantity of files and the lines of code 

to inspect or test based on the prediction results is still large. While a thorough inspection of 
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every potentially vulnerable file is not always feasible, our results show that using CCD metrics 

to predict files can provide valuable guidance to security inspection and testing efforts by 

reducing code to inspect or test. 

Our contribution in this study is that we provided empirical evidence that CCD metrics are 

effective in discriminating and predicting vulnerable files and in reducing the number of files and 

the lines of code for inspection. Our results were statistically significant despite the presence of 

faults that could weaken the performance of a vulnerability prediction model. 

CCD metrics also have been known to be effective for fault prediction for other projects. 

Performing fault prediction using the same metrics on the same projects used in this study and 

comparing and analyzing the results might guide to find the difference in specific characteristics 

between vulnerabilities and faults. Finding new metrics that can better indicate vulnerabilities 

and also better reduce inspection and testing cost is also challenging but necessary future work. 

While our results show that predictive modeling can reduce the amount of code to inspect, much 

work needs to be done in applying models like ours to the security inspection process. 

Examining the underlying causes behind the correlations found in this paper would assist even 

further in guiding security inspection and testing efforts. 
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