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Abstract performed by development teams working together on
a common project. Lack of team cohesion,
Deploying vulnerable software can be costly both in miscommunications, or misguided effort can all fesu
terms of patches and security breaches. Since software in problematic software, including security probfem
development primarily involves people, researchers One can gather information about people and the
are increasingly analyzing version control data to code they work on from data extracted from version
observe developer collaboration and contribution. We ~ control systems.  Intending to capture information
conducted a case study of the Linux kernel to evaluate about how developers contribute to and collabooate
a suite of developer activity metrics for the purpose of code, researchers have recently been evolving what
predicting security vulnerabilities. Our suite includes Wil call “developer activity metrics” by analyzing
centrality and cluster metrics from network analysisof ~ Version control data [2, 3, 7, 10, 11, 14]. By viegv
verson control data. Our results support the version control data as a network of “which develop
hypothesis that source code files which have been worked on which file,” we can use network analysis
developed by multiple clusters of developers are likely infer developer centrality, developer clusters, gies
to be vulnerable. Furthermore, source code files are of contribution.
likely to be wulnerable when changed by many Our research objective is to empirically evaluate
developers who themselves have made many changes how developer activity metrics function as predictors
to other files. Our results indicate that developer of security wulnerabilities. Specifically, we evaluate
metrics predict vulnerabilities, but may be more likely three hypotheses:
to perform better in the presence of other code or * Honcenraity  Files  changed by  non-central
process metrics. developers are more likely to have security
vulnerabilities than files changed by central
1. Introduction developers.

* Hpnewster Files changed by more than one
Deploying vulnerable software can be costly in deveI(_)per cluster are more likely to be vulnerable
terms of both patches and security breaches. $gcuri  than files changed by a single cluster.
problems are prevalent, as the number of vulndtiasil  * Hencenvairy Files contributed to by many developers
reported by the National Vulnerability Database are more likely to have security vulnerabilities.
(NVD)* has more than doubled in the last four years, ~Our metrics evaluation methodology is based on a
Development teams can guide their preventive Préviously-proposed metrics validation framework by
fortification efforts by the prediction of security Schneidewind [12] with the following validity crite:
vulnerabilities.  Vulnerability prediction is best association, consistency, discriminative power, and
performed with easily-obtained metrics that reflect ~Predictability. We also compare our results to ata
problematic element of the software project (e.g. Metric, number of source lines of code (SLOC).
maybe more developers cause more problems). We gathereq 13 developer activity metrics based on
All software projects have one element in common: network analysis from the version control systenthef

people. For the most part, software development iskernel of Red Hat Enterprise Linux 4 (RHEL4). We
also gathered a comprehensive list of reported

vulnerabilities in RHEL4 as reported in the NVD and
! http://nvd.nist.gov by Red Hat from the last three years. Each vulnlrab




traced to a set of source files, so evaluation ccdnd
performed at the source code file level.

The rest of this paper is organized as follows.

Section 2 provides terminology definitions for netk
analysis terminology and security metrics. Sect®n

describes related work in security prediction and normalized betweenness

The betweenness [1] of node V is defined as the
number of geodesic paths that includelivided by the
total number of geodesic paths in the network.his t
study, we are only concerned with the relative
betweenness of nodes or edges, so we report the non
values (discarding the

developer activity metrics. Sections 4, 5, 6, and 7 denominator). Similarly, thedge betweenness of edge

outline the metrics involved in this study, theidation

e is defined as the number of geodesic paths vygask

framework, the case study, and threats to validity, through e.

respectively. We summarize our results in Section 8

2. Background
We provide two types of background: definitions of

terms and metrics in network analysis, along wettmis
used in our metrics evaluation.

2.1 Network Analysis Definitions

2.2 Security Metrics Definitions

The goal of this paper is to evaluate the relatigns
between developer activity metrics and security
vulnerabilities. We use the terinternal metrics to
describe our developer activity metrics. Internal
metrics “measure internal attributes of the sofewvar
related to design and code” [4]. We use the term
external metric to describe if a software component is

In this paper, we use several terms from network vulnerable or not. An external metric “representfs

analysis [1] and define their meaning with respect

developer and contribution networks in Section 5.

external perspective of software quality when the
software is in use”[4]. The only external metric wue

