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Abstract 

 
Limited resources preclude software engineers from 
finding and fixing all vulnerabilities in a software 
system.  This limitation necessitates security risk 
management where security efforts are prioritized to 
the highest risk vulnerabilities that cause the most 
damage to the end user.  We created a predictive 
model that identifies the software components that 
pose the highest security risk in order to prioritize 
security fortification efforts.  The input variables to our 
model are available early in the software life cycle and 
include security-related static analysis tool warnings, 
code churn and size, and faults identified by manual 
inspections.  These metrics are validated against 
vulnerabilities reported by testing and those found in 
the field.  We evaluated our model on a large Cisco 
software system and found that 75.6% of the system's 
vulnerable components are in the top 18.6% of the 
components predicted to be vulnerable.  The model’s 
false positive rate is 47.4% of this top 18.6% or 9.1% 
of the total system components.  We quantified the 
goodness of fit of our model to the Cisco data set using 
a receiver operating characteristic curve that shows 
94.4% of the area is under the curve. 
 
 
1. Introduction 
 

Security vulnerabilities can occur because of 
subtleties and false assumptions in the design or code 
of a software system [20].  Security engineers need 
more time to uncover and fix these problems than their 
release schedule permits, and so vulnerabilities are 
inevitably released with the software.  Compounding 
this schedule problem is that there are usually far fewer 
security engineers assigned to projects than general 
reliability engineers, but are responsible for testing the 
security posture of the entire system.  Also, attackers 
have the advantage of time, in that they can spend 
months or years building an exploit for just one area of 
the software system.  Collectively, these conditions 

necessitate security risk management where security 
efforts are prioritized to the highest security risk 
software components1 to minimize damage to the end 
user. 

In addition to prioritizing which components to fix, 
it is also important to fix the components early.  The 
costs to fix faults in the testing phase can be nine times 
cheaper than fixing during operation [2].  An early 
knowledge of which components should receive the 
most security effort can also reduce the number of end-
user-installed security patches.   

The objective of this research is to create and 
evaluate models that predict which components are 
most susceptible to attack.  The results of the models 
are available early (i.e. before system-level testing 
begins) in the software life cycle (SLC) allowing 
recovery time for inspections, re-design, and test 
efforts for the most vulnerable software components.  

The input variables to our model include security-
related static analysis tool warnings, code size and 
churn, and all faults identified by manual inspections.  
These metrics are validated, using classification and 
regression trees (CART), against vulnerabilities 
reported by testing failures and those found in the field.  
We evaluated our model on a large Cisco software 
system to determine the model’s efficacy.  We also 
developed a cost model for our predictive model that 
provides estimates of costs to remediate vulnerable 
components.  During our empirical case study, we 
developed a sequential tree method to refine our 
models.   We describe our experience and findings on 
how to lower false negative rates associated with our 
predictive models.   

In Section 2 we provide background and related 
work; in Section 3 we explain our empirical case study; 
in Section 4 we present our research methodology; in 
Section 5 we describe the threats to the validity of our 
approach; in Section 6 we discuss results; in Section 7 
we outline our sequential tree approach; and we 
summarize in Section 8. 
                                                           
1 A component is one of the parts that make up a software 

system [16]. 



 
2. Background and related work 
 
2.1. Vulnerability prediction models 

 
Neuhaus et al. [25] have investigated predictive 

models that identify vulnerability-prone components. 
They created a software tool, Vulture, that mines a bug 
database for data including libraries and APIs to 
identify vulnerable components. They performed an 
analysis with Vulture on Bugzilla, the bug database for 
the Mozilla browser, using imports and function calls 
as predictors. They identified 45% of all of the 
vulnerable components in Mozilla with a 30% false 
positive rate. 

In an earlier case study involving a large 
telecommunications system [10], we used a CART 
model to assign a probability of attack to each file. 
Upon ranking these probabilities in descending order, 
we found that 72% of the attack-prone files are in the 
top 10% of the ranked files and 90% are in the top 20% 
of the files. The input variables for that study consisted 
of the count of Klocwork2 static analysis tool 
warnings, a measure of file coupling (a complexity 
metric), and the count of added and changed source 
lines of code.  In our other earlier work [11], we used 
CART to predict which components were attack-prone 
using warnings from the FlexeLint3 static analysis tool, 
and code churn.  The model identified all of the attack-
prone components, but with an 8% false positive rate.  
Ozment and Schechter [27] did not find a significant 
correlation between code churn and vulnerability 
count, but their correlations were performed at the 
version level of OpenBSD, while our study was 
performed at the file level.  The study in this paper is 
based on a different software technology and from a 
different vendor than in our earlier studies. 
 
