
Equivalence of SQL Queries
In Presence of Embedded Dependencies

Rada Chirkova
Department of Computer Science

NC State University, Raleigh, NC 27695, USA
chirkova@csc.ncsu.edu

Michael R. Genesereth
Department of Computer Science

Stanford University, Stanford, CA 94305, USA
genesereth@stanford.edu

ABSTRACT
We consider the problem of finding equivalent minimal-
size reformulations of SQL queries in presence of embed-
ded dependencies [1]. Our focus is on select-project-join
(SPJ) queries with equality comparisons, also known as
safe conjunctive (CQ) queries, possibly with grouping
and aggregation. For SPJ queries, the semantics of the
SQL standard treat query answers as multisets (a.k.a.
bags), whereas the stored relations may be treated ei-
ther as sets, which is called bag-set semantics for query
evaluation, or as bags, which is called bag semantics.
(Under set semantics, both query answers and stored
relations are treated as sets.)

In the context of the above Query-Reformulation Prob-
lem, we develop a comprehensive framework for equiva-
lence of CQ queries under bag and bag-set semantics in
presence of embedded dependencies, and make a num-
ber of conceptual and technical contributions. Specif-
ically, we develop equivalence tests for CQ queries in
presence of arbitrary sets of embedded dependencies
under bag and bag-set semantics, under the condition
that chase [10] under set semantics (set-chase) on the
inputs terminates. We also present equivalence tests for
aggregate CQ queries in presence of embedded depen-
dencies. We use our equivalence tests to develop sound
and complete (whenever set-chase on the inputs termi-
nates) algorithms for solving instances of the Query-
Reformulation Problem with CQ queries under each of
bag and bag-set semantics, as well as for instances of
the problem with aggregate queries.

Some of our results are of independent interest. In
particular, it is known that constraints that force some
relations to be sets on all instances of a given database
schema arise naturally in the context of sound (i.e., cor-
rect) chase [9] under bag semantics. We develop a for-
mal framework for defining such constraints as embed-
ded dependencies, provided that row (tuple) IDs, com-
monly used in commercial database-management sys-
tems, are defined for the respective relations.

We also extend the condition of [4] for bag equivalence
of CQ queries, to those cases where some relations are
set valued in all instances of the given schema. Our
proof of this nontrivial result includes reasoning involv-
ing bag (non)containment. In particular, we provide
an original proof (adapted to our context) of the result
of [4] that CQ query Q1 is bag contained in CQ query
Q2 only if, for each predicate used in Q1, Q2 has at least

as many subgoals with this predicate as Q1 does.
Our contributions are clearly applicable beyond the

Query-Reformulation Problem considered in this pa-
per. Specifically, the results of this paper can be used
in developing algorithms for rewriting CQ queries and
queries in more expressive languages (e.g., including
grouping and aggregation, or arithmetic comparisons)
using views in presence of embedded dependencies, un-
der bag or bag-set semantics for query evaluation.

This text contains corrections to Sections 2.4 and 4 of [5].

1. INTRODUCTION
Query containment and equivalence were recognized

fairly early as fundamental problems in database query
evaluation and optimization. The reason is, for conjunc-
tive queries (CQ queries) — a broad class of frequently
used queries, whose expressive power is equivalent to
that of select-project-join queries in relational algebra
— query equivalence can be used as a tool in query
optimization. Specifically, to find a more efficient and
answer-preserving formulation of a given CQ query, it is
enough to “try all ways” of arriving at a “shorter” query
formulation, by removing query subgoals, in a process
called query minimization [2]. A subgoal-removal step
succeeds only if equivalence (via containment) of the
“original” and “shorter” query formulations can be en-
sured. The equivalence test of [2] for CQ queries is
known to be NP complete, whereas equivalence of gen-
eral relational queries is undecidable.

In recent years, there has been renewed interest in the
study of query containment and equivalence, because
of their close relationship to the problem of answering
queries using views [17]. In particular, the problem of
rewriting relational queries equivalently using views has
been the subject of extensive rigorous investigations.
Please see [11, 17, 21, 23] for discussions of the state
of the art and of the numerous practical applications of
the problem. A test for equivalence of a CQ query to
its candidate CQ rewriting in terms of CQ views uses
an equivalent transformation of the rewriting to its CQ
expansion, which (informally speaking) replaces refer-
ences to views in the rewriting by their definitions [17,
23]. Then the equivalence test succeeds if and only if the
expansion of the rewriting is equivalent, via the equiv-
alence test of [2], to the input query.

