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Abstract—Since 2002, over half of reported cyber vulnerabilities are caused by input validation vulnerabilities . Over 

50 % of input validation vulnerabilities were cross-site scripting and SQL injection vulnerabilities in 2006, based on the (US) 
National Vulnerability Database.  Techniques to mitigate cross-site scripting and SQL injection vulnerabilities have been 
proposed. However, applying those techniques without precise understanding can result in a false sense of security. Clearly 
understanding the advantages and disadvantages of each security technique can provide a basis for comparison of those 
techniques. This survey provides a taxonomy of techniques to detect cross-site scripting and SQL injection vulnerabilities 
based upon of 21 papers published in the IEEE and ACM databases. Our taxonomy characterizes the detection methods and 
evaluation criteria of the techniques. The taxonomy provides a foundation for comparison among techniques to detect cross-
site scripting and SQL injection vulnerabilities. Organizations can use the comparison results to choose appropriate 
techniques depending on available resources.  
 

Index Terms-- Software Engineering, Software/Program Verification, Software Quality, Security and Privacy 
Protection  

1. INTRODUCTION 

vulnerability is a weakness in a system caused by a flaw in design, a coding error, or 

incorrect configuration such that execution of a program can violate the implicit or explicit 

security policy [11, 21]. Input validation vulnerabilities (IVVs) are caused by lack of checking 

for invalid input. Input can be validated against predefined or known invalid input characters or 

string patterns. For example, many web sites limit the maximum length for login ID and generate 

an error when the input length exceeds the required maximum length. An attack via an IVV 

occurs when an attacker takes advantage of an IVV to make use of an asset in a system for the 

attacker’s purpose [11]. For example, an attacker may enter code into an input field in such a 

way that the code is executed on a client’s machine or at the server. Common IVVs are cross-site 
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scripting (XSS), SQL injection, and buffer overflow vulnerabilities. Figure 1 shows the number 

of IVVs reported to National Vulnerability Database (NVD) [1] since 1995.  The quantity of 

IVVs that has been reported has dramatically increased since 2004 and more than half of IVVs 

are XSS, SQL injection, and buffer overflow vulnerabilities. The increase of reported 

vulnerabilities can be interpreted in two ways: (1) the increase in the number of actual 

vulnerabilities and (2) the increase in concern about vulnerabilities when the number of actual 

vulnerabilities was not increased (causing an increase in reporting). The concern about 

vulnerabilities comes from both attackers and normal users. Therefore, the increase in 

vulnerability report indicates we need to make more efforts to reduce IVVs.  

A diverse set of techniques have been introduced to detect XSS and SQL Injection 

Vulnerabilities (XSIVs) [2, 5, 6, 8-10, 12-16, 18, 23, 24, 27-33]. Each technique has advantages 

and disadvantages and clear understanding of these advantages and disadvantages can provide a 
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Fig 1. The number of reported cyber vulnerabilities 
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basis for comparison between detection techniques. Organizations can compare the vulnerability 

detection techniques and choose appropriate techniques for the organizations’ unique operational 

environments and available resources. 

The objective of this research is to analyze and compare XSIV detection techniques and to 

identify areas for future research directions in vulnerability detection techniques. We categorize 

the XSIV detection techniques and provide the definition of each category. Although 

classifications and comparisons of XSIV detection techniques have been provided in the 

literature we reviewed for this research, those classifications and comparisons are mostly as a 

form of related work to explain the context of a XSIV detection technique, and none of them are 

as comprehensive as our taxonomy.  

Note that comparing techniques based on information in the papers can be difficult because papers 

described their approaches with differing levels of detail. Therefore, our survey can be used as a 

guide to compare techniques and to find future research directions rather than to comprehensively 

judge the quality of known techniques.  

We limited the scope of this paper to XSIVs and did not include the techniques for buffer 

overflow vulnerabilities to focus on comparatively recent and fast growing vulnerabilities. 

Figure 2 shows the percentage of XSS, SQL injection and buffer overflow vulnerabilities among 

total IVVs. The rate of reported XSIVs among IVVs has increased since 2001. However, the rate 

of reported buffer overflow vulnerabilities has decreased since 2003.  

The rest of this paper is organized as follows. Section 2 provides background on XSS and SQL 

injection vulnerabilities. Section 3 explains the overall structure of our taxonomy. Sections 4 and 

Section 5 describe the two dimensions of our taxonomy, detection methods and evaluation 

criteria, in detail. Section 6 concludes and discusses future work. Appendix A summarizes our 
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taxonomy. 

2. BACKGROUND 

This section describes XSS and SQL injection vulnerabilities in detail and provides representative 

examples of each. 

2.1 Cross-site Scripting 

Cross-site scripting (XSS) vulnerabilities allow attackers to insert malicious scripts as a part of 

user input and the script is executed at other user’s browser due to the lack of input validation. 

We provide a simple example of attacks exploiting XSS vulnerabilities. Consider a search engine 

that returns the search results including the same query given by a user. If the user input includes 

a script and the returned result page does not encode the script into HTML code, the script in the 

returned result page will be executed. For example, assume a user entered an executable script as 

a query for a search engine as in Figure 3.   

 

Fig 2. The percentage of XSS, SQL injection, and buffer overflow vulnerabilities among IVVs 
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If the search engine returns the result with the same query, which is a script in this case, the 

browser will execute the script and display an alert with a “Hello” message as in Figure 4.  

XSS attacks also can be used to access user’s critical information by stealing HTTP cookies 

[20]. When a web application needs to keep track of a communication channel between a web 

server and a user’s browser, a web server sends a HTTP cookie that includes the information that 

the server can identify the user. If an attacker can access the cookie at his or her browser, the 

attacker can disguise as the user and can access critical information such as credit card number 

that only the user was supposed to access. Web sites on which users can post messages to a 

message board shared with other users and that require users to log in to the system to use the 

message board are potentially vulnerable to this XSS attack. A procedure of cookie stealing is as 

follows in this case: 

Step 1. An attacker finds a web site on which users can post messages to a message board 

shared with other users and that requires users to log in to the system to use the 

message board. 

Step 2. The attacker posts the script in Figure 5 that sends cookie information to the attacker’s 

web site when the script is executed. 