2.2. Automated static analysis (ASA) 

 
We use static analysis tool output as one of our 

candidate metrics for the case study in this paper.  A 
static analysis tool analyzes the content of a software 
system to detect faults without executing the code [4].  
We use the term “automated static analysis” (ASA) to 
refer to the use of static analysis tools.  Examples of 
the types of problems identified by ASA tools include 
the detection of calls to potentially insecure library 
functions, bounds-checking errors and scalar type 
confusion.  ASA tools perform analyses such as 
semantic, structural, configuration, control- and data-
flow analyses.  The output of an ASA tool is a 

                                                           
2 http://www.klocwork.com 
3 http://www.gimpel.com 

warning.  The warnings describe a fault in the software 
that could lead to a failure.  A true positive is a 
warning that describes a fault that can cause a failure, 
and a false positive is a warning that misclassifies code 
as faulty.  Increasingly, ASA tools are used to identify 
security vulnerabilities [5].   

Recently, models classified fault-prone and not fault-
prone components using ASA warnings as input 
variables for discriminant analysis [23].  Nagappan et 
al. [23] demonstrated that they could distinguish 
82.91% of their fault-prone components.  Their results 
indicate that a separation can be made between fault-
prone and not fault-prone components to confidently 
prioritize the allocation of testing resources and 
inspections.  Zheng et al. [32] correctly classified 
87.5% of the modules in their study when the number 
of ASA faults and number of test failures are 
considered.  Their work is based on the idea that one 
technique (e.g., ASA) alone is insufficient for finding 
all faults in software [31], but that coding problems 
reside in the same locations as bigger problems 
identified by testing.  Our research tests whether or not 
vulnerabilities identified by ASA are a bellwether of 
other types (e.g., design-level) of vulnerabilities. 
 
2.3. Statistical overview 

 
The input variables, data set, distribution (e.g., 

Poisson), and the statistical technique (e.g. multiple 
linear regression) constitute a statistical model [19]. 
 
2.3.1. Correlations and collinearity 

 
A correlation coefficient, r, measures how strongly 

two variables are related [6].  A correlation coefficient 
has a value between -1 and 1, inclusive.  A weak 
correlation has a value between 0 and 0.5 and a strong 
correlation is greater than or equal to 0.8, otherwise the 
correlation is moderate [6].  Collinearity is defined as a 
high degree of correlation between the independent 
variables of a statistical model [8].  Collinearity occurs 
when an excessive number of input variables are used 
to determine an outcome, and the input variables 
measure the same outcome [8].    

 
2.3.2. Cross-validation and ROC curves 

 
To validate our models, we perform five-fold cross-

validation.  Five has been shown to be a good value for 
performing cross-validation [14].  The cross-validation 
technique validates the R2 (the fraction of variance 
explained by the model) by testing the model on data 
the model has not used before to determine if the 
model is still effective [30]. The five-fold cross-
validation divides (“folds”) the total system 
components into five groups consisting of 



approximately equal numbers of randomly chosen 
components.  One group is used as the test set and the 
training set consists of the remaining four groups of 
components. The model is trained on the training set, 
and the training analysis is compared to the outcomes 
of the test set to validate how well the model performs 
on data that has not been “seen” before.  Each of the 
five groups of components takes one turn as the test 
set, so five analyses are required.  After the five 
analyses are performed, the average error is calculated 
over the five trials. 

We will use receiver operating characteristic (ROC) 
curves to quantify the goodness of fit of the model to 
the data set.  The y-axis of the ROC curve is the true 
positive rate of the predictive model and the x-axis is 
the false positive rate. 
 
2.3.3. Classification and regression trees (CART) 

 
CART is a statistical technique that recursively 

partitions data according to X and Y values. The result 
of partitioning is a tree of groups where the X values of 
each group best predicts a Y value. The leaves of the 
tree are determined by the largest likelihood-ratio chi-
square statistic. The threshold, or split, between leaves 
is chosen by maximizing the difference in the 
responses between any two leaves [28]. For the case 
study reported in this paper, the X values are the 
candidate metrics and the Y value is a binary value 
describing a component as attack-prone (value of one) 
or not attack-prone (value of zero).  The CART 
technique has been shown to be useful for 
distinguishing failure-prone from not failure-prone 
components in the reliability realm [29]. 

 

3. Cisco empirical case study 
 

We performed an empirical case study on a Cisco 
software system that was implemented in the C 
programming language.  The system is divided into 
well-defined components upon which our analyses are 
based.  At Cisco, a component is a unit of a software 
system that typically consists of ten or more files.  The 
count of components is large enough to perform 
rigorous statistical analyses.  We do not provide details 
of this system due to the proprietary nature of the data.  
Our goal is to determine if early (pre-system-level 
testing) metrics predict which components will have 
security failures found late (during system-level testing 
and in the field) in the SLC.   

