
Evaluating a Suite of Developer Activity Metrics as Measures of Security
Vulnerabilities

Andrew Meneely and Laurie Williams
North Carolina State University
{apmeneel, lawilli3}@ncsu.edu

Abstract

Deploying vulnerable software can be costly both in
terms of patches and security breaches. Since software
development primarily involves people, researchers
are increasingly analyzing version control data to
observe developer collaboration and contribution. We
conducted a case study of the Linux kernel to evaluate
a suite of developer activity metrics for the purpose of
predicting security vulnerabilities. Our suite includes
centrality and cluster metrics from network analysis of
version control data. Our results support the
hypothesis that source code files which have been
developed by multiple clusters of developers are likely
to be vulnerable. Furthermore, source code files are
likely to be vulnerable when changed by many
developers who themselves have made many changes
to other files. Our results indicate that developer
metrics predict vulnerabilities, but may be more likely
to perform better in the presence of other code or
process metrics.

1. Introduction

Deploying vulnerable software can be costly in
terms of both patches and security breaches. Security
problems are prevalent, as the number of vulnerabilities
reported by the National Vulnerability Database
(NVD)1 has more than doubled in the last four years.
Development teams can guide their preventive
fortification efforts by the prediction of security
vulnerabilities. Vulnerability prediction is best
performed with easily-obtained metrics that reflect a
problematic element of the software project (e.g.
maybe more developers cause more problems).

All software projects have one element in common:
people. For the most part, software development is

1 http://nvd.nist.gov

performed by development teams working together on
a common project. Lack of team cohesion,
miscommunications, or misguided effort can all result
in problematic software, including security problems.

One can gather information about people and the
code they work on from data extracted from version
control systems. Intending to capture information
about how developers contribute to and collaborate on
code, researchers have recently been evolving what we
will call “developer activity metrics” by analyzing
version control data [2, 3, 7, 10, 11, 14]. By viewing
version control data as a network of “which developer
worked on which file,” we can use network analysis to
infer developer centrality, developer clusters, and types
of contribution.

Our research objective is to empirically evaluate
how developer activity metrics function as predictors
of security vulnerabilities. Specifically, we evaluate
three hypotheses:
• HDNCentrality: Files changed by non-central

developers are more likely to have security
vulnerabilities than files changed by central
developers.

• HDNCluster: Files changed by more than one
developer cluster are more likely to be vulnerable
than files changed by a single cluster.

• HCNCentrality: Files contributed to by many developers
are more likely to have security vulnerabilities.
Our metrics evaluation methodology is based on a

previously-proposed metrics validation framework by
Schneidewind [12] with the following validity criteria:
association, consistency, discriminative power, and
predictability. We also compare our results to a control
metric, number of source lines of code (SLOC).

We gathered 13 developer activity metrics based on
network analysis from the version control system of the
kernel of Red Hat Enterprise Linux 4 (RHEL4). We
also gathered a comprehensive list of reported
vulnerabilities in RHEL4 as reported in the NVD and
by Red Hat from the last three years. Each vulnerability

traced to a set of source files, so evaluation could be
performed at the source code file level.

The rest of this paper is organized as follows.
Section 2 provides terminology definitions for network
analysis terminology and security metrics. Section 3
describes related work in security prediction and
developer activity metrics. Sections 4, 5, 6, and 7
outline the metrics involved in this study, the validation
framework, the case study, and threats to validity,
respectively. We summarize our results in Section 8.

2. Background

We provide two types of background: definitions of
terms and metrics in network analysis, along with terms
used in our metrics evaluation.

2.1 Network Analysis Definitions

In this paper, we use several terms from network
analysis [1] and define their meaning with respect to
developer and contribution networks in Section 5.
Network analysis is the study of characterizing and
quantifying network structures, represented by graphs
[1]. In network analysis, vertices of a graph are called
nodes, and edges are called connections. A sequence
of non-repeating, adjacent nodes is a path, and a
shortest path between two nodes is called a geodesic
path (note that geodesic paths are not necessarily
unique). In the case of weighted edges, the geodesic
path is the path of minimum weight. Informally, a
geodesic path is the “social distance” from one node to
another.

Centrality metrics are used to quantify the location
of one node relative to other nodes in the network. For
direct connections, we use the degree metric, which is
defined as the number of neighbors directly connected
to a node. In the case of weighted edges, the weighted
degree of a node is the sum of all edge weights that
connect a node to its neighbors. For indirect
connections via geodesic paths, we use the metrics
closeness and betweenness. The closeness of node v
is defined as the average distance from v to any other
node in the network that can be reached fromv .
Formally, the closeness Dc of node v in graph G is
defined as

),()
|),(|

1
()(tvd

vGV
vD

Gt
Gc ∑

∈

= (1)

where),(tvdG is the distance (number of edges) from

node v to node t and |),(| vGV is the number of

nodes in the graph reachable from v .

