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Abstract

Trust is a crucial basis for interactions among parties in large, open systems. Yet, the scale
and dynamism of such systems make it infeasible for each party to have a direct basis for trust-
ing another party. For this reason, the participants in an open system must share information
about trust. However, they should not automatically trust such shared information. This paper
studies the problem of propagating trust in multiagent systems. It describes a new algebraic
approach, shows some theoretical properties of it, and empirically evaluates it on two social
network datasets. This evaluation incorporates a new methodology that involves dealing with
opinions in an evidential setting.

1 Introduction

We consider autonomous parties such as people or businesses that interact with each other in
modern information environments. Ultimately, whenever a party interacts with another, the two
parties must trust each other sufficiently to be willing to carry out the desired interaction. In a
general sense, a party, Alice, trusts another party Bob when Alice places her plans in the hands of
Bob.

Importantly, trust between a trusting and trusted party must have a basis in some direct rela-
tionship (and with respect to a relevant purpose). The relationship in question could be based on
or arise from a commercial or social transaction, or through mere participation in common groups,
or through an assessment of certain attributes that apply to each party. No matter what exact form
the direct relationship takes, the scale of real systems is such that a party would feature in direct



relationships with a relatively small number of others. Consequently, it would have reason to trust
or distrust a relatively small subset of the parties with whom it might consider interacting.

The natural response to the above challenge is to enable the parties to share information with
each other about whether and how much to trust others. It stands to reason, however, that trust
need not propagate. For example, Alice may trust Bob and Bob may trust Charlie (and Alice may
know this fact), but it may not be the case the Alice trusts Charlie. Although the above holds in
general, in many practical settings, the propagation of trust is a reasonable description of what
actually transpires. In real life, individuals and businesses give referrals and rely enormously on
referrals to determine with whom to interact [Frenzen and Nakamoto, 1993]. Accordingly, we
confine ourselves to the practical situations that do lend themselves to the propagation of trust.
Such settings arise naturally whenever similarity in the needs of the various parties is a sufficient
reason for the existence of trust. For example, to anticipate one of the datasets we study, if Alice
trusts Bob’s opinions about movies and Bob trusts Charlie’s opinions about movies, then it stands
to reason that Alice might trust Charlie’s opinions about movies.

Trust can be naturally multidimensional, including various aspects of competence and intent.
Multidimensionality can explain the evidence pro and con regarding the propagation of trust. For
example, if Alice trusts Bob as an IT specialist and Bob trusts Charlie as a plumber, Alice may yet
not trust Charlie as a plumber because she doesn’t trust Bob to be a good judge of plumbers. The
approach we describe below can accommodate multidimensionality but, for the sake of simplicity,
we consider a single dimension and assume that it incorporates the aspect of trust in the sense of
judging others and giving valuable referrals. Besides its simplicity, an important reason for this
limited model is that the independently existing datasets upon which we empirically evaluate our
approach do not lend themselves to multidimensional assessments.

We restrict our attention to situations where the various parties cannot willfully change their
behavior to exploit others. For example, a hotel would treat all guests alike (modulo random
variations). A hotel cannot install or remove a beautifying water fountain for different guests.

Further, we generalize the conceptualization of evidence here to mean not necessarily empirical
but any basis of positive and negative opinions, respectively. This is important for our application
domain of social networks, where the base relationships are based on opinions (even prejudices),
not on empirical evidence.

There are three contributions in this paper. First, we define three operators, aggregation, con-
catenation, and selection, for efficiently and accurately propagating trust in social networks. Next,
we prove some useful formal properties of the operators. Third, in order to evaluate our approach,
we present a transformation from subjective opinions to objective (evidential) ratings.

2 Background

From the standpoint of trust, a system of interacting agents is naturally modeled as a weighted
directed graph, each of whose vertices correspond to an agent and each of whose edges corresponds
to a direct relationship of trust from the agent at the source vertex to the agent at the target vertex,
the weight on the edge being a measure of the trust placed. Conventionally, this weight is a scalar



from the real interval [0, 1]. A path in such a graph thus corresponds to propagated trust and a
weight on a path can be induced that reflects the measure of the trust propagated.

The earliest works on the propagation of trust assume that the propagation of trust along a
path is multiplicative (e.g., the weighted average approach in [Golbeck, 2005]). For example, if
Alice trusts Bob at 0.8 and Bob trusts Charlie at 0.7, then Alice is inferred as trusting Charlie at
0.8 x 0.7 = 0.56. This reflects the natural intuition that the measure of trust placed over a path
falls as a path gets longer. (Our more nuanced approach captures this intuition as well.)