Network analysis is the study of characterizing and evaluating in this study is nominal: whether or adile

quantifying network structures, represented by lgsap
[1]. In network analysis, vertices of a graph aaded
nodes, and edges are callednnections. A sequence
of non-repeating, adjacent nodes ispath, and a
shortest path between two nodes is callege@esic

is vulnerable or neutral. We consider a file to be
vulnerable if it was found to have at least one
vulnerability that required a patch after release. A
vulnerability is “an instance of a [fault] in the
specification, development, or configuration of

path (note that geodesic paths are not necessarilysoftware such that its execution can violate arplicit
unique). In the case of weighted edges, the géodes or explicit] security policy” [5].

path is the path of minimum weight. Informally, a
geodesic path is the “social distance” from oneentad
another.

Centrality metricsare used to quantify the location
of one node relative to other nodes in the netwbdk.
direct connections, we use tHegree metric, which is
defined as the number of neighbors directly coretbct
to a node. In the case of weighted edgeswitighted

Since our external metric is nominal, our models
will be binary classifiers. A binary classifierrcenake
two possible errors: false positives (FP) and false
negatives (FN). A FP is the classification of atrau
file as a vulnerable file, and a FN is the clasatiion of
a vulnerable file as neutral. A correctly classifie
vulnerable file is a true positive (TP), and a eotly
classified neutral file is a true negative (TN).rFo

degree of a node is the sum of all edge weights that evaluating binary classification, we use precision,

connect a node to its neighbors. For

connections via geodesic paths, we use the metrice

closeness and betweenness. The closeness of nodé
is defined as the average distance frénto any other
node in the network that can be reached fvam
Formally, the closeness [»f node V in graph G is
defined as
1
D.(V) = (- 5—)2 ds (V1)
’ V(G|

where d (V,t) is the distance (number of edges) from
node V to nodet and |V (G,V)| is the number of

nodes in the graph reachable fram

1)

indirect recall, accuracy, and vulnerability rate.

Precision (P) is defined as the proportion of

correctly predicted vulnerable files:
P=TP/(TP+FP).
* Recall (R) is defined as the proportion of

vulnerabilities foundR=TP/(TP+FN).

e Accuracy (A) is the proportion of files correctly
classified:A=(TP+TN)/(TP+ TN+ FP+FN).

* Vulnerability rate (VR) is the proportion of total
fles that were classified as vulnerable:
VR=(TP+FP) /(TP+TN+FP+FN).

Of the four criteria, a high recall is most desieafts
the cost of a false negative outweighs the costfafse

positive. In other words, testing or inspectingile f



only to find no vulnerabilities is preferable tdoaling
a vulnerability to escape to the field. The vulrdity

Several researchers have successfully used the
number of developers in the presence of other ogetri

rate represents the percentage of files that wouldto predict post-release failures in files. Weyukeral.

require testing or inspection to achieve the regubrt
recall.

3. Related Work

Pinzger et al. [11] were the first to propose the
contribution network that will be discussed in $att
5.2.  The contribution network is designed to use
version control data to quantify the direct andirect
contribution of developers on specific resourceshef
project. The researchers used metrics of centradity
their study of Microsoft Windows Vista and foundath
closeness was the most significant metric for mtéui
reliability failures. Files that were contributed by

[13] were able to incorporate information about the
amount and the type of developers who worked on any
given file. They reported finding 84.9% of the fsuin

20% of the files with the developer information,ex
without the developer information, 83.9% of thelfswu
were found. Mockus and Weiss [7] created a model
that included both the number of developers and a
measurement of developer experience. The experience
metric was based on the number of commits made by a
developer, implying that an experienced developer
would make more commits than an inexperienced
developer. Hudepohl et al. [3] at Nortel Networksoa
combined the number of developers with a similarly-
defined developer experience metric in their model,

many deve|0pers1 especia”y by deve|0per5 who WereEMERALD Their metric included an experience

making many different contributions themselves, aver
found to be more failure-prone than files developed
relative isolation. The argument is that files Whire

metric both in terms of the given project and inmne
of the developer’s Nortel career. Although our riestr
do not include any explicit measurement of expegen

being focused on by a few deve'opers are |esscontributi0n networks take into account the faatth

problematic than files developed by many develapers
In our study, we use centrality metrics on conthiitru
networks to predict vulnerabilities in files.

some developers make many more commits than other
developers without calling it “experience”.
Gonzales-Barahona and Lopez-Fernandez [2] were

