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Abstract 

Sometimes software security engineers are given a product that they not familiar with, but are asked 
to have a security analysis done for it in a relatively short time.  An early knowledge of where the most 
vulnerable regions of a software-based system are likely to reside can help prioritize their efforts. In 
general, software metrics can be used to predict fault- and failure-prone components for prioritizing 
inspection, testing, and redesign efforts.  We believe that the security community can leverage this 
knowledge to design tools and metrics that can identify vulnerability- and attack-prone software 
components early in the software life cycle.  We analyzed a large commercial telecommunications 
software-based system and found that the presence of security faults correlates strongly with the 
presence of a more general category of reliability faults. This, of course, is not surprising if one accepts 
the notion that security faults are in many instances a subset of a reliability fault set. We discuss a model 
that can be useful for identifying attack-prone components and for prioritizing security efforts early in the 
software life-cycle. 
 
Introduction 

Software reliability engineering is concerned with the design, delivery and maintenance of software at 
a reliability level requested by a customer [11]. In the past, principal concerns revolved around functional 
and performance reliability, availability and dependability. However, in recent years, the spotlight also 
includes system security. 

 
In the general reliability realm, static and dynamic software metrics can be used to successfully predict 

fault- and failure-prone components relatively early in the software life cycle (SLC), e.g. [13, 17] .  A fault-
prone component is very likely to contain faults [4].  A failure-prone component is very likely to exhibit 
execution-time anomalous behavior or failure due to a fault [16]. However, if faulty code is never 
executed, or otherwise exploited, the component will not fail.  In the context of security, and this paper, 
we call a fault (of either commission or omission) that can result in a security event a vulnerability.  If such 
a fault is exploited in the field through a security attack the software experiences a security failure.  If that 
happens often, we say that the software is attack-susceptible or attack-prone. 

 
A predictive capability that identifies fault- and failure-prone components early in the software life cycle 

can present a significant advantage to a software organization because the costs of finding and fixing 
problems increase superlinearly as one progresses through the SLC [3].  Prediction models can illuminate 
these problematic components for software engineers to prioritize testing, inspections, and re-design and 
thus mitigate the most significant problems first. However, inspection of all fault-prone components may 
cause the development team to expend valuable and limited verification resources in low risk areas of the 
code that, while identified as fault-prone, in reality may be of sufficiently high quality in the context of a 
normal operational profile (or usage) [11]. Identification of failure-prone components may reduce that 
overhead by focusing on software behaviors in the context of the expected operational profile. 

 
We define a vulnerability-prone component as a component that is likely to contain one or more 

vulnerabilities.  A vulnerability-prone component is analogous to a fault-prone component in that 
vulnerabilities may remain latent (similar to faults) until encountered by an attacker (or tester/customer) 
during software code execution.  Vulnerabilities can come in a wide range of severity and likelihood of 
exploitation. It is quite possible that a vulnerability may be never found, it may be difficult to exploit, or it 
may not become exploitable in practice until after the user either changes system 



  

configuration/environment, or makes another change in a future revision of the software (the latter is 
known as the “next release effect” [9, 10]). 

 
The parallel between classical software reliability engineering definition of faults and failures [15], and 

our definition of vulnerability and attack is illustrated in Figure 1.  Static analytical methods and metrics 
can be used to identify physical faults in the code – either actual mistakes (errors of commission), or 
missing code (errors of omission). If the security requirements are well defined, then such analysis will 
also uncover a subset of faults that represent security vulnerabilities.  During software use those fault that 
are encountered by the flow of execution (and result in a visible anomaly) become software failures. If 
vulnerabilities are exploited during software execution, we report a security failure either during testing or 
during an actual attack. Attack-prone components exhibit comparatively high-rates of security failures in 
security testing or in the field. This may be because its vulnerabilities are an easy target, or are of special 
interest to attackers, or for some other operational reason. 

 



  

  

 
Figure 1. Defining security as a subset of reliability.  LF (latent fault) and LV (latent 

vulnerability).   
 