Some of the investigations discussed in [11, 17, 21,
23] focused on view-based query rewriting in presence
of integrity constraints (also called dependencies, see [1]
for an overview). For a given query, accounting for the
dependencies that hold on the database schema may in-
crease the number of equivalent rewritings of the query

using the given views. As a result, for a particular qual-
ity metric on the rewritings being generated, one may
achieve better quality of the outputs of the rewriting
generator, with obvious practical advantages. Similarly,
accounting for the existing dependencies in reformulat-
ing queries in a query optimizer could result in a larger
space of equivalent reformulations. For an illustration,
please see Example 4.1 in this paper.

In the settings of query reformulation and view-based
query rewriting in presence of dependencies, Deutsch
and colleagues have developed an algorithm, called Chase
and Backchase (C&B, see [11]) that, for a given CQ
query, outputs equivalent minimal-size CQ reformula-
tions or rewritings of the query. The technical restric-
tion on the algorithm is the requirement that the pro-
cess of “chasing” (see [1] for an overview) the input
query under the available dependencies terminate in fi-
nite time. Intuitively, the point of the chase in C&B is
to use the available dependencies to derive a new query
formulation, which can be used to check “dependency-
aware” equivalence of the query to any candidate refor-
mulation or rewriting by using any known dependency-
free equivalence test (e.g., that of [2] for CQ queries).
Under the above restriction, the C&B algorithm is sound
and complete for CQ queries, views, and rewritings/re-
formulations in presence of embedded dependencies, which
are known to be sufficiently expressive to specify all
usual integrity constraints, such as keys, foreign keys,
inclusion, join, and multivalued dependencies [10].

The above guarantees of C&B hold under set seman-
tics for query evaluation, where both the database (stor-
ed) relations and query answers are treated as sets.
Query answering and rewriting in the set-semantics set-
ting have been studied extensively in the database-theory
literature. At the same time, the set semantics are
not the default query-evaluation semantics in database
systems in practice. Specifically, the expected seman-
tics of query evaluation in the standard query language
SQL [15] are bag-set semantics. That is, whenever a
query does not use the DISTINCT keyword, then query
answers are treated in the SQL standard as multisets
(i.e., sets with duplicates, also called bags), whereas the
database relations are assumed to be sets.

Arguably, the default semantics of SQL are the bag se-
mantics, where both query answers and stored relations
are permitted to be bags. Indeed, by the SQL standard
stored relations are bags, rather than sets, whenever the
PRIMARY KEY and UNIQUE clauses (which arise from the
best practices but are not required in the SQL stan-
dard) are not part of the CREATE TABLE statement. Us-
ing bag semantics in evaluating SQL queries becomes
imperative in presence of materialized views [17], where
the definitions of some of the views may not have in-
cluded the DISTINCT keyword, even assuming that all
the original stored relations are required to be sets.

The problem of developing tests for equivalence of CQ
queries under bag and bag-set semantics was solved by
Chaudhuri and Vardi in [4]. The bag-set-semantics test
of [4] is also used in testing equivalence of queries with
grouping and aggregation [8, 22]. At the same time, de-
veloping tests for equivalence of CQ queries under bag
or bag-set semantics in presence of embedded depen-
dencies has been an open problem until now. To the
best of our knowledge, the only efforts in this direction
have been undertaken by Deutsch in [9] and by Cohen
in [6], please see Section 7 for a more detailed discus-

sion. Neither effort has resulted in equivalence tests
for queries in presence of arbitrary sets of embedded
dependencies, which may serve as an indication that
the problem of developing tests for equivalence of CQ
queries under bag or bag-set semantics in presence of
embedded dependencies is not trivial.