Nagappan et al. [10] created a logistic regressionthe first to propose the idea of creating developer

model for failures based on what they called “Ollera
Organizational Ownership” (OOW). The metrics for
OOW included concepts like organizational

networks as models of collaboration from source
repositories to differentiate and characterize quty.
In addition to a developer network, they used a uted

cohesiveness and diverse contributions. Among thenetwork such that two modules were connected ¥ the

findings is that more edits made by many, non-ciokes

were committed together. Module networks resemble

developers leads to more problems post-release. Thé&ontribution networks because if two files are

OOW model was able to predict with 87% average

committed at the same time, they are both conneoted

precision and 84% average recall. The OOW modelthe same developer. Connections in module networks,

bears a resemblance to the contribution netwotkan
it attempts differentiate healthy changes in soféwa
from the problematic changes.

Zimmerman and Nagappan [15] applied network

therefore, become paths through a developer, negult
in similar centrality values as contribution netlor
centrality values.

analysis to networks formed by module dependencies4, Case Study: Linux Kernel

for predicting failures in files. Called a “dependg

graph”, the researchers defined modules as nodgs an

We performed a case study on the Linux kérasl

two nodes are connected if one module depends ont was distributed in the Red Hat Enterprise Lintix

another. By applying metrics of centrality and reativ

motifs to the directed dependency graphs of sourceexternal

(RHEL4) operating systein Gathering data for our
metric involved tracing through the

code, the researchers found that central componentgjevelopment artifacts related to each vulnerability

were more failure-prone. Furthermore, network rostri
proved to identify 60% of the critical, failure-pre

reported in the Linux kernel.
When members of the open source community

binaries, which was better than object-oriented become aware of a possible security vulnerability,

complexity metrics that only identified 30%. In members of the Red Hat Security Response (RHSR)
addition to using centrality metrics of closenessl a team perform the following actions.

betweenness, Zimmerman and Nagappan used similar
statistical regression techniques for their analykat
we used in our predictability criteria (see Sectos).

2 http://kernel.org/
3 http://www.redhat.com/rhel/



1. Create a defect report in the Red Hat Bugzilla Understand C+% for the .c and .h files, and
databast The majority of the subsequent artifacts SLOCCount’ was used for the assembly files.
can be found or linked to the new defect report.

2. Confirm the existence of the vulnerability in both 5, Analyzing Developer Activity for

the current build of the kernel (also called the Organizational Observations
upstream version), and the previous release of the
3 lk:ernel (alsohcalled k?cgck[%ort). bl In our case study, we used the version control data
' Sorm _patc es to fix the prr(: eml dc’:(ljS_ﬁne;:essa;y.to observe development activity. As the project
ometimes an upstream patc woulad ditter from the progresses, developers make changes to many differe
backport pgtch since the kgr_nellls alwayslevolvmg. parts of the system. With many changes and many
4. Determmg 'f, the vulnerability is aegression (a developers, changes to files tend to overlap: some
vulnerability introduced by a patch after release). developers end up working on the same files ardbed

5. RelglsteL-I.thg \E)ulnerabmty 'r('j hthe Natlcd)nal same time, meaning that they share a common
Vulnerability database (NVD) and the next Red Hat contribution, or aconnection, with another developer.

Security Advisory (RHSA). The RHSR Team As a result of which files they contribute to, some

reports NVD.@and RHSA data on their security developers end up connected to many other highly-
metrics websi connected developers, some end up in clusters of

We collected our security data from the Bugzilla developers, and some tend stay peripheral to ttieeen
database, the NVD database, and the RHSR securit;hetwork_

metrics database. Since each vulnerability waslbdnd As for the source code. some files are contribtaed
slightly differently, we examined each defect repor by many developers who are also making contribstion

manually tc_) ensure that the paCkport p:?\tch Wagi,an, . to many other files. Other files are essentiallwfed”
needed. Since we are only interested in vulnetedsli by developers

that existed at the time of release, we did nolute Both developers and files become organized into a

regressions in our data set. F_or vulnerabilitieg thid network structure with some developersffiles bt
not have all of the relevant artifacts (e.g. c_iefepbrts, middle of the network, in a cluster, or on the @lesin
backport patches), we consulted the director of thethiS section, we (a) quantify the structure of ajemin

RHSR team to correct the data. Our data set is Ahe system using network analysis to cremrics,

comprehg_qsive list ~ of reported,. non-regression and (b) use the network analysis-based interpogtati
vulnerabilities from RHELA4's release in February030 the metrics to form testable hypotheses. We defime

through July 2008. We included files that only hid suite of developer activity metrics based on two

following extension in their name: .c, .cpp, .Sdah. networks: developer networks and contribution
We found 205 files to be vulnerable, which was 2% o networks, as will be discussed in Sections 5.1 and 5.2

the entire system. respectively.