How trust is aggregated from more than one path is more challenging. An intuition is that the
contributions of independent paths be added in some way, because they would reinforce each other.
However, a simple addition of the path weights is generally inappropriate, because it would lead
to double counting, and yield trust ratings greater than 1.0 unless somehow corrected.

Another challenge to trust propagation is the well-known rumor problem. What we would like
to avoid are situations such as where Alice trusts Charlie because Bob told her he does and Bob
trusts Charlie because Alice told him she does. We would like to make sure that there are no cycles
in the flow of information. This is the reason that several trust propagation approaches represent
only direct trust information in the graph models and use that information as the base for all their
calculations of trust.

A common feature of most of the popular approaches for trust is that they measure the extent
of trust via a scalar [Gray et al., 2003; Katz and Golbeck, 2006; Levien, 2003; Quercia et al., 2007;
Ziegler and Lausen, 2004]. Although the scalar representation is simple, it is not well-suited to the
propagation of trust. Following J@sang, we model one party’s trust in another party in terms of a
triple consisting of three scalars corresponding to belief (i.e., positive trust) b, disbelief (i.e., distrust
or negative trust) d, and uncertainty u. However, each triple (b, d, u) satisfies the constraint that b+
d+u = 1—hence, this representation supports not three but two degrees of freedom. The additional
degree of freedom compared to the traditional one-scalar representation helps us represent the
certainty of information. In Jgsang’s approach, the above triple representation is derived from a
pair of numbers representing the positive evidence r and the negative evidence s, respectively,
where 7 + s > 0. The (b,d,u) and (r, s) representations—called belief and evidence spaces,
respectively—can be mapped to each other without loss of information. In notation, (b, d,u) =
Z((r,s)) and (r,s) = Z7'((b,d,u)), where Z is a suitable mapping [Wang and Singh, 2007].
Below, we use M; to refer to a belief report of the form (b, d, u).

Wang and Singh (W&S) [2006] ,[2007] adopt Jgsang’s framework [Jgsang, 1998], but deviate
significantly from his approach. W&S base certainty on the strength, and not just the amount of
evidence. First, for a given amount of evidence, increasing unanimity yields higher certainty. Sec-
ond, holding the extent of the unanimity (or conflict) constant, an increasing amount of evidence
yields increasing certainty.

Certainty provides a principled basis for propagating trust and distrust. For example, if Alice
trusts Bob highly and Bob trusts Charlie highly, Alice would trust Charlie almost as highly. And,
if Alice trusts Bob highly and Bob distrusts Charlie highly, Alice would distrust Charlie almost
as highly as Bob does. In other words, even the propagation of distrust relies upon trust in the
propagator. By contrast, if Alice distrusts Bob highly, then whether Bob trusts or distrusts Charlie,
Alice would be uncertain about Charlie. It is impossible to capture the above nuances with a scalar



representation.

3 Approach

Building on the above model of a social network as a graph, we propose a model called CertProp
that handles the propagation of trust. CertProp is based on three operators. Concatenation or ®
deals with the propagation of trust ratings along a path. Selection or (S) chooses the most trust-
worthy path to each witness, whereas aggregation of & deals with the combination of trust ratings
from paths between the same source and target. The aggregation operator is due to Jgsang [1998]
as modified in [Wang and Singh, 2006]; the others are new here.

3.1 New Operator: Concatenation

Suppose Alice learns about Charlie from Bob. The extent of trust that Alice places in Charlie
would be Bob’s trust in Charlie discounted by Alice’s trust in Bob.

Let agent A place trust M; = (by,dy,u;) in agent B’s references and B place trust My =
(by, dy, ug) in agent C'. Then A’s trust in C' due to the reference from B can be calculated by the
concatenation M, ® M,, defined as follows.

Definition 1 Concatenation operator ®. Suppose M, =
(by,dy,uy) and My = (be, ds, us) are two belief functions, we define M = My @ My = (b, d,u) =
Z((byro, bisa)), where (ry, s9) = Z7Y(My).

3.2 Aggregation

The aggregation operator combines bodies of evidence. Consider a situation where Alice learns
about David separately from both Bob and Charlie, and has factored in her trust for Bob and Charlie
according to the above concatenation operator. What should be Alice’s combined trust in David?
The answer depends upon the aggregation of the ratings obtained from two paths.