A relationship exists between vulnerability-prone and attack-prone components similar to the one 

between fault- and failure-prone classifications.  A vulnerability-prone component can become attack 
prone if an attacker (or customer/security tester) is likely to exploit one or more vulnerabilities in that 



  

component.  However, there is a danger that vulnerability-finding techniques can lead verification efforts 
to waste resources in low attack risk areas – areas that may be adequately fortified, may be uninteresting 
to an attacker, or contain difficult-to-exploit vulnerabilities.  Attack-prone prediction models may help focus 
vulnerability-finding efforts. For example, one could assume that if a component has a low index of 
vulnerability-proneness, it also has a low index of attack-proneness. One could also assume that most of 
the security problems will be in a small percentage of the software components according to the Pareto 
law [6] as illustrated in Figure 2.  While this general finding is supported by statistical evidence [1] it may 
not be always true. It is quite possible that field security failures, even very serious ones, derive from 
components which are not predicted to be either fault- or failure-prone nor vulnerability- or attack-prone.  

 

 
Figure 2.  Most security problems are found in a small percentage of the software components.   
 
In this paper, we compare the predictive values of external metrics (failure report counts) to the 

values the internal metrics (static analysis tool warnings, code churn, and SLOC) we found in our 
previous study, “Predicting Attack-prone components with Internal Metrics.”  We used data collected for a 
large commercial software telecommunications product.  Our results should not be interpreted as 
applicable to all software because they are based upon the data from only one, though very large, 
software system. 

 
Data 

We analyzed a large industrial telecommunications software system containing over 1.2 million lines 
of C/C++ source code that had been deployed in the field for two years.  Customers required that the 
system be highly reliable and secure.  The system contained 38 well-defined components whereby each 
component consisted of multiple source files.  A full set of information necessary for our analysis was only 
available for 25 (66%) of the components of the system, and thus the study focuses on those 
components.     

 
The system we studied was scanned by the static analysis tool FlexeLint.  We term the use of static 

analysis tools automated static analysis or ASA.  Although FlexeLint is a reliability-focused ASA tool, we 
sought to determine if the reliability alerts could be early warnings of security vulnerabilities on a per 
component basis.  For our analysis we were provided with both audited and un-audited output from 
FlexeLint.  The vendor we worked with outsources the FlexeLint auditing process.  The audited output 
contained an enumeration of true positive alerts (those alerts that could actually cause software failure).  
The un-audited report included all true and false positive alerts (code the tool misclassified as a problem) 
from FlexeLint and the component in which the alert was found.  We used both audited and un-audited 
alerts our models.  We considered that three types of FlexeLint alerts buffer overruns, memory leaks, and 
null pointers as potential security faults because the system contained vulnerabilities due to these issues.  
The remaining alerts in the audited and un-audited FlexeLint output were considered non-security-based 
alerts.  This type of analysis errs on the non-conservative side, but reduces false alerts. 

 
Our analyses are based on two types of reports: software failure reports reported by testers and 

those by customers.  We analyzed 1255 failure reports that included pre- and post-release failures.  A 
pre-release failure is a failure discovered by internal testers during robustness testing at the feature- and 
system-level.  A post-release failure is a failure that occurred in the field and was reported by a customer. 
However, testers did not always indicate in their failure reports whether a testing failure was a security 
problem or a not.  That required a manual follow-up to distinguish security from non-security failures.  All 



  

failure reports explicitly identified the component where the fault or vulnerability was fixed.  The second 
type of report enumerated ASA alerts.  ASA can be performed early in the software life cycle and has 
been shown to be good predictors of fault- and failure-proneness of components [12, 18].   

 
We also scrutinized failure reports that were explicitly labeled as security related (approximately 

0.5%) by either internal testers or security engineers.  Failure reports that were explicitly tagged as 
security problems but could do no harm were classified as non security-problems. For example, we did 
not classify a failure report as a security problem if a security mechanism inadvertently denied access to 
all users.  For the remainder of the failure reports the first author and an additional research assistant, 
both doctoral students in software security, independently reviewed each pre- and post-release failure 
report and classified a failure report as a security problem using the four decision categories listed below.  
We based our criteria on system functionality and the content of the failure reports that detailed the 
impact.  If there was no conclusive evidence that the failure was due to a security vulnerability, then we 
classified the report as a non-security problem.  The software vendor has since fixed all of the faults in the 
failure reports. 

 
We found that many reports contained the following keywords often seen in security literature:  crash, 

denial-of-service, access level, sizing issues, resource consumption, data loss, flooding, integrity, 
overflow, null problems, overload, protection, and leakage.  These keywords increased our suspicion that 
a failure could be a security problem, but did not necessarily indicate a security problem.  We compiled a 
list of these keywords and used it to match against all failure reports that were not explicitly labeled as a 
security problem. 