 
Fig 3. Script as a user input 

 
Fig 4. Result from Figure 3 
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Step 3. A user logs in to the web site and reads the message that the attacker has posted.  

Step 4. The script in Figure 5 is executed and the cookie information of the user is sent to the 

attacker’s site. 

Step 5. The attacker can access the user’s critical information using the cookie. 

2.2 SQL Injection 

SQL injection vulnerabilities allow attackers to insert SQL commands as a part of user input. When 

an SQL query is constructed dynamically with maliciously-devised user input containing SQL 

keywords, attackers can gain access or modify critical information such as a credit card number in a 

database without proper authorization. For example, Figure 6 shows a sample program in Java using 

JDBC that uses a SQL query to authenticate a user via id and password. The query is dynamically 

created via the program statement in bold.  In the query in Figure 6, id and password are obtained 

 
Fig 5. A malicious script for XSS attack 

 
Fig 6. An example of SQL query with a vulnerability 
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via user input.  

In the previous example, a normal user input would look like Figure 7, though the password 

appears rather than the typical “******”. 

 

 

 

However, an attacker can enter the input for the values of login ID and password through a 

web form as in Figure 8.  

 

 

Which would generate the following query: 

SELECT userinfo FROM users  
WHERE id = ‘1’ OR ‘1’ = ‘1’  
AND password = ‘1’ OR ‘1’ = ‘1’; 
 

Because the given input makes the WHERE clause in the SQL statement always true (a 

tautology), the database returns all of the user information in the table.  Therefore, the malicious 

user has been authenticated without a valid login ID and password.   

The use of tautology is a well-known SQL injection attack [3, 8, 31]. However, there are other 

types of SQL injection attacks using multiple SQL statements or stored procedures. SQL clauses 

such as “UNION SELECT”, “ORDER BY”, and “HAVING” are sometimes used to gain 

knowledge about database structure that can be used for SQL injection attacks.  The attackers 

also can gain knowledge about database structure by exploiting error messages from an SQL 

command failure [3, 26] or simply by trial and error [25].   

 Many languages and libraries for the languages such as Java, C++ and PHP provide a way to 

 
Fig 7. Web form with normal user input 

 
Fig 8. Web form with malicious user input 
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prevent SQL injection attacks by using prepared statements. A prepared statement escapes 

special characters in user input when the user input is given as a binding variable for the 

prepared statement. Escaping is usually performed by adding a backslash in front of a special 

character so that the character is interpreted as a normal character instead of being interpreted in 

a special meaning. Figure 9 shows a use of prepared statement for the example given in Figure 6. 

The variable id is bound to the first binding variable and the variable password is bound to 

the second binding variable in the sqlQuery in Figure 9.   

Unfortunately, legacy code and applications written by novice programmers often do not use 

prepared statements. Furthermore, prepared statements are not inherently safe; one can misuse a 

prepared statement by using string concatenation instead of using a binding variable due to a 

poor programming practice. Additionally, prepared statements also do not allow parameterized 

table names and column names. If programmers want to parameterize table names and column 

names, programmers must use normal SQL statements instead of prepared statements [19].  
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3. OVERVIEW OF TAXONOMY 

XSIV detection techniques should be able to identify vulnerabilities accurately during development 

or operation in the field. XSIV detection techniques requiring higher accuracy and less effort are more 

likely to be adopted by an organization. We created a taxonomy for XSIV detection techniques to help 

the understanding of accuracy of XSIV techniques and their evaluation criteria including ease-of-use 

for fair comparison. Our taxonomy consists of two dimensions: detection methods and evaluation 

criteria. Each dimension consists of sub-dimensions that represent different aspects of the dimension. 

Each sub-dimension consists of categories that classify the techniques according to the corresponding 

aspects.   Figure 10 shows the hierarchy of our taxonomy.  The numbers beside the name of sub-

dimensions are the sections of this paper in which the sub-dimension is explained in detail. 

 
Fig 9. Using a prepared statement to prevent an SQL injection 

vulnerability 
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We reviewed 23 techniques in 21 papers from the ACM1 and IEEE2 digital libraries for our survey. 

We collected the papers by searching the keywords “SQL injection”, “cross-site script” and “XSS” 

from those libraries.  During our search, the IEEE digital library contained seven papers on XSS and 

eight papers on SQL injection.  Similarly, the ACM digital library contained 35 papers on XSS and 50 

papers on SQL injection. From these 100 papers, we selected 21 papers closely related to XSIV 

detection techniques. Though the papers we surveyed are not exhaustive, the techniques used in the 21 

papers are representative of the current techniques that we analyzed.  Table 1 shows the summary of 

the literature we reviewed.  

Table 1. Summary of literature for XSIV detection techniques 

Digital libraries Papers selected Techniques reviewed 

IEEE 8 8 
ACM 13 15 
Total 21 23 

 
 

1 http://www.acm.org/ 
2 http://www.ieee.org/ 

 
Fig 10. Hierarchy of taxonomy 
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Huang et al. [12] and  Kals et al. [16] provided techniques for both XSS and SQL injection. However, 

each of those techniques is classified into a different category in our taxonomy because the detection 

methods for XSS and SQL injection were different. Therefore, we counted the techniques described in 

[12] and  [16] separately. We used the names of techniques described in the reviewed papers, such as 

SecuBat [16] and WAVES [12]. When no name was given in a paper, we created a name for consistent 

and easy reference, for example, DetectCollectXSSⁿ  [14]. The ‘ⁿ’ superscript after the name of a 

technique indicates a name that we created.  

Table 2 shows the papers we surveyed for each vulnerability type. When a paper provides their 

implementation for only one vulnerability type, but the approach could be used for both types, we 

categorized the technique based on the approach described in the paper rather than the implemented 

tool specified in the paper. For example, Su and Wasserman claim their technique can detect both SQL 

injection and XSS as well as other IVVs [31]. However, they introduced a tool to detect only SQL 

injection vulnerabilities in their paper [31]. In this case, we categorized [31] as a technique to detect 

both SQL injection and XSS vulnerabilities.    