The betweenness [1] of node v is defined as the
number of geodesic paths that include v divided by the
total number of geodesic paths in the network. In this
study, we are only concerned with the relative
betweenness of nodes or edges, so we report the non-
normalized betweenness values (discarding the
denominator). Similarly, the edge betweenness of edge
e is defined as the number of geodesic paths which pass
through e.

2.2 Security Metrics Definitions

The goal of this paper is to evaluate the relationship
between developer activity metrics and security
vulnerabilities. We use the term internal metrics to
describe our developer activity metrics. Internal
metrics “measure internal attributes of the software
related to design and code” [4]. We use the term
external metric to describe if a software component is
vulnerable or not. An external metric “represent[s] the
external perspective of software quality when the
software is in use”[4]. The only external metric we are
evaluating in this study is nominal: whether or not a file
is vulnerable or neutral. We consider a file to be
vulnerable if it was found to have at least one
vulnerability that required a patch after release. A
vulnerability is “an instance of a [fault] in the
specification, development, or configuration of
software such that its execution can violate an [implicit
or explicit] security policy” [5].

Since our external metric is nominal, our models
will be binary classifiers. A binary classifier can make
two possible errors: false positives (FP) and false
negatives (FN). A FP is the classification of a neutral
file as a vulnerable file, and a FN is the classification of
a vulnerable file as neutral. A correctly classified
vulnerable file is a true positive (TP), and a correctly
classified neutral file is a true negative (TN). For
evaluating binary classification, we use precision,
recall, accuracy, and vulnerability rate.
• Precision (P) is defined as the proportion of

correctly predicted vulnerable files:
P=TP/(TP+FP).

• Recall (R) is defined as the proportion of
vulnerabilities found: R=TP/(TP+FN).

• Accuracy (A) is the proportion of files correctly
classified: A=(TP+TN)/(TP+TN+FP+FN).

• Vulnerability rate (VR) is the proportion of total
files that were classified as vulnerable:
VR=(TP+FP) /(TP+TN+FP+FN).
Of the four criteria, a high recall is most desirable as

the cost of a false negative outweighs the cost of a false
positive. In other words, testing or inspecting a file

only to find no vulnerabilities is preferable to allowing
a vulnerability to escape to the field. The vulnerability
rate represents the percentage of files that would
require testing or inspection to achieve the reported
recall.

3. Related Work

Pinzger et al. [11] were the first to propose the
contribution network that will be discussed in Section
5.2. The contribution network is designed to use
version control data to quantify the direct and indirect
contribution of developers on specific resources of the
project. The researchers used metrics of centrality in
their study of Microsoft Windows Vista and found that
closeness was the most significant metric for predicting
reliability failures. Files that were contributed to by
many developers, especially by developers who were
making many different contributions themselves, were
found to be more failure-prone than files developed in
relative isolation. The argument is that files which are
being focused on by a few developers are less
problematic than files developed by many developers.
In our study, we use centrality metrics on contribution
networks to predict vulnerabilities in files.

Nagappan et al. [10] created a logistic regression
model for failures based on what they called “Overall
Organizational Ownership” (OOW). The metrics for
OOW included concepts like organizational
cohesiveness and diverse contributions. Among the
findings is that more edits made by many, non-cohesive
developers leads to more problems post-release. The
OOW model was able to predict with 87% average
precision and 84% average recall. The OOW model
bears a resemblance to the contribution network in that
it attempts differentiate healthy changes in software
from the problematic changes.

Zimmerman and Nagappan [15] applied network
analysis to networks formed by module dependencies
for predicting failures in files. Called a “dependency
graph”, the researchers defined modules as nodes and
two nodes are connected if one module depends on
another. By applying metrics of centrality and network
motifs to the directed dependency graphs of source
code, the researchers found that central components
were more failure-prone. Furthermore, network metrics
proved to identify 60% of the critical, failure-prone
binaries, which was better than object-oriented
complexity metrics that only identified 30%. In
addition to using centrality metrics of closeness and
betweenness, Zimmerman and Nagappan used similar
statistical regression techniques for their analysis that
we used in our predictability criteria (see Section 6.3).

