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Abstract 
 

Deploying vulnerable software can be costly both in 
terms of patches and security breaches. Since software 
development primarily involves people, researchers 
are increasingly analyzing version control data to 
observe developer collaboration and contribution. We 
conducted a case study of the Linux kernel to evaluate 
a suite of developer activity metrics for the purpose of 
predicting security vulnerabilities. Our suite includes 
centrality and cluster metrics from network analysis of 
version control data. Our results support the 
hypothesis that source code files which have been 
developed by multiple clusters of developers are likely 
to be vulnerable. Furthermore, source code files are 
likely to be vulnerable when changed by many 
developers who themselves have made many changes 
to other files. Our results indicate that developer 
metrics predict vulnerabilities, but may be more likely 
to perform better in the presence of other code or 
process metrics. 
 

1. Introduction 
 

Deploying vulnerable software can be costly in 
terms of both patches and security breaches. Security 
problems are prevalent, as the number of vulnerabilities 
reported by the National Vulnerability Database 
(NVD)1 has more than doubled in the last four years. 
Development teams can guide their preventive 
fortification efforts by the prediction of security 
vulnerabilities. Vulnerability prediction is best 
performed with easily-obtained metrics that reflect a 
problematic element of the software project (e.g. 
maybe more developers cause more problems). 

All software projects have one element in common: 
people. For the most part, software development is 
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performed by development teams working together on 
a common project. Lack of team cohesion, 
miscommunications, or misguided effort can all result 
in problematic software, including security problems. 

One can gather information about people and the 
code they work on from data extracted from version 
control systems.  Intending to capture information 
about how developers contribute to and collaborate on 
code, researchers have recently been evolving what we 
will call “developer activity metrics” by analyzing 
version control data [2, 3, 7, 10, 11, 14]. By viewing 
version control data as a network of “which developer 
worked on which file,” we can use network analysis to 
infer developer centrality, developer clusters, and types 
of contribution.  

Our research objective is to empirically evaluate 
how developer activity metrics function as predictors 
of security vulnerabilities. Specifically, we evaluate 
three hypotheses: 
• HDNCentrality: Files changed by non-central 

developers are more likely to have security 
vulnerabilities than files changed by central 
developers. 

• HDNCluster: Files changed by more than one 
developer cluster are more likely to be vulnerable 
than files changed by a single cluster. 

• HCNCentrality: Files contributed to by many developers 
are more likely to have security vulnerabilities. 
Our metrics evaluation methodology is based on a 

previously-proposed metrics validation framework by 
Schneidewind [12] with the following validity criteria: 
association, consistency, discriminative power, and 
predictability. We also compare our results to a control 
metric, number of source lines of code (SLOC). 

We gathered 13 developer activity metrics based on 
network analysis from the version control system of the 
kernel of Red Hat Enterprise Linux 4 (RHEL4). We 
also gathered a comprehensive list of reported 
vulnerabilities in RHEL4 as reported in the NVD and 
by Red Hat from the last three years. Each vulnerability 



traced to a set of source files, so evaluation could be 
performed at the source code file level. 

The rest of this paper is organized as follows. 
Section 2 provides terminology definitions for network 
analysis terminology and security metrics. Section 3 
describes related work in security prediction and 
developer activity metrics. Sections 4, 5, 6, and 7 
outline the metrics involved in this study, the validation 
framework, the case study, and threats to validity, 
respectively. We summarize our results in Section 8. 

 

2. Background 
 
We provide two types of background: definitions of 
terms and metrics in network analysis, along with terms 
used in our metrics evaluation. 
 
2.1 Network Analysis Definitions 
 

In this paper, we use several terms from network 
analysis [1] and define their meaning with respect to 
developer and contribution networks in Section 5. 
Network analysis is the study of characterizing and 
quantifying network structures, represented by graphs 
[1]. In network analysis, vertices of a graph are called 
nodes, and edges are called connections. A sequence 
of non-repeating, adjacent nodes is a path, and a 
shortest path between two nodes is called a geodesic 
path (note that geodesic paths are not necessarily 
unique).  In the case of weighted edges, the geodesic 
path is the path of minimum weight. Informally, a 
geodesic path is the “social distance” from one node to 
another.  

