
Predicting Attack-prone Components

1Michael Gegick, 2Pete Rotella and 1Laurie Williams
1North Carolina State University Department of Computer Science, 2Cisco Systems, Inc.

{mcgegick, lawilli3}@ncsu.edu, protella@cisco.com

Abstract

Limited resources preclude software engineers from
finding and fixing all vulnerabilities in a software
system. This limitation necessitates security risk
management where security efforts are prioritized to
the highest risk vulnerabilities that cause the most
damage to the end user. We created a predictive
model that identifies the software components that
pose the highest security risk in order to prioritize
security fortification efforts. The input variables to our
model are available early in the software life cycle and
include security-related static analysis tool warnings,
code churn and size, and faults identified by manual
inspections. These metrics are validated against
vulnerabilities reported by testing and those found in
the field. We evaluated our model on a large Cisco
software system and found that 75.6% of the system's
vulnerable components are in the top 18.6% of the
components predicted to be vulnerable. The model’s
false positive rate is 47.4% of this top 18.6% or 9.1%
of the total system components. We quantified the
goodness of fit of our model to the Cisco data set using
a receiver operating characteristic curve that shows
94.4% of the area is under the curve.

1. Introduction

Security vulnerabilities can occur because of
subtleties and false assumptions in the design or code
of a software system [20]. Security engineers need
more time to uncover and fix these problems than their
release schedule permits, and so vulnerabilities are
inevitably released with the software. Compounding
this schedule problem is that there are usually far fewer
security engineers assigned to projects than general
reliability engineers, but are responsible for testing the
security posture of the entire system. Also, attackers
have the advantage of time, in that they can spend
months or years building an exploit for just one area of
the software system. Collectively, these conditions

necessitate security risk management where security
efforts are prioritized to the highest security risk
software components1 to minimize damage to the end
user.

In addition to prioritizing which components to fix,
it is also important to fix the components early. The
costs to fix faults in the testing phase can be nine times
cheaper than fixing during operation [2]. An early
knowledge of which components should receive the
most security effort can also reduce the number of end-
user-installed security patches.

The objective of this research is to create and
evaluate models that predict which components are
most susceptible to attack. The results of the models
are available early (i.e. before system-level testing
begins) in the software life cycle (SLC) allowing
recovery time for inspections, re-design, and test
efforts for the most vulnerable software components.

The input variables to our model include security-
related static analysis tool warnings, code size and
churn, and all faults identified by manual inspections.
These metrics are validated, using classification and
regression trees (CART), against vulnerabilities
reported by testing failures and those found in the field.
We evaluated our model on a large Cisco software
system to determine the model’s efficacy. We also
developed a cost model for our predictive model that
provides estimates of costs to remediate vulnerable
components. During our empirical case study, we
developed a sequential tree method to refine our
models. We describe our experience and findings on
how to lower false negative rates associated with our
predictive models.

In Section 2 we provide background and related
work; in Section 3 we explain our empirical case study;
in Section 4 we present our research methodology; in
Section 5 we describe the threats to the validity of our
approach; in Section 6 we discuss results; in Section 7
we outline our sequential tree approach; and we
summarize in Section 8.

1 A component is one of the parts that make up a software

system [16].

2. Background and related work

2.1. Vulnerability prediction models

Neuhaus et al. [25] have investigated predictive

models that identify vulnerability-prone components.
They created a software tool, Vulture, that mines a bug
database for data including libraries and APIs to
identify vulnerable components. They performed an
analysis with Vulture on Bugzilla, the bug database for
the Mozilla browser, using imports and function calls
as predictors. They identified 45% of all of the
vulnerable components in Mozilla with a 30% false
positive rate.

In an earlier case study involving a large
telecommunications system [10], we used a CART
model to assign a probability of attack to each file.
Upon ranking these probabilities in descending order,
we found that 72% of the attack-prone files are in the
top 10% of the ranked files and 90% are in the top 20%
of the files. The input variables for that study consisted
of the count of Klocwork2 static analysis tool
warnings, a measure of file coupling (a complexity
metric), and the count of added and changed source
lines of code. In our other earlier work [11], we used
CART to predict which components were attack-prone
using warnings from the FlexeLint3 static analysis tool,
and code churn. The model identified all of the attack-
prone components, but with an 8% false positive rate.
Ozment and Schechter [27] did not find a significant
correlation between code churn and vulnerability
count, but their correlations were performed at the
version level of OpenBSD, while our study was
performed at the file level. The study in this paper is
based on a different software technology and from a
different vendor than in our earlier studies.

2.2. Automated static analysis (ASA)

We use static analysis tool output as one of our

candidate metrics for the case study in this paper. A
static analysis tool analyzes the content of a software
system to detect faults without executing the code [4].
We use the term “automated static analysis” (ASA) to
refer to the use of static analysis tools. Examples of
the types of problems identified by ASA tools include
the detection of calls to potentially insecure library
functions, bounds-checking errors and scalar type
confusion. ASA tools perform analyses such as
semantic, structural, configuration, control- and data-
flow analyses. The output of an ASA tool is a

2 http://www.klocwork.com
3 http://www.gimpel.com

warning. The warnings describe a fault in the software
that could lead to a failure. A true positive is a
warning that describes a fault that can cause a failure,
and a false positive is a warning that misclassifies code
as faulty. Increasingly, ASA tools are used to identify
security vulnerabilities [5].