 
3.1. Candidate metrics  
 

We strategically chose five metrics for our 
predictive models so our analyses can be easily 
repeated and adopted by software engineers.  Good 

metrics are those where measurements of the software 
are objective, reproducible, and empirical [15].  For 
example, a software engineer can use a tool to 
objectively measure source lines of code (SLOC) in a 
file in order to provide the count of SLOC as a metric 
for an analysis.  The measurements that provide the 
metrics should also be performed easily and 
economically [15].  Additionally, we required the 
metrics to be accessible early in the SLC to afford 
software engineers a means to prioritize security efforts 
during development.  We now discuss our candidate 
metrics that will serve as the input variables for our 
predictive model. 

The first metric is the count and density of warnings 
produced by two ASA tools that will be called Tool 1 
and Tool 2.  The names of the tools are not revealed, 
but these tools are widely used tools in the industry.  
Cisco requires that ASA be performed on all 
components, and validating this metric as a 
vulnerability predictor can potentially aid security 
efforts for all Cisco software.   We focus on the 
security-related ASA warnings from Tool 1 to 
determine if security warnings alone are better 
predictors of security vulnerabilities than non-security 
warnings.  Examples of Tool 1’s security warnings are 
buffer overflows, poor encryption, permissions 
problems, and race conditions.  We also include null 
dereferences and memory leaks, which have been 
documented as causing security problems [21].   

We do not restrict our metrics to the security realm, 
however.  Our prior work [9, 12, 13] indicates that 
non-security failures are positively correlated with 
security failures, and we therefore do not exclude non-
security warnings as candidate metrics.  We include 
non-security warnings from Tool 2, for example, that 
include suspicious use of semicolons and ignoring 
return values of functions. 

The ASA warnings in our case study unavoidably 
include both true positives and false positives.  If the 
false positives from the ASA have predictive power in 
our models, then a time-intensive audit for removing 
false positives is not required to predict vulnerabilities.  
By including false positives, we abide by our candidate 
metric selection criterion that requires that 
measurements be easily performed. 

The second candidate metric for our predictive 
models is code churn, which is calculated as the sum of 
added and changed SLOC.  In addition to the raw 
count of code churn, we normalized the churn by 
KLOC to negate the effect of component size.  We 
suspect that when code is changed in a component, 
some assumptions about that code or code that is 
dependent on the changed code may be violated.  If a 
software engineer modifies code that they are not 
familiar either because the code is not theirs or they 



own the code, but they have not interacted with the 
code for a length of time, then they may not be familiar 
with the underlying assumptions of how that code 
operates.  A vulnerability can be injected into the code 
when assumptions are made during the code change 
that are not consistent with the underlying code’s 
assumptions.  McGraw [20] uses ambiguity analyses to 
identify inconsistent assumptions to root out 
vulnerabilities [20].  Additionally, Nagappan et al. [24] 
have found that code churn is a predictor of fault-prone 
components. 

Our third metric is the count of SLOC, which is 
measured in thousands of SLOC (KSLOC), and can be 
obtained when calculating code churn.  We will test if 
larger software components are more vulnerable. 

The fourth and fifth candidate metrics are the count 
of faults reported by pre-testing manual static 
inspections and failures identified by unit testing.  The 
static inspections include faults identified during 
design reviews and code reviews.  These metrics may 
indicate that faults found early in the SLC are an 
indicator of faults found later in the SLC.  The faults 
identified by static inspections and unit tests are easily 
obtainable via queries to the Cisco fault database and 
are thus included as metrics for our case study. 

We suspect that as the values of these five metrics 
grow in a component then so will the count of 
vulnerabilities. 

 
3.2. Security vulnerabilities 

 
The Cisco Security Evaluation Office (SEO) 

provided us with the security failures for our case 
study. The SEO tracks vulnerability trends at Cisco 
and is thus an optimal source for security data.  
Software engineers identified these security failures 
during the testing phase, which includes security 
testing, stress testing, system testing, and 
feature/function-level testing.  The SEO also provided 
security failures identified during internal usage and 
those reported by customers and third-party 
researchers.  These security failures comprise the 
dependent variable for our predictive models, and will 
be used to validate if the afore mentioned candidate 
metrics are good predictors of these security failures.  
The count and types of security failure reports4 are not 
disclosed for confidentiality reasons. 