Table 2. Literature according to vulnerability types 

Vulnerability types Literature
XSS-only [10], [12], [14], [16], [18], [24], [29] 
SQL-injection-only [2], [6], [8], [9], [12], [16], [28], [33]
Both [5, 17]3, [13], [15],[22, 32]3, [23],  [27], [30], [31]  

 
 

4. DETECTION METHODS 

Vulnerability detection methods can be classified according to the meaning of detection, how, when, 

and where XSIVs are analyzed and detected, and how the results of detection are handled. Knowing 

 
3 The approaches presented in [5] and [17] are very similar even though their implementation detects different vulnerabilities.  

Additionally one of the authors co-authored both of the papers. Therefore, we treated them as a single technique that can detect various 



NCSU CSC TR 2008-4 
 

 

12

the detection time in the software life cycle, detection location in the system, and the reaction after the 

vulnerability detection as well as detection methods is useful to determine the detection technique(s) to 

be used for a particular development or operational environment.  

 

4.1 Detection criteria 

Vulnerability detection techniques have their own criteria to decide the existence of vulnerabilities. 

For example, one technique determines that an application is vulnerable when there is an input flow 

from external source to a certain statement in an application, while another technique determines that 

an application is vulnerable when user input includes certain characters. We identified seven categories 

of detection criteria: grammar-based violation, input signature, output signature, expected result 

violation, tainted data flow, anomaly, and restricted link access detection.  Each of these categories will 

be described, and examples of the categories from our literature search will be provided. 

4.1.1 Grammar-based violation detection 

Grammar-based violation detection uses the grammatical structure of SQL commands or script 

languages to detect vulnerabilities. XSIVs can happen when an external input includes a part or whole 

statement that can be interpreted and executed at runtime. The idea of grammar-based violation 

detection techniques is to construct two grammatical representations of SQL statements or script 

languages such as finite state machines (FSM) or parse trees for the statement that the external input is 

used, one with and one without user input. If the two grammatical representations are not the same, 

grammar-based violation detection techniques consider the user input to be including a malicious 

command that changes the intended behavior of the statement.  For example, Fig 11 shows an FSM 

representation for the example shown in Figure 6 with only one variable in the WHERE clause [8, 33]. 

                                                                                                                                                                                           
types of vulnerabilities even though   [5] is not included in the 21 papers we found from ACM and IEEE digital library. [22] and [32] are 
also the same case. Only [22]  is included in the 21 papers we found from ACM and IEEE digital library. 
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An SQL injection vulnerability is detected because the FSM constructed from actual user input (1’ 

OR ‘1’ = ‘1) has different grammatical representation from the one constructed without user input. 

 

 

 

Fig11. Finite state machine for a SQL query4 
 

SQLStoredProceduren [33], AMNESIA [8], and SQLGuard [6] compare automata or parse trees for 

an SQL query constructed with and without user input, and detect differences between them. 

SQLCheck [31] detects invalid structure in the parse tree constructed with user input. The parse tree is 

constructed in a way that any SQL keywords contained in a user’s input create a non-unique root in the 

parse tree. Therefore, the existence of non-unique roots in the parse tree indicates the user’s input is 

malicious. In the literature we reviewed, all of the grammar-based techniques detected only SQL 

injection vulnerabilities except SQLCheck, which is also able to detect XSS and other types of 

injection vulnerabilities. [31].  

4.1.2 Input signature detection 

Input signature detection detects special characters or keywords from user input by scanning external 

input to seek blacklist. Blacklist is a set of special characters or keywords that are known to be used to 

create malicious input.  The single quotation mark(‘) is often blacklisted for SQL injection. Left and 

right bracket (“<” and “>”) are often blacklisted for XSS. 

If user input includes SQL keywords, as in Figure 8, and the input is used to construct an SQL query 

without any validation or modification, a technique based on input signature detection considers the 

application vulnerable. Vulnerabilities can be avoided by changing malicious input to non-malicious 
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input or by rejecting the malicious input. For example, escaping (adding a backslash) in front of a 

single quotation mark in an SQL query makes the single quotation mark interpreted as a part of 

character constant instead of being interpreted as a part of SQL keyword. The SQL query below is the 

result of escaping user input in Figure 8.  

SELECT userinfo FROM users  
WHERE id = ‘1\’ OR \‘1\’ = \‘1’  
AND password = ‘1\’ OR \‘1\’ = \‘1’; 
 

SQL DOM [28], AntiMaliciousInjectionⁿ [23], and DetectCollectXSSⁿ [14] escape malicious 

characters. Reaction after detection is described in Section 4.5 more in detail.  When the blacklist is too 

restrictive, the program could sacrifice usability. When the blacklist is not restrictive enough, 

vulnerabilities can be exploited. Therefore, the input signature must be carefully determined so that an 

application performs the functionality correctly while still detecting malicious input.  

4.1.3 Output signature detection 

Output signature detection detects special characters, keywords, or certain statements from the output 

of application execution to find the evidence that an application is vulnerable. For example, in the 

sample application in Figure 6, if user input for login ID and password are “ ‘ ”, the resulting SQL 

query will have a quotation mark that results in an non-matching quotation mark as below. 

SELECT userinfo FROM users  
WHERE id = ‘’’  
AND password = ‘’’; 
 

This query will cause an SQL syntax error reported by the database management system. The SQL 

syntax error reveals that the application does not validate user input properly and allows malicious user 

input reaches a target statement. A target statement is a statement in the code that can be exploited by 

                                                                                                                                                                                           
4 Figure 11 was adapted from the figure in [8] for our example. 
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attackers when malicious input is given. 

Some of automated black-box testing techniques such as SecuBat [16] and WAVES [12] use output 

signature detection. DetectCollectXSSⁿ  [14] provides both input and output signature detection modes. 

However, the detection ability of output signature detection depends on the completeness of the list of 

output signature for an application.  

4.1.4 Expected result violation detection 

Expected result violation detects the mismatch between the execution output and expected results 

described by a predefined specification. Expected result violation differs from techniques for output 

signature in that output signature detects predefined output patterns such as special keywords or 

characters and applies the same output patterns to every execution result, while expected result 

violation detects a specific value that a developer expects as a result of an instance of execution. 

SecuBat [16] finds a executable script that was entered as input for a web request from the HTTP 

response. If the input script is found from the response web page without any modification, the server 

did not perform any input validation and the script can be executed at the user’s browser. Therefore the 

web page is vulnerable to XSS attacks. XSSTestGenⁿ [24] stores predefined test cases to detect XSS 

vulnerabilities and compares the results with expected output. 