Recently, models classified fault-prone and not fault-
prone components using ASA warnings as input
variables for discriminant analysis [23]. Nagappan et
al. [23] demonstrated that they could distinguish
82.91% of their fault-prone components. Their results
indicate that a separation can be made between fault-
prone and not fault-prone components to confidently
prioritize the allocation of testing resources and
inspections. Zheng et al. [32] correctly classified
87.5% of the modules in their study when the number
of ASA faults and number of test failures are
considered. Their work is based on the idea that one
technique (e.g., ASA) alone is insufficient for finding
all faults in software [31], but that coding problems
reside in the same locations as bigger problems
identified by testing. Our research tests whether or not
vulnerabilities identified by ASA are a bellwether of
other types (e.g., design-level) of vulnerabilities.

2.3. Statistical overview

The input variables, data set, distribution (e.g.,

Poisson), and the statistical technique (e.g. multiple
linear regression) constitute a statistical model [19].

2.3.1. Correlations and collinearity

A correlation coefficient, r, measures how strongly

two variables are related [6]. A correlation coefficient
has a value between -1 and 1, inclusive. A weak
correlation has a value between 0 and 0.5 and a strong
correlation is greater than or equal to 0.8, otherwise the
correlation is moderate [6]. Collinearity is defined as a
high degree of correlation between the independent
variables of a statistical model [8]. Collinearity occurs
when an excessive number of input variables are used
to determine an outcome, and the input variables
measure the same outcome [8].

2.3.2. Cross-validation and ROC curves

To validate our models, we perform five-fold cross-

validation. Five has been shown to be a good value for
performing cross-validation [14]. The cross-validation
technique validates the R2 (the fraction of variance
explained by the model) by testing the model on data
the model has not used before to determine if the
model is still effective [30]. The five-fold cross-
validation divides (“folds”) the total system
components into five groups consisting of

approximately equal numbers of randomly chosen
components. One group is used as the test set and the
training set consists of the remaining four groups of
components. The model is trained on the training set,
and the training analysis is compared to the outcomes
of the test set to validate how well the model performs
on data that has not been “seen” before. Each of the
five groups of components takes one turn as the test
set, so five analyses are required. After the five
analyses are performed, the average error is calculated
over the five trials.

We will use receiver operating characteristic (ROC)
curves to quantify the goodness of fit of the model to
the data set. The y-axis of the ROC curve is the true
positive rate of the predictive model and the x-axis is
the false positive rate.

2.3.3. Classification and regression trees (CART)

CART is a statistical technique that recursively

partitions data according to X and Y values. The result
of partitioning is a tree of groups where the X values of
each group best predicts a Y value. The leaves of the
tree are determined by the largest likelihood-ratio chi-
square statistic. The threshold, or split, between leaves
is chosen by maximizing the difference in the
responses between any two leaves [28]. For the case
study reported in this paper, the X values are the
candidate metrics and the Y value is a binary value
describing a component as attack-prone (value of one)
or not attack-prone (value of zero). The CART
technique has been shown to be useful for
distinguishing failure-prone from not failure-prone
components in the reliability realm [29].

3. Cisco empirical case study

We performed an empirical case study on a Cisco
software system that was implemented in the C
programming language. The system is divided into
well-defined components upon which our analyses are
based. At Cisco, a component is a unit of a software
system that typically consists of ten or more files. The
count of components is large enough to perform
rigorous statistical analyses. We do not provide details
of this system due to the proprietary nature of the data.
Our goal is to determine if early (pre-system-level
testing) metrics predict which components will have
security failures found late (during system-level testing
and in the field) in the SLC.

3.1. Candidate metrics

We strategically chose five metrics for our
predictive models so our analyses can be easily
repeated and adopted by software engineers. Good

metrics are those where measurements of the software
are objective, reproducible, and empirical [15]. For
example, a software engineer can use a tool to
objectively measure source lines of code (SLOC) in a
file in order to provide the count of SLOC as a metric
for an analysis. The measurements that provide the
metrics should also be performed easily and
economically [15]. Additionally, we required the
metrics to be accessible early in the SLC to afford
software engineers a means to prioritize security efforts
during development. We now discuss our candidate
metrics that will serve as the input variables for our
predictive model.

The first metric is the count and density of warnings
produced by two ASA tools that will be called Tool 1
and Tool 2. The names of the tools are not revealed,
but these tools are widely used tools in the industry.
Cisco requires that ASA be performed on all
components, and validating this metric as a
vulnerability predictor can potentially aid security
efforts for all Cisco software. We focus on the
security-related ASA warnings from Tool 1 to
determine if security warnings alone are better
predictors of security vulnerabilities than non-security
warnings. Examples of Tool 1’s security warnings are
buffer overflows, poor encryption, permissions
problems, and race conditions. We also include null
dereferences and memory leaks, which have been
documented as causing security problems [21].

We do not restrict our metrics to the security realm,
however. Our prior work [9, 12, 13] indicates that
non-security failures are positively correlated with
security failures, and we therefore do not exclude non-
security warnings as candidate metrics. We include
non-security warnings from Tool 2, for example, that
include suspicious use of semicolons and ignoring
return values of functions.