Centrality metrics are used to quantify the location 
of one node relative to other nodes in the network. For 
direct connections, we use the degree metric, which is 
defined as the number of neighbors directly connected 
to a node. In the case of weighted edges, the weighted 
degree of a node is the sum of all edge weights that 
connect a node to its neighbors. For indirect 
connections via geodesic paths, we use the metrics 
closeness and betweenness. The closeness of node v  
is defined as the average distance from v  to any other 
node in the network that can be reached fromv . 
Formally, the closeness Dc of node v  in graph G is 
defined as  
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where ),( tvdG is the distance (number of edges) from 

node v  to node t  and |),(| vGV  is the number of 

nodes in the graph reachable from v . 

The betweenness [1] of node v  is defined as the 
number of geodesic paths that include v  divided by the 
total number of geodesic paths in the network. In this 
study, we are only concerned with the relative 
betweenness of nodes or edges, so we report the non-
normalized betweenness values (discarding the 
denominator). Similarly, the edge betweenness of edge 
e is defined as the number of geodesic paths which pass 
through e. 

 
2.2 Security Metrics Definitions 
 

The goal of this paper is to evaluate the relationship 
between developer activity metrics and security 
vulnerabilities. We use the term internal metrics to 
describe our developer activity metrics. Internal 
metrics “measure internal attributes of the software 
related to design and code” [4]. We use the term 
external metric to describe if a software component is 
vulnerable or not. An external metric “represent[s] the 
external perspective of software quality when the 
software is in use”[4]. The only external metric we are 
evaluating in this study is nominal: whether or not a file 
is vulnerable or neutral. We consider a file to be 
vulnerable if it was found to have at least one 
vulnerability that required a patch after release. A 
vulnerability is “an instance of a [fault] in the 
specification, development, or configuration of 
software such that its execution can violate an [implicit 
or explicit] security policy” [5]. 

Since our external metric is nominal, our models 
will be binary classifiers.  A binary classifier can make 
two possible errors: false positives (FP) and false 
negatives (FN). A FP is the classification of a neutral 
file as a vulnerable file, and a FN is the classification of 
a vulnerable file as neutral. A correctly classified 
vulnerable file is a true positive (TP), and a correctly 
classified neutral file is a true negative (TN). For 
evaluating binary classification, we use precision, 
recall, accuracy, and vulnerability rate.  
• Precision (P) is defined as the proportion of 

correctly predicted vulnerable files: 
P=TP/(TP+FP).  

• Recall (R) is defined as the proportion of 
vulnerabilities found: R=TP/(TP+FN).  

• Accuracy (A) is the proportion of files correctly 
classified: A=(TP+TN)/(TP+TN+FP+FN). 

• Vulnerability rate (VR) is the proportion of total 
files that were classified as vulnerable: 
VR=(TP+FP) /(TP+TN+FP+FN). 
Of the four criteria, a high recall is most desirable as 

the cost of a false negative outweighs the cost of a false 
positive. In other words, testing or inspecting a file 



only to find no vulnerabilities is preferable to allowing 
a vulnerability to escape to the field. The vulnerability 
rate represents the percentage of files that would 
require testing or inspection to achieve the reported 
recall. 

 

3. Related Work 
 

Pinzger et al. [11] were the first to propose the 
contribution network that will be discussed in Section 
5.2.  The contribution network is designed to use 
version control data to quantify the direct and indirect 
contribution of developers on specific resources of the 
project. The researchers used metrics of centrality in 
their study of Microsoft Windows Vista and found that 
closeness was the most significant metric for predicting 
reliability failures. Files that were contributed to by 
many developers, especially by developers who were 
making many different contributions themselves, were 
found to be more failure-prone than files developed in 
relative isolation. The argument is that files which are 
being focused on by a few developers are less 
problematic than files developed by many developers. 
In our study, we use centrality metrics on contribution 
networks to predict vulnerabilities in files. 

Nagappan et al. [10] created a logistic regression 
model for failures based on what they called “Overall 
Organizational Ownership” (OOW). The metrics for 
OOW included concepts like organizational 
cohesiveness and diverse contributions. Among the 
findings is that more edits made by many, non-cohesive 
developers leads to more problems post-release. The 
OOW model was able to predict with 87% average 
precision and 84% average recall. The OOW model 
bears a resemblance to the contribution network in that 
it attempts differentiate healthy changes in software 
from the problematic changes. 

Zimmerman and Nagappan [15] applied network 
analysis to networks formed by module dependencies 
for predicting failures in files. Called a “dependency 
graph”, the researchers defined modules as nodes and 
two nodes are connected if one module depends on 
another. By applying metrics of centrality and network 
motifs to the directed dependency graphs of source 
code, the researchers found that central components 
were more failure-prone. Furthermore, network metrics 
proved to identify 60% of the critical, failure-prone 
binaries, which was better than object-oriented 
complexity metrics that only identified 30%. In 
addition to using centrality metrics of closeness and 
betweenness, Zimmerman and Nagappan used similar 
statistical regression techniques for their analysis that 
we used in our predictability criteria (see Section 6.3). 