4.1.5 Tainted data flow detection 

Tainted data flow detection analyzes external input data flow and detects whether the input is used 

for a target statement. External input includes input from user interface, network interface or any other 

interface whose input comes from an external source.  

Pixy [15] statically checks if user input can reach a target statement without being processed by an 

input validation routine by performing data flow analysis. PQLMatcherⁿ [27] identifies an object flow 

that matches the specification written in PQL (Program Query Language) by developers and performs 
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a user-defined action when the match was found at runtime. An example of user-defined action is to 

escape special characters in a string object. XSSTestGenⁿ [24] statically analyzes the  control flow of 

web applications to trace user input to an output node and generates test cases based on the result of the 

analysis. A web page is potentially vulnerable if user input reaches an output node and vulnerable if 

user input reaches an output node without being redefined. If user input does not reach an output node, 

the web page is not vulnerable. XSSTestGenⁿ generates test cases only for the web pages that are 

vulnerable or potentially vulnerable. WASP [9] combined both dynamic tainted data flow analysis and 

grammar-based violation detection. Some tainted data flow detection techniques return false warnings 

when malicious input cannot reach a target statement because the input has been validated before the 

input reaches a target statement. Some techniques ([13, 24, 27]) insert input validation code to the 

potentially vulnerable location in the code identified by static tainted data flow analysis to detect actual 

vulnerabilities and prevent false warnings at runtime. 

4.1.6 Anomaly detection 

Anomaly detection techniques generate warnings when the runtime behavior of an application 

deviates from the normal behavior that was recorded during the training period. Only normal actions 

are performed on the application without any abnormal behavior that could be considered as a security 

attack during training period. The technique then compares runtime behavior to pre-recorded normal 

behavior. However, anomaly detection techniques cannot detect attacks that are not modeled during 

training period. 

WAVES [12] records the behavior of a web browser such as directories accessed or libraries loaded 

when dynamic content such as JavaScripts or ActiveX controls is executed in training period. If 

runtime behavior of a script is different from the recorded normal behavior, WAVES detects XSS. 

AnomalyDetectionⁿ [22, 32] creates models about the characteristics of normal user input based on 
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statistical information that can be obtained from non-malicious user input, for example, user input 

length and character distribution. If runtime behavior deviates from the model, AnomalyDetectionⁿ 

detects XSS [22] or SQL injection [32]. JavaScriptMozillaⁿ [10] uses security policy that describes the 

normal behavior of JavaScripts. If runtime behavior violates the policy, JavaScriptMozillaⁿ detects 

XSS.  

4.1.7 Restricted link access detection 

Restricted link access techniques detect an access to an external web site with potential XSS attacks 

at runtime when a user clicks a link to an external web site that is not in the same domain of the current 

web site. Noxes [18] raises an alert when the user tries to access a web link to an external web site. 

Users need to determine interactively if a link is actually vulnerable or not. However, users can also 

define filter rules to reduce their interaction.  

4.1.8 Comparison of detection criteria 

As we have seen in the previous subsections, the accuracy of detection varies depending on 

techniques. Expected result violation detection can detect vulnerabilities most accurately because 

expected result violation is based on the assumption that a test already knows the possible malicious 

input and the behavior of the system for the specific input. Therefore, the tester must know about how 

to attack the vulnerabilities and prepare the expected results for each specific application. On the 

contrary, other detection criteria do not require application-specific knowledge. Grammar-based 

violation detection can detect as accurately as expected result violation detection in the best case. 

However, the accuracy of detection varies depending on algorithms and analysis methods which will 

be discussed in Section 4.2. Dynamic analysis methods can usually detect vulnerabilities more 

precisely than static analysis methods for the same detection criteria because dynamic analysis methods 

do not use the approximation that static analysis methods use due to the complexity of code analysis.  
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Input and output signature detection techniques can be less accurate than expected result violation 

and grammar-based violation detection because their detection ability depends on the completeness of 

signatures identified and vulnerable signatures vary depending on context. For example, an application 

can allow a single quotation mark in a user name as a part of valid user input, while another application 

considers every single quotation mark vulnerable. However, input and output signature detection is 

simple to implement compared to expected result violation and grammar-based violation.  

Tainted data flow techniques detect only the flow of suspicious information rather than detecting 

actual malicious input. Therefore, tainted data flow can generate false alerts per se. Tainted data flow 

detection can maximize effectiveness of vulnerability detection when it is combined with other 

detection criteria such as input signature detection. Anomaly detection relies on a statistical model 

constructed during training period with non-malicious input and does not detect actual malicious input, 

either. However, both of tainted data flow and anomaly detection are good for detecting previously-

unknown vulnerabilities. The accuracy of restricted link access detection depends on how the restricted 

link is determined. We found only one restricted link access technique [18] which detects access to 

external web sites and access to web sites that users designate.  

4.1.9 Summary of literature 

Table 3 shows the classification of techniques according to detection criteria. 

Table 3. Literature according to detection criteria 

Detection Criteria XSS SQL injection Both 
Grammar-based violation  [6], [8], [9]5, [33] [5, 17], [31] 
Input signature [14], [29] [2], [28] [23], [30] 
Output signature [14] [12], [16]
Tainted data flow [24] [9] [13], [15], [27]  
Anomaly detection [10], [12] [22, 32] 
Expected result violation [16], [24]
 

5 Some techniques use combined techniques. In Table 3  WASP [9] is counted twice, for grammar-based violation and for tainted data flow. 
DetectCollectXSSⁿ  [14] is also counted twice, for input signature detection and for output signature detection. XSSTestGenⁿ [24] is counted 
twice for tainted data flow and expected result violation. 
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Restricted link access  [18] 
 

4.2 Analysis methods 

XSIV detection techniques use various analysis methods to detect vulnerabilities. Analysis methods 

consist of five categories: secure programming, static analysis, dynamic analysis, black-box testing and 

white-box testing. 