K FOT the version co-ngrol dr?ta, we used the .LII’IUX Metrics that measure how nodes are directly or
eme .sogrcedrepcl)(sn 3|/ T € RI;IEL94 operatlggd indirectly connected to the rest of the network are
system Is based on kernel version 2.6.9, so we ase centrality metrics [1]. A central node might have many

gf(ﬁt%e verzglﬁn controbl data from kerne: vir?on.a.tz) ; direct connections, that is, a node is directly connected
d. ' I’ whic wasd a 05“ approxm_?;]ey .mont S0 Ito many other nodes. A central node may also, for
evelopment and maintenance. The version controli giance be connected to other nodes that are

dgta contains 55f'7| developersfan;]j 9’346 Clor;]m(;itsf.loverconnected to many other nodes, and so on. Saitiemot
10,454 source files. Most of the kernel had files .. "3 hode may be central by how closely conneitted

changed (73%) during those 15 months, including is viaindirect connections (by geodesic paths of length

ev?/:/y vulnzrasb'lot\esﬁlgé ; istical vsi q greater than one). Metrics that measure how nodes a
€ use V9.5 for our statistical analysis and - gecly or indirectly connected to the rest of the

We(ljd‘l V?’S'4g'(2_: fc;r the Br;ay(ﬁian network predi(;:tiobn network arecentrality metrics, which are described in
model. SL or each fie was measure Y Section 2.1 (degree, closeness, and betweenndss). T

concepts of centrality are used in all three caiegof
developer activity metrics.

* http://bugzilla.redhat.com/

5 http://www.redhat.com/security/data/metrics/
8 http://git.kernel.org/

" http://ww.sas.com/ ® http://www.scitools.com/

8 http://www.cs.waikato.ac.nz/ml/weka/ 10 hitp:/iww.dwheeler.com/sloccount/




In Sections 5.1 and 5.2, we will use the following developer with high betweenness is generally more
example. Suppose we are initially given the version central to the network, as a central developer duial
control data in Table 1. In our example, we hawe si on more geodesic paths than a non-central devel&per
developers (Andy, Kelly, Phil, Lucas, Sarah, anchBe developer with low closeness means that their aeera
and five files labeled A through E. The data in [Eab social distance is low, implying he or she is well-
denote who made changes to which file. Also, more known. A deeper discussion regarding the meaning of
examples of the calculation of developer activity centrality metrics in developer networks can bentbu

metrics can be found in related work [6, 11]. in a previous project [6]. In this study, we areéngs
developer network centrality metrics to evaluate th
Table 1: Example Version Control Data following hypothesis presented in Section 1:
Developer Files Changed Honcewraity:  Files  changed by  non-central
Andy A B developers are more likely to have security
Kelly B vulnerabilities than files changed by central depels.
Phil B To evaluate developer activity metrics at the file
Lucas ACD level, each metric should reflect the network nestof
Sarah D, E developers who updated the file throughout thesfile
Ben C,E history. To calculate a file's developer network

centrality metrics, we examine a file’'s changedrigin

A summary of the interpretation for each metric can the source code repository, list all of the distinc
be found in Table 2. We empirically evaluate these developers who updated the file, and calculate the
thirteen metrics as predictors of vulnerable files — Maximum/minimum  (maximum  for  closeness,

Section 6. minimum for all other centrality metrics), and sage
of each developer activity metric over the fileistbry.
5.1 Developer Network Values are calculated over a set of distinct depais,

so if a developer updated a file twice, his ormetrics

We use the termdeveloper network to be an  Would only be used once. o
estimation of the structure of collaboration in a e evaluate six metrics related to the centrality i

software development project based on developerdeveloper networks: DNMinDegree, DNAvgDegree,

connections within a software development project [ PNMaxCloseness, DNAvgCloseness,
6]. In our developer network, two developers are DNMinBetweenness, DNAvgBetweenness

connected if they have both made a change to at lea  FO' €xample, suppose we are calculating the
one file in common during period of time under stud  ¢loseness of File B. The closeness of Andy is