Our contributions.
We consider the problem of finding equivalent minimal-
size reformulations of SQL queries in presence of em-
bedded dependencies, with a focus on select-project-join
queries with equality comparisons, also known as safe
CQ queries, possibly with grouping and aggregation. To
construct algorithms that would solve instances of this
Query-Reformulation Problem (specified in Section 3),
we develop a comprehensive framework for equivalence
of CQ queries under bag and bag-set semantics in pres-
ence of embedded dependencies, and make a number of
conceptual and technical contributions. Specifically:

• We formulate sufficient and necessary conditions
for correctness (soundness) of chase for CQ queries
and arbitrary sets of embedded dependencies un-
der bag and bag-set semantics, see Section 4.

• It has been shown [9] that constraints that force
some relations to be sets on all instances of a given
database schema arise naturally in the context of
sound chase under bag semantics. We develop a
formal framework for defining such constraints as
embedded dependencies, provided that row (tu-
ple) IDs (commonly used in commercial database-
management systems) are defined for the respec-
tive relations. See Section 4 and Appendix C.

• We extend the condition of [4] for bag equivalence
of CQ queries, to those cases where some relations
are set valued in all instances of the given schema,
see Section 4. Our proof of this nontrivial result in-
cludes reasoning involving bag (non)containment.
In particular, we provide an original proof (adapted
to our context) of the result of [4] that CQ query
Q1 is bag contained in CQ query Q2 only if, for
each predicate used in Q1, Q2 has at least as many
subgoals with this predicate as Q1 does.

• We show that the result Qn of sound chase of a
CQ query Q using a finite set Σ of embedded de-
pendencies is unique under each of bag and bag-set
semantics, whenever set-chase of Q using Σ termi-
nates. We also provide a constructive characteri-
zation of the maximal subset of Σ that is satisfied
by the canonical database for Qn. See Section 5.

• We provide equivalence tests for CQ queries in
presence of embedded dependencies under bag and
bag-set semantics, see Section 6.1.

• We present equivalence tests for CQ queries with
grouping and aggregation in presence of embedded
dependencies, see Section 6.2.

• Finally, we develop sound and complete (whenever
set-chase on the inputs terminates) algorithms for
solving instances of the Query-Reformulation Prob-
lem with CQ queries under each of bag and bag-set
semantics, as well as instances of the problem with
aggregate queries, see Section 6.3.

Our contributions are clearly applicable beyond the
Query-Reformulation Problem of Section 3. Specifi-
cally, the results of this paper can be used in developing
algorithms for rewriting CQ queries and queries in more

expressive languages (e.g., including grouping and ag-
gregation, or including arithmetic comparisons [19]) us-
ing views in presence of embedded dependencies, under
bag or bag-set semantics for query evaluation. Among
other directions, our results could help solve the prob-
lem of reformulation for XQueries with bag semantics
on XML data. Such queries can be explicitly written
using the keyword unordered, see [9] for a discussion.
2. PRELIMINARIES
2.1 The Basics

A database schema D is a finite set of relation symbols
and their arities. A database (instance) D over D has
one finite relation for every relation symbol in D, of the
same arity. A relation is, in general, bag valued; that is,
it is a bag (also called multiset) of tuples. A bag can be
thought of as a set of elements (the core-set of the bag)
with multiplicities attached to each element. We say
that a relation is set valued if its cardinality coincides
with the cardinality of its core-set. A database instance
is, in general, bag valued. We say that a (bag-valued)
database instance is set valued if all its relations are set
valued.

A conjunctive query (CQ query) Q over a schema D
is an expression of the form Q(X̄) : − φ(X̄, Ȳ), where
φ(X̄, Ȳ) is a nonempty conjunction of atomic formulas
(i.e., relational atoms, also called subgoals) over D. We
follow the usual notation and separate the atoms in a
query by commas. We call Q(X̄) the head and φ(X̄, Ȳ)
the body. We use a notation such as X̄ for a vector of
k variables and constants X1, . . . , Xk (not necessarily
distinct). Every variable in the head must appear in
the body (i.e., Q must be safe). The set of variables in
Ȳ is assumed to be existentially quantified.