4.2.1 Secure  programming 

Secure programming is an approach to reduce security vulnerabilities by implementing user input 

validation routines in the application source code or by using existing routines for user input validation 

provided by vendors or standard libraries for languages. SQL DOM  [28] provides a set of classes 

automatically generated from existing database schema. These classes allow programmers to create a 

SQL query using predefined class methods instead of using dynamic concatenation of strings. The 

constructors of these classes escape special characters to prevent SQL injection attacks.  

AntiMaliciousInjectionⁿ [23] automatically injects input validation routines in the server side scripts 

that process user input. The drawback of secure programming is that developers need to be trained to 

write secure code or to learn how to use secure libraries.  

4.2.2 Static analysis 

Static analysis techniques analyze program code including source code, bytecode, or binary code to 

learn how the control or data would flow at runtime without running the code. Due to the complexity 

and technical limitations, some static analysis techniques cannot detect the existence of input validation 

routines and result false positives. Pixy [15] performs tainted data flow analysis using flow-sensitive, 

interprocedural, context-sensitive data flow analysis and checks if user input is used at a target 

statement without any input validation. WebStaticApproximationⁿ [29] uses a static string analysis 



NCSU CSC TR 2008-4 
 

 

20

technique [7] to approximate possible string output for variables in a web application and checks if the 

approximated string output is disjoint with unsafe strings defined in a specification file. If the 

approximate string output is disjoint with the unsafe strings, WebStaticApproximationⁿ reports that the 

application is not vulnerable.  

4.2.3 Dynamic analysis 

Dynamic analysis techniques analyze the information obtained during program execution to detect 

vulnerabilities. Dynamic analysis is performed at testing time during development or runtime after 

software release. SQLGuard [6] and SQLCheck [31] add a special sequence of code before and after 

user input to distinguish user input portions in a dynamically-constructed SQL query at runtime and 

check grammar-based violation. For example, if the syntactic structures of an SQL query with and 

without user input differ, the application is vulnerable. Another example of dynamic analysis is 

anomaly detection that detects deviation from normal behavior at runtime  [10, 12, 32]. The 

disadvantage of dynamic analysis is that only the vulnerabilities in the execution paths are detected and 

therefore cannot detect vulnerabilities in parts of the code that were not executed.  

Dynamic analysis can be performed after static analysis to use the result of static analysis to improve 

the efficiency of dynamic analysis. SQLStoredProceduren [33] statically performs control flow analysis 

to reduce the number of SQL statements to verify at runtime. AMNESIA [8] statically builds an SQL 

query automaton that represents all the possible SQL queries at a target statement using string analysis 

[7]. AMNESIA compares the statically-generated SQL query automaton with a dynamically-

constructed SQL query and detects the mismatch in the structure of the SQL query at runtime. 

PQLMatcherⁿ [27] detects the flow of objects that matches the patterns described by a developer in 

PQL. Static analysis is performed to limit code instrumentation only to the relevant code and improve 

the performance in PQLMatcherⁿ, and then dynamic analysis is performed to find the flow of objects 
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that matches a specified pattern at runtime. 

4.2.4 Black-box testing 

Black-box testing detects vulnerabilities by testing applications based on requirements specification 

without knowing the internal structure of source code. Automated scanning techniques such as SecuBat 

[16] and WAVES [12] are in this category.  Automated scanning techniques gather web pages of a 

given web site using an agent called a web crawler, inject test input and observe the results of 

execution. SecuBat [16] injects a single quotation mark as test input to detect an SQL injection 

vulnerability. If the response from a web request includes an SQLException error, the error 

indicates that the user input reached an SQL query statement and the single quotation mark was 

interpreted as a part of SQL command not as a normal user input. Therefore the program is vulnerable 

to SQL injection attacks.  WAVES [12] also detects error messages that indicate the user input reaches 

an SQL query statement without being validated.  

4.2.5 White-box testing 

White-box testing detects vulnerabilities by testing applications with test cases generated based on 

internal structure of source code. XSSTestGenⁿ [24] is a white-box testing technique based on static 

analysis. XSSTestGenⁿ statically analyzes control flow of web applications and identifies vulnerable, 

potentially vulnerable and non-vulnerable programs and generates test cases for vulnerable and 

potentially vulnerable programs.  

4.2.6 Summary of literature 

Table 4 shows the literature for detection methods.  

Table 4. Literature according to analysis methods 

Analysis methods XSS SQL injection Both 
Secure programming  [28]  (manual) [23] (automated) 
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Static analysis [29]  [15]  
Dynamic analysis [10], [12], [14], [18] [2], [6], [8], [9] 

[33]
[5, 17], [13], [22, 32], 
[27], [30], [31] 

Black-box testing [16]  [12], [16]  
White-box testing [24]    

 

4.3 Detection time 

When to apply a vulnerability detection technique should be determined before an organization 

chooses an appropriate detection technique. Vulnerabilities can be detected at coding time, testing time, 

or operation time in the field. This section explains each detection time. 

4.3.1 Coding time 

Coding time techniques allow early detection of vulnerabilities and therefore reduce the cost of 

fixing caused by later detection [4]. Static analysis techniques can detect vulnerabilities at coding time 

without executing code [15, 29]. 

4.3.2 Testing time 

SecuBat [16] and WAVES [12] are black-box testing techniques that test applications without 

knowing the internal structure of code. XSSTestGenⁿ [24] is a white-box testing technique that uses the 

internal structure of code obtained by static analysis to identify the flow of user input and to find 

potentially vulnerable server programs and input variables that cause the vulnerabilities. XSSTestGenⁿ 

generates test cases to generate test input to verify the actual vulnerability identified by static analysis.  

4.3.3 Operation time 

Operation time techniques detect vulnerabilities at runtime in the field after software is released. 

Many operation time detection techniques prevent attacks by stopping the execution or changing the 

malicious input to a non-malicious input after malicious input is detected. However, when operation 
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time detection techniques have false positives, stopping the execution can cause significant 

inconvenience to users.  

4.3.4 Summary of literature 

Table 5 shows the papers in each category. 

Table 5. Literature according to lifecycle time of usage 

Detection time XSS SQL injection Both
Coding time [29]  [15], [23] 
Testing time [16], [24] [12], [16]
Operation time [10], [12], [14], 

[18] 
[2], [6], [8], [9], [28], 
[33]

[5, 17], [13], [22, 32], 
[27], [30], [31]

 

4.4 Detection locations 

Application-level vulnerabilities are detected at various locations in a system. We classified detection 

locations into six categories: server-side proxy, server-side application, client-side application, browser, 

and client-side proxy.  