 
We decided to use the following four categories of security failures. 
 

• Remote attacks.  The failure reports explicitly indicated whether the failure was due to a remote user 
or machine.  Pre- and post-release failure reports that contained security-related keywords and could 
be remotely initiated had the highest probability of an exploitable vulnerability.   

• Insider attacks.  If the failure report did not indicate that a failure was due to an external user or 
machine, then we looked for attacks that did not require remote access to the system.  For example, 
one report indicated that an insider attack was possible if a disgruntled employee was to abuse a 
privilege in the system.    

• Audit capability.  Weak or absent logging of important information was considered a security 
vulnerability.  An example is inadequate logging of a financial transaction that may result in an 
attacker obtaining a service for free.  The absence of logs has been demonstrated as a security 
problem when audits are required to identify an attack [14]. 

• Security documentation.  We also considered whether fundamental principles of software security 
were followed.  For instance, in two failure reports testers indicated that a problem would occur if the 
users were not “well-behaved.” This breaks the principle of Reluctance to Trust [2].  Additionally, we 
also looked to see whether documented descriptions of vulnerabilities could apply  (e.g. those listed 
in the Common Weakness Enumeration at http://cwe.mitre.org), or if any documented attack patterns 
[7] could match to the software. 

A vendor security engineer audited our report and eliminated false positives (the general reliability 
faults that we claimed to be security vulnerabilities).  In the end, 46 (3.7%) of all the failure-reports were 
reported as having security vulnerabilities.  While the other faults could facilitate an attack, they were not 
directly exploitable.  Our analysis included only 3.7% of the defects reported for the product, therefore 
statistical assessment required extra attention. It also needs to be noted that there is some subjectivity 
involved. Failure reports were based upon the testers’ abilities to find problems that open the door for an 
attacker.  Of course, we can only know detected faults; we do not know which faults still remain [5]. 
 
 
 
 



  

 
Models 

The models we developed are an extension of the concepts and models discussed in [8]. In 
developing our models we manually classified the 25 components into failure-prone and attack-prone 
based on the reported severity levels of the failures in the components.  There were two types of failure- 
and attack-prone components; those that contained failures identified by testing before release and those 
that contained failures identified by customers after release.  The vendor we worked with used a four-tier 
hierarchy for classifying failure reports.  Priority 1 failure (P1) is the most severe failure while P4 is the 
least severe.  A P1 or P2 were considered “show stoppers” by the vendor so we used that threshold for 
our classification of failure-prone components.  All of the components with pre-release failure reports had 
at least one P1 or P2 failure report and thus we classified them as pre-release failure-prone components.  
Components with no failure reports were classified as not failure-prone.  Post-release failure-prone 
components were those components that had at least one post-release failure reported by a customer 
because each had at least one P1.   

 
We manually classified pre-release attack-prone components as those components with at least one 

pre-release test failure that was considered to be a security problem.  We use attack-prone instead of 
vulnerability-prone because a tester discovered the vulnerability during program execution.  Post-release 
attack-prone components were those having at least one security-based post-release failure.  The 
threshold of just one attack can create extraordinary damages such as brand damage and loss of market 
share and we thus chose one as a threshold.  We could not verify from the failure reports whether the 
security-based post-release failures reported by customers were attacks that led to an attacker reaching 
their goal.  However, when according to the failure reports and vendor security engineers, vulnerability 
could have been exploited we considered the failure an “attack” in the context of our model construction. 
It is worth noting that no real attacks were reported by the organization for the software system.  We had 
ten pre-release attack-prone components.  Four of the pre-release attack-prone components were 
classified as post-release attack-prone.   

 
To construct our models, we used recursive partitioning (RP).  We performed two RP analyses on our 

data; one for pre-release attack-prone component classification and one for post-release attack-prone 
component classification.  Both analyses incorporated the following internal and external metrics:  

a) ASA produced internal metrics of  
i. count and density of null pointer, memory leak, and buffer overflow alerts (both audited and 

un-audited),  
ii. the sum of the count and density of the previous three security-based alerts, and  
iii. the count and density of all alerts. 

b) The count of SLOC and churn (count of changed SLOC) as internal metrics.   
c) External metrics of count and densities of pre-release, post-release, and total of pre- and post-

release failures (security and non-security).   
 
RP was run against all components in the system that we had already manually classified.  The 

objective was to identify predictors (metrics) that best separate attack-prone components from not attack-
prone components. 