Several researchers have successfully used the
number of developers in the presence of other metrics
to predict post-release failures in files. Weyuker et al.
[13] were able to incorporate information about the
amount and the type of developers who worked on any
given file. They reported finding 84.9% of the faults in
20% of the files with the developer information, where
without the developer information, 83.9% of the faults
were found. Mockus and Weiss [7] created a model
that included both the number of developers and a
measurement of developer experience. The experience
metric was based on the number of commits made by a
developer, implying that an experienced developer
would make more commits than an inexperienced
developer. Hudepohl et al. [3] at Nortel Networks also
combined the number of developers with a similarly-
defined developer experience metric in their model,
EMERALD. Their metric included an experience
metric both in terms of the given project and in terms
of the developer’s Nortel career. Although our metrics
do not include any explicit measurement of experience,
contribution networks take into account the fact that
some developers make many more commits than other
developers without calling it “experience”.

Gonzales-Barahona and Lopez-Fernandez [2] were
the first to propose the idea of creating developer
networks as models of collaboration from source
repositories to differentiate and characterize projects.
In addition to a developer network, they used a module
network such that two modules were connected if they
were committed together. Module networks resemble
contribution networks because if two files are
committed at the same time, they are both connected to
the same developer. Connections in module networks,
therefore, become paths through a developer, resulting
in similar centrality values as contribution network
centrality values.

4. Case Study: Linux Kernel

We performed a case study on the Linux kernel2 as

it was distributed in the Red Hat Enterprise Linux 4
(RHEL4) operating system3. Gathering data for our
external metric involved tracing through the
development artifacts related to each vulnerability
reported in the Linux kernel.

When members of the open source community
become aware of a possible security vulnerability,
members of the Red Hat Security Response (RHSR)
team perform the following actions.

2 http://kernel.org/
3 http://www.redhat.com/rhel/

1. Create a defect report in the Red Hat Bugzilla
database4. The majority of the subsequent artifacts
can be found or linked to the new defect report.

2. Confirm the existence of the vulnerability in both
the current build of the kernel (also called the
upstream version), and the previous release of the
kernel (also called a backport).

3. Form patches to fix the problem as necessary.
Sometimes an upstream patch would differ from the
backport patch since the kernel is always evolving.

4. Determine if the vulnerability is a regression (a
vulnerability introduced by a patch after release).

5. Register the vulnerability in the National
Vulnerability database (NVD) and the next Red Hat
Security Advisory (RHSA). The RHSR Team
reports NVD and RHSA data on their security
metrics website5.
We collected our security data from the Bugzilla

database, the NVD database, and the RHSR security
metrics database. Since each vulnerability was handled
slightly differently, we examined each defect report
manually to ensure that the backport patch was, in fact,
needed. Since we are only interested in vulnerabilities
that existed at the time of release, we did not include
regressions in our data set. For vulnerabilities that did
not have all of the relevant artifacts (e.g. defect reports,
backport patches), we consulted the director of the
RHSR team to correct the data. Our data set is a
comprehensive list of reported, non-regression
vulnerabilities from RHEL4’s release in February 2005
through July 2008. We included files that only had the
following extension in their name: .c, .cpp, .S, and .h.
We found 205 files to be vulnerable, which was 2% of
the entire system.

For the version control data, we used the Linux
kernel source repository6. The RHEL4 operating
system is based on kernel version 2.6.9, so we used all
of the version control data from kernel version 2.6.0 to
2.6.9, which was about approximately 15 months of
development and maintenance. The version control
data contains 557 developers and 9,946 commits over
10,454 source files. Most of the kernel had files
changed (73%) during those 15 months, including
every vulnerable file.

We used SAS7 v9.5 for our statistical analysis and
Weka8 v3.4.12 for the Bayesian network prediction
model. SLOC for each file was measured by

4 http://bugzilla.redhat.com/
5 http://www.redhat.com/security/data/metrics/
6 http://git.kernel.org/
7 http://www.sas.com/
8 http://www.cs.waikato.ac.nz/ml/weka/

Understand C++9 for the .c and .h files, and
SLOCCount10 was used for the assembly files.

5. Analyzing Developer Activity for
Organizational Observations

In our case study, we used the version control data
to observe development activity. As the project
progresses, developers make changes to many different
parts of the system. With many changes and many
developers, changes to files tend to overlap: some
developers end up working on the same files around the
same time, meaning that they share a common
contribution, or a connection, with another developer.
As a result of which files they contribute to, some
developers end up connected to many other highly-
connected developers, some end up in clusters of
developers, and some tend stay peripheral to the entire
network.

As for the source code, some files are contributed to
by many developers who are also making contributions
to many other files. Other files are essentially “owned”
by developers.