The ASA warnings in our case study unavoidably
include both true positives and false positives. If the
false positives from the ASA have predictive power in
our models, then a time-intensive audit for removing
false positives is not required to predict vulnerabilities.
By including false positives, we abide by our candidate
metric selection criterion that requires that
measurements be easily performed.

The second candidate metric for our predictive
models is code churn, which is calculated as the sum of
added and changed SLOC. In addition to the raw
count of code churn, we normalized the churn by
KLOC to negate the effect of component size. We
suspect that when code is changed in a component,
some assumptions about that code or code that is
dependent on the changed code may be violated. If a
software engineer modifies code that they are not
familiar either because the code is not theirs or they

own the code, but they have not interacted with the
code for a length of time, then they may not be familiar
with the underlying assumptions of how that code
operates. A vulnerability can be injected into the code
when assumptions are made during the code change
that are not consistent with the underlying code’s
assumptions. McGraw [20] uses ambiguity analyses to
identify inconsistent assumptions to root out
vulnerabilities [20]. Additionally, Nagappan et al. [24]
have found that code churn is a predictor of fault-prone
components.

Our third metric is the count of SLOC, which is
measured in thousands of SLOC (KSLOC), and can be
obtained when calculating code churn. We will test if
larger software components are more vulnerable.

The fourth and fifth candidate metrics are the count
of faults reported by pre-testing manual static
inspections and failures identified by unit testing. The
static inspections include faults identified during
design reviews and code reviews. These metrics may
indicate that faults found early in the SLC are an
indicator of faults found later in the SLC. The faults
identified by static inspections and unit tests are easily
obtainable via queries to the Cisco fault database and
are thus included as metrics for our case study.

We suspect that as the values of these five metrics
grow in a component then so will the count of
vulnerabilities.

3.2. Security vulnerabilities

The Cisco Security Evaluation Office (SEO)

provided us with the security failures for our case
study. The SEO tracks vulnerability trends at Cisco
and is thus an optimal source for security data.
Software engineers identified these security failures
during the testing phase, which includes security
testing, stress testing, system testing, and
feature/function-level testing. The SEO also provided
security failures identified during internal usage and
those reported by customers and third-party
researchers. These security failures comprise the
dependent variable for our predictive models, and will
be used to validate if the afore mentioned candidate
metrics are good predictors of these security failures.
The count and types of security failure reports4 are not
disclosed for confidentiality reasons.

In our setting, an attack-prone component is a
component that contains at least one security failure
that was identified by testers, customers, or third-party
researchers. We use the term “attack-prone” because
the security faults were identified during system

 4 The security data have been slightly and consistently

modified for confidentiality reasons.

execution. In the context of testing, if a tester
discovers a buffer overflow during runtime, we say
they have attacked the system. Although the tester
may not have exploited the buffer overflow to cause a
denial-of-service or to inject code that escalates their
privileges, the failure is a proof of concept that the
system can be attacked. We use the threshold of one
security failure to deem a component attack-prone
because there is little variability in the security failure
count per component and only one attack is needed to
cause substantial business loss. A component with no
reported security failures will be called a “not attack-
prone” component.

4. Research methodology

Our predictive models5 use the candidate metrics to
distinguish between attack-prone and not attack-prone
components. During model construction, we maximize
the predictive model’s accuracy, but with a small
number of included metrics. A larger number of
metrics increases the model’s complexity and reduces
the likelihood that Cisco software engineers will adopt
the model because more time would be required to
gather the metrics, build the model, and incorporate its
use in the standard workflow.

The metrics in our predictive models can also be
called independent variables or input variables. The
dependent variable is the count of vulnerabilities in
each component, and this count is used for correlation
analyses. In the context of classifying components,
attack-prone and not attack-prone are the two response
levels. These response levels do not indicate the type
or count of vulnerabilities; they only represent if a
component is associated with at least one reported
vulnerability or not. The models may be useful for
predicting which components contain vulnerabilities,
where the nature of the vulnerability ranges from
abstract design vulnerabilities to relatively simple
coding vulnerabilities, such as simple buffer overflows.

4.1. Correlations to vulnerabilities

We will first test if the candidate metrics are
correlated with the count of vulnerabilities identified
during testing, internal use, and by customers. When
the metrics are significantly correlated with
vulnerabilities, they are good candidates for the
predictive models. During candidate metric selection,
we also test the metrics for collinearity. If the metrics
are correlated with each other, we have to simplify the
model or perform additional analyses to reduce the
collinearity.

5 All statistical analyses performed with SAS JMP 7.0.1.

4.2. Discriminatory techniques

We use the following three statistical discriminatory

techniques in our models: Discriminant analysis,
logistic regression, and CART. Each technique
classifies observations into distinct groups. These
techniques have been shown to be successful in
classifying fault-prone and not fault-prone modules in
the reliability realm [18]. In our setting, we use a
dichotomized scheme where components are labeled
attack-prone or not attack-prone according to the
approach outlined in Section 3.2.

The execution of these three statistical techniques
examines different combinations, counts, and orders of
metrics entered into the model. A good combination of
metrics in the model both separates attack-prone and
not attack-prone components and maximizes the R2
value of each model. R2 is a measure of the variance in
the data that is explained by the model [22].