 
Recursive Partitioning 

Recursive partitioning, also known as classification and regression trees (CART) is a statistical technique 
that recursively partitions data according to X and Y values.  The result of the partitioning is a tree of 
groups where the X values of each group best predicts a Y value.  The leaves of the tree are determined 
by the largest likelihood-ratio chi-square statistic.  The threshold or split between leaves is chosen by 
maximizing the difference in the responses between the two leaves [15]. 

 
Results 

The following results apply in their specificity to the environment in which they were obtained. 
However, they also support construction of more models based on RP, and thus provide a generalization 
of the concepts and the approach. 



  

 
 The first model – pre-release classification based - shows that 100% of the attack-prone components 

(with an 8% false positive rate) are those that have at least 17 pre-release failures.  This is illustrated in 
Figure 3. Of all the metrics in the model, the pre-release failure count served as the best indicator for the 
split (p<.0001) that maximizes the difference between attack-prone components and those that are not 
attack-prone.  While in general, further splitting (differentiation) with the other metrics can be done for 
larger component sample than we had, in our case it was not possible with p-values below 0.05 (95% 
significance level).  The results indicate the pre-release failure count can be an excellent metric for 
classifying components that also have a high probability being pre-release attack-prone.   

 
In the case of the software in question, any component above the threshold, 17 pre-release failures, 

is very likely to be attack-prone with an 8% false positive rate.  The R2 value for the model is 68% which 
indicates that the model can account for 68% of the variance.  No other single predictor had similar R2 
value, although we did find that the combination of churn and total alert density had an R2 equivalent to 
that of pre-release failure count (see Appendix A). 

 

  
Figure 3. The result of RP after using the pre-release failure count to partition pre-release attack-prone 
components. 

 
A not unexpected observation is that the more failure reports the exist per component, the more likely 

that some of the failures can cause security problems.  It is also worth noting that security problems did 
not appear to exist in components that did not have many problems.  From these observations, we can 
define a discrimination threshold [17], in this case 17 could be used as a serious warning about potential 
for security problems. 

 
Our second model is based on RP classification of post-release attack-prone events. Results are 

illustrated in Figure 4.  Since there were quite a few less field security failures, the model is less reliable 
but is still provides a very good supportive argument for use of RP for construction of security projection 
models. Of all the metrics, the count of post-release failures had the most discriminatory power (p=.01).  
In this case the threshold is 2.  The R2 value for the attack-prone model is 0.44 which not that good.  As 
with the first model, additional splits with p-values below 0.05 were not possible given the sample we had.  
For our dataset, 75% of the post-release attack-prone components were those with the highest pre-
release failure counts.  The remaining 25% of the post-release attack-prone components had an internal 
failure count at or near 17, the threshold for the first model.  Therefore, the components that were 
“attacked” in the field are very likely to be those components that had the most pre-release failures.  The 



  

R2 values for SLOC and the combination of SLOC and churn was 43.8% and that of un-audited null 
pointer alerts 39%. 
 

  
Figure 4. The result of RP after using the number of post-release failure count to partition post-release 

attack-prone components. 
 

We can (use the negative binomial distribution to predict the count of pre- and post-release attacks 
per component based on the count of pre-release non-security failures. For example, in our case the 
parameters were SE=0.56, p<.0001, value/DF=0.92.  Having an estimated count of security problem 
count based on non-security failure count can indicate how many security issues testers should look for in 
a component.  We attempted to assign a probability to a component that was attack-prone using logistic 
regression and negative binomial regression, but in the context of our data the models did not produce 
probabilities that separated attack-prone from not attack-prone components. 

 
The RP-based models we have presented so far are more helpful for classification than they are for 

prediction because we have distinguished attack-prone from not attack-prone components, but have done 
so based on failure data that arrives late in the SLC.  Waiting until after the testing phase to prioritize 
verification efforts is like placing a bet on a game after it is over – we already know the outcome.  The 
failure count metric outperformed (although slightly in some cases) the internal metrics which are good for 
predicting security failures early in the SLC.  However, these failure data may have some predictive 
power for indicating which components are most likely to fail in the next revision of the system (the next 
release effect).  The real value is that we can predict and prioritize the attack-prone components based 
on which ones are the most failure-prone because security problems appear to go along with high 
concentrations of non-security problems.  This analysis also indicates that reliability testers are more 
likely to find security failures as they create more tests that cause reliability failures.  