Definition 2 Aggregation operator @. Let My = (by,dy,u;) and My = (by, ds, us) describe rat-
ings computed from two paths between the same source and target. Then My®My = Z(Z 1 (M;)+
Z71(M>))

3.3 Applying Concatenation and Aggregation

Consider an agent A with neighbors { By, ..., B,,}, which A trusts Mj,..., M,,, respectively. Let
the B; trust the target agent C' be M/. Then we can infer the trust placed by A in C, M as

M= (M @ M) & (My® M) & -+ & (M, @ M,,)

If a neighbor has not yet computed its trust in C', we can run the algorithm recursively to obtain
the trust from merging and combining the trust from the neighbor’s neighbors, and so on, until we
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get to the witnesses whose trust values in C' are computed from their direct interactions with C'. So
the trust ratings can be merged in a bottom up fashion, from the leaves of the trust network up to
its root A.

3.4 New Operator: Selection

The above approach in essence enumerates all paths from the originating agent to the target, and
then uses the concatenation operator to combine beliefs along each path, the aggregate operator
to combine beliefs from all paths. But there is a problem by doing it this way. For example, in
Figure 1, witness W tells agent A that he has 1 positive and 1 negative experiences with the target.
He tells the same information to agent By. Both By and B, are agent A’s neighbors. A should not
use the aggregation operator & to combine the beliefs from B, and B,, since their beliefs come
from the same source.

So how may we combine beliefs which come from the same source, but propagate via different
paths? We define a new operator, called selection operator, (9), to select one out of multiple paths
that end at the same point. We select the path that offers the highest belief. Using any other path
would lose valuable information. Adding a path would cause double counting. In this example,
we have two paths: P, = A — By — W;,and P, = A — By — W,. Let A’s trust in B; and
By be M, and My, respectively, and By and By’s trust in W; be M| and M, respectively. Suppose
M, ® M] = (0.6,0.3,0.1), and My ® M} = (0.5,0.25,0.25). We pick the most reliable path
from A to W;. Since M; ® M| > My ® M) (0.6 > 0.5), so P; is the most reliable path. So
(My @ M) ® (Mz ® M3) = My @ Mj.

By
M N
W; ¢
o—
M, %
By

Figure 1: Selection operator (S

Definition 3 Selection operator ®). Let P, and P, be two paths from AtoW. Let My = (by,dy, u;)
be the trust concatenated along Py, My = (by, dy, us) be the trust concatenated along P,. Then if
by > by, then M, @ My = My, otherwise M; @ My = M.

3.5 Applying Concatenation, Aggregation, and Selection

For a given trust network, to propagate trust of A with C', we combine beliefs as following. Using
selection, we find the best path (to a fixed depth) from A to each witness. Then we concatenate
beliefs along this path. The resulting belief is the consolidated belief supported by that witness.
Then we combine all beliefs supported by all witnesses by using aggregation.
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For example, in Figure 2, by applying all three operators, the propagated trust is M = ((M; ®
Mi) ® (My @ M3) ® (M3 ® My)) @ Ms) @ (My @ Mjy).

To illustrate the double counting problem without selection in Figure 2, let M; @ M, =

(0.8,0.1,0.1), My @ M} = (0.6,0.2,0.2), M3z ® M) = (0.6,0.3,0.1), Z='(M;) = (50,5),
M, = (0.9,0.05,
0.05), and Z~*(Mj) = (20,0). The actual trust of C' is M, where Z=Y(M) = Z71(M;) ®
Z~Y(M}) = (70,5). However, by applying only concatenation and aggregation, the estimated
trust Z 1 (M) = Z7H((My @ M7) & (My @ My) @ (M3 @ M})) @ Ms) & (M, @ Mjy)) = (118, 10),
which double-counts Mj5. This shows that multiple paths via the same witness can lead to double-
counting. This is especially obvious when the aggregated belief of the paths from the source to a
witness is greater than one.

Figure 2: Trust propagation in a social network

4 Properties

To propagate trust meaningfully and efficiently, we desire certain properties of the three operators.
CertProp follows Jgsang [1998] and W&S’s[2006] aggregation (based on Jgsang [1998] but with a
different 2), but different concatenation and selection. W&S showed that aggregation is associative
and commutative. Now we establish some useful properties of concatenation and selection.

Theorem 1 Selection S) is commutative.

Proof: We have to show M1®M2 = MQ@MI. Let M1 = <b1,d1,ul>, M2 = <b2,d2,U2>, and
M&My = M, which means b; > by. Then M@ M, = M,.

Theorem 2 Selection () is associative.