Given two conjunctions φ(Ū) and ψ(V̄) of atomic for-
mulas, a homomorphism from φ(Ū) to ψ(V̄) is a map-
ping h from the set of variables and constants in Ū to the
set of variables and constants in V̄ such that (1) h(c) = c
for each constant c, and (2) for every atom r(U1, . . . , Un)
of φ, r(h(U1), . . . , h(Un)) is in ψ. Given two CQ queries
Q1(X̄) : − φ(X̄, Ȳ) and Q2(X̄ ′) : − ψ(X̄ ′, Ȳ ′), a con-
tainment mapping from Q1 to Q2 is a homomorphism
h from φ(X̄, Ȳ) to ψ(X̄ ′, Ȳ ′) such that h(X̄) = X̄ ′.

For a conjunction φ(Ū) of atomic formulas, an assign-
ment γ for φ(Ū) is a mapping of the variables of φ(Ū)
to constants, and of the constants of φ(Ū) to them-
selves. We use a notation such as γ(X̄) to denote tuple
(γ(X1), . . . , γ(Xk)). Let relation Pi in database D cor-
respond to predicate pi. Then we say that atom pi(X̄) is
satisfied by assignment γ w.r.t. database D if there ex-
ists tuple t ∈ Pi in D such that t = γ(X̄). Note that the
satisfying assignment γ is a homomorphism from pi(X̄)
to the ground atom pi(γ(X̄)) representing tuple t in Pi.
Both the tuple-based definition of satisfaction and its
homomorphism formulation are naturally extended to
define satisfaction of conjunctions of atoms.

Query evaluation under set semantics. For a
CQ query Q(X̄) : − φ(X̄, Ȳ) and for a database D,
suppose that there exists an assignment γ for the body
φ(X̄, Ȳ) of Q, such that φ(X̄, Ȳ) is satisfied by γ w.r.t.
D. Then we say that Q returns a tuple t = γ(X̄) on
D. Further, the answer Q(D,S) to Q on a set-valued
database D under set semantics for query evaluation is

the set of all tuples that Q returns on D.
Query equivalence under set semantics. Query

Q1 is contained in query Q2 under set semantics (set-
contained, denoted Q1 #S Q2) if Q1(D,S) ⊆ Q2(D,S)
for every set-valued database D. Query Q1 is equiv-
alent to query Q2 under set semantics (set-equivalent,
denoted Q1 ≡S Q2) if Q1 #S Q2 and Q2 #S Q1. A
classical result [2] states that a necessary and sufficient
condition for the set-containment Q1 #S Q2, for CQ
queries Q1 and Q2, is the existence of a containment
mapping from Q2 to Q1. This result forms the basis
for a sound and complete test for set-equivalence of CQ
queries, by definition of set-equivalence.

Canonical database. Every CQ query Q can be
regarded as a symbolic database D(Q). D(Q) is defined
as the result of turning each subgoal pi(. . .) of Q into a
tuple in the relation Pi that corresponds to predicate pi.
The procedure is to keep each constant in the body of Q,
and to replace consistently each variable in the body of
Q by a distinct constant different from all constants in
Q. The tuples that correspond to the resulting ground
atoms are the only tuples in the canonical database D(Q)

for Q, which is unique up to isomorphism.

2.2 Bag and Bag-Set Semantics
In this section we provide definitions for query eval-

uation under bag and bag-set semantics. Our defini-
tions are consistent with the semantics of evaluating
CQ queries in the SQL standard (see, e.g., [15]), as well
as with the corresponding definitions in [4, 18].

Query evaluation under bag-set semantics. Con-
sider a CQ query Q(X̄) : − φ(X̄, Ȳ). The answer
Q(D,BS) to Q on a set-valued database D under bag-
set semantics for query evaluation is the bag of all tuples
that Q returns on D. That is, for each assignment γ for
the body φ(X̄, Ȳ) of Q, such that φ(X̄, Ȳ) is satisfied
by γ w.r.t. D, γ contributes to the bag Q(D,BS) a dis-
tinct tuple t = γ(X̄), such that Q returns t on D w.r.t.
γ. (I.e., whenever Q returns t1 on D w.r.t. γ1 and Q
returns a copy t2 of t1 on D w.r.t. γ2 &= γ1, then each of
t1 and t2 is a separate element of the bag Q(D,BS).)