In our setting, an attack-prone component is a 
component that contains at least one security failure 
that was identified by testers, customers, or third-party 
researchers. We use the term “attack-prone” because 
the security faults were identified during system 

                                                           
                                                          4 The security data have been slightly and consistently 

modified for confidentiality reasons. 

execution.  In the context of testing, if a tester 
discovers a buffer overflow during runtime, we say 
they have attacked the system.  Although the tester 
may not have exploited the buffer overflow to cause a 
denial-of-service or to inject code that escalates their 
privileges, the failure is a proof of concept that the 
system can be attacked.  We use the threshold of one 
security failure to deem a component attack-prone 
because there is little variability in the security failure 
count per component and only one attack is needed to 
cause substantial business loss.  A component with no 
reported security failures will be called a “not attack-
prone” component. 
 

4. Research methodology 
 

Our predictive models5 use the candidate metrics to 
distinguish between attack-prone and not attack-prone 
components.  During model construction, we maximize 
the predictive model’s accuracy, but with a small 
number of included metrics.  A larger number of 
metrics increases the model’s complexity and reduces 
the likelihood that Cisco software engineers will adopt 
the model because more time would be required to 
gather the metrics, build the model, and incorporate its 
use in the standard workflow. 

The metrics in our predictive models can also be 
called independent variables or input variables.  The 
dependent variable is the count of vulnerabilities in 
each component, and this count is used for correlation 
analyses.  In the context of classifying components, 
attack-prone and not attack-prone are the two response 
levels.  These response levels do not indicate the type 
or count of vulnerabilities; they only represent if a 
component is associated with at least one reported 
vulnerability or not.  The models may be useful for 
predicting which components contain vulnerabilities, 
where the nature of the vulnerability ranges from 
abstract design vulnerabilities to relatively simple 
coding vulnerabilities, such as simple buffer overflows.   

 
4.1. Correlations to vulnerabilities 
 

We will first test if the candidate metrics are 
correlated with the count of vulnerabilities identified 
during testing, internal use, and by customers.  When 
the metrics are significantly correlated with 
vulnerabilities, they are good candidates for the 
predictive models.  During candidate metric selection, 
we also test the metrics for collinearity.  If the metrics 
are correlated with each other, we have to simplify the 
model or perform additional analyses to reduce the 
collinearity. 

 
5 All statistical analyses performed with SAS JMP 7.0.1. 



4.2. Discriminatory techniques 
 
We use the following three statistical discriminatory 

techniques in our models: Discriminant analysis, 
logistic regression, and CART.  Each technique 
classifies observations into distinct groups.  These 
techniques have been shown to be successful in 
classifying fault-prone and not fault-prone modules in 
the reliability realm [18].  In our setting, we use a 
dichotomized scheme where components are labeled 
attack-prone or not attack-prone according to the 
approach outlined in Section 3.2. 

The execution of these three statistical techniques 
examines different combinations, counts, and orders of 
metrics entered into the model.  A good combination of 
metrics in the model both separates attack-prone and 
not attack-prone components and maximizes the R2 
value of each model.  R2 is a measure of the variance in 
the data that is explained by the model [22]. 

In the CART technique, each leaf of the tree contains 
a subset of the system components.  A single leaf in the 
CART tree can then be split further into two leaves by 
including a metric to increase the probability that one 
leaf will likely contain attack-prone components while 
the other leaf will not likely contain attack-prone 
components. During our CART analysis, each leaf is 
split into two leaves if and only if the p-value is at or 
below 0.05.  If the p-value is above 0.05, then we are 
less confident that the groups of components in the two 
leaves are sufficiently different to warrant the use of 
separate leaves. 
 
4.3. Model validation 

 
A ROC curve that has less than 50% of the area 

under the curve will be rejected, since the model will 
not have demonstrated a good fit to the Cisco data set.  
Additionally, the models are cross-validated to 
determine if the R2 of the overall model is consistent 
with the R2 of the cross-validated model.  If the R2 
values are consistent, then the variation explained by 
the predictive model is an accurate description of the 
model performance.  A model with a higher R2 
explains more variance than a model with a low R2. 
 
4.4. Hypotheses 
 

The null (H0) and alternative (HA) hypotheses are 
stated here.  If the predictive model can distinguish 
attack-prone from not attack-prone components with 
statistical significance, then we do not reject HA. 
 
H0: The candidate metrics have no predictive power in 
a statistical model that indicates which components 
contain vulnerabilities identified during testing, 
internal use, and customer use. 

HA:  The candidate metrics do have predictive power 
in a statistical model that indicates which components 
contain vulnerabilities identified during testing, 
internal use, and customer use. 
 