Several researchers have successfully used the 
number of developers in the presence of other metrics 
to predict post-release failures in files. Weyuker et al. 
[13] were able to incorporate information about the 
amount and the type of developers who worked on any 
given file. They reported finding 84.9% of the faults in 
20% of the files with the developer information, where 
without the developer information, 83.9% of the faults 
were found. Mockus and Weiss [7] created a model 
that included both the number of developers and a 
measurement of developer experience. The experience 
metric was based on the number of commits made by a 
developer, implying that an experienced developer 
would make more commits than an inexperienced 
developer. Hudepohl et al. [3] at Nortel Networks also 
combined the number of developers with a similarly-
defined developer experience metric in their model, 
EMERALD. Their metric included an experience 
metric both in terms of the given project and in terms 
of the developer’s Nortel career. Although our metrics 
do not include any explicit measurement of experience, 
contribution networks take into account the fact that 
some developers make many more commits than other 
developers without calling it “experience”. 

Gonzales-Barahona and Lopez-Fernandez [2] were 
the first to propose the idea of creating developer 
networks as models of collaboration from source 
repositories to differentiate and characterize projects. 
In addition to a developer network, they used a module 
network such that two modules were connected if they 
were committed together. Module networks resemble 
contribution networks because if two files are 
committed at the same time, they are both connected to 
the same developer. Connections in module networks, 
therefore, become paths through a developer, resulting 
in similar centrality values as contribution network 
centrality values.  

 

4. Case Study: Linux Kernel 
 
We performed a case study on the Linux kernel2 as 

it was distributed in the Red Hat Enterprise Linux 4 
(RHEL4) operating system3. Gathering data for our 
external metric involved tracing through the 
development artifacts related to each vulnerability 
reported in the Linux kernel. 

When members of the open source community 
become aware of a possible security vulnerability, 
members of the Red Hat Security Response (RHSR) 
team perform the following actions.  

                                                           
2 http://kernel.org/ 
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1. Create a defect report in the Red Hat Bugzilla 
database4. The majority of the subsequent artifacts 
can be found or linked to the new defect report. 

2. Confirm the existence of the vulnerability in both 
the current build of the kernel (also called the 
upstream version), and the previous release of the 
kernel (also called a backport).  

3. Form patches to fix the problem as necessary. 
Sometimes an upstream patch would differ from the 
backport patch since the kernel is always evolving. 

4. Determine if the vulnerability is a regression (a 
vulnerability introduced by a patch after release).  

5. Register the vulnerability in the National 
Vulnerability database (NVD) and the next Red Hat 
Security Advisory (RHSA). The RHSR Team 
reports NVD and RHSA data on their security 
metrics website5.  
We collected our security data from the Bugzilla 

database, the NVD database, and the RHSR security 
metrics database. Since each vulnerability was handled 
slightly differently, we examined each defect report 
manually to ensure that the backport patch was, in fact, 
needed. Since we are only interested in vulnerabilities 
that existed at the time of release, we did not include 
regressions in our data set. For vulnerabilities that did 
not have all of the relevant artifacts (e.g. defect reports, 
backport patches), we consulted the director of the 
RHSR team to correct the data. Our data set is a 
comprehensive list of reported, non-regression 
vulnerabilities from RHEL4’s release in February 2005 
through July 2008. We included files that only had the 
following extension in their name: .c, .cpp, .S, and .h. 
We found 205 files to be vulnerable, which was 2% of 
the entire system. 

For the version control data, we used the Linux 
kernel source repository6. The RHEL4 operating 
system is based on kernel version 2.6.9, so we used all 
of the version control data from kernel version 2.6.0 to 
2.6.9, which was about approximately 15 months of 
development and maintenance. The version control 
data contains 557 developers and 9,946 commits over 
10,454 source files. Most of the kernel had files 
changed (73%) during those 15 months, including 
every vulnerable file. 

We used SAS7 v9.5 for our statistical analysis and 
Weka8 v3.4.12 for the Bayesian network prediction 
model. SLOC for each file was measured by 

                                                           
4 http://bugzilla.redhat.com/ 
5 http://www.redhat.com/security/data/metrics/ 
6 http://git.kernel.org/ 
7 http://www.sas.com/ 
8 http://www.cs.waikato.ac.nz/ml/weka/ 

Understand C++9 for the .c and .h files, and 
SLOCCount10 was used for the assembly files. 
 