Both developers and files become organized into a
network structure with some developers/files being the
middle of the network, in a cluster, or on the outside. In
this section, we (a) quantify the structure of changes in
the system using network analysis to create metrics,
and (b) use the network analysis-based interpretation of
the metrics to form testable hypotheses. We define our
suite of developer activity metrics based on two
networks: developer networks and contribution
networks, as will be discussed in Sections 5.1 and 5.2,
respectively.

Metrics that measure how nodes are directly or
indirectly connected to the rest of the network are
centrality metrics [1]. A central node might have many
direct connections, that is, a node is directly connected
to many other nodes. A central node may also, for
instance, be connected to other nodes that are
connected to many other nodes, and so on. Said another
way, a node may be central by how closely connected it
is via indirect connections (by geodesic paths of length
greater than one). Metrics that measure how nodes are
directly or indirectly connected to the rest of the
network are centrality metrics, which are described in
Section 2.1 (degree, closeness, and betweenness). The
concepts of centrality are used in all three categories of
developer activity metrics.

9 http://www.scitools.com/
10 http://www.dwheeler.com/sloccount/

In Sections 5.1 and 5.2, we will use the following
example. Suppose we are initially given the version
control data in Table 1. In our example, we have six
developers (Andy, Kelly, Phil, Lucas, Sarah, and Ben)
and five files labeled A through E. The data in Table 1
denote who made changes to which file. Also, more
examples of the calculation of developer activity
metrics can be found in related work [6, 11].

Table 1: Example Version Control Data

Developer Files Changed
Andy A, B
Kelly B
Phil B

Lucas A, C, D
Sarah D, E
Ben C, E

A summary of the interpretation for each metric can

be found in Table 2. We empirically evaluate these
thirteen metrics as predictors of vulnerable files in
Section 6.

5.1 Developer Network

We use the term developer network to be an
estimation of the structure of collaboration in a
software development project based on developer
connections within a software development project [2,
6]. In our developer network, two developers are
connected if they have both made a change to at least
one file in common during period of time under study.
The result is an undirected, unweighted, and simple
graph where each node represents a developer and
edges are based on whether or not they have worked on
the same file during the same release. For our example
laid out in Table 1, the developer network is shown in
Figure 1.

Figure 1: Resulting developer network from the Table 1

5.1.1 Developer Network Centrality. Each centrality
metric of the developer network captures a different
aspect of a developer’s place in the network. A
developer’s degree is equal to the number of other
developers he or she share changes in files. A

developer with high betweenness is generally more
central to the network, as a central developer would lie
on more geodesic paths than a non-central developer. A
developer with low closeness means that their average
social distance is low, implying he or she is well-
known. A deeper discussion regarding the meaning of
centrality metrics in developer networks can be found
in a previous project [6]. In this study, we are using
developer network centrality metrics to evaluate the
following hypothesis presented in Section 1:

HDNCentrality: Files changed by non-central
developers are more likely to have security
vulnerabilities than files changed by central developers.

To evaluate developer activity metrics at the file
level, each metric should reflect the network metrics of
developers who updated the file throughout the file’s
history. To calculate a file’s developer network
centrality metrics, we examine a file’s change history in
the source code repository, list all of the distinct
developers who updated the file, and calculate the
maximum/minimum (maximum for closeness,
minimum for all other centrality metrics), and average
of each developer activity metric over the file’s history.
Values are calculated over a set of distinct developers,
so if a developer updated a file twice, his or her metrics
would only be used once.

We evaluate six metrics related to the centrality in
developer networks: DNMinDegree, DNAvgDegree,
DNMaxCloseness, DNAvgCloseness,
DNMinBetweenness, DNAvgBetweenness

For example, suppose we are calculating the
closeness of File B. The closeness of Andy is
(1+1+1+1+2+2)/6 = 1.33. Similarly, Kelly and Phil
each have closeness of (1+1+2+3+3)/6=1.66.
DNAvgCloseness takes the average closeness of all the
developers who changed a file, so the average of the
three closeness values is 1.55.

5.1.2 Developer Network Clustering. Metrics of node
centrality give us information about a single node, but
what about groups of nodes? In large software projects,
clusters of developers can form based on factors like
geographic location or feature of the product. In
network analysis, a cluster of nodes is a set of nodes
such that there are more intra-set connections than
inter-set connections. Having many clusters within a
network can be an indicator that, while developers are
communicating within groups, the groups are not
communicating with each other. The files that are
worked on by two separate groups, therefore, may be
more problematic. In this study, we are using developer
network cluster metrics to evaluate the following
hypothesis:

HDNCluster: Files changed by more than one cluster
are more likely to be vulnerable than files changed by a
single cluster.