In the CART technique, each leaf of the tree contains
a subset of the system components. A single leaf in the
CART tree can then be split further into two leaves by
including a metric to increase the probability that one
leaf will likely contain attack-prone components while
the other leaf will not likely contain attack-prone
components. During our CART analysis, each leaf is
split into two leaves if and only if the p-value is at or
below 0.05. If the p-value is above 0.05, then we are
less confident that the groups of components in the two
leaves are sufficiently different to warrant the use of
separate leaves.

4.3. Model validation

A ROC curve that has less than 50% of the area

under the curve will be rejected, since the model will
not have demonstrated a good fit to the Cisco data set.
Additionally, the models are cross-validated to
determine if the R2 of the overall model is consistent
with the R2 of the cross-validated model. If the R2
values are consistent, then the variation explained by
the predictive model is an accurate description of the
model performance. A model with a higher R2
explains more variance than a model with a low R2.

4.4. Hypotheses

The null (H0) and alternative (HA) hypotheses are
stated here. If the predictive model can distinguish
attack-prone from not attack-prone components with
statistical significance, then we do not reject HA.

H0: The candidate metrics have no predictive power in
a statistical model that indicates which components
contain vulnerabilities identified during testing,
internal use, and customer use.

HA: The candidate metrics do have predictive power
in a statistical model that indicates which components
contain vulnerabilities identified during testing,
internal use, and customer use.

4.5. Model efficacy

The models’ efficacies are reported in terms of Type

I (false positive) and Type II (false negative) error
rates. Also, we will provide precision, accuracy, and
recall values. The techniques that yield the lowest
Type I and Type II error rates are then selected for the
predictive models. These terms are now defined.

True positive (TP) – a component correctly classified
as attack-prone by the model.
False positive (FP) – a component misclassified as
attack-prone by the model.
False negative (FN) – a component misclassified as
not attack-prone by the model.
True negative (TN) – a component correctly classified
as not attack-prone by the model.

We give measures of accuracy to indicate the overall

success of the model; measure of precision to indicate
how many not attack-prone components are false
positives; and measures of recall to indicate how well
the model correctly classifies attack-prone
components.

Accuracy - (TP + TN)/(TP + FP + TN + FN)
Precision - (TP)/(TP+FP)
Recall - (TP)/(TP+FN)

5. Threats to validity

Software faults identified by testing failures do not
represent the entire set of faults in the software system
[7], and we cannot be certain that all components have
been inspected and tested equally. Additionally, the
customer-reported failures do not completely identify
all security faults latent in the system. Also,
developers and testers may not have recognized all
faults that are security-related and thus did not submit
them to the SEO. As a result of these uncertainties, our
analyses are necessarily based on incomplete data.
Adding to this, security issues are rare events in
software systems [1]. The scarcity of data makes
statistical analyses difficult. For example, the
Spearman rank correlation may not perform optimally
in zero-inflated data that represent components with no
reported security problems. Lastly, the models
presented in this paper are representative of one
industrial software system, and will not necessarily
yield the same results on different software systems.

6. Results

We now report the results of our method. All
analyses are on a per component basis.

6.1. Correlation to vulnerability counts

The results of the correlation analysis show that the
sum of faults from manual design reviews and code
reviews has the highest correlation (0.27) to the
vulnerability count, as shown in Table 1. The
correlation is weak, but is significant (p<.0001) and
therefore is not excluded from our predictive models.

The correlation between all ASA warnings from
both tools combined and vulnerability count is 0.24.
We do not rule out that a general reliability ASA
warning can cause a vulnerability, but we suspect that
general reliability warnings, such as “suspicious use of
semicolons,” are less likely to be vulnerabilities in
software than other ASA warning types. The results
indicate that general coding problems detectable by
ASA have a nearly identical correlation to vulnerability
counts as ASA security warning type 1, as shown in
Table 1. The specific ASA security warning types are
not revealed here, for confidentiality reasons. The
vulnerabilities (i.e., the dependent variable) found by
testing, internal use, and the customers are correlated
to the population of all ASA warnings, and this
indicates that where there are known coding problems
there may be more complex security problems, too.

Table 1. Correlations to vulnerability counts.

Metric Spearman correlation
coefficient (p-value)

Static inspections 0.27 (p<.0001)
All ASA warnings 0.24 (p<0001)
ASA security warning 1 0.23 (p<.0001)
ASA security warning 2 0.21 (p=.0015)
ASA security warning 3 0.18 (p=.0001)
KSLOC 0.18 (p=.002)
Churn 0.15 (p<.0001)
Unit test failure count Not significant

6.2. Tests for collinearity

We tested the collinearity between the different
candidate metrics. The largest correlation coefficient
is 0.56 and exists between KSLOC and all ASA
warnings, as shown in Table 2. These candidate
metrics were not used together in the same predictive
model because the correlation indicates that they
describe approximately the same phenomena in the
data set. The other correlation coefficients are weak
and were therefore not considered a threat to validity.
All correlations in Table 2 have a p-value at or below
0.05 (95% significance level).

Table 2. Correlation matrix for candidate metrics.