4.4.1 Server-side proxy 

Server-side proxy techniques use an additional server or a gateway between a client and a web 

server. A server intercepts users’ requests and analyzes if the input is malicious. If a request includes 

malicious input, the server rejects the request or changes the malicious input into a non-malicious input. 

For example, AUSELSQI [2] intercepts a HTTP request at an intermediate server before the request is 

forwarded to a web server, and checks if the input includes suspicious characters. If the request 

includes suspicious characters, the intermediate server rejects the request.  

4.4.2 Server-side application 

Server-side application techniques statically or dynamically analyze server-side applications written 
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in script languages such as PHP and JSP or programming languages such as Java or C using the 

methods described in Section 4 to detect vulnerabilities. For example, Pixy [15] statically analyzes PHP 

scripts to detect XSS vulnerabilities via tainted data flow analysis. AMNESIA [8] statically analyzes 

Java byte code and constructs automata for SQL queries from the byte code and compares the 

statically-constructed automata with dynamically-constructed SQL queries at runtime to detect SQL 

injection attacks. 

4.4.3 Client-side application 

Client-side application techniques analyze client side scripts and HTML pages to detect 

vulnerabilities. For example, SecuBat [16] analyzes HTML pages, including client side scripts, and 

inserts test data to the input fields of forms found from the HTML pages. 

4.4.4 Browser 

JavaScriptMozillaⁿ [10] detects XSS at the browser-level by modifying an existing browser to 

observe the behavior of scripts.  

4.4.5 Client-side proxy 

DetectCollectXSSⁿ [14] copies the input included in the user request at a client-side web proxy 

before a request is sent to a web server. If the input includes an executable script and the response 

includes the same script copied at the proxy, then the vulnerability is detected. Noxes [18] uses a client 

side web proxy to filter a web request that violates the security policy defined by users. The security 

policy consists of web site domains that a user permits the browser to access. 

4.4.6 Summary of literature 

Table 6 shows the papers categorized in each detection location. 

Table 6. Literature according to detection location 
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Detection location XSS SQL injection Both 
Server-side proxy [12] [2], [33] [5, 17], [22, 32], [30], [31]
Server-side application [24], [29] [6], [8], [9], [28] [13], [15], [23], [27]
Client-side application [16] [12], [16]
Browser [10] 
Client-side proxy [14], [18]

 

4.5 Reaction after detection 

We identified five categories on the actions taken by techniques after XSIVs are detected. Some 

techniques just report the fact that vulnerabilities are found with the line number of vulnerable location 

in the source code. Static analysis and testing techniques are in this category.  

Some techniques reject user requests and block the malicious input, while other techniques escape 

the input to change the malicious input to non-malicious input. However, escaping malicious input can 

still allow attacks. For example, when the escaped user input is stored to a database and reused later, it 

can be used for an SQL injection attack [3]. Some techniques use user-defined actions. For example, 

developers can write an input-escaping method that is executed when PQLMatcherⁿ [27] detects a user 

input flow that matches a predefined object flow pattern at runtime. With WebSecurityAbstractionⁿ 

[30], users specify validation constraints and transformation rules. The transformation rules define what 

to do when a certain pattern is found from user input. For example, programmers can define a rule to 

escape user input or change the input into HTML-encoding. Noxes  [18] asks users to determine if the 

user will allow the browser to access to a link or not when the link accesses an external site. In this 

case, users should be able to distinguish whether the link access will result in an XSS attack or not.  

Table 7 shows the papers in each category of reaction. 

Table 7. Literature according to reaction after detection 

Reaction after detection XSS SQL injection Both
Reporting [12], [16], [24], [29] [12], [16] [15], [22, 32]
Rejecting [10] [2], [8], [9], [33] [5, 17], [31] 
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Escaping [14] [28] [23] 
User defined action   [6] [13], [27], [30]
Asking user interactively [18]  

 

5. EVALUATION CRITERIA 

Once the types of vulnerabilities and the lifecycle time to use the techniques have been determined 

by an organization, important factors to guide the selection of techniques are accuracy, execution 

time, and ease-of-use. The evaluation criteria dimension provides a way of classifying the techniques 

in terms of the presentation of accuracy and the ease-of-use. We did not include execution time in this 

survey due to the lack of information in the literature. 

5.1 Accuracy 

Accuracy of detection techniques can be measured by false positive rate and false negative rate. A 

false positive occurs when a technique generates an alarm for vulnerability detection when there is no 

actual vulnerability. A false negative occurs when a technique does not detect the type of 

vulnerabilities that the technique was supposed to detect. False positive rate is the percentage of false 

positives among total alerts. False negative rate is the percentage of false negatives among total 

vulnerabilities. False negative rate is difficult to be measured because identification of all the 

vulnerabilities is impossible due to ever-evolving attack patterns and because the change in the 

environment of software operation can create new vulnerabilities.  

However, some techniques measured false negatives by their own definition of false negative. For 

example, AMNESIA [8] created a set of illegal input that was ensured to be malicious by an expert. 

Then, the authors checked if their tools detected all the illegal input identified by the expert. Using 

their definition of false negative, AMNESIA had no false negatives. SQLCheck [31] provided a 

theoretical proof of no false negatives and no false positives in the approach.  SQLCheck also 
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performed the evaluation of accuracy of the implemented tool using the same approach as 

AMNESIA. Organizations should keep in mind that there can be differences in the technique and the 

implementation of technique due to the complexity in implementation. 

WAVES [12] calculates the probability of false negatives rather than measuring the actual false 

negative rate from evaluation. To calculate the probability of false negative rate, WAVES uses the 

probability that WAVES can successfully fill a form in a web application with test input and the 

probability that WAVES correctly distinguish actual vulnerabilities from test execution results. 