Cluster metrics of developer networks can be used
to identify files that have been worked on by separate
clusters of developers. For this study, we use the Edge
Betweenness Clustering technique [1] for discovering
developer clusters. Edge betweenness is defined
similarly to node betweenness, only for edges: the
number of geodesic paths in the network that include a
given edge. The algorithm for edge betweenness
clustering is:

1. Calculate the edge betweenness for each edge
in the network

2. Remove the edge of highest betweenness
3. Repeat steps 1 and 2 until one node is isolated
The remaining disconnected groups (i.e. weak

components) of the network are the clusters of
developers. The motivation for using edge betweenness
is that the betweenness of edges within a cluster will be
very low since the geodesic paths will be evenly
distributed (in many cases, developers are directly
connected to each other within clusters).

For developer networks, we are interested in
identifying the files that lie between clusters. Since files
have a many-to-many relationship to edges, we use the
average and maximum of edge betweenness on the
developer network. Also, we label a file as a bridge
file if it was included in one of the removed edges in
the edge betweenness clustering algorithm.

We evaluate three metrics related to clustering of
developer networks: DNMaxEdgeBetweennnes,
DNAvgEdgeBetweenness, DNIsBridge.

In our example, the edge of highest betweenness is
the connection between Lucas and Andy. Upon
removing the Lucas-Andy edge, two clusters form:
Lucas/Sarah/Ben, and Andy/Kelly/Phil. Since file A is
on the edge between two clusters, it is considered to be
a bridge file.

5.2 Contribution Network

A contribution network is a quantification of the
focus made on a given file. Originally described by
Pinzger et al [11], the contribution network uses an
undirected, weighted, and bipartite graph with two
types of nodes: developers and files. An edge exists
where a developer made changes to a file. Edges exist
only between developers and files (not from developers
to developers or files to files). The weight of an edge is
the number of version control commits a developer
made to the file.

The contribution network from the given example
can be found in Figure 2. Note that all of the edges
have a weight of one since each developer only made
one change to each of his or her files.

Table 2: Summary of developer activity metrics suite

Category
(Hypothesis)

Metric Problematic
when

Meaning based on metric definition

DNMinDegree High
DNAvgDegree High

File was changed by developers who did not work
on many files in common with other developers

DNMaxCloseness Low
DNAvgCloseness High
DNMinBetweenness Low

Developer
Network
Centrality

(HDNCentrality)
DNAvgBetweenness Low

File was changed by developers who are not
central to the network

DNMaxEdgeBetweenness High
DNAvgEdgeBetweenness High

Developer
Network

Clustering
(HDNClustering)

DNIsBridge Low

File was contributed to by more than one cluster
of developers, with few other files being worked
on by each cluster.

CNDegree Low File was changed by many developers
CNWeightedDegree High File was changed many times
CNCloseness High

Contribution
Network

(HCNCentrality)
CNBetweenness True

File was changed by developers focused on many
other files

Figure 2: Resulting contribution network from Table 1

In contribution networks, files of high centrality
have been found to be more problematic, since the
effort was more diversified [11]. Centrality by direct
connections is quantified by two metrics: a weighted
degree and an unweighted degree. The weighted degree
of a file is equivalent to the number of commits made
to a file. The unweighted degree of a file is equivalent
to the number of developers who made changes to the
file. Both the number of commits and number of
developers may be more commonly known as “code
churn” metrics [6, 8, 9]. If a file has high closeness or
betweenness, then that file was changed by many
developers who made changes to many other files. If a
file had a low closeness or betweenness, then the file
was worked on by fewer developers who made fewer
changes to other files. In this study we are using
contribution network centrality metrics to evaluate the
following hypothesis:

HCNCentrality: Files contributed to by many developers
are more likely to have security vulnerabilities.

We evaluate four metrics related to contribution
networks in this study: CNDegree,

CNWeightedDegree, CNCloseness, CNBetweenness.
For our example, the CNDegree for files A and B

are two and three, respectively. This would mean that
file A had a more focused contribution than file B.

6. Empirical Metric Evaluation

 Our evaluation of developer activity metrics is
based on the metrics validation framework proposed by
Scheneidewind [12]. Evaluating metrics means “to
determine whether they measure what they purport to
measure” [12]; in this paper, we are evaluating how
well developer activity metrics measure how vulnerable
a file is. The metrics validation framework contains six
validity criteria, four of which we will use in our
evaluation: association, consistency, discriminative
power, and predictability. The other two criteria,
tracking and repeatability, do not apply to this project.