Proof: We have to show M1 @ (M2 @ Mg) = (Ml @ Mg) @ M3. Let M1 = (bl,dl,u1>,
My = (by, da, us), and M3 = (b3, d3, u3).
Case 1 : Suppose b; is larger than by and bs. If by > b3. Then M; © (Ms ® Ms) = M; =

M1®M3 = <M1®M2)®M3 Ifb2 < b3,thenM1®(M2@M3) :M1®M3 :M1 =
My ® Mz = (M, ® M) ® Ms.



Case 2 : Suppose b, is larger than b; and b3. Then M; ) (Ms S Ms)
=M, ® My = My = My ® M3 = (M; ® M) ® Ms.

Case 3 : Suppose bj is larger than by and by. Then M; ) (Ms S Ms)
= M, ® M3 = My = (M, ® M) ® Ms.

Thus, My © (M, ® M3) = (M © M) ® Ms.
Theorem 3 Concatenation @ distributes over aggregation &.

Proof: We need to prove that M; ® (My & M3) = (M; @ Ms) @& (M; ® Ms). Assume
the equivalent evidence corresponding to M, and M; is (13, s9) and (rs, s3), respectively. Let
M; = (by,dy,u;). Then the equivalent evidence corresponding to M; @ (My @ Mj) is (by(r2 +
r3),b1(S2 + $3)). The evidence corresponding to (M; ® M) & (M; ® Ms) is (b1(r2),b1(s2)) &
(by(r3),b1(s3)) = (by(r2 + 7r3), b1(s2 + s3)), which completes the proof.

Conjecture 1 Concatenation @ distributes over selection (S).

5 Evaluating Trust Propagation

It is difficult to evaluate an approach on real data such as ours because large networks of agents
interacting with one another do not exist. For this reason, we adapt two datasets of social networks,
namely, FilmTrust and a PGP key ring. Each dataset is naturally modeled as a weighted directed
graph.

We use the following strategy for evaluating a trust propagation algorithm over a graph. Typ-
ical networks carry a lot of redundancy, which we can exploit to evaluate the effectiveness of an
approach for propagation [Katz and Golbeck, 2006]. The information associated with any specific
edge may be induced from the other relevant edges, namely, those that fall on a sufficiently small
path from the source to the target (of the given edge).

Specifically, let there be an edge from agent A to agent B of weight d 45 (denoting actual trust).
We remove this edge temporarily and estimate the propagated trust 7 4 5 between A and B based on
paths from A to B. The difference between d 45 and i4p reflects how effective an algorithm is at
inferring the relationship between two agents. In essence, the elided direct relationship of weight
d ap yields the ground truth with which to evaluate the propagation.

5.1 Accuracy Metrics

To compare the propagated trust with the actual trust (the weight of the direct edge), we introduce
two metrics: P-error and B-error, which are defined in evidence and belief space, respectively. Let
M1 = <bl, dl,U1>, where Z_l(Ml) = <7”1, 81>, and MQ = <b2, dQ,U2>, where Z_l(MQ) = <7’2, 82>.
The P-error between M; and M, is |y — s, where o = ris. The B-error of M; and M, is
defined as |b; — by|. Importantly P-error provides a metric for comparing with single-valued trust
representations like TidalTrust [Katz and Golbeck, 2006], whereas B-error yields more accurate
comparison because it considers the certainty of the trust ratings. B-error is more sensitive because

it is low if either (a) two certainties are close, or (b) P-error is low.
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5.2 Model Variants

Note that we find paths within a fixed length for the following reasons. First, it is computationally
expensive to find all paths in a huge social graph. Besides, shorter paths yield better accuracy in
general because longer chains are weaker [Katz and Golbeck, 2006; Yu et al., 2003]. However, a
trade-off still exists. Deeper search may yield more evidence, but takes more time. Shallow search
may give us accurate evidence quickly, but may not find any path. Thus, we propose three strate-
gies. The shortest strategy first finds the shortest path from A to B, and then find all paths within
that length. The fixed strategy searches all paths within a specified depth. In our experiments, we
set this depth to seven to make sure we find at least one path for all connected pairs in the dataset.
The selection strategy yields the most trusted paths to each witness found by fixed. We compare
our approach, CertProp, to W&S [2006]. To show the influence of models and the strategies, we
define three variants for both W&S and CertProp, which Table 1 summarizes.