4.5. Model efficacy 

 
The models’ efficacies are reported in terms of Type 

I (false positive) and Type II (false negative) error 
rates.  Also, we will provide precision, accuracy, and 
recall values.  The techniques that yield the lowest 
Type I and Type II error rates are then selected for the 
predictive models.  These terms are now defined.   

 
True positive (TP) – a component correctly classified 
as attack-prone by the model. 
False positive (FP) – a component misclassified as 
attack-prone by the model. 
False negative (FN) – a component misclassified as 
not attack-prone by the model. 
True negative (TN) – a component correctly classified 
as not attack-prone by the model. 

 
We give measures of accuracy to indicate the overall 

success of the model; measure of precision to indicate 
how many not attack-prone components are false 
positives; and measures of recall to indicate how well 
the model correctly classifies attack-prone 
components. 
 
Accuracy - (TP + TN)/(TP + FP + TN + FN)  
Precision - (TP)/(TP+FP)  
Recall - (TP)/(TP+FN) 

 

5. Threats to validity 
 

Software faults identified by testing failures do not 
represent the entire set of faults in the software system 
[7], and we cannot be certain that all components have 
been inspected and tested equally.  Additionally, the 
customer-reported failures do not completely identify 
all security faults latent in the system.  Also, 
developers and testers may not have recognized all 
faults that are security-related and thus did not submit 
them to the SEO.  As a result of these uncertainties, our 
analyses are necessarily based on incomplete data.  
Adding to this, security issues are rare events in 
software systems [1].  The scarcity of data makes 
statistical analyses difficult.  For example, the 
Spearman rank correlation may not perform optimally 
in zero-inflated data that represent components with no 
reported security problems.  Lastly, the models 
presented in this paper are representative of one 
industrial software system, and will not necessarily 
yield the same results on different software systems.                                   



 
6. Results 
 

We now report the results of our method.  All 
analyses are on a per component basis. 
 
6.1. Correlation to vulnerability counts 
 

The results of the correlation analysis show that the 
sum of faults from manual design reviews and code 
reviews has the highest correlation (0.27) to the 
vulnerability count, as shown in Table 1.  The 
correlation is weak, but is significant (p<.0001) and 
therefore is not excluded from our predictive models. 

The correlation between all ASA warnings from 
both tools combined and vulnerability count is 0.24.  
We do not rule out that a general reliability ASA 
warning can cause a vulnerability, but we suspect that 
general reliability warnings, such as “suspicious use of 
semicolons,” are less likely to be vulnerabilities in 
software than other ASA warning types.  The results 
indicate that general coding problems detectable by 
ASA have a nearly identical correlation to vulnerability 
counts as ASA security warning type 1, as shown in 
Table 1.  The specific ASA security warning types are 
not revealed here, for confidentiality reasons.  The 
vulnerabilities (i.e., the dependent variable) found by 
testing, internal use, and the customers are correlated 
to the population of all ASA warnings, and this 
indicates that where there are known coding problems 
there may be more complex security problems, too. 

 
Table 1. Correlations to vulnerability counts.  

Metric Spearman correlation 
coefficient (p-value) 

Static inspections 0.27 (p<.0001) 
All ASA warnings                0.24 (p<0001) 
ASA security warning 1 0.23 (p<.0001) 
ASA security warning 2 0.21 (p=.0015) 
ASA security warning 3 0.18 (p=.0001) 
KSLOC              0.18 (p=.002) 
Churn 0.15 (p<.0001) 
Unit test failure count Not significant 

 
6.2. Tests for collinearity 
 

We tested the collinearity between the different 
candidate metrics.  The largest correlation coefficient 
is 0.56 and exists between KSLOC and all ASA 
warnings, as shown in Table 2.  These candidate 
metrics were not used together in the same predictive 
model because the correlation indicates that they 
describe approximately the same phenomena in the 
data set.  The other correlation coefficients are weak 
and were therefore not considered a threat to validity.  
All correlations in Table 2 have a p-value at or below 
0.05 (95% significance level). 

 
Table 2.  Correlation matrix for candidate metrics.   

Metric ASA 
Warnings KSLOC Churn Static 

inspections
Unit 
tests 

ASA  
warnings -- 0.56 0.25 0.40 0.16

KSLOC -- -- 0.52 0.40 0.35
Churn -- -- -- 0.34 0.40
Static 
inspections -- -- -- -- 0.38

Unit tests -- -- -- -- -- 
 

6.3. Predictive models 
 

All discriminant analysis and logistic regression 
models that were examined produced higher Type I 
and Type II error rates than our CART models, so they 
are not included in this paper.  We present three 
separate CART models to show that there is more than 
one viable model for our data set.  Multiple viable 
models confirm that successful model building for this 
data set does not require a serendipitous combination 
of metrics that have good predictive power. 