Knowing the definition of accuracy in each detection technique is important to compare and select 

appropriate detection techniques. However, many techniques we reviewed did not mention accuracy 

or clearly provide a way to measure it. We classified the presentation of false positives and false 

negatives into three groups depending on how each paper described accuracy. Concrete presentation 

means that the paper on a technique described the accuracy with concrete values such as the number 

of false positives or false negatives from evaluation results. Explicit presentation means that the 

paper on a technique explicitly discussed false positives or false negatives without any evaluation 

results. Implicit presentation means that the paper on a technique did not mention false positives and 

false negatives explicitly, but we can infer the factors that could cause false positives or false 

negatives from the limitations described in the paper or from the technique used. Table 8 shows 

papers in each category of presentation of false positives.   

Table 8. Literature according to presentation of false positives 

Presentatio
n of false 
positives 

XSS SQL injection Both 

Concrete  [8] (0%), [9] (0%) [13] (26.9%), [15] (50%), [22, 
32] (< 0.2%), [31] (0%) 

Explicit  [2], [33] [27] 
Implicit [10], [12], [14], [16], 

[18], [24], [29] 
[6], [12], [16], [28] [5, 17], [23], [30] 
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Grammar-based approaches typically assume that applications do not allow SQL keywords as 

normal user input and therefore user input containing SQL keywords are considered malicious. 

However, if an application allows SQL keywords as normal user input, these tools can generate false 

positives. Input signature detection can generate false positives when input signatures are too 

restrictive. Output signature detection can generate false positives when output from execution 

includes predefined keywords such as a certain error message when there is actually no such error. 

Additionally, incorrect specification of trusted input source [9] or input string [29], or lack of 

necessary rules [30] can generate false positives. Tainted data flow detection techniques report false 

positives when the distrusted input sources are not listed completely [15]. Anomaly detection 

techniques have false positives when the training data was not enough to comprehensively represent 

normal behavior. False positives also can occur when the analysis of source code is incomplete due 

to technical limitations of static analysis. For example, Pixy [15] does not support object-oriented 

features and assumes that data from object member variables and methods are malicious.  

Table 9 shows papers in each category of presentation of false negatives.  False negatives can 

happen in a black-box testing approach when a tool fails to collect exhaustive web pages [12, 16]. 

An incomplete list of malicious patterns [2], an incomplete specification of unsafe string or 

distrusted input sources  [27, 29, 31], and incorrect policy description [30] also can lead to false 

negatives.   

Table 9. Literature according to presentation of false negatives 

Presentation of 
false negatives 

XSS SQL injection Both 

Concrete  [8] (0%), [12] (2.46%, 
for SQL injection) 

[31] (0%) 

Explicit  [9] [27] 
Implicit [10], [12], [14], [16], 

[18], [24], [29] 
[2], [6], [16], [28], [33]  [5, 17], [13] (for XSS), 

[15], [22, 32], [23], [30] 
Many of the reviewed papers did not provide concrete or explicit presentation of accuracy. A 
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standard of accuracy measurement and precise presentation of accuracy can be a future work for the 

research community. 

5.2 Ease-of-use 

XSIV detection techniques should be easily adopted by organizations and developers with as little 

effort as possible.  Ease-of-use can be measured by required expertise or additional operational 

complexity in using the techniques. We identified nine categories for additional efforts. Some 

detection techniques require programming efforts by using special routines. For example,  SQL 

DOM [28] requires developers to use predefined class methods generated for each schema to 

construct SQL queries. Some techniques require additional specification to specify trusted input 

sources [9], distrusted input sources [23],  or user-defined transformation rules [30]. Some detection 

techniques require multiple types of additional efforts. Some techniques that require a list of 

trusted/distrusted input sources or malicious characters/keywords would not need any additional 

efforts to describe the list because the list is already included in a default configuration of the tools or 

hard coded. Even in that case, the list should be updated as more input sources are added and more 

attack patterns are discovered. Therefore, we assigned those techniques into the additional 

specification category. 

Some techniques require a server or client side proxy. Also, some techniques require special 

operational environment that must be provided by software vendors rather than by an organization 

that is developing an application.  SQLStoredProceduren [33] requires new database front-end to 

process stored procedures.  JavaScriptMozillaⁿ [10] requires a special browser to intercept and 

analyze execution of JavaScript. Noxes [18] requires users to define initial filtering rules and add 

new rules interactively. WebSSARI [13] requires programmers to use an extended script language to 

express type qualifier. Anomaly detection techniques require a model to be created from execution 
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with non-malicious data during training period. Testing techniques require test input. Table 10 

shows papers in each category of additional efforts. 

Table 10. Literature according to additional efforts 

Additional efforts XSS SQL injection Both 
Application programming   [6], [28]  [15], [31] 
Additional specification [10], [29]  [9], [12], [16]  [13], [15], [23], [27], [30] 
Server-side configuration  [2]  [5, 17], [30], [31]  
Client-side configuration [14], [18]   
Special operational 
environment  

[10] (special 
browser) 

[33] (special 
database front-end) 

 

User interaction [18]   
Language extension   [13] 
Data training [12]   [22, 32] 
Test input generation [16], [24] [12], [16]  
None  [8]  
 

6. CONCLUSION AND FUTURE WORK 

We created and presented a taxonomy of vulnerability detection techniques for XSS and SQL 

injection to provide a basis for comparison and selection of techniques. We reviewed 23 techniques 

that deal with XSIVs from 21 papers. Our survey shows that the detection techniques are distributed 

in a wide range of detection criteria, analysis methods, and detection locations. Our taxonomy 

provides categories of techniques that organizations must consider when analyzing the effectiveness 

and efficiency of vulnerability detection techniques and also reveals that organizations can have 

false sense of security without clear understanding of techniques. Different detection criteria and 

analysis methods result in different accuracy and coverage of vulnerability detection and our 

taxonomy helps to understand those differences. Techniques also use different precision in 

presenting the accuracy of their techniques. Measures and presentation of accuracy should be 

standardized as a cooperative effort of researchers. Measuring accuracy of different techniques using 

the same benchmark with known vulnerabilities can help the fair comparison of vulnerability 
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detection. SecuriBench6 is one of these approaches. 

Security can be improved by an efficient combination of techniques. Further research on how to 

quantify the effectiveness and efficiency of the techniques to maximize the utility of combinations of 

techniques is required.  Organizations and projects have their own risks and requirements on security. 

Therefore, the quantification must be able to rank the techniques to be used for an organization 

reflecting the risks and requirements on security.  