ModelName | & | ® | ® | Path
W&S (shortest) W&S | No | Shortest
W&S (fixed) W&S | W&S | No | Fixed
W&S (selection) W&S | Yes | Fixed
CertProp (shortest) New | No | Shortest
CertProp (fixed) W&S | New | No | Fixed
CertProp (selection) New | Yes | Fixed

Table 1: Variants of W&S and CertProp studied here

5.3 From Opinions to Evidence

Using the available social network datasets poses two challenges. One, the weights used in these
networks are scalars whereas our approach needs two reals, namely, (b, d, u) (with b+ d +u = 1).
Two, the weights are subjective opinions and not evidence. Accordingly we propose heuristics
for mapping opinions to evidence, so they become amenable to our approach. We propose two
approaches to transform opinions into evidence: (1) linear and (2) Weber-Fechner. We consider
subjective ratings drawn from a scale such as 1 to 10 (FilmTrust), 1 to 4 (PGP), and so on.

The idea of the linear transformation is normalization. In our representation, the ratings at
the end points (intuitively, reflecting unanimity of various considerations) correspond to a lower
uncertainty v than those in the middle. Further, the belief b derived from a rating of 10 should
be the highest and that derived from a rating of 1 the lowest. Therefore, we translate a FilmTrust
rating to our trust value (r, s) by simply interpreting the single number as the number of positive
experiences 7 relative to a fixed total number of experiences of 10. For example, we translate
an opinion rating of 4 to evidence (r,s) = (4,6). Likewise, we translate a PGP rating of 3 to
(3,1). Although this approach is simplistic, it provides us the metrics to compare with other trust
propagation methods.



The Weber-Fechner transformation satisfies two observations. It is based on the Weber-Fechner
“law” [Web], which says the relationship between stimulus and perception is logarithmic. If a
stimulus (i.e., good experience) is tripled in strength, the corresponding perception (i.e., opinion
ratings) will be three steps above the original value. For example, suppose agent A has 10 good
transactions with agent B, and A’s opinion rating about B is three. A’s opinion rating about B
will be four if A has 20 more good transactions. Second, as always, in our approach, the certainty
of the object rating corresponding to the average opinion should be the lowest. Based on these
observations, we define a transformation function to transform opinions into evidence.

Definition 4 Weber-Fechner Transformation. Suppose . is the set of normalized opinion ratings.
Let A, P, U be the average, the most popular, and the least popular opinion in Y, respectively.

Then W (o € X) = (k74 k) is the transformation from opinions into evidence, where k =
In <#|]]Zj;|U + e), # P and #U are the counts of P and U.

The intuition behind £ is to capture the slope between the numbers of the most and least pop-
ular opinions. If £ is larger, the difference of the probabilities between the transformed ratings
corresponding to two successive opinions will be bigger. For example, the number of the most
and least popular opinions in FilmTrust and PGP are 199, 308 and 202, respectively, which means
it requires more positive evidence to increase the opinions by one in PGP than in FilmTrust. We
add a correction e to make sure k is greater than one. The exponent o /A captures the logarithmic
relationship between evidence and ratings.

For example, in the FilmTrust dataset, the average of normalized opinions is 0.68, the most
and least popular normalized opinions are 0.7 and 0.2, which have 228 and 26 counts, respectively.
Then, W (0.3) = (2.21,6.01), and W (0.7) = (6.33,6.01).

Figure 3 compares the certainties of linear and Weber-Fechner transformed ratings in the
FilmTrust and PGP dataset. With Weber-Fechner, the average rating has the lowest certainty,
but not with linear does not (in PGP). In FilmTrust, the average normalized rating is close to 0.7,
while the average rating in the PGP dataset is close to 1, which is the defult value in PGP setting.
Sections 5.4 and 5.5 show how these transformations affect the results.

5.4 FilmTrust

Our first evaluation is based on FilmTrust [Katz and Golbeck, 2006; Kuter and Golbeck, 2007], a
small social network of film buffs. In this dataset, the 538 vertices represent agents (users) and the
1,234 directed edges represent their trust relationships with other users. The weight of an edge is
an integer in [1, 10], which reflects the strength of the source agent’s qualitative rating or opinion
of the target agent.

Katz and Golbeck’s [2006] algorithm, TidalTrust, collects trust data from all referral paths with
the shortest length from a source to a sink. It selects referral paths with strength above a threshold
and uses them to compute the overall trust value.

Kuter and Golbeck’s [2007] trust inference model, Sunny, provides a confidence measurement
based on probabilistic sampling. Sunny exhaustively finds all possible paths from a source to
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a sink. The confidence measurements in Sunny, W&S, and CertProp, reduce the influence of
path length—longer paths contribute less to the overall result than shorter ones. But considering
additional paths provides access to more opinions, and can yield more accurate inference.