5. Analyzing Developer Activity for 
Organizational Observations 
 

In our case study, we used the version control data 
to observe development activity. As the project 
progresses, developers make changes to many different 
parts of the system. With many changes and many 
developers, changes to files tend to overlap: some 
developers end up working on the same files around the 
same time, meaning that they share a common 
contribution, or a connection, with another developer. 
As a result of which files they contribute to, some 
developers end up connected to many other highly-
connected developers, some end up in clusters of 
developers, and some tend stay peripheral to the entire 
network.  

As for the source code, some files are contributed to 
by many developers who are also making contributions 
to many other files. Other files are essentially “owned” 
by developers.  

Both developers and files become organized into a 
network structure with some developers/files being the 
middle of the network, in a cluster, or on the outside. In 
this section, we (a) quantify the structure of changes in 
the system using network analysis to create metrics, 
and (b) use the network analysis-based interpretation of 
the metrics to form testable hypotheses. We define our 
suite of developer activity metrics based on two 
networks: developer networks and contribution 
networks, as will be discussed in Sections 5.1 and 5.2, 
respectively. 

Metrics that measure how nodes are directly or 
indirectly connected to the rest of the network are 
centrality metrics [1]. A central node might have many 
direct connections, that is, a node is directly connected 
to many other nodes. A central node may also, for 
instance, be connected to other nodes that are 
connected to many other nodes, and so on. Said another 
way, a node may be central by how closely connected it 
is via indirect connections (by geodesic paths of length 
greater than one). Metrics that measure how nodes are 
directly or indirectly connected to the rest of the 
network are centrality metrics, which are described in 
Section 2.1 (degree, closeness, and betweenness). The 
concepts of centrality are used in all three categories of 
developer activity metrics. 

                                                           
9 http://www.scitools.com/ 
10 http://www.dwheeler.com/sloccount/ 



In Sections 5.1 and 5.2, we will use the following 
example. Suppose we are initially given the version 
control data in Table 1. In our example, we have six 
developers (Andy, Kelly, Phil, Lucas, Sarah, and Ben) 
and five files labeled A through E. The data in Table 1 
denote who made changes to which file. Also, more 
examples of the calculation of developer activity 
metrics can be found in related work [6, 11]. 

 
Table 1: Example Version Control Data 

Developer Files Changed 
Andy A, B 
Kelly B 
Phil B 

Lucas A, C, D 
Sarah D, E 
Ben C, E 

 
A summary of the interpretation for each metric can 

be found in Table 2. We empirically evaluate these 
thirteen metrics as predictors of vulnerable files in 
Section 6. 

 
5.1 Developer Network 
 

We use the term developer network to be an 
estimation of the structure of collaboration in a 
software development project based on developer 
connections within a software development project [2, 
6]. In our developer network, two developers are 
connected if they have both made a change to at least 
one file in common during period of time under study. 
The result is an undirected, unweighted, and simple 
graph where each node represents a developer and 
edges are based on whether or not they have worked on 
the same file during the same release. For our example 
laid out in Table 1, the developer network is shown in 
Figure 1. 

 

 
Figure 1: Resulting developer network from the Table 1 

5.1.1 Developer Network Centrality. Each centrality 
metric of the developer network captures a different 
aspect of a developer’s place in the network. A 
developer’s degree is equal to the number of other 
developers he or she share changes in files. A 

developer with high betweenness is generally more 
central to the network, as a central developer would lie 
on more geodesic paths than a non-central developer. A 
developer with low closeness means that their average 
social distance is low, implying he or she is well-
known. A deeper discussion regarding the meaning of 
centrality metrics in developer networks can be found 
in a previous project [6]. In this study, we are using 
developer network centrality metrics to evaluate the 
following hypothesis presented in Section 1: 

HDNCentrality: Files changed by non-central 
developers are more likely to have security 
vulnerabilities than files changed by central developers. 

To evaluate developer activity metrics at the file 
level, each metric should reflect the network metrics of 
developers who updated the file throughout the file’s 
history. To calculate a file’s developer network 
centrality metrics, we examine a file’s change history in 
the source code repository, list all of the distinct 
developers who updated the file, and calculate the 
maximum/minimum (maximum for closeness, 
minimum for all other centrality metrics), and average 
of each developer activity metric over the file’s history. 
Values are calculated over a set of distinct developers, 
so if a developer updated a file twice, his or her metrics 
would only be used once. 