We observed that the attack-prone components are 
distributed more to the left leaves of the CART trees 
than the right leaves.  Figure 1 shows the tree for 
Model 3 and the metrics used in this model.  In Table 
3, we show the results of selecting all components 
from the leftmost, that is, leftmost until reaching a leaf 
that has a Type I error rate that surpasses the true 
positive rate while keeping the total number of 
components to analyze less than 20% of the total 
system components.   

In Model 3, the six leftmost leaves contain 75.6% of 
the known attack-prone components and there is a 
47.4% Type I error rate in these leftmost leaves, as 
shown in Table 3.  The Type I error rate is 9.1% of the 
total system components.  These leftmost leaves 
constitute only 18.6% of the total system components. 

 
Table 3. CART model results for three models. 

Model 

Percent attack-prone 
components in the 

top x% of the 
ranking (recall) 

Type I 
error 
rate 

Type II 
error 
rate 

% Type I 
errors of 

total system 

Model 1  48.8% in top 7.9% 20.0% 51.2% 1.6% 
Model 2 63.4% in top 13.6% 39.5% 36.6% 5.4% 
Model 3 75.6% in top 18.6% 47.4% 24.4% 9.1% 

 
The tree in Figure 1 is represented in table form in 

Table 4, and shows the conditional probability 
formulas for the leaves and the probabilities that a the 
leaf is attack-prone.  The letters a through k represent 
values of the metrics that are used to determine where 
a leaf is split.  These numeric values are not disclosed, 
for confidentiality reasons.  For example, if the CART 
analysis determines that a leaf is best split with the



 
Figure 1. The CART tree for Model 3.  Non-shaded boxes are leaves of the resultant tree.

 
count of ‘a’ ASA buffer overflow warnings, then the 
child leaf to the left contains all components with 
greater than or equal to ‘a’ buffer overflows and the 
components in the right child contain less than ‘a’ 
buffer overflow warnings.  We observe that in Leaf 1 
(see Figure 1), the split indicates that the left child of a 
parent is associated with fewer ASA security warnings.  
Therefore, components in this left leaf contain fewer 
warnings of these types, and another unidentified 
factor not already in our model is contributing to the 
vulnerabilities.  However in this case, the first three 
splits of the tree are based on a higher portion of 
warnings and therefore Leaf 1 contains components 
with more warnings than the leaves in the right half of 
the tree suggesting that warnings are still a factor for 
the attack-prone components in Leaf 1. 

The vulnerability distribution among components is 
heavily skewed according to our models.  This 
behavior, referred to as Pareto’s Law, is also seen in 
the software reliability realm [3, 26]. 

We provide a visualization of the efficacy of Model 
3 (see Figure 2) which shows the skewed nature of the 
vulnerability data.  The large true negative region 
shows that most of the system components are not 
attack-prone components and are correctly classified as 
not attack-prone by the model.  Security fortification 
efforts are not needed in the large true negative region, 
therefore overall fortification costs are substantially 
reduced if security engineers do not target this region. 

The accuracy, precision, and recall values for the 
three models are shown in Table 5.  Model 3 performs 
well because the first six leaves in the tree are attack-
prone rich. 

 
 
 
 

 
 
 

TN
FP

TP
FN

 
Figure 2.  Visualization of the system by Model 3. 
TN (True Negatives - correctly classified as not attack-prone) 
FN (False Negatives- misclassified as not attack-prone) 
TP (True Positives - correctly classified as attack-prone) 
FP (False Positives - misclassified as attack-prone) 

 
Table 5. Accuracy, precision, recall for three models. 

Model Accuracy Precision Recall 
Model 1 92.0% 80.0% 48.8% 
Model 2 90.0% 60.5% 63.4% 
Model 3 88.0% 52.5% 75.6% 

 
The predictive power of the metrics is measured by 

the likelihood-ratio chi-square statistic, G2, for each 
metric. A larger G2 value indicates a better statistical 
fit, which indicates a better split of the leaves in the 
CART analysis between attack-prone and not attack-
prone components.  In Model 3, the total ASA 
warnings metric contributed the most separation in the 
overall model, as shown in Table 6.  These results 
show that the faults identifiable by ASA are predictive 
of different types of security faults that surface during 
testing and those reported in the field. 

 
Table 6: Metric contributions to Model 3. 

Metric G2

ASA warnings 76.1 
Static inspections 20.2 
Code churn 24.9 

 
Despite the weak (but statistically significant) 

correlations, the predictive power of these metrics is 
useful.  This observation is consistent with the idea that 



Table 4. The CART analysis for Model 3. 