 6.1 Association

 The goal of the association validity criterion is to
show the existence of a direct statistical connection
between a developer activity metric and a file having
any security vulnerabilities. Since we are evaluating the
association of developer activity metrics to a nominal
external metric (i.e. “vulnerable” or “neutral”), we use
the non-parametric Mann-Whitney significance test to
compare the mean of each metric for vulnerable and
neutral files.

As shown in Table 3, out of the thirteen internal
metrics, 12 had a statistically different average for
vulnerable and neutral files at the p<0.05 level (as

Table 3: Association and consistency results
Category

(Hypothesis)
Metric Neutral

Average
Vulnerable

Average
Support

Hypothesis?
Correlation
Coefficient

DNMinDegree 76.9 42.8 Yes -0.05
DNAvgDegree 143.4 128.2 No 0.03
DNMaxCloseness 1.9 2.0 Yes 0.05
DNAvgCloseness 1.7 1.6 No -0.03
DNMinBetweenness 5351.3 2359.9 Yes -0.06

Developer
Network
Centrality

(HDNCentrality)

DNAvgBetweenness 10549.0 12038.0 No 0.03

DNMaxEdgeBetweenness 33.3 132.8 Yes 0.13

DNAvgEdgeBetweenness 24.8 65.0 Yes 0.11

Developer
Network

Clustering
(HDNClustering) DNIsBridge 0.1 0.5 Yes 0.13

CNDegree 2.2 4.9 Yes 0.14
CNWeightedDegree 4.1 13.7 Yes 0.14
CNCloseness 4.1 4.1 N/A* 0.00

Contribution
Network

(HCNCentrality)
CNBetweenness 3662.8 12199.0 Yes 0.12

Baseline SLOC 271.5 676.4 Yes 0.11
*Difference not statistically significant at p<0.05

shown in the “Support Hypothesis” column).
CNCloseness was the only metric that did not exhibit
any difference between vulnerable and neutral files.

The developer network centrality metrics provide
mixed results. All of the metrics that average developer
centrality indicate that files changed by central
developers are more likely to be vulnerable. However,
metrics which report the lowest developer centrality
report that vulnerable files were changed by less
central developers. (Note that a low closeness means a
high centrality.) These conclusions are not completely
contradictory, however. For example, having a high
minimum betweenness means that all of the developers
changing a file were central, as opposed to average of
the developer centrality being higher. The mixed
association results, however, are not enough to accept
the HDNCentrality hypothesis defined in Section 5.1.1.

The developer network clustering metrics were the
most consistent in showing that files that lie between
clusters of developers are more vulnerable on average
than files that lie within clusters. Thus, the association
criterion supports the HDNClustering hypothesis defined in
Section 5.1.2.

The contribution network centrality metrics also
supported HCNCentrality. While the difference in averages
for CNCloseness was not significant, the other three
centrality metrics for contribution networks were
statistically higher for vulnerable files. This indicates
that, on average, files with a divided contribution are
more vulnerable than files with a more focused
contribution, supporting the HCNCentrality hypothesis
defined in Section 5.2.

6.2 Consistency

The goal of the consistency validity criterion is to
show that ranks of individual developer activity metrics
match the ranks of vulnerable files. Since binary
classification leads to many ties in ranks, we used
Kendall’s Tau correlation coefficient between each
developer activity metric and having any security
vulnerabilities.

 The rightmost column of Table 3 denotes the
correlation coefficients between the metric and the
number of vulnerabilities with the file. All of the
correlations, except CNCloseness, are statistically
significant, but considerably weak. Correlations for
individual metrics are usually somewhat weak as
metrics perform best for prediction in combination with
each other in a predictive model. The weak, yet
statistically significant consistency results indicate
that, while all three hypotheses are supported, their
purpose may be more meaningful in a multivariate
model than used in isolation.

6.3 Discriminative Power

 By evaluating the discriminative power of
developer activity metrics, we are examining how well
each metric can individually differentiate files as
vulnerable or neutral. As suggested by Schneidewind
[12], we used discriminant analysis to examine the
discriminative power of each metric. We evaluated the
discriminative power of each metric using hold-one-out
cross validation with precision, recall, accuracy, and
vulnerability rate as defined in Section 2.2. Hold-one-

Table 4: Discriminative power results. Grayed fields are the reduced variable set for predictability

Category Metric Precision Recall Accuracy Vulnerability Rate
DNMinDegree 2.5% 85.4% 33.2% 68.2%
DNAvgDegree 2.6% 73.2% 46.2% 54.7%
DNMaxCloseness 2.4% 82.9% 34.4% 66.9%
DNAvgCloseness 2.7% 82.0% 41.6% 59.6%
DNMinBetweenness 2.1% 93.2% 14.7% 87.0%