Metric ASA
Warnings KSLOC Churn Static

inspections
Unit
tests

ASA
warnings -- 0.56 0.25 0.40 0.16

KSLOC -- -- 0.52 0.40 0.35
Churn -- -- -- 0.34 0.40
Static
inspections -- -- -- -- 0.38

Unit tests -- -- -- -- --

6.3. Predictive models

All discriminant analysis and logistic regression
models that were examined produced higher Type I
and Type II error rates than our CART models, so they
are not included in this paper. We present three
separate CART models to show that there is more than
one viable model for our data set. Multiple viable
models confirm that successful model building for this
data set does not require a serendipitous combination
of metrics that have good predictive power.

We observed that the attack-prone components are
distributed more to the left leaves of the CART trees
than the right leaves. Figure 1 shows the tree for
Model 3 and the metrics used in this model. In Table
3, we show the results of selecting all components
from the leftmost, that is, leftmost until reaching a leaf
that has a Type I error rate that surpasses the true
positive rate while keeping the total number of
components to analyze less than 20% of the total
system components.

In Model 3, the six leftmost leaves contain 75.6% of
the known attack-prone components and there is a
47.4% Type I error rate in these leftmost leaves, as
shown in Table 3. The Type I error rate is 9.1% of the
total system components. These leftmost leaves
constitute only 18.6% of the total system components.

Table 3. CART model results for three models.

Model

Percent attack-prone
components in the

top x% of the
ranking (recall)

Type I
error
rate

Type II
error
rate

% Type I
errors of

total system

Model 1 48.8% in top 7.9% 20.0% 51.2% 1.6%
Model 2 63.4% in top 13.6% 39.5% 36.6% 5.4%
Model 3 75.6% in top 18.6% 47.4% 24.4% 9.1%

The tree in Figure 1 is represented in table form in

Table 4, and shows the conditional probability
formulas for the leaves and the probabilities that a the
leaf is attack-prone. The letters a through k represent
values of the metrics that are used to determine where
a leaf is split. These numeric values are not disclosed,
for confidentiality reasons. For example, if the CART
analysis determines that a leaf is best split with the

Figure 1. The CART tree for Model 3. Non-shaded boxes are leaves of the resultant tree.

count of ‘a’ ASA buffer overflow warnings, then the
child leaf to the left contains all components with
greater than or equal to ‘a’ buffer overflows and the
components in the right child contain less than ‘a’
buffer overflow warnings. We observe that in Leaf 1
(see Figure 1), the split indicates that the left child of a
parent is associated with fewer ASA security warnings.
Therefore, components in this left leaf contain fewer
warnings of these types, and another unidentified
factor not already in our model is contributing to the
vulnerabilities. However in this case, the first three
splits of the tree are based on a higher portion of
warnings and therefore Leaf 1 contains components
with more warnings than the leaves in the right half of
the tree suggesting that warnings are still a factor for
the attack-prone components in Leaf 1.

The vulnerability distribution among components is
heavily skewed according to our models. This
behavior, referred to as Pareto’s Law, is also seen in
the software reliability realm [3, 26].

We provide a visualization of the efficacy of Model
3 (see Figure 2) which shows the skewed nature of the
vulnerability data. The large true negative region
shows that most of the system components are not
attack-prone components and are correctly classified as
not attack-prone by the model. Security fortification
efforts are not needed in the large true negative region,
therefore overall fortification costs are substantially
reduced if security engineers do not target this region.

The accuracy, precision, and recall values for the
three models are shown in Table 5. Model 3 performs
well because the first six leaves in the tree are attack-
prone rich.

TN
FP

TP
FN

Figure 2. Visualization of the system by Model 3.
TN (True Negatives - correctly classified as not attack-prone)
FN (False Negatives- misclassified as not attack-prone)
TP (True Positives - correctly classified as attack-prone)
FP (False Positives - misclassified as attack-prone)

Table 5. Accuracy, precision, recall for three models.

Model Accuracy Precision Recall
Model 1 92.0% 80.0% 48.8%
Model 2 90.0% 60.5% 63.4%
Model 3 88.0% 52.5% 75.6%

The predictive power of the metrics is measured by

the likelihood-ratio chi-square statistic, G2, for each
metric. A larger G2 value indicates a better statistical
fit, which indicates a better split of the leaves in the
CART analysis between attack-prone and not attack-
prone components. In Model 3, the total ASA
warnings metric contributed the most separation in the
overall model, as shown in Table 6. These results
show that the faults identifiable by ASA are predictive
of different types of security faults that surface during
testing and those reported in the field.

Table 6: Metric contributions to Model 3.

Metric G2

ASA warnings 76.1
Static inspections 20.2
Code churn 24.9

Despite the weak (but statistically significant)

correlations, the predictive power of these metrics is
useful. This observation is consistent with the idea that

Table 4. The CART analysis for Model 3.