Leaf  
No. Conditional probability formula 

Probability 
not 

attack-
prone 

Probability 
attack-
prone 

1 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c& 
SecurityWarningType4Density<d 0.00 1.00

2 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults>=e&AllManualStaticInspections<f&SecurityWarningType2>=g 0.00 1.00

3 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults>=e&AllManualStaticInspections<f&SecurityWarningType2<g 0.53 0.46

4 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults>=e&AllManualStaticInspections>=f 1.00 0.00

5 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults<e&SecurityWarningType3<h 0.50 0.50

6 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults<e&SecurityWarningType3>=h&Tool2WarningCount>=i 0.62 0.37

7 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity>=c&SecurityWarningT
ype4Density>=d&DesignAnalysisFaults<e&SecurityWarningType3>=h&Tool2WarningCount<i 0.98 0.01

8 SecurityWarningType4>=a&Tool1CountWarnings>=b&Tool2WarningDensity<c 1.00 0.00
9 SecurityWarningType4>=a&Tool1CountWarnings<b 0.97 0.02

10 SecurityWarningType4<a&Churn>=j&Churn<k 0.50 0.50
11 SecurityWarningType4<a&Churn>=j&Churn>=k 0.93 0.06
12 SecurityWarningType4<a&Churn<j 1.00 0.00

  
“…a seemingly worthless split might lead to a very 
good split below it” [14].  In our earlier study [12], we 
found that weakly-correlated metrics have 
discriminatory power equal to strongly-correlated non-
security failures.  The weaker metrics have less 
significant splits, although the p-values are below 0.05, 
than the strongly-correlated metric.  However, our 
observations in [12], and in comparison of the results 
presented here with those in [13], we find that weakly-
correlated metrics can lead to more splits than 
strongly-correlated metrics, and that many splits can 
yield good separation between attack-prone and not 
attack-prone components. 

 
6.4. Model validation 
 

We evaluated the models using ROC curves and 
five-fold cross-validation.  The ROC curve for Model 3 
has 94.4% of the area under the curve, indicating that 
the model demonstrates a good fit to the Cisco data set 
(see Figure 3).  The weighted line is a representation of 
the sorting efficiency of the estimated probabilities that 
a component is attack-prone.  The diagonal line serves 
as a baseline, where the false positive rate is equal to 
the true positive rate.  The cross-validated R2 values 
(see Table 7) indicate that not all variance in the data is 
accounted for, but the overall R2 values are fairly 
consistent with the cross-validated R2 values.   

 
Table 7. ROC curve and R2 values for three models. 

Model ROC R2 Cross-validated 
R2

Model 3 94.4% 55.6% 50.4% 
Model 1  94.0% 57.4% 53.7% 
Model 2 88.0% 48.0% 42.8% 
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Figure 3. The ROC curve for Model 3. 

 
During the CART analysis, all splits of the tree were 

performed with p-values at or below 0.05.  The models 
shown separate the attack-prone components from not 
attack-prone components with significance, and 
therefore we do not reject the alternative hypothesis. 

Software engineers can normalize the split values in 
Table 4 and apply them to the model for the next 
release of the software system.   

 
7. Model enrichment and cost models  
 

We observed that the attack-prone components are 
most likely to be in the leftmost leaves of the model 
trees while the remaining attack-prone components are 
scattered throughout the remaining leaves (that have 
high Type I error rates).  We suspected that since we 
can identify the attack-prone rich leaves using a CART 
analysis, then a “sequential CART analysis” that 
targets the rightmost leaves might achieve a sharper 
identification of the remaining attack-prone 



components.  We show the results of applying the 
sequential CART analysis to Model 3 because it had 
the highest Type I error rate of the three models as 
shown in Table 3. 

First, we removed all components in the data set 
that were associated with the first six leaves of the tree 
from the initial CART analysis.  Next, we performed a 
sequential CART analysis on the remaining 
components and discovered that we increased our 
overall true positive rate from 75.6% to 85.3%, an 
increase of 9.7% (absolute).  The Type I error rate in 
the leftmost leaf in the sequential tree is 50.0%, 
comprising 1.6% of the overall reduced subset of 
components.  If we had not performed the sequential 
tree analysis, finding 9.7% additional attack-prone 
components would have required security engineers to 
inspect or test 48% of the system components in the 
leaves of the sequential tree that had no reported 
vulnerabilities, which constitute 39% of the overall 
system.  We call the model resulting from the 
sequential tree analysis Model 3-Enriched.  At this 
time, it is uncertain that we can exactly quantify the 
overall probabilities of the attack-prone components 
for the aggregate of both models because the count of 
components is different in each CART analysis. 