 
We now show where the thresholds from the models lie with respect to failure-prone components.  

Figure 5 shows the failure count groupings (non-security and security) that best divide the components 
into four approximately equal segments of components.  The green section indicates components that 
were classified as not failure-prone.  The column titled “Attack-prone” shows the number percentage of 
failure-prone components for that segment that are also attack-prone.  Since RP chose failure count as 
the best metric, each quartile is a measure of failure count.  We repeated the quartile analysis (not 
shown) in the case addition of security failure counts caused a component to be in a higher quartile.  The 
threshold remains the same.  This is not surprising since only 3.7% of the failures are security problems.  



  

We also present the quartiles as a measure of density to negate the effect of count of SLOC.  As shown 
in Figure 5, density evenly distributes attack-prone components among failure-prone components.  

 

 
Figure 5. Failure-prone and attack-prone components juxtaposed according to failure counts and 
densities.  Failure-prone (FP), not failure-prone (NFP), and attack-prone (AP).  Q is the quartile value. 

 
We measured correlations between non-security failures and security failures as shown in Table 1.  A 

strong correlation (0.8 ≤ r ≤1.0) indicates that an increase in non-security failures is accompanied with an 
increase in security failures. We found that non-security failure count is strongly correlated to security 
failure count (0.82).  We calculated correlations with failure density, too.  However, density can dilute 
significance of a vulnerability because a single vulnerability can have a large business impact for a 
vendor or customer.  We could not find a correlation between non-security failure density and post-
release security-based failures.  Different software systems behave differently.  In some systems, the 
count of SLOC is directly related to failure count.  However, in our system, SLOC was only moderately 
associated with security failure count.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

Table 1. Correlations between non-security and security failures1.   

Metric Non-security 
failures 

Security  
failures 

Spearman  
rank 

correlation 
(p-value) 

pre- and post-
release 

pre- and post-
release 

0.82  
(p < .0001) 

pre-release pre-release 0.80 
(p <.0001) 

Failure 
count 

pre- and post-
release post-release 0.49 

(p =.01) 

pre-release pre- and post-
release 

0.57  
(p =.003) 

pre-release pre-release 0.58  
(p =.002) Failure 

density pre-release, post-
release, pre- and 
post-release 

post-release no 
correlation 

SLOC -- Post-release 0.42 
(p=0.03) 

Churn -- pre-, post-release, 
or both 

no 
correlation 

 
Summary and Conclusions 

We found that the best metric in our models for classifying attack-prone components was failure 
count.  We usually find plenty of non-security problems with software and since they are lying around then 
why not use them for security efforts?  If you can predict your failure-prone components, then you might 
consider assigning security efforts to the most failure-prone components to make more secure software 
and especially since failure prediction can be achieved early in the SLC.  Many metrics are available for 
predicting attack-prone components and can be based on much of the work achieved in reliability 
engineering.  We are eager to work with any software organization who wants to predict their attack-
prone components. 
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Appendix A 
 

       Summary of recursive partitioning results.  The results from the models with alerts, churn, SLOC are 
found in “Predicting Attack-prone Components with Internal Metrics” and our compared to our new 
findings with failure counts as a metric.  Total pre-release failure count includes all failures (security 
and non-security) identified by pre-release testing.  Total post-release failure count includes all 
failures (security and non-security) reported by customers.  The pre-release model with the internal 
metrics (alerts, churn, SLOC) is nearly identical to the model that uses total pre-release failure count 
as a metric.  The models shaded in gray have low R2 and ROC values and can thus we cannot be 
confident in their predictive values. 

 
 

Pre- or  
post-release Metric Type I Type II R2 Cross-validated R2 ROC 

alerts 28% 0% 31.5% 19.4% 76.7% 
churn 28% 0% 31.5% 30.1% 76.7% 
SLOC -- -- -- -- -- 
alerts, 
churn, 
SLOC 

8% 0% 67.9% 61.1% 93.3% pre-release 
 

total 
pre-

release 
failure 
count 

8% 0% 68% 64% 93% 

alerts 24% 0% 38.8% 33.7% 85.7% 
churn -- -- -- -- -- 
SLOC  20% 0% 43.8% 25.5% 88.1% 
alerts, 
churn, 
SLOC 

20% 0% 43.8% 25.5% 88.1% 
post-release 

Total 
post-

release 
failure 
count 

20% 0% 44% 29.8% 88% 

 
 
 
 