 
6 http://suif.stanford.edu/~livshits/securibench/ 
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APPENDIX A. TAXONOMY CATEGORIZATIONS OF TECHNIQUES 

This appendix provides a table of detection techniques with categories according to our taxonomy described in this paper. In Table 11, FP 

stands for false positive and FN stands for false negative. 

Table 11. Summary of TeXSIVs 

  Detection Method Evaluation Criteria 
Technique Vulnerability 

Type 
Detection 
criteria 

Analysis 
method 

Detection time Detection 
locations 

Reaction after 
detection 

Accuracy  - 
Presentation 
of FP and FN 

Ease-of-use – 
Additional 
efforts 

AUSELSQI [2] SQL Input signature Dynamic 
analysis 

Operation time Server-side 
proxy 

Reject FP: Explicit 
FN: Implicit 

Server-side 
configuration 

SQLRandⁿ [5, 
17] 
 

Both Grammar-
based 

Dynamic 
analysis 

Operation time Server-side 
proxy 

Reject FP: Implicit 
FN: Implicit 

Server-side 
configuration 

SQLGuard [6] SQL Grammar-
based 

Dynamic 
analysis 

Operation time Server-side 
application 

User defined 
action 

FP: Implicit 
FN: Implicit 

Application 
programming 

AMNESIA [8] SQL Grammar-
based 

Dynamic 
analysis 

Operation time Server-side 
application 

Reject FP: Concrete 
FN: Concrete 

None 

WASP [9] SQL Taint data flow 
+ Grammar-
based 

Dynamic 
analysis 

Operation time Server-side 
application 

Reject FP: Concrete 
FN: Explicit 

Additional 
specification 

JavaScriptMozi
llaⁿ [10] 

XSS Anomaly Dynamic 
analysis 

Operation time Browser Reject FP: Implicit 
FN: Implicit 

Special 
operational 
environment + 
Additional 
specification 

WAVES [12] XSS Anomaly, 
output signature 

Dynamic 
analysis 

Operation time Server-side 
proxy 

Report FP: Implicit 
FN: Implicit 

Data training 

WAVES [12] SQL Output 
signature 

Black-box 
testing 

Testing time Client-side 
application 

Report FP: Implicit 
FN: Concrete 

Additional 
specification  + 
Test input 
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  Detection Method Evaluation Criteria 
Technique Vulnerability 

Type 
Detection 
criteria 

Analysis 
method 

Detection time Detection 
locations 

Reaction after 
detection 

Accuracy  - 
Presentation 
of FP and FN 

Ease-of-use – 
Additional 
efforts 
generation 

WebSSARI 
[13] 

Both Tainted data 
flow 

Dynamic 
analysis 

Operation time Server-side 
application 

User defined 
action 

FP: Concrete 
FN: Implicit 

Additional 
specification + 
Language 
extension 

DetectCollectX
SSⁿ [14] 

XSS Input/ Output 
signature 

Dynamic 
analysis 

Operation time Client-side 
proxy 

Escape FP: Implicit 
FN: Implicit 

Client-side 
configuration 

Pixy [15] Both Tainted data 
flow 

Static analysis Coding time Server-side 
application 

Report FP: Concrete 
FN: Implicit 

Additional 
specification + 
Application 
programming 

SecuBat [16] XSS Expected result 
violation 

Black-box 
testing 

Testing time Client-side 
application 

Report FP: Implicit 
FN: Implicit 

Test input 
generation 

SecuBat [16] SQL Output 
signature 

Black-box 
testing 

Testing time Client-side 
application 

Report FP: Implicit 
FN: Implicit 

Additional 
specification 

Noxes [18] XSS Restricted link 
access 

Dynamic 
analysis 

Operation time Client-side 
proxy 

Ask users FP: Implicit 
FN: Implicit 

Client-side 
configuration + 
User interaction 

AnomalyDetect
ionⁿ [22, 32] 

Both Anomaly Dynamic 
analysis 

Operation time Server-size 
proxy 

Report FP: Concrete 
FN: Implicit 

Data training 

AntiMaliciousI
njectionⁿ [23] 

Both Input signature Secure 
programming 

Coding time Server-side 
application 

Escape FP: Implicit 
FN: Implicit 

Additional 
specification 

XSSTestGenⁿ 
[24] 

XSS Tainted data 
flow + 
Expected result 
violation 

White-box 
testing 

Testing time Server-side 
application 

Report FP: Implicit 
FN: Implicit 

Test input 
generation 

PQLMatcherⁿ 
[27] 

Both Tainted data 
flow 

Dynamic 
analysis 

Operation time Server-side 
application 

User defined 
action 

FP: Explicit 
FN: Explicit 

Additional 
specification 

SQL DOM 
[28] 

SQL Input signature Secure 
programming 

Operation time Server-side 
application 

Escape FP: Implicit 
FN: Implicit 

Application 
programming 

WebStaticAppr
oximationⁿ [29] 

XSS Input signature Static analysis Coding time Server-side 
application 

Report FP: Implicit 
FN: Implicit 

Additional 
specification 

WebSecurityA
bstractionⁿ [30] 

Both Input signature Dynamic 
analysis 

Operation time Server –side 
proxy 

User defined 
action 

FP: Implicit 
FN: Implicit 

Additional 
specification  + 
Server-side 
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  Detection Method Evaluation Criteria 
Technique Vulnerability 

Type 
Detection 
criteria 

Analysis 
method 

Detection time Detection 
locations 

Reaction after 
detection 

Accuracy  - 
Presentation 
of FP and FN 

Ease-of-use – 
Additional 
efforts 
configuration 

SQLCheck [31] Both Grammar-
based 

Dynamic 
analysis 

Operation time Server –side 
proxy 

Reject FP: Concrete 
FN: Concrete 

Application 
programming + 
Server-side 
configuration 

SQLStoredProc
eduren [33] 

SQL Grammar-
based 

Dynamic 
analysis 

Operation time Server –side 
proxy 

Reject FP: Explicit 
FN: Implicit 

Special 
operational 
environment 

 

For easy reference, we used representative names for the techniques when necessary. We used the names from the titles of papers and names 

of tools described in the papers. However, we associated names we created that can remind the approaches in the cases when no specific names 

were given in the papers. The names we created are notated with superscript ⁿ. 
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