Leaf
No. Conditional probability formula

Probability
not

attack-
prone

Probability
attack-
prone

1 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&
SecurityWarningType4Density<d 0.00 1.00

2 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults>=e&AllManualStaticInspections<f&SecurityWarningType2>=g 0.00 1.00

3 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults>=e&AllManualStaticInspections<f&SecurityWarningType2<g 0.53 0.46

4 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults>=e&AllManualStaticInspections>=f 1.00 0.00

5 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults<e&SecurityWarningType3<h 0.50 0.50

6 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults<e&SecurityWarningType3>=h&Tool2WarningCount>=i 0.62 0.37

7 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults<e&SecurityWarningType3>=h&Tool2WarningCount<i 0.98 0.01

8 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity<c 1.00 0.00
9 SecurityWarningType4>=a&Tool1CountWarnings<b 0.97 0.02

10 SecurityWarningType4<a&Churn>=j&Churn<k 0.50 0.50
11 SecurityWarningType4<a&Churn>=j&Churn>=k 0.93 0.06
12 SecurityWarningType4<a&Churn<j 1.00 0.00

“…a seemingly worthless split might lead to a very
good split below it” [14]. In our earlier study [12], we
found that weakly-correlated metrics have
discriminatory power equal to strongly-correlated non-
security failures. The weaker metrics have less
significant splits, although the p-values are below 0.05,
than the strongly-correlated metric. However, our
observations in [12], and in comparison of the results
presented here with those in [13], we find that weakly-
correlated metrics can lead to more splits than
strongly-correlated metrics, and that many splits can
yield good separation between attack-prone and not
attack-prone components.

6.4. Model validation

We evaluated the models using ROC curves and
five-fold cross-validation. The ROC curve for Model 3
has 94.4% of the area under the curve, indicating that
the model demonstrates a good fit to the Cisco data set
(see Figure 3). The weighted line is a representation of
the sorting efficiency of the estimated probabilities that
a component is attack-prone. The diagonal line serves
as a baseline, where the false positive rate is equal to
the true positive rate. The cross-validated R2 values
(see Table 7) indicate that not all variance in the data is
accounted for, but the overall R2 values are fairly
consistent with the cross-validated R2 values.

Table 7. ROC curve and R2 values for three models.

Model ROC R2 Cross-validated
R2

Model 3 94.4% 55.6% 50.4%
Model 1 94.0% 57.4% 53.7%
Model 2 88.0% 48.0% 42.8%

Se
ns

itiv
ity

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00

1-Specificity
Figure 3. The ROC curve for Model 3.

During the CART analysis, all splits of the tree were

performed with p-values at or below 0.05. The models
shown separate the attack-prone components from not
attack-prone components with significance, and
therefore we do not reject the alternative hypothesis.

Software engineers can normalize the split values in
Table 4 and apply them to the model for the next
release of the software system.

7. Model enrichment and cost models

We observed that the attack-prone components are
most likely to be in the leftmost leaves of the model
trees while the remaining attack-prone components are
scattered throughout the remaining leaves (that have
high Type I error rates). We suspected that since we
can identify the attack-prone rich leaves using a CART
analysis, then a “sequential CART analysis” that
targets the rightmost leaves might achieve a sharper
identification of the remaining attack-prone

components. We show the results of applying the
sequential CART analysis to Model 3 because it had
the highest Type I error rate of the three models as
shown in Table 3.

First, we removed all components in the data set
that were associated with the first six leaves of the tree
from the initial CART analysis. Next, we performed a
sequential CART analysis on the remaining
components and discovered that we increased our
overall true positive rate from 75.6% to 85.3%, an
increase of 9.7% (absolute). The Type I error rate in
the leftmost leaf in the sequential tree is 50.0%,
comprising 1.6% of the overall reduced subset of
components. If we had not performed the sequential
tree analysis, finding 9.7% additional attack-prone
components would have required security engineers to
inspect or test 48% of the system components in the
leaves of the sequential tree that had no reported
vulnerabilities, which constitute 39% of the overall
system. We call the model resulting from the
sequential tree analysis Model 3-Enriched. At this
time, it is uncertain that we can exactly quantify the
overall probabilities of the attack-prone components
for the aggregate of both models because the count of
components is different in each CART analysis.

We created a preliminary cost model, based on the
ROC curve, to determine which predictive model
yields the most cost-effective results. The model is
applied sequentially to the “rich” cluster of leaves
identified using the initial CART analysis; then to the
next rich cluster identified by the sequential CART
analysis; and finally to the “poor” (depleted) cluster of
leaves identified by the sequential CART analysis.
Equation 1 applies to the “rich” cost zone of the model,
equation 2 to the “enriched” zone, and equation 3 to
the “poor” zone.

Equation 1 gives the remediation cost (in labor
units) for all components in the leftmost cluster of
leaves (i.e., the TP plus FP region). The percentage of
attack-prone components developers wish to remediate
(or can remediate with a given budget) is the n value in
the equation, and n is also used in the limit inequalities
that identify which equation to use, based on the
percent remediation desired (or affordable).
Subscripts refer to the initial CART analysis (subscript
1) and the sequential CART analysis (subscript 2).
The cost model assumes that all attack-prone
components require an equal amount of effort to
remediate.

Equation 1:

()1 1 1

1 1

TP FP TPcost_rich n , where n
TP TP+FN

⎛ ⎞ ⎛

If the number of specific components that result in
the desired percentage of predicted attack-prone
components can be identified using the leftmost cluster
of leaves from the initial CART analysis, then
Equation 1 using the TP, FP, and FN values from the
initial CART analysis, is all that is needed. The second
bracketed term in Equation 2 gives the remediation
cost for the leftmost cluster of leaves in the
second/sequential CART analysis. If the percentage
required can be achieved using the leftmost leaves of
the sequential CART analysis (plus the leftmost leaves
of the initial CART), then Equation 2, that includes the
“enriched” zone, will yield a total cost (that includes
the cost_rich contribution).