Figure 4 shows the paths found by the fixed variant, which exhaustively searches all paths
within the fixed length three from the source to a sink (diamond), after the directed edge (dashed
arrow) is removed. In this case, we are left with two paths of length two and 13 paths of length
three. The shortest variant only finds the two paths in the shortest length, which is two. Conversely,
the fixed strategy considers all 15 paths of up to a fixed length of three. Our experiments below
show how search strategies affect the accuracy of the propagation.

Figure 4: Paths of length less than or equal to three from a source (solid rectangle) to a sink

Figure 5 shows the average P-errors of TidalTrust, Sunny, W&S, and CertProp. The shortest
variant has similar performance to Sunny, which outperforms TidalTrust. The fixed variant has the
best performance with both W&S and CertProp.

To provide more insightful comparisons among the variants of W&S and CertProp, Figure 6
shows both the P-error and B-error with different search strategies. We draw three conclusions.
First, the fixed variant also yields higher certainty (reflecting the additional evidence found) than
the shortest, which indicates the former provides better estimates by considering more evidence
(paths). Next, although CertProp and W&S have similar P-errors in both linear and Weber-Fechner
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cases, CertProp has a lower B-error (more accurate). This is because CertProp has better concate-
nation operator, which is further discussed in Section 5.6. Third, both CertProp and W&S yield
better performance in the Weber-Fechner case. This result shows that the Weber-Fechner trans-
formation successfully reduces the subjectivity in FilmTrust. The subjectivity of the opinions
decreases the accuracy of CertProp and W&S.
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Figure 6: Average P-errors and B-errors with different search strategies, evaluated on FilmTrust
with linear and Weber-Fechner transformations

To show more evidence of how the amount of evidence affects prediction accuracy, we use ran-
dom walk sampling [Leskovec and Faloutsos, 2006] to generate five 25% samples. The sampling
method preserves the properties of the graph, such as degree distribution, clustering coefficient,
and so on, with a moderate sampling size of 15% to 25%. As Figure 7 shows, the confidence of
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the prediction increases with the number of paths found. Also the average ratings, the depth of
the paths found, and the P-errors from the sample data are similar to the results from the whole
FilmTrust data. We apply the same sampling method in Section 5.5 to reduce the size of the PGP
dataset.
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Figure 7: The results of CertProp (fixed) on the sampling data, showing the certainty increases
with the number of the paths found, while the average rating, the depth of paths found, and P-error
are preserved by the random-walk sampling method

5.5 PGP Web of Trust

The web of trust is a concept used in Pretty Good Privacy (PGP). The main idea is that instead
of relying on centralized certificate authorities, the web of trust establishes a decentralized trust
model of public keys, in order to verify the authenticity of the bindings between users and their
public keys.

For example, user C' receives a digitally signed email from user S. C needs S’s public key to
verify the digital signature. However, a fake public key can be easily created with S’s name. To
verify the authenticity of the public key, one simple way is to find another trustworthy user who
can confirm the public key belongs to S. In other words, the authenticity of the public key of .S can
be verified if C' can find a user who signs the public key of S. This is called a signature relation.
The web of trust is a directed graph representing the signature relation among users. Each vertex
represents a user, and an edge from user A to user B means the public key of B is signed by user A.
Besides, an integer trust value in [1, 4] is associated with each edge to indicate the strength of the
relation. To verify the authenticity of S, C' needs to find a path (a confirmation chain of signature
relations) to reach S. There could be more than one path between two users. The more disjoint
paths exist the harder it is to fake the confirmation chain.

We repeat the experiment of Section 5.4 on the PGP dataset. The web of trust data is collected
from the PGP server snapshot [wot] on June 5, 2008. It consists of 39, 246 vertices and 317,979
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edges. The average distance (i.e., the shortest path) of all vertex pairs is around 6. We sample the
graph to scale down the size of the data using Random Walk sampling [Leskovec and Faloutsos,
2006].

We compare CertProp with W&S and a trust propagation approach, Naive. In Naive trust prop-
agation, concatenation is defined as the multiplication of the probabilities & = . Aggregation
is defined by the average of the probabilities. There is no certainty concept in Naive.