The result is an undirected, unweighted, and simple (1*1+1+1+2+2)/6 = 1.33. Similarly, Kelly and Phil
graph where each node represents a developer an
edges are based on whether or not they have warke
the same file during the same release. For our pbeam
laid out in Table 1, the developer network is shamwn
Figure 1.

gach have closeness of (1+1+2+3+3)/6=1.66.
d DNAvgCloseness takes the average closeness dfeall t
developers who changed a file, so the average eof th
three closeness values is 1.55.

5.1.2 Developer Network Clustering. Metrics of node
centrality give us information about a single nobet
what about groups of nodes? In large software ptaje
clusters of developers can form based on fact@ées li
geographic location or feature of the product. In
network analysis, aluster of nodes is aet of nodes
such that there are more intra-set connections than
inter-set connections. Having many clusters witain
Figure 1: Resulting developer network from the Table 1 network can be an indicator that, while developees
communicating within groups, the groups are not
communicating with each other. The files that are
worked on by two separate groups, therefore, may be
more problematic. In this study, we are using depet
network cluster metrics to evaluate the following
hypothesis:

5.1.1 Developer Network Centrality. Each centrality

metric of the developer network captures a differen
aspect of a developer's place in the network. A
developer’'s degree is equal to the number of other
developers he or she share changes in files. A



Table 2: Summary of developer activity metrics suite

Category Metric Problematic M eaning based on metric definition
(Hypothesis) when
DNMinDegree High File was changed by developers who did not work
Developer DNAvgDegree High on many files in common with other developers
Network DNMaxCloseness Low
Centrality | DNAvgCloseness High File was changed by developers who are not
(Honcenvaiy) | PNMinBetweenness Low central to the network
DNAvgBetweenness Low
Dﬁg&gﬂ(er Bmg/laxllzfggegettweennesis :;hg:: File was contributed to by more than one cluster
Clustering DNIs\IIBQrid gee elweenness Lov:/g of developers, with few other files being worked
(Honcuseria 9 on by each cluster.
o CNDegree Low File was changed by many developers
C?\In;RA?::Lon CNWeightedDegree High | File was changed many times
(Hencentan) CNCloseness High File was changed by developers focused on many
entrall .
CNBetweenness True | other files

In our example, the edge of highest betweenness is
the connection between Lucas and Andy. Upon
removing the Lucas-Andy edge, two clusters form:
Lucas/Sarah/Ben, and Andy/Kelly/Phil. Since fileisA

Cluster metrics of developer networks can be usedgp the edge between two clusters, it is consideardz
to identify files that have been worked on by sapar 5 bridge file.

clusters of developers. For this study, we useEithge

Betweenness Clustering technique [1] for discowgrin 5.2 Contribution Network
developer clusters.Edge betweenness is defined
similarly to node betweenness, only for edges: the
number of geodesic paths in the network that irelad
given edge. The algorithm for edge betweenness
clustering is:

1. Calculate the edge betweenness for each edg

in the network

2. Remove the edge of highest betweenness

3. Repeat steps 1 and 2 until one node is isolated

The remaining disconnected groups (i.e. weak
components) of the network are the clusters of
developers. The motivation for using edge betwessine
is that the betweenness of edges within a clustebey
very low since the geodesic paths will be evenly
distributed (in many cases, developers are directly
connected to each other within clusters).

For developer networks, we are interested in
identifying the files that lie between clustersm& files
have a many-to-many relationship to edges, we hese t
average and maximum of edge betweenness on the
developer network. Also, we label a file adiEdge
file if it was included in one of the removed edges
the edge betweenness clustering algorithm.

We evaluate three metrics related to clustering of
developer networks: DNMaxEdgeBetweennnes,
DNAvgEdgeBetweenness, DNIsBridge.

Honcuger: Files changed by more than one cluster
are more likely to be vulnerable than files chanbga
single cluster.

A contribution network is a quantification of the
focus made on a given file. Originally described by
Pinzger et al [11], the contribution network uses a
undirected, weighted, and bipartite graph with two
etypes of nodes: developers and files. An edge ®xist
where a developer made changes to a file. Edgss$ exi
only between developers and files (not from devedsp
to developers or files to files). The weight ofedge is
the number of version control commits a developer
made to the file.