Equation 2:

TP +FP TP1 1 1cost_enriched

TP TP +FN1 1 1

TP +FP TP2 2 1n * 100
TP TP +FN2 1 1

TP TP1 2 where n , and n
TP +FN TP +FN1 1 1 1

= +

 −

≤ + >

⎡⎛ ⎞⎛ ⎞⎤
⎜ ⎟⎜ ⎟⎢ ⎥⎣⎝ ⎠⎝ ⎠⎦

⎡⎛ ⎞⎛ ⎛ ⎞ ⎞⎤
⎜ ⎟⎜ ⎜ ⎟ ⎟⎢ ⎥⎣⎝ ⎠⎝ ⎝ ⎠ ⎠⎦

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

TP1

TP +FN1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

If necessary (when the percentage required is greater

than which can be obtained using the leftmost leaves of
the initial CART analysis plus the leftmost leaves from
the sequential tree), we then use the TP, FP, and FN
values from all but the first cluster of leaves of the
sequential CART analysis and add the resulting
calculated cost to that from the sum of the initial
CART analysis plus the cost from the first leaf of the
sequential CART analysis. This calculation is done
with Equation 3, which likewise includes the
contributions from Equations 1 and 2. The term A
denotes the total number of system components.

Equation 3:

1

⎞+
= ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

TP +FP TP1 1 1cost_poor
TP TP +FN1 1 1

TP +FP TP2 2 2
TP TP +FN2 1 1

A-TP -FP TP TP2 2 1 2 n * 100
FN TP +FN TP +FN2 1 1 1 1

= +

+

− +

⎡⎛ ⎞⎛ ⎞⎤
⎜ ⎟⎜ ⎟⎢ ⎥⎣⎝ ⎠⎝ ⎠⎦

⎡⎛ ⎞⎛ ⎞⎤
⎜ ⎟⎜ ⎟⎢ ⎥⎣⎝ ⎠⎝ ⎠⎦

⎡⎛ ⎞⎛ ⎡⎛ ⎞ ⎛ ⎞ ⎤
⎜ ⎟⎜ ⎜ ⎟ ⎜ ⎟

⎞⎤
⎟⎢ ⎢ ⎥ ⎥⎣⎝ ⎠⎝ ⎣⎝ ⎠ ⎝ ⎠ ⎦ ⎠⎦

TP TP1 2 where n 100, and n > +
TP +FN TP +FN1 1 1 1

≤
⎡⎛ ⎞ ⎛ ⎞⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥⎣⎝ ⎠ ⎝ ⎠⎦

We show the resulting cost curves, using the
sequential approach described above, for Models 1, 2,
3, and Model 3-Enriched in Figure 4. The y-axis
represents the total (cumulative) cost in terms of labor
units to fortify a given percentage of attack-prone
components. (The y axis values are normalized to a
maximum of 100 to protect the confidentiality of the
underlying system data.) The cost curve for Model 1
shows that engineers would incur a lower cost to find
49% of the attack-prone components than by using any
of the other models, but Model 1 becomes more
expensive than Model 3 as the percentage exceeds
49%. Further work is needed to determine if our initial
cost model performs as well as other similar cost
models (e.g., [17]).

Figure 4. Cost curves for four CART models.

Table 8 shows the number of labor units needed to

remediate a given percentage of attack-prone
components, in a system of 100 components. For
example, using Model 3-Enriched to repair 80% of the
attack-prone components would require 20.3 resource
units. If a remediation budget can accommodate 52.0
resource units for this purpose, one can use the same
model, Model 3-Enriched, to identify which
components to remediate in order to ensure repairing
90% of the attack-prone components in the system.

Table 8. Remediation levels for four CART models.

 Remediation level
Model 20% 40% 60% 80% 90% 100%

1 3.2 6.5 28.1 64.0 81.6 100.0
2 4.5 9.1 16.3 58.2 78.6 100.0
3 5.0 9.9 14.9 32.3 65.8 100.0

3-Enriched 5.0 9.9 14.9 20.3 52.0 100.0

8. Summary

We created and evaluated three predictive models

based on data from a Cisco software system. One
model identifies 75.6% of the attack-prone components

in 18.6% percent of the system’s components. The
models substantially reduce the search space for
security efforts, which enables security engineers to
prioritize their efforts on the small subset of attack-
prone components. We have applied cost models and
sequential CART analyses to further reduce the costs
of remediating components.