Figure 8 compares CertProp with W&S and Naive. Just as for FilmTrust, CertProp has similar
performance with respect to P-errors, but outperforms W&S in B-errors. Naive is the worst among
the three approaches. Also, in Weber-Fechner case, both CertProp and W&S improve, but the
concatenation of CertProp yields greater improvement than W&S.
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Figure 8: Average P-errors and B-errors of W&S, Naive, and CertProp, with different search
strategies, evaluated on PGP with linear and Weber-Fechner transformations

5.6 Discussion
We can draw the following conclusions from the evaluation in Sections 5.4 and 5.5.

Overall Performance of CertProp and W&S CertProp (fixed) is the best trust propagation ap-
proach in both datasets. In general, CertProp is more accurate and efficient than W&S in
terms of B-error, although they have similar P-errors. As mentioned in Section 5.1, the ac-
curacy of probability-certainty trust model is better estimated by B-error. Besides, CertProp
and W&S both have better P-errors than Sunny and TidalTrust in FilmTrust, and Naive in
PGP.

Performance of Search Strategies The fixed variant is generally more accurate than shortest,
whereas the selection variant is outperformed by fixed in FilmTrust but has similar perfor-
mance as fixed in PGP, depending on the properties of the networks. In most cases, selection
does not perform well because it ignores too much evidence.
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Performance of ® in CertProp and W&S The main difference between CertProp and W&S is
in their concatenation operators. CertProp concatenation discounts the evidence of the re-
ferral by the belief of the referrer, whereas W&S concatenation discounts the belief of the
referral by the belief of the referrer. The certainty of concatenated trust in CertProp is gener-
ally higher than in W&S, because the belief can be viewed as certainty-discounted evidence.
The results in Sections 5.4 and 5.5 indicate the concatenation in CertProp has better accuracy
than W&S.

Further, CertProp concatenation works evidence space. In other words, it requires no Z 1
mapping [Wang and Singh, 2006] (as described in Section 2). To show how Z~! mapping
affects the efficiency, we compute the concatenation of two trust ratings, M; and M,, where
Z7Y (M) = (ry,s1) and Z71(My) = (ro, s9). Each of ry, sy, 79, Sy is an integer ranging
over [1,100]. We consider all combinations represented by Cartesian product r1 X s X
r9 X S3. Thus, there are total 100 million combinations. Generally, the Z~! mapping can be
approximated using binary search or Newton’s method [Wang and Singh, 2007]. Instead of
computing it in real-time, we build a look-up table in advance. Despite the speed up of Z 1,
we find that each each CertProp concatenation takes on average 0.12 milliseconds, whereas
W&S takes 133.37 milliseconds.!

Performance of (S in CertProp and W&S The selection operator () does not help in either W&S
or CertProp. We observed that, in datasets like FilmTrust, opinions are assigned by users,
who trust others not based on evidence, but primarily based on impressions. For example,
A may give B a high opinion just because everybody trusts B. Selection is helpful only
in evidence-based datasets where double counting is undesirable. In other cases, Selection
is overly cautious and ignores too much evidence when a witness can be reached by many
paths.

However, the selection result verifies the observation made by Katz and Golbeck [2006]—
shorter paths have more accurate trust inference for a fixed trust rating. As Figure 9 shows,
in FilmTrust, shortest paths tend to be more trustworthy because they are selected more by
the selection (S operator. For example, over 90% of paths of length of 2 are selected. The
PGP evaluation also has a similar result.

Performance of Linear and Weber-Fechner Transformation Our evaluation shows that, for opin-
ion networks, evidence-based trust propagation approaches, like CertProp and W&S, are
more accurate in Weber-Fechner transformed graphs than linear transformed ones. This re-
sult verifies our assumption that the opinions in the datasets are subjective. Also it indicates
Weber-Fechner transformation can reduce such subjectivity, whereas linear transformation
fails to reduce the subjective because it cannot adapt different properties of the datasets.

'The experiment is conducted on MacBook Pro with 2.16 GHz Intel Core 2 Duo, and 2 GB 667 MHz DDR2
SDRAM, in Java Run-time Environment 5.0.
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Figure 9: The distribution of the length of the paths found by CertProp (selection). Shorter paths
tend to be more trustworthy and hence are selected more by selection.

6 Literature

Trust models are widely studied in various domains. Trust propagation methods can be categorized
as the models that consider the witness information sources [Sabater and Sierra, 2005], or retrieve
and aggregate ratings from the social network [Ramchurn et al., 2004]. Here, we focus on trust
propagation approaches not covered in above surveys.

Richardson e al.[2003] discuss an abstract framework for trust propagation. Each user main-
tains trust in a small number of other users. A user’s trust in any other user can be computed by
using the existing web of trust recursively. Richardson ef al. first enumerate all paths between
the user and every other user who has a local belief in a given statement. Next they calculate the
belief associated with each path by using a concatenation operator along each path, and combine
the beliefs associated with all paths using a predefined aggregation operator.