The contribution network from the given example
can be found in Figure 2. Note that all of the exge
have a weight of one since each developer only made
one change to each of his or her files.



CNWeightedDegree, CNCloseness, CNBetweenness.

For our example, the CNDegree for files A and B
are two and three, respectively. This would meat th
file A had a more focused contribution than file B.

6. Empirical Metric Evaluation

Our evaluation of developer activity metrics is
based on the metrics validation framework propdsed
Scheneidewind [12]. Evaluating metrics means “to
determine whether they measure what they purport t

In contribution networks, files of high centrality measure” [12]; in this paper, we are evaluating how
have been found to be more problematic, since thewell developer activity metrics measure how vulivea
effort was more diversified [11]. Centrality by et 3 file is. The metrics validation framework contaix
connections is quantified by two metrics: a weighte yalidity criteria, four of which we will use in our
degree and an unweighted degree. The weightedelegreeyaluation: association, consistency, discrimiretiv
of a file is equivalent to the number of commitsdma power, and predictability. The other two criteria,

to a file. The unweighted degree of a file is eglént tracking and repeatability, do not apply to thisjpct.
to the number of developers who made changes to the

file. Both the number of commits and number of
developers may be more commonly known as “code
EZ?VLZEET(:QES Eﬁeg tggatlf Fjillemewgzs :Agzgcé%ﬁ Orrnany The goal _of the associat_ion validi_ty_criteriontds _
developers W,hO made changes to many other files. If show the existence of a pllrect s_tat|st|cal C.OHDGCFI
. .. between a developer activity metric and a file hgvi
file had a low closeness or betweenness, thenilthe f

any security vulnerabilities. Since we are evahgthe
was worked on by fewer developers who made fewer L o . .
) . .~ association of developer activity metrics to a nuahi

changes to other files. In this study we are using

2 . ! external metric (i.e. “vulnerable” or “neutraliue use
contribution network centrality metrics to evalusbe . . -

: o the non-parametric Mann-Whitney significance test t
following hypothesis:

compare the mean of each metric for vulnerable and
Hencentraity: Files contributed to by many developers neutral files.

are more likely to have security vulnerabilities. As shown in Table 3, out of the thirteen internal
We evaluate four metrics related to contribution Metrics, 12 had a statistically different average f

Figure 2: Resulting contribution network from Table 1

6.1 Association

networks in this study: CNDegree, Vulnerable and neutral files at the p<0.05 leved (a
Table 3: Association and consistency results

Category Metric Neutral | Vulnerable Support Correlation
(Hypothesis) Average Average Hypothesis? | Coefficient
DNMinDegree 76.9 42.8 Yes -0.05

Developer DNAvgDegree 143.4 128.2 No 0.03
Network DNMaxCloseness 1.9 2.0 Yes 0.05

Centrality DNAvgCloseness 17 1.6 No -0.03
(Honcentrality) DNMinBetweenness 5351.3 2359. Yes -0.06

DNAvgBetweenness 10549/0 12038.0 No 0103

Developer DNMaxEdgeBetweenness 33.3 132.8 Yes 0.13
Cﬁljégc;irrljg DNAvgEdgeBetweenness 24.8 65.0 Yes 0.11
(Honciustering | DNIsBridge 0.1 0.5 Yes 0.13
o CNDegree 2.2 4.9 Yes 0.14
Contribution  "ENweightedDegree 4.1 13 Yes 0.14

(H,\iitcv::r:( ) [ CNCioseness 41 . N/A® 0.00
CNBetweenness 3662)8 12199.0 Yes 0.12
Baseline SLOC 271.5 676 Yes 0.11

*Difference not statistically significant at p<0.05



shown in the “Support Hypothesis” column).

CNCloseness was the only metric that did not exhibi

any difference between vulnerable and neutral.files

6.2 Consistency

The goal of the consistency validity criterion & t

The developer network centrality metrics provide show that ranks of individual developer activitytries

mixed results. All of the metrics that average dieper
centrality indicate thatfiles changed by central
developers are more likely to be vulnerable. However,
metrics which report the lowest developer centralit
report that vulnerable files were changed by less

central developers. (Note that a low closeness means a

high centrality.) These conclusions are not conafyet

match the ranks of vulnerable files. Since binary
classification leads to many ties in ranks, we used
Kendall’'s Tau correlation coefficient between each
developer activity metric and having any security
vulnerabilities.