We created a preliminary cost model, based on the 
ROC curve, to determine which predictive model 
yields the most cost-effective results. The model is 
applied sequentially to the “rich” cluster of leaves 
identified using the initial CART analysis; then to the 
next rich cluster identified by the sequential CART 
analysis; and finally to the “poor” (depleted) cluster of 
leaves identified by the sequential CART analysis.  
Equation 1 applies to the “rich” cost zone of the model, 
equation 2 to the “enriched” zone, and equation 3 to 
the “poor” zone.  

Equation 1 gives the remediation cost (in labor 
units) for all components in the leftmost cluster of 
leaves (i.e., the TP plus FP region).   The percentage of 
attack-prone components developers wish to remediate 
(or can remediate with a given budget) is the n value in 
the equation, and n is also used in the limit inequalities 
that identify which equation to use, based on the 
percent remediation desired (or affordable).   
Subscripts refer to the initial CART analysis (subscript 
1) and the sequential CART analysis (subscript 2).   
The cost model assumes that all attack-prone 
components require an equal amount of effort to 
remediate. 

 
Equation 1: 

 

( )1 1 1

1 1

TP FP TPcost_rich n , where n  
TP TP+FN

⎛ ⎞ ⎛

If the number of specific components that result in 
the desired percentage of predicted attack-prone 
components can be identified using the leftmost cluster 
of leaves from the initial CART analysis, then 
Equation 1 using the TP, FP, and FN values from the 
initial CART analysis, is all that is needed.  The second 
bracketed term in Equation 2 gives the remediation 
cost for the leftmost cluster of leaves in the 
second/sequential CART analysis.  If the percentage 
required can be achieved using the leftmost leaves of 
the sequential CART analysis (plus the leftmost leaves 
of the initial CART), then Equation 2, that includes the 
“enriched” zone, will yield a total cost (that includes 
the cost_rich contribution).   
 
Equation 2: 
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If necessary (when the percentage required is greater 

than which can be obtained using the leftmost leaves of 
the initial CART analysis plus the leftmost leaves from 
the sequential tree), we then use the TP, FP, and FN 
values from all but the first cluster of leaves of the 
sequential CART analysis and add the resulting 
calculated cost to that from the sum of the initial 
CART analysis plus the cost from the first leaf of the 
sequential CART analysis.  This calculation is done 
with Equation 3, which likewise includes the 
contributions from Equations 1 and 2.  The term A 
denotes the total number of system components. 

 
Equation 3: 
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We show the resulting cost curves, using the 
sequential approach described above, for Models 1, 2, 
3, and Model 3-Enriched in Figure 4.  The y-axis 
represents the total (cumulative) cost in terms of labor 
units to fortify a given percentage of attack-prone 
components.  (The y axis values are normalized to a 
maximum of 100 to protect the confidentiality of the 
underlying system data.) The cost curve for Model 1 
shows that engineers would incur a lower cost to find 
49% of the attack-prone components than by using any 
of the other models, but Model 1 becomes more 
expensive than Model 3 as the percentage exceeds 
49%.  Further work is needed to determine if our initial 
cost model performs as well as other similar cost 
models (e.g., [17]).  

 

 
Figure 4. Cost curves for four CART models. 

 
Table 8 shows the number of labor units needed to 

remediate a given percentage of attack-prone 
components, in a system of 100 components.  For 
example, using Model 3-Enriched to repair 80% of the 
attack-prone components would require 20.3 resource 
units.  If a remediation budget can accommodate 52.0 
resource units for this purpose, one can use the same 
model, Model 3-Enriched, to identify which 
components to remediate in order to ensure repairing 
90% of the attack-prone components in the system.  
 
Table 8.  Remediation levels for four CART models.  

 Remediation level 
Model 20% 40% 60% 80% 90% 100%

1 3.2 6.5 28.1 64.0 81.6 100.0
2 4.5 9.1 16.3 58.2 78.6 100.0
3 5.0 9.9 14.9 32.3 65.8 100.0

3-Enriched 5.0 9.9 14.9 20.3 52.0 100.0
 
8. Summary 

 
We created and evaluated three predictive models 

based on data from a Cisco software system.  One 
model identifies 75.6% of the attack-prone components 

in 18.6% percent of the system’s components.  The 
models substantially reduce the search space for 
security efforts, which enables security engineers to 
prioritize their efforts on the small subset of attack-
prone components.  We have applied cost models and 
sequential CART analyses to further reduce the costs 
of remediating components.   
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