We evaluate six metrics related to the centrality in 
developer networks: DNMinDegree, DNAvgDegree, 
DNMaxCloseness, DNAvgCloseness, 
DNMinBetweenness, DNAvgBetweenness 

For example, suppose we are calculating the 
closeness of File B. The closeness of Andy is 
(1+1+1+1+2+2)/6 = 1.33. Similarly, Kelly and Phil 
each have closeness of (1+1+2+3+3)/6=1.66. 
DNAvgCloseness takes the average closeness of all the 
developers who changed a file, so the average of the 
three closeness values is 1.55.  

 
5.1.2 Developer Network Clustering. Metrics of node 
centrality give us information about a single node, but 
what about groups of nodes? In large software projects, 
clusters of developers can form based on factors like 
geographic location or feature of the product. In 
network analysis, a cluster of nodes is a set of nodes 
such that there are more intra-set connections than 
inter-set connections. Having many clusters within a 
network can be an indicator that, while developers are 
communicating within groups, the groups are not 
communicating with each other. The files that are 
worked on by two separate groups, therefore, may be 
more problematic. In this study, we are using developer 
network cluster metrics to evaluate the following 
hypothesis:  



HDNCluster: Files changed by more than one cluster 
are more likely to be vulnerable than files changed by a 
single cluster. 

Cluster metrics of developer networks can be used 
to identify files that have been worked on by separate 
clusters of developers. For this study, we use the Edge 
Betweenness Clustering technique [1] for discovering 
developer clusters. Edge betweenness is defined 
similarly to node betweenness, only for edges: the 
number of geodesic paths in the network that include a 
given edge. The algorithm for edge betweenness 
clustering is:  

1. Calculate the edge betweenness for each edge 
in the network 

2. Remove the edge of highest betweenness 
3. Repeat steps 1 and 2 until one node is isolated 
The remaining disconnected groups (i.e. weak 

components) of the network are the clusters of 
developers. The motivation for using edge betweenness 
is that the betweenness of edges within a cluster will be 
very low since the geodesic paths will be evenly 
distributed (in many cases, developers are directly 
connected to each other within clusters). 

For developer networks, we are interested in 
identifying the files that lie between clusters. Since files 
have a many-to-many relationship to edges, we use the 
average and maximum of edge betweenness on the 
developer network. Also, we label a file as a bridge 
file if it was included in one of the removed edges in 
the edge betweenness clustering algorithm. 

We evaluate three metrics related to clustering of 
developer networks: DNMaxEdgeBetweennnes, 
DNAvgEdgeBetweenness, DNIsBridge.  

In our example, the edge of highest betweenness is 
the connection between Lucas and Andy. Upon 
removing the Lucas-Andy edge, two clusters form: 
Lucas/Sarah/Ben, and Andy/Kelly/Phil. Since file A is 
on the edge between two clusters, it is considered to be 
a bridge file.  

 
5.2 Contribution Network 
 

A contribution network is a quantification of the 
focus made on a given file. Originally described by 
Pinzger et al [11], the contribution network uses an 
undirected, weighted, and  bipartite graph with two 
types of nodes: developers and files. An edge exists 
where a developer made changes to a file. Edges exist 
only between developers and files (not from developers 
to developers or files to files). The weight of an edge is 
the number of version control commits a developer 
made to the file.  

The contribution network from the given example 
can be found in Figure 2. Note that all of the edges 
have a weight of one since each developer only made 
one change to each of his or her files. 

 

Table 2: Summary of developer activity metrics suite 

Category 
(Hypothesis) 

Metric Problematic 
when 

Meaning based on metric definition 

DNMinDegree High 
DNAvgDegree High 

File was changed by developers who did not work 
on many files in common with other developers 

DNMaxCloseness Low 
DNAvgCloseness High 
DNMinBetweenness Low 

Developer 
Network 
Centrality 

(HDNCentrality) 
DNAvgBetweenness Low 

File was changed by developers who are not 
central to the network 

DNMaxEdgeBetweenness High 
DNAvgEdgeBetweenness High 

Developer 
Network 

Clustering 
(HDNClustering) 

DNIsBridge Low 

File was contributed to by more than one cluster 
of developers, with few other files being worked 
on by each cluster. 