Developer
Network
Centrality

DNAvgBetweenness 2.6% 65.9% 50.0% 50.6%
DNMaxEdgeBetweenness 8.0% 39.5% 89.9% 9.7%
DNAvgEdgeBetweenness 6.0% 39.5% 86.6% 12.9%

Developer
Network

Clustering DNIsBridge 5.6% 47.8% 83.5% 16.4%
CNDegree 8.8% 45.9% 89.7% 10.2%
CNWeightedDegree 11.4% 42.9% 92.4% 7.4%
CNCloseness 2.0% 67.8% 33.0% 67.7%

Contribution
Network

CNBetweenness 7.8% 35.1% 90.6% 8.8%
Baseline SLOC 6.2% 47.8% 84.7% 15.2%

out cross-validation is performed by iteratively
removing each data point from the set, training on all
but the removed data point, then predicting for the
removed point. The evaluation results of the
discriminant analysis can be found in Table 4.

 The performance of each metric is relatively weak
in our analysis. As indicated by the low precision, each
classifier has significant problems with false positives.
What is more encouraging, however, is that some
classifiers (i.e. CNWeightedDegree,
DNMaxEdgeBetweenness), caught over a third of the
vulnerabilities while maintaining an accuracy of about
90%. Since each vulnerability can be costly, these
results may be adequate for some applications. For
example, if we chose to test the 9.7% of the files
classified as vulnerable by DNMaxEdgeBetweenness
alone, 8% of them would actually be vulnerable.
However, by doing so we would find 39.5% of the total
vulnerabilities. Since the precision is low, 9.7% of the
kernel source files would need to be inspected instead
of the optimal 2%.

 Since developer network clustering and
contribution network metrics can individually
discriminate with a similar recall and precision of the
SLOC baseline metric, the HDNClustering and HCNCentraliy
hypotheses are supported. Since none of the developer
network centrality metrics performed similarly to
SLOC, HDNCentrality is not supported by the
discriminative criterion.

 Although the SLOC metric has a similar recall to
the other metrics, the set of vulnerabilities that SLOC
identifies are mostly different than what the developer
activity metrics identify. To examine the overlap
between the predictors, we cross tabulated the correct
predictions of each developer activity metric and the
correct predictions for SLOC.
DNMaxEdgeBetweenness, for instance, correctly
identified 27 vulnerabilities (13% of the total) that
SLOC missed, and SLOC identified 44 vulnerabilities
(21% of the total) that DNMaxEdgeBetweenness
missed. Combining the two predictors finds 61.0% of
the vulnerabilities in 20.3% of the files. That developer
activity metrics identify different vulnerabilities than

SLOC indicates that developer activity metrics may
complement other code metrics in security prediction.

 6.4 Predictability

The goal of the predictability validity criterion is to
show how well developer metrics perform as group
when classifying files as either vulnerable or neutral.
For the predictability criterion, we formed five binary
classification models based on our suite of developer
activity metrics and our baseline metric SLOC. We
used two methods of forming models: logistic
regression and Bayesian Networks. Since our
discriminant analysis showed that developer activity
metrics were predicting different vulnerabilities than
SLOC, we also evaluated developer activity metrics
and SLOC together. Results were cross-validated as
described in Section 6.3. Since Bayesian Networks
work best with multiple variables, our Bayesian model
for SLOC did not yield significant results. The
precision, recall, accuracy, and vulnerability rate of the
five models can be found in Table 5.

 In all five models, the metrics performed with a
higher recall than in discriminant analysis, however,
still with a significant weakness in precision. Note also
that SLOC performed with a similar weakness in
precision. Logistic and Bayesian also traded off on
recall versus precision when comparing the model
types. The logistic regression had more false positives,
requiring more files to be inspected; while Bayesian
networks found fewer vulnerabilities, but required
fewer files to be inspected.

6.5 Summary

In summary, the hypotheses HCNCentrality and

HDNClustering are supported by all evaluation criteria,
while HDNCentrality was not supported by all evaluation
criteria. Also, the best predictors of vulnerable files
complemented our baseline metric, meaning that
developer activity metrics are best used in the presence
of other metrics.

Table 5: Predictability Results

Model Variables Precision Recall Accuracy Vulnerability
Rate

Developer Metrics 5.6% 71.2% 75.9% 25.0%
SLOC 5.8% 51.2% 82.6% 17.4%

Logistic
Regression

Developer Metrics & SLOC 5.8% 72.2% 76.4% 24.4%

Developer Metrics 7.3% 47.3% 87.1% 12.8% Bayesian
Network Developer Metrics & SLOC 7.6% 51.2% 86.8% 13.2%

7. Threats to Validity

All of our developer activity metrics require version
control data, and therefore change in the system. For
developer networks, if a file has no commits to it
during the period of study, it has no developers in its
history and therefore no measurement can be made.
For a contribution network, not having any change to a
file would result in centrality metrics of zero, implying
a low number of vulnerabilities.