The rightmost column of Table 3 denotes the
correlation coefficients between the metric and the

contradictory, however. For example, having a high number of vulnerabiliies with the file. All of the
minimum betweenness means that all of the devedoper correlations, except CNCloseness, are statistically

changing a file were central, as opposed to avesége
the developer centrality being highefhe mixed
association results, however, are not enough to accept
the Hpncenrraiity Nypothesis defined in Section 5.1.1.

significant, but considerably weak. Correlations fo
individual metrics are usually somewhat weak as
metrics perform best for prediction in combinatigith
each other in a predictive modeThe weak, yet

The developer network clustering metrics were the gatistically significant consistency results indicate

most consistent in showing thfites that lie between
clusters of developers are more vulnerable on average
than files that lie within clusters. Thus,the association
criterion supports the Hpnciusiering Nypothesis defined in
Section 5.1.2.

The contribution network centrality metrics also
supported Kncenraity While the difference in averages
for CNCloseness was not significant, the otherehre
centrality metrics for contribution networks were
statistically higher for vulnerable files. This indtes
that, on averagdjles with a divided contribution are
more wulnerable than files with a more focused
contribution, supporting the Hcncenraity hypothesis
defined in Section 5.2.

that, while all three hypotheses are supported, their
purpose may be more meaningful in a multivariate
model than used in isolation.

6.3 Discriminative Power

By evaluating the discriminative power of
developer activity metrics, we are examining how we
each metric can individually differentiate files as
vulnerable or neutral. As suggested by Schneidewind
[12], we used discriminant analysis to examine the
discriminative power of each metric. We evaluatesl t
discriminative power of each metric using hold-ans-
cross validation with precision, recall, accuraand
vulnerability rate as defined in Section 2.2. Holk-

Table 4: Discriminative power results. Grayed fields arethereduced variable set for predictability

Category Metric Precision Recall Accuracy Vulnerability Rate
DNMinDegree 2.5% 85.4% 33.2% 68.2%
DNAvgDegree 2.6% 73.2% 46.2% 54.7%

D@&gﬂfr DNMaxCloseness 2.4% 82.9% 34.4% 66.9%

Centrality DNAvgCloseness 2.7% 82.0% 41.6% 59.6%
DNMinBetweenness 2.1% 93.2% 14.7% 87.0%
DNAvgBetweenness 2.6% 65.9% 50.0% 50.6%

Developer DNMaxEdgeBetweennes 8.0% 39.5% 89.9% 9.7%

Network | DNAvgEdgeBetweennes 6.0% 39.5% 86.6% 12.9%

Clustering | DNIsBridge 5.6% 47.8% 83.5% 16.4%
CNDegree 8.8% 45.9% 89.7% 10.2%

Contribution | CNWeightedDegree 11.4% 42.9% 92.4% 7.4%

Network | CNCloseness 2.0% 67.8% 33.0% 67.7%
CNBetweenness 7.8% 35.1% 90.6% 8.8%

Baseline SLOC 6.2% 47.8% 84.7% 15.2%




out cross-validation is performed by iteratively
removing each data point from the set, trainingatin

but the removed data point, then predicting for the

removed point. The evaluation results of the
discriminant analysis can be found in Table 4.

The performance of each metric is relatively weak
in our analysis. As indicated by the low precisieach
classifier has significant problems with false piwss.

S.OC indicates that developer activity metrics may
complement other code metrics in security prediction.

6.4 Predictability

The goal of the predictability validity criterios to
show how well developer metrics perform as group
when classifying files as either vulnerable or nalut

What is more encouraging, however, is that some oy the predictability criterion, we formed fivenairy

classifiers (i.e. CNWeightedDegree,

classification models based on our suite of dewalop

DNMaxEdgeBetweenness), caught over a third of the activity metrics and our baseline metric SLOC. We

vulnerabilities while maintaining an accuracy obab

used two methods of forming models: logistic

90%. Since each vulnerability can be costly, these regression and Bayesian Networks. Since our
results may be adequate for some applications. Forgiscriminant analysis showed that developer agtivit

example, if we chose to test the 9.7% of the files

metrics were predicting different vulnerabilitielsah

classified as vulnerable by DNMaxEdgeBetweennessg| oc. we also evaluated developer activity metrics

alone, 8% of them would actually be vulnerable.
However, by doing so we would find 39.5% of theatot
vulnerabilities. Since the precision is low, 9.7%tlte
kernel source files would need to be inspecteceatst
of the optimal 2%.