CNDegree Low File was changed by many developers 
CNWeightedDegree High File was changed many times 
CNCloseness High 

Contribution 
Network 

(HCNCentrality) 
CNBetweenness True 

File was changed by developers focused on many 
other files 

 



 
Figure 2: Resulting contribution network from Table 1 

In contribution networks, files of high centrality 
have been found to be more problematic, since the 
effort was more diversified [11]. Centrality by direct 
connections is quantified by two metrics: a weighted 
degree and an unweighted degree. The weighted degree 
of a file is equivalent to the number of commits made 
to a file. The unweighted degree of a file is equivalent 
to the number of developers who made changes to the 
file. Both the number of commits and number of 
developers may be more commonly known as “code 
churn” metrics [6, 8, 9]. If a file has high closeness or 
betweenness, then that file was changed by many 
developers who made changes to many other files. If a 
file had a low closeness or betweenness, then the file 
was worked on by fewer developers who made fewer 
changes to other files. In this study we are using 
contribution network centrality metrics to evaluate the 
following hypothesis: 

HCNCentrality: Files contributed to by many developers 
are more likely to have security vulnerabilities. 

We evaluate four metrics related to contribution 
networks in this study: CNDegree, 

CNWeightedDegree, CNCloseness, CNBetweenness.  
For our example, the CNDegree for files A and B 

are two and three, respectively. This would mean that 
file A had a more focused contribution than file B. 
 

6. Empirical Metric Evaluation 
 

 Our evaluation of developer activity metrics is 
based on the metrics validation framework proposed by 
Scheneidewind [12]. Evaluating metrics means “to 
determine whether they measure what  they purport to 
measure” [12]; in this paper, we are evaluating how 
well developer activity metrics measure how vulnerable 
a file is. The metrics validation framework contains six 
validity criteria, four of which we will use in our 
evaluation: association, consistency, discriminative 
power, and predictability. The other two criteria, 
tracking and repeatability, do not apply to this project.  

 

 6.1 Association 
 

 The goal of the association validity criterion is to 
show the existence of a direct statistical connection 
between a developer activity metric and a file having 
any security vulnerabilities. Since we are evaluating the 
association of developer activity metrics to a nominal 
external metric (i.e. “vulnerable”  or “neutral”), we use 
the non-parametric Mann-Whitney significance test to 
compare the mean of each metric for vulnerable and 
neutral files.  

As shown in Table 3, out of the thirteen internal 
metrics, 12 had a statistically different average for 
vulnerable and neutral files at the p<0.05 level (as 

Table 3: Association and consistency results 
Category 

(Hypothesis) 
Metric Neutral 

Average 
Vulnerable 

Average 
Support 

Hypothesis? 
Correlation 
Coefficient 

DNMinDegree 76.9 42.8 Yes -0.05 
DNAvgDegree 143.4 128.2 No 0.03 
DNMaxCloseness 1.9 2.0 Yes 0.05 
DNAvgCloseness 1.7 1.6 No -0.03 
DNMinBetweenness 5351.3 2359.9 Yes -0.06 

Developer 
Network 
Centrality 

(HDNCentrality) 

DNAvgBetweenness 10549.0 12038.0 No 0.03 

DNMaxEdgeBetweenness 33.3 132.8 Yes 0.13 

DNAvgEdgeBetweenness 24.8 65.0 Yes 0.11 

Developer 
Network 

Clustering  
(HDNClustering) DNIsBridge 0.1 0.5 Yes 0.13 

CNDegree 2.2 4.9 Yes 0.14 
CNWeightedDegree 4.1 13.7 Yes 0.14 
CNCloseness 4.1 4.1 N/A* 0.00 

Contribution 
Network 

(HCNCentrality) 
CNBetweenness 3662.8 12199.0 Yes 0.12 

Baseline SLOC 271.5 676.4 Yes 0.11 
*Difference not statistically significant at p<0.05 



shown in the “Support Hypothesis” column). 
CNCloseness was the only metric that did not exhibit 
any difference between vulnerable and neutral files.  

The developer network centrality metrics provide 
mixed results. All of the metrics that average developer 
centrality indicate that files changed by central 
developers are more likely to be vulnerable. However, 
metrics which report the lowest developer centrality 
report that vulnerable files were changed by less 
central developers. (Note that a low closeness means a 
high centrality.) These conclusions are not completely 
contradictory, however. For example, having a high 
minimum betweenness means that all of the developers 
changing a file were central, as opposed to average of 
the developer centrality being higher. The mixed 
association results, however, are not enough to accept 
the HDNCentrality hypothesis defined in Section 5.1.1.  