9. Acknowledgment

This work is supported by the National Science
Foundation under CAREER Grant No. 0346903. Any
opinions, findings and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

10. References

[1]O. H. Alhazmi, Y. K. Malaiya, and I. Ray, "Measuring,
analyzing and predicting vulnerabilities in software systems,"
Computers & Security, vol. 26, no. 3, pp. 219-228, May
2006.
[2]B. Boehm, Software Engineering Economics, New Jersey,
Prentice-Hall, 1981.
[3]B. Boehm and V. Basili, "Software Defect Reduction Top
10 List," IEEE Computer, vol. 34, no. 1, pp. 135-137,
January, 2001.
[4]P. Chandra, B. Chess, and J. Steven, "Putting the Tools to
Work: How to Succeed with Source Code Analysis," IEEE
Security & Privacy, vol. 4, no. 3, pp. 80-83, May/June, 2006.
[5]B. Chess and J. West, Secure Programming with Static
Analysis, Boston, MA, Addison Wesley, 2007.
[6]J. L. Devore, Probability and Statistics for Engineering
and the Sciences, Belmont, CA, Thomson, 2008.
[7]E. Dijkstra, Structured Programming, Brussels, Belgium,
1970.
[8]R. Freund, R. Littell, and L. Creighton, Regression Using
JMP, Cary, NC, SAS Institute, Inc., 2003.
[9]M. Gegick, "Failure-prone Components are also Attack-
prone Components," OOPSLA - ACM student research
competition, Nashville, Tennessee, pp. 917-918, October
2008.
[10]M. Gegick and L. Williams, "STUDENT PAPER:
Ranking Attack-prone Components with a Predictive
Model," ISSRE, Redmond, WA, pp. 315-316, November
2008.
[11]M. Gegick, L. Williams, J. Osborne, and M. Vouk,
"Prioritizing Software Security Fortification through Code-
Level Security Metrics," Workshop on Quality of Protection,
Alexandria, VA, pp. 31-37, October 2008.
[12]M. Gegick, L. Williams, and M. Vouk, "Predictive
Models for Identifying Software Components Prone to
Failure During Security Attacks," Build Security In
(https://buildsecurityin.us-cert.gov/daisy/bsi/home.html)
2008.
[13]M. Gegick, P. Rotella, and L. Williams, "Toward Non-
security Failures as a Predictor of Security Faults and
Failures," ESSoS, Leuven, Belgium, February 4-6 2009.

[14]T. Hastie, R. Tibshirani, and J. H. Friedman, The
Elements of Statistical Learning, New York, Springer, 2001.
[15]ISO, "ISO/IEC DIS 14598-1 Information Technology -
Software Product Evaluation - Part 1: General Overview,"
October 28 1996.
[16]ISO/IEC 24765, "Software and Systems Engineering
Vocabulary," 2006.
[17]Y. Jiang, B. Cukic, and T. Menzies, "Cost Curve
Evaluation of Fault Prediction Models," ISSRE, Redmond,
WA, 11-14 November 2008.
[18]T. M. Khoshgoftaar, E. B. Allen, and J. Deng, "Using
Regression Trees to Classify Fault-Prone Software Modules,"
IEEE Transactions on Reliability, vol. 51, no. 4, pp. 455-562,
December 2002.
[19]R. Littell, W. Stroup, and R. Freund, SAS for Linear
Models, Fourth Edition, Cary, NC., SAS Institute, Inc., 2002.
[20]G. McGraw, Software Security: Building Security In,
Boston, Addison-Wesley, 2006.
[21]MITRE, "Common Weakness Enumeration,"
http://cwe.mitre.org/, 2006.
[22]H. Motulsky, Intuitive Biostatistics, New York, Oxford
University Press, 1995.
[23]N. Nagappan and T. Ball, "Static Analysis Tools as Early
Indicators of Pre-release Defect Density," ICSE, St. Louis,
MO, pp. 580-586, 2005.
[24]N. Nagappan and T. Ball, "Use of Relative Code Churn
Measures to Predict Defect Density," ICSE, St. Louis, MO,
pp. 284-292, 15-21 May 2005.
[25]S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
"Predicting Vulnerable Software Components," CCS,
Alexandria, VA, pp. 529-540, 29 October-2 November 2007.
[26]T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where the
bugs are," ISSTA, Boston, Massachusetts, pp. 86-96, 2004.
[27]A. Ozment and S. Schechter, "Milk or wine: does
software security improve with age?," 15th Conference on
USENIX Security Symposium, pp. 93-104, July 2006.
[28]SAS Institute Inc., "The Partition Platform," SAS
Institute, Inc., Cary, NC, 2003.
[29]M. Vouk and K. C. Tai, "Some Issues in Multi-Phase
Software Reliability Modeling," CASCON, Toronto, pp. 512-
523, October 1993.
[30]I. Witten and E. Frank, Data Mining, Second ed. San
Francisco, Elsevier, 2005.
[31]M. Young and R. N. Taylor, "Rethinking the Taxonomy
of Fault Detection Techniques," ICSE, pp. 53-62, 1989.
[32]J. Zheng, L. Williams, W. Snipes, N. Nagappan, J.
Hudepohl, and M. Vouk, "On the Value of Static Analysis
Tools for Fault Detection," IEEE Transactions on Software
Engineering, vol. 32, no. 4, pp. 240-253, April 2006.

	1. Introduction
	2. Background and related work
	2.1. Vulnerability prediction models
	2.2. Automated static analysis (ASA)
	2.3. Statistical overview

	3. Cisco empirical case study
	3.1. Candidate metrics
	3.2. Security vulnerabilities

	4. Research methodology
	4.1. Correlations to vulnerabilities
	4.2. Discriminatory techniques
	4.3. Model validation
	4.4. Hypotheses
	4.5. Model efficacy

	5. Threats to validity
	6. Results
	6.1. Correlation to vulnerability counts
	6.2. Tests for collinearity
	6.3. Predictive models
	6.4. Model validation

	7. Model enrichment and cost models
	8. Summary
	10. References