The means by which vulnerabilities are discovered
can also have a significant impact on the meaning of
our data set. Since we do not know whether or not our
neutral files have any vulnerabilities or not, we must
assume that the manner in which the vulnerabilities are
discovered remain the same for both testers and
attackers. Furthermore, we cannot say that our high rate
of false positives is actually indicative of real false
positives, or that our model is simply finding more
vulnerabilities in the system that have not been
confirmed.

8. Summary

We evaluated the relationship of a suite of
developer activity metrics and security vulnerabilities
in a case study of the Linux kernel. Our suite includes
centrality and cluster metrics from network analysis of
data from version control systems. An empirical
analysis of our data demonstrates the following
observations: (a) source code files changed by multiple
clusters of developers are more likely to be vulnerable
than changed by a single cluster; and (b) files are likely
to be vulnerable when changed by many developers
who themselves have made many changes to other
files. Practitioners can use these observations to
prioritize security fortification efforts or to consider
organizational changes among developers. While the
results are statistically significant, the weak
correlations indicated that developer activity metrics
are likely to perform best for prediction in the presence
of other metrics.

9. Acknowledgements

We thank the Realsearch reading group and Mark Cox
for their feedback on this paper. This research is
supported by the Center for Advanced Computers and
Communications.

10. References

[1] Network Analysis: Methodological Foundations. Berlin:

Springer, 2005.
[2] Gonzales-Barahona, J. M., Lopez-Fernandez, L., and

Robles, G., "Applying Social Network Analysis to the
Information in CVS Repositories," in 2005 Mining
Software Repositories, Edinburgh, Scotland, United
Kingdom, 2004.

[3] Hudepohl, J. P., Aud, S. J., Khoshgoftaar, T. M., Allen,
E. B., and Mayrand, J., "Emerald: Software Metrics and
Models on the Desktop," IEEE Software, vol. 13, no.5,
pp. 56-60, 1996.

[4] ISO, ISO/IEC DIS 14598-1 Information Technology -
Software Product Evaluation, 1996.

[5] Krsul, "Software Vulnerability Analysis," in Computer
Science West Lafayette: Purdue University, 1998.

[6] Meneely, A., Williams, L., Osborne, J., and Snipes, W.,
"Predicting Failures with Developer Networks and
Social Network Analysis " in Foundations in Software
Engineering, Atlanta, GA, 2008, p. to appear.

[7] Mockus, A. and Weiss, D. M., "Predicting Risk of
Software Changes," Bell Labs Technical Journal, vol.
5,pp. 169-180, 2002.

[8] Munson, J. C. and Elbaum, S. G., "Code Churn: A
Measure for Estimating the Impact of Code Change," in
IEEE International Conference on Software
Maintenance, 1998.

[9] Nagappan, N. and Ball, T., "Use of Relative Code
Churn Measures to Predict System Defect Density," in
27th International Conference on Software
Engineering, St. Louis, MO, USA, 2005.

[10] Nagappan, N., Murphy, B., and Basili, V. R., "The
Influence of Organizational Structure on Software
Quality," in International Conference on Software
Engineering, Leipzig, Germany, 2008, pp. 521-530.

[11] Pinzger, M., Nagappan, N., and Murphy, B., "Can
Developer-Module Networks Predict Failures?," in
Foundations in Software Engineering, Atlanta, GA,
2008, p. to appear.

[12] Schneidewind, N. F., "Methodology For Validating
Software Metrics," IEEE Transactions on Software
Engineering, vol. 18, no.5, pp. 410-422, 1992.

[13] Weyuker, E. J., Ostrand, T. J., and Bell, R. M., "Using
Developer Information as a Factor for Fault Prediction,"
in Predictor Models in Software Engineering,
Minneapolis, Minnesota, 2007, pp. 8-8.

[14] Yu, L. and Ramaswamy, S., "Mining CVS Repositories
to Understand Open-Source Project Developer Roles,"
in Fourth International Workshop on Mining Software
Repositories, Minneapolis, Minnesota, 2007, p. 4.

[15] Zimmermann, T. and Nagappan, N., "Predicting Defects
using Network Analysis on Dependency Graphs," in
29th International Conference on Software
Engineering, Leipzig, Germany, 2007.