Query evaluation under bag semantics. For a
CQ query Q, the answer Q(D,B) to Q on a bag-valued
database D under bag semantics for query evaluation is
a bag of tuples computed as follows. Suppose Q is

Q(X̄) : − p1(X̄1), p2(X̄2), . . . , pn(X̄n).

Consider the vector p1, . . . , pn of predicates (not nec-
essarily distinct) occurring in the body of Q, and let
P1, . . . , Pn be the vector of relations in D such that
each pi corresponds to relation Pi. Whenever two sub-
goals pi(. . .) and pj(. . .) of Q, with i &= j, have the same
predicate, Pi and Pj refer to the same relation in D.

Let γ be an assignment for the body of Q, such that
the body of Q is satisfied by γ w.r.t. D. Assignment γ
maps each subgoal pi(X̄i) of Q into a tuple t(i) in rela-
tion Pi. For each i ∈ {1, . . . , n}, let mi be the number
of occurrences of tuple t(i) in the bag Pi. (I.e., mi > 0
is the multiplicity associated with the (unique copy of)
tuple t(i) in the core-set of Pi.) Then each distinct γ
contributes exactly Πn

i=1mi copies of tuple t = γ(X̄) to
the bag Q(D,B). (Recall that X̄ is the vector of vari-
ables and constants in the head of Q.) Further, the bag
Q(D,B) has no other tuples.

2.3 Equivalence Tests for CQ Queries
This subsection outlines equivalence tests for CQ

queries, for the cases of bag and bag-set semantics. The
classical equivalence test [2] for CQ queries for the case
of set semantics is described in Section 2.1.

Query equivalence under bag and bag-set se-
mantics. Query Q1 is equivalent to query Q2 under
bag semantics (bag-equivalent, denoted Q1 ≡B Q2) if for
all bag-valued databases D it holds that Q1(D,B) and
Q2(D,B) are the same bags. Query Q1 is equivalent to
query Q2 under bag-set semantics (bag-set-equivalent,
Q1 ≡BS Q2) if for all set-valued databases D it holds
that Q1(D,BS) and Q2(D,BS) are the same bags.

Proposition 2.1. [4] Given two CQ queries Q1 and
Q2, Q1 ≡B Q2 implies Q1 ≡BS Q2, and Q1 ≡BS Q2
implies Q1 ≡S Q2. !

For bag and bag-set semantics, the following condi-
tions are known for CQ query equivalence. (Query Qc
is a canonical representation of query Q if Qc is the
result of removing all duplicate atoms from Q.)

Theorem 2.1. [4] Let Q and Q′ be CQ queries.
Then (1) Q ≡B Q′ iff Q and Q′ are isomorphic. (2)
Q ≡BS Q′ iff Qc ≡B Q′

c, where Qc and Q′
c are canoni-

cal representations of Q and Q′, respectively. !

2.4 Dependencies and Chase
Embedded dependencies. We consider dependen-

cies σ of the form
σ : φ(Ū , W̄) → ∃V̄ ψ(Ū , V̄)
where φ and ψ are conjunctions of atoms, which may
include equations. Such dependencies, called embedded
dependencies, are sufficiently expressive to specify all
usual integrity constraints, such as keys, foreign keys,
inclusion, and join dependencies [10]. If ψ consists only
of equations, then σ is an equality-generating depen-
dency (egd). If ψ consists only of relational atoms, then
σ is a tuple-generating dependency (tgd). Every set Σ
of embedded dependencies is equivalent to a set of tgds
and egds [1]. We write D |= Σ if database D satisfies all
the dependencies in Σ. All sets Σ we refer to are finite.

Query containment and equivalence under de-
pendencies. We say that query Q is set-equivalent
to query P under a set of dependencies Σ, denoted
Q ≡Σ,S P, if for every set-valued database D such that
D |= Σ we have Q(D,S) = P (D,S). The definition
of set containment under dependencies, denoted #Σ,S ,
as well as the definitions of bag equivalence and bag-set
equivalence under dependencies (denoted by ≡Σ,B and
≡Σ,BS , respectively), are analogous modifications of
the respective definitions for the dependency-free set-
ting, see Sections 2.1 and 2.3.