Snce developer network clustering and
contribution network metrics can individually
discriminate with a similar recall and precision of the
SL.OC baseline metric, the Hpnciusiering @Nd Hencentraliy
hypotheses are supported. Since none of the developer
network centrality metrics performed similarly to
SLOC, Honcenraity iS not supported by the
discriminative criterion.

Although the SLOC metric has a similar recall to
the other metrics, the set of vulnerabilities t8B&OC
identifies are mostly different than what the depelr
activity metrics identify. To examine the overlap
between the predictors, we cross tabulated thescorr

predictions of each developer activity metric ahd t
correct predictions for SLOC.
DNMaxEdgeBetweenness, for instance, correctly

identified 27 vulnerabilities (13% of the total)ath
SLOC missed, and SLOC identified 44 vulnerabilities
(21% of the total) that DNMaxEdgeBetweenness
missed. Combining the two predictors finds 61.0% of
the vulnerabilities in 20.3% of the fileShat devel oper
activity metrics identify different vulnerabilities than

and SLOC together. Results were cross-validated as
described in Section 6.3. Since Bayesian Networks
work best with multiple variables, our Bayesian miod
for SLOC did not vyield significant results. The
precision, recall, accuracy, and vulnerability ratehe

five models can be found in Table 5.

In all five models, the metrics performed with a
higher recall than in discriminant analysis, howeve
still with a significant weakness in precision. Batiso
that SLOC performed with a similar weakness in
precision. Logistic and Bayesian also traded off on
recall versus precision when comparing the model
types. The logistic regression had more false pesit
requiring more files to be inspected; while Baymsia
networks found fewer vulnerabilities, but required
fewer files to be inspected.

6.5 Summary

In summary, the hypotheses cdentrairy and
Honciustering @re supported by all evaluation criteria,
while Hpncentraity Was not supported by all evaluation
criteria. Also, the best predictors of vulnerabilesf
complemented our baseline metric, meaning that
developer activity metrics are best used in theqmee
of other metrics.

Table5: Predictability Results

M odel Variables Precision Recall Accuracy Vulner ability
Rate
. Developer Metrics 5.6% 71.2% 75.9% 25.0%
R';‘;?'ess“;on SLoc 5.8% 51.2% 82.6% 17.4%
Developer Metrics & SLOC 5.8% 72.2% 76.4% 24.4%
Bayesian Developer Metrics 7.3% 47.3% 87.1% 12.8%
Network Developer Metrics & SLOC 7.6% 51.2% 86.8% 13.2%




7. Threatsto Validity
[1]
[2]

All of our developer activity metrics require vensi
control data, and therefore change in the systemn. F
developer networks, if a file has no commits to it
during the period of study, it has no developerdsn
history and therefore no measurement can be made.
For a contribution network, not having any change t
file would result in centrality metrics of zero, piging
a low number of vulnerabilities.

The means by which vulnerabilities are discovered
can also have a significant impact on the meaning o
our data set. Since we do not know whether or not o [4]
neutral files have any vulnerabilities or not, weistn 5]
assume that the manner in which the vulnerabildies
discovered remain the same for both testers andg
attackers. Furthermore, we cannot say that our fzitgh
of false positives is actually indicative of reallse
positives, or that our model is simply finding more
vulnerabilities in the system that have not been [7]
confirmed.

(3]

8. Summary 18]

We evaluated the relationship of a suite of
developer activity metrics and security vulneraiegi
in a case study of the Linux kernel. Our suite udels
centrality and cluster metrics from network analysf
data from version control systems. An empirical
analysis of our data demonstrates the following
observations: (a) source code files changed byiprailt
clusters of developers are more likely to be vidbér
than changed by a single cluster; and (b) filedikedy
to be vulnerable when changed by many developers
who themselves have made many changes to other
files. Practitioners can use these observations to
prioritize security fortification efforts or to ceiter
organizational changes among developers. While the
results are statistically significant, the weak
correlations indicated that developer activity nostr
are likely to perform best for prediction in theepence
of other metrics.

9]

10.
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