Yu and Singh [2002; 2003] study distributed reputation management in a social network whose
member agents cooperate with each other to find the trustworthiness of other agents. When an
agent wants to find the trustworthiness of a service provider, it uses the referral network to find
witnesses, and combines the beliefs of those witnesses regarding the service provider. Yu and
Singh’s approach is based on the Dempster-Shafer theory of evidence. It treats a service with
medium quality as of unknown quality, not as a known medium quality. More importantly, it does
not completely address double counting in that multiple paths through the same agent are treated as
if they were independent. Although the approach identifies witnesses who have direct experience,
so there is no double counting at that level.

Gray et al. [2003] solve trust propagation problem in mobile ad hoc networks. In their ap-
proach, the concatenation is calculated as the average of trust of each edge along the referral path,
where the trust of edges is discounted by the depth in the referral path. Trust from different paths
is aggregated by choosing the most trusted of the available paths. Quercia et al. [2007] also prop-

15



agates trust in mobile network context. Based on the web of trust, they build relationship graphs
where nodes are relationships. Two related nodes are linked if they are either from the same rater
or rating the same person. At the beginning, some of nodes are rated at the first place. Then trust
is propagated from rated nodes to unrated ones by computing a predictive function. However,
the number of relationships in real-world networks is much larger than the number of nodes. For
example, there are 1,234 edges (538 nodes) in FilmTrust, and 317,979 edges (39, 246 nodes) in
PGP. Propagating trust in the corresponding relationship graphs would be more computationally
expensive.

Trust management in peer-to-peer systems have been also widely studied [Kamvar et al., 2003;
Zhou et al., 2008]. Spectral decomposition is used on the adjacency matrix of the network graph to
estimate global reputation, which is also called the global group trust metric [Ziegler and Lausen,
2004]. Guha et al. [2004] associate trust relations to matrix operations. For example, the commu-
tativity of trust is associated to matrix transpose, while direct propagation is associated to matrix
multiplication. Different from global group methods, our approach models trust from a personal
perspective. Propagated trust takes into account personal bias. Besides, matrix approaches require
several iterations to converge.

Advogate [Levien, 2003] and Appleseed [Ziegler and Lausen, 2004] are two local group trust
metrics, which propagate global trust only on the local subgraph. Advogate applies network flow
on a modified graph, where capacities are assigned to edges based on the depth in the referral
path. The deeper the edge is the less capacity it has. Conversely, Appleseed adopts spreading
activation. It spreads energy across the graph, and, when propagating through a node, divides
energy among successors based on the edge weights. The idea of Appleseed is similar to the
spectral decomposition, which requires several iterations to converge. CertProp propagates trust
in local subgraphs. It provides local trust, rather than group-level (local group) or global trust.
In other words, the propagated trust of Alice from Bob is different from the trust of Alice from
Charlie.

Wang and Singh [2006] present path algebra for trust propagation, and define aggregation and
concatenation. We use their aggregation but our concatenation operator is different (and faster)
than theirs without loss of accuracy. We also introduce a new selection operator to avoid possible
double counting in trust networks.

7 Conclusion

Trust propagation is a natural concept in settings where distributed agents must cooperate to iden-
tify the most trustworthy parties with whom to deal. Doing so helps the agents leverage each
other’s knowledge, benefiting the most from each other’s efforts in establishing and evaluating
trust relationships, and thereby increasing the social good.

Our evidence-based approach, CertProp, provides efficient operators, concatenation, aggrega-
tion, and selection, that can propagate trust accurately. These operators satisfy useful algebraic
properties.

Besides, we motivate a new way to transform subjective opinions into objective evidence based
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on Weber-Fechner law. This transformation also follows the idea that the average opinion yields
the lower certainty of transformed trust. It helps reduce the subjectivity in opinion-based datasets
so that the evidence-based approaches like CertProp and W&S can apply.

Our evaluation is conducted in two social network datasets, FilmTrust and PGP. The results
show that CertProp provides accurate propagated trust. It indicates that Weber-Fechner transfor-
mation successfully reduces the subjectivity in two quite different datasets. However, although the
selection operator has solid theoretical basis, the subjective datasets fail to show the effectiveness
of it. Also, the selection operator ignores too much evidence while it reduces double-counting.

In the future, we would study additional trust propagation datasets, for example, Epinions
[Guha et al., 2004] and Advogate [Levien, 2003; Ziegler and Lausen, 2004]. Besides, we would
like to enhance the capability of attack-resistance and rumor-resistance. Finally, we will refine
the selection operator in order to find balance between gathering evidence and reducing double-
counting.
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