Chase. Assume a CQ query Q(X̄) : − ξ(X̄, Ȳ) and
a tgd σ of the form φ(Ū , W̄) → ∃V̄ ψ(Ū , V̄). Assume
w.l.o.g. that Q has none of the variables V̄ . The chase
of Q with σ is applicable if there is a homomorphism
h from φ to ξ and if, moreover, h cannot be extended
to a homomorphism h′ from φ ∧ ψ to ξ. In that case,
a chase step of Q with σ and h is a rewrite of Q into
Q′(X̄) : − ξ(X̄, Ȳ) ∧ ψ(h(Ū), V̄).

We now define a chase step with an egd. Assume a
CQ query Q as before and an egd e of the form φ(Ū) →
U1 = U2. The chase of Q with e is applicable if there is a
homomorphism h from φ to ξ such that h(U1) &= h(U2)

and at least one of h(U1) and h(U2) is a variable; assume
w.l.o.g. that h(U1) is a variable. Then a chase step of Q
with e and h is a rewrite of Q into a query that results
from replacing all occurrences of h(U1) in Q by h(U2).

A Σ-chase sequence C (or just chase sequence, if Σ
is clear from the context) is a sequence of CQ queries
Q0, Q1, . . . such that every query Qi+1 (i ≥ 0) in C is
obtained from Qi by a chase step Qi ⇒σ Qi+1 using a
dependency σ ∈ Σ. A chase sequence Q = Q0, Q1, . . . , Qn

is terminating under set semantics if D(Qn) |= Σ, where
D(Qn) is the canonical database for Qn. In this case
we say that (Q)Σ,S = Qn is the (terminal) result of
the chase. Chase of CQ queries under set semantics is
known to terminate in finite time for a class of embed-
ded dependencies called weakly acyclic dependencies,
see [14] and references therein. Under set semantics,
all chase results for a given CQ query are equivalent in
the absence of dependencies [10].

The following result is immediate from [1, 9, 10].
Theorem 2.2. Given CQ queries Q1, Q2 and set

Σ of embedded dependencies. Then Q1 ≡Σ,S Q2 iff
(Q1)Σ,S ≡S (Q2)Σ,S in the absence of dependencies. !

2.5 Queries with Grouping and Aggregation
We assume that the data we want to aggregate are

real numbers, R. If S is a set, then M(S) denotes the
set of finite bags over S. A k-ary aggregate function is a
function α : M(Rk) → R that maps bags of k-tuples
of real numbers to real numbers. An aggregate term is
an expression built up using an aggregate function over
variables. Every aggregate term with k variables gives
rise to a k-ary aggregate function in a natural way.

We use α(y) as an abstract notation for a unary ag-
gregate term, where y is the variable in the term. Ag-
gregate queries that we consider have (unary or 0-ary)
aggregate functions count, count(∗), sum, max, and
min. Note that count is over an argument, whereas
count(∗) is the only function that we consider here that
takes no argument. (There is a distinction in SQL se-
mantics between count and count(∗).) In the rest of the
paper, we will not refer again to the distinction between
count and count(∗), as our results carry over.

An aggregate query [8, 22] is a conjunctive query aug-
mented by an aggregate term in its head. For a query
with a k-ary aggregate function α, the syntax is:

Q(S̄,α(Ȳ)) ← A(S̄, Ȳ , Z̄) . (1)

A is a conjunction of atoms; α(Ȳ) is a k-ary aggregate
term; S̄ are the grouping attributes of Q; none of the
variables in Ȳ appears in S̄. Finally, Q is safe: all
variables in S̄ and Ȳ occur in A. We consider queries
with unary aggregate functions sum, count, max, and
min. With each aggregate query Q as in Equation (1),
we associate its CQ core Q̆: Q̆(S̄, Ȳ) ← A(S̄, Ȳ , Z̄).

We define the semantics of an aggregate query as fol-
lows: Let D be a set-valued database and Q an aggre-
gate query as in Equation (1). When Q is applied on D
it yields a relation Q(D) defined by the following three
steps: First, we compute the bag B = Q̆(D,BS) on
D. We then form equivalence classes in B: Two tuples
belong to the same equivalence class if they agree on
the values of all the grouping arguments of Q. This is
the grouping step. The third step is aggregation; it as-
sociates with each equivalence class a value that is the

aggregate function computed on a bag that contains all
values of the input argument(s) of the aggregated at-
tribute(s) in this class. For each class, it returns one
tuple, which contains the values of the grouping argu-
ments of Q and the computed aggregated value.