The developer network clustering metrics were the 
most consistent in showing that files that lie between 
clusters of developers are more vulnerable on average 
than files that lie within clusters. Thus, the association 
criterion supports the HDNClustering hypothesis defined in 
Section 5.1.2. 

The contribution network centrality metrics also 
supported HCNCentrality. While the difference in averages 
for CNCloseness was not significant, the other three 
centrality metrics for contribution networks were 
statistically higher for vulnerable files. This indicates 
that, on average, files with a divided contribution are 
more vulnerable than files with a more focused 
contribution, supporting the HCNCentrality hypothesis 
defined in Section 5.2. 

 

6.2 Consistency 
 

The goal of the consistency validity criterion is to 
show that ranks of individual developer activity metrics 
match the ranks of vulnerable files. Since binary 
classification leads to many ties in ranks, we used 
Kendall’s Tau correlation coefficient between each 
developer activity metric and having any security 
vulnerabilities.  

 The rightmost column of Table 3 denotes the 
correlation coefficients between the metric and the 
number of vulnerabilities with the file. All of the 
correlations, except CNCloseness, are statistically 
significant, but considerably weak. Correlations for 
individual metrics are usually somewhat weak as 
metrics perform best for prediction in combination with 
each other in a predictive model. The weak, yet 
statistically significant consistency results indicate 
that, while all three hypotheses are supported, their 
purpose may be more meaningful in a multivariate 
model than used in isolation. 

 
6.3 Discriminative Power 
 

 By evaluating the discriminative power of 
developer activity metrics, we are examining how well 
each metric can individually differentiate files as 
vulnerable or neutral. As suggested by Schneidewind 
[12], we used discriminant analysis to examine the 
discriminative power of each metric. We evaluated the 
discriminative power of each metric using hold-one-out 
cross validation with precision, recall, accuracy, and 
vulnerability rate as defined in Section 2.2. Hold-one-

 
Table 4: Discriminative power results. Grayed fields are the reduced variable set for predictability 

Category Metric Precision Recall Accuracy Vulnerability Rate 
DNMinDegree 2.5% 85.4% 33.2% 68.2% 
DNAvgDegree 2.6% 73.2% 46.2% 54.7% 
DNMaxCloseness 2.4% 82.9% 34.4% 66.9% 
DNAvgCloseness 2.7% 82.0% 41.6% 59.6% 
DNMinBetweenness 2.1% 93.2% 14.7% 87.0% 

Developer 
Network 
Centrality  

DNAvgBetweenness 2.6% 65.9% 50.0% 50.6% 
DNMaxEdgeBetweenness 8.0% 39.5% 89.9% 9.7% 
DNAvgEdgeBetweenness 6.0% 39.5% 86.6% 12.9% 

Developer 
Network 

Clustering DNIsBridge 5.6% 47.8% 83.5% 16.4% 
CNDegree 8.8% 45.9% 89.7% 10.2% 
CNWeightedDegree 11.4% 42.9% 92.4% 7.4% 
CNCloseness 2.0% 67.8% 33.0% 67.7% 

Contribution 
Network 

CNBetweenness 7.8% 35.1% 90.6% 8.8% 
Baseline SLOC 6.2% 47.8% 84.7% 15.2% 

  



out cross-validation is performed by iteratively 
removing each data point from the set, training on all 
but the removed data point, then predicting for the 
removed point. The evaluation results of the 
discriminant analysis can be found in Table 4.  

 The performance of each metric is relatively weak 
in our analysis. As indicated by the low precision, each 
classifier has significant problems with false positives. 
What is more encouraging, however, is that some 
classifiers (i.e. CNWeightedDegree,  
DNMaxEdgeBetweenness),  caught over a third of the 
vulnerabilities while maintaining an accuracy of about 
90%. Since each vulnerability can be costly, these 
results may be adequate for some applications. For 
example, if we chose to test the 9.7% of the files 
classified as vulnerable by DNMaxEdgeBetweenness 
alone, 8% of them would actually be vulnerable.  
However, by doing so we would find 39.5% of the total 
vulnerabilities. Since the precision is low, 9.7% of the 
kernel source files would need to be inspected instead 
of the optimal 2%.   

 Since developer network clustering and 
contribution network metrics can individually 
discriminate with a similar recall and precision of the 
SLOC baseline metric, the HDNClustering and HCNCentraliy 
hypotheses are supported. Since none of the developer 
network centrality metrics performed similarly to 
SLOC, HDNCentrality is not supported by the 
discriminative criterion.  