In general, queries with different aggregate functions
may be equivalent [8]. We follow the approach of [8,
22] by considering equivalence between queries with the
same lists of head arguments, called compatible queries.

Definition 2.1. (Equivalence of compatible ag-
gregate queries [22]) For queries Q(X̄,α(Ȳ)) ← A(S̄)
and Q′(X̄,α(Ȳ)) ← A′(S̄′), Q ≡ Q′ if Q(D) = Q′(D)
for every database D. !

We say that two compatible aggregate queries Q and
Q′ are equivalent in presence of a set of dependencies Σ,
Q ≡Σ Q′, if Q(D) = Q′(D) for every database D |= Σ.

Theorem 2.3. [8, 22] (1) Equivalence of sum- and
of count-queries can be reduced to bag-set equivalence of
their cores. (2) Equivalence of max- and of min-queries
can be reduced to set equivalence of their cores. !

3. PROBLEM STATEMENT
In this section we use the following notation: Let X

be the semantics for query evaluation, with values S, B,
and BS, for set, bag, or bag-set semantics, respectively.
Let L1 and L2 be two query languages. Let Σ be a finite
set of dependencies on database schema D.

We use the notion of Σ-minimality [11], defined as
follows. (Intuitively, reformulation R of query Q is not
Σ-minimal if at least one egd in Σ is applicable to R.)

Definition 3.1. (Minimality under dependen-
cies [11]) A CQ query Q is Σ-minimal if there are no
queries S1, S2 where S1 is obtained from Q by replacing
zero or more variables with other variables of Q, and S2
by dropping at least one atom from S1 such that S1 and
S2 remain equivalent to Q under Σ. !

We extend this definition to Σ-minimality of CQ
queries with grouping and aggregation, which is defined
as Σ-minimality of the (unaggregated) core of the query,
see Section 2.5 for the relevant definitions.

A general statement of the Query-Reformulation
Problem that we consider in this paper is as follows:
The problem input is (D, X,Q,Σ,L2), where query Q is
defined on database schema D in language L1. A solu-
tion to the Query-Reformulation Problem, for a prob-
lem input (D, X,Q,Σ,L2), is a query Q′ defined in lan-
guage L2 on D, such that Q′ ≡Σ,X Q.

In this paper we consider the Query-Reformulation
Problem in presence of embedded dependencies, and fo-
cus on (1) the CQ class of the problem, where each of
L1 and L2 is the language of CQ queries, and on (2)
the CQ-aggregate class (see Section 6.3), where each of
L1 and L2 is the language of CQ queries with grouping
and aggregation, using aggregate functions sum, max,
min, and count; we refer to this query language as CQ-
aggregate. For both classes, we consider only Σ-minimal
solutions of the Query-Reformulation Problem.

4. SOUND CHASE UNDER BAG AND BAG-
SET SEMANTICS

In this section we show that under bag and bag-set
semantics, it is incorrect to enforce the set-semantics
condition of D(Qn) |= Σ (Section 2.4) on the terminal

chase result Qn of query Q under dependencies Σ. The
problem is that under this condition, chase may yield
a result Qn that is not equivalent to the original query
Q in presence of Σ. That is, soundness of chase, un-
derstood as Qn ≡Σ,B Q or Qn ≡Σ,BS Q, may not hold.
We then formulate sufficient and necessary conditions
for soundness of chase for CQ queries and embedded
dependencies under bag and bag-set semantics.

In this section we also show that constraints that force
certain relations to be sets on all instances of a given
database schema can be defined as egds, provided that
row (tuple) IDs are defined for the respective relations.
Finally, we extend the condition of Theorem 2.1 for bag
equivalence of CQ queries, to those cases where some
relations are required to be set valued in all instances
of the given schema. Such requirements can be defined
as our set-enforcing egds.