 Although the SLOC metric has a similar recall to 
the other metrics, the set of vulnerabilities that SLOC 
identifies are mostly different than what the developer 
activity metrics identify. To examine the overlap 
between the predictors, we cross tabulated the correct 
predictions of each developer activity metric and the 
correct predictions for SLOC. 
DNMaxEdgeBetweenness, for instance, correctly 
identified 27 vulnerabilities (13% of the total) that 
SLOC missed, and SLOC identified 44 vulnerabilities 
(21% of the total) that DNMaxEdgeBetweenness 
missed. Combining the two predictors finds 61.0% of 
the vulnerabilities in 20.3% of the files. That developer 
activity metrics identify different vulnerabilities than 

SLOC indicates that developer activity metrics may 
complement other code metrics in security prediction.  

 

 6.4 Predictability 
 

The goal of the predictability validity criterion is to 
show how well developer metrics perform as group 
when classifying files as either vulnerable or neutral. 
For the predictability criterion, we formed five binary 
classification models based on our suite of developer 
activity metrics and our baseline metric SLOC. We 
used two methods of forming models: logistic 
regression and Bayesian Networks. Since our 
discriminant analysis showed that developer activity 
metrics were predicting different vulnerabilities than 
SLOC, we also evaluated developer activity metrics 
and SLOC together. Results were cross-validated as 
described in Section 6.3. Since Bayesian Networks 
work best with multiple variables, our Bayesian model 
for SLOC did not yield significant results. The 
precision, recall, accuracy, and vulnerability rate of the 
five models can be found in Table 5.  

 In all five models, the metrics performed with a 
higher recall than in discriminant analysis, however, 
still with a significant weakness in precision. Note also 
that SLOC performed with a similar weakness in 
precision. Logistic and Bayesian also traded off on 
recall versus precision when comparing the model 
types. The logistic regression had more false positives, 
requiring more files to be inspected; while Bayesian 
networks found fewer vulnerabilities, but required 
fewer files to be inspected.  

 

6.5 Summary 
 
In summary, the hypotheses HCNCentrality and 

HDNClustering are supported by all evaluation criteria, 
while HDNCentrality was not supported by all evaluation 
criteria. Also, the best predictors of vulnerable files 
complemented our baseline metric, meaning that 
developer activity metrics are best used in the presence 
of other metrics.  

 
Table 5: Predictability Results 

Model Variables Precision Recall Accuracy Vulnerability 
Rate 

Developer Metrics 5.6% 71.2% 75.9% 25.0% 
SLOC 5.8% 51.2% 82.6% 17.4% 

Logistic 
Regression 

Developer Metrics & SLOC 5.8% 72.2% 76.4% 24.4% 

Developer Metrics 7.3% 47.3% 87.1% 12.8% Bayesian 
Network Developer Metrics & SLOC 7.6% 51.2% 86.8% 13.2% 

     



 

7. Threats to Validity 
 

All of our developer activity metrics require version 
control data, and therefore change in the system. For 
developer networks, if a file has no commits to it 
during the period of study, it has no developers in its 
history and therefore no measurement can be made.  
For a contribution network, not having any change to a 
file would result in centrality metrics of zero, implying 
a low number of vulnerabilities. 

The means by which vulnerabilities are discovered 
can also have a significant impact on the meaning of 
our data set. Since we do not know whether or not our 
neutral files have any vulnerabilities or not, we must 
assume that the manner in which the vulnerabilities are 
discovered remain the same for both testers and 
attackers. Furthermore, we cannot say that our high rate 
of false positives is actually indicative of real false 
positives, or that our model is simply finding more 
vulnerabilities in the system that have not been 
confirmed. 

 

8. Summary 
 

We evaluated the relationship of a suite of 
developer activity metrics and security vulnerabilities 
in a case study of the Linux kernel. Our suite includes 
centrality and cluster metrics from network analysis of 
data from version control systems. An empirical 
analysis of our data demonstrates the following 
observations: (a) source code files changed by multiple 
clusters of developers are more likely to be vulnerable 
than changed by a single cluster; and (b) files are likely 
to be vulnerable when changed by many developers 
who themselves have made many changes to other 
files. Practitioners can use these observations to 
prioritize security fortification efforts or to consider 
organizational changes among developers.  While the 
results are statistically significant, the weak 
correlations indicated that developer activity metrics 
are likely to perform best for prediction in the presence 
of other metrics. 
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