4.1 Motivating Example
Let us conjecture that maybe an analog of Theo-

rem 2.2 (Section 2.4) holds for the case of bag semantics.
(In this section we discuss in detail the case of bag se-
mantics only; analogous reasoning is valid for the case
of bag-set semantics.) That is, maybe Q1 ≡Σ,B Q2 if
and only if (Q1)Σ,S ≡B (Q2)Σ,S in the absence of de-
pendencies, for a given pair of CQ queries Q1 and Q2
and for a given set Σ of embedded dependencies. (We
obtain our conjecture by replacing the symbols ≡Σ,S
and ≡S in Theorem 2.2 by the bag-semantics versions
of these symbols.)

Now consider the C&B algorithm by Deutsch and col-
leagues [11]. Under set semantics for query evaluation
and given a CQ query Q, C&B outputs all equivalent Σ-
minimal conjunctive reformulations of Q in presence of
the given embedded dependencies Σ (i.e., C&B is sound
and complete), whenever chase of Q under Σ terminates
in finite time. See Appendix A for the details on C&B.

If our conjecture is valid, then a straightforward mod-
ification of C&B gives us a procedure for solving in-
stances in the CQ class of the Query-Reformulation
Problem for bag semantics.1 The only difference be-
tween the original C&B and its proposed modification
would be the test for bag, rather than set, equivalence
(see Theorem 2.1) between the universal plan (Q)Σ,S of
C&B for the input query Q and dependencies Σ, and
the terminal result of chasing a candidate reformulation.
(These terms are defined in Appendix A.) By extension
from C&B, our algorithm would be sound and complete
for all problem instances where the universal plan for Q
could be computed in finite time.

Unfortunately, this naive extension of C&B would not
be sound for bag semantics (or for bag-set semantics, in
the version of C&B using the bag-set equivalence test of
Thm. 2.1). We highlight the problems in an example.

EXAMPLE 4.1. On database schema D = {P,R, S,
T, U}, consider a set Σ that includes four tgds:
σ1 : p(X, Y) → s(X, Z) ∧ t(X, V,W)
σ2 : p(X, Y) → t(X, Y,W)
σ3 : p(X, Y) → r(X)
σ4 : p(X, Y) → u(X, Z) ∧ t(X, Y,W)

Suppose Σ also includes dependencies enforcing the
following constraints: (1) Relations S and T (but not
1An analogous extension of C&B would work for instances
(D, BS, Q, Σ, CQ), i.e., under bag-set semantics.

R or U) are set valued in all instances of D; call these
constraints σ5 and σ6, respectively. (These dependen-
cies are relevant to the bag-semantics case. Under bag-
set or set semantics, all relations in all instances of D
are set valued by definition.) Please see Section 4.2 for
an approach to expressing such constraints using egds.
(2) The first attribute of S is the key of S (egd σ7), and
the first two attributes of T are the key of T (egd σ8),
see Appendix B for the definition of keys.

Consider CQ queries Q1 through Q4, defined as
Q1(X) : − p(X, Y), t(X, Y,W), s(X, Z), r(X), u(X, U).
Q2(X) : − p(X, Y), t(X, Y,W), s(X, Z), r(X).
Q3(X) : − p(X, Y), t(X, Y,W), s(X, Z).
Q4(X) : − p(X, Y).

(We disregard queries Q2 and Q3 for the moment.)
We can show that Q1 ≡Σ,S Q4. Thus, Q1 is a refor-

mulation of Q4 in presence of Σ under set semantics.
At the same time, by [2] Q1 and Q4 are not equivalent
under set semantics in the absence of dependencies.

Our naive modification of C&B would return a refor-
mulation Q1 of query Q4. Indeed, each of (Q1)Σ,S and
(Q4)Σ,S is isomorphic to Q1, thus by Theorem 2.1 we
have that (Q1)Σ,S ≡B (Q4)Σ,S.

However, even though (Q1)Σ,S ≡B (Q4)Σ,S, it is not
true that Q1 ≡Σ,B Q4. The counterexample is a bag-
valued database D, D |= Σ, with relations P = {{(1, 2)}},
R = {{(1)}}, S = {{(1, 3)}}, T = {{(1, 2, 4)}}, and U =
{{(1, 5), (1, 6)}}. On the database D, the answer to Q4
under bag semantics is Q4(D,B) = {{(1)}}, whereas
Q1(D,B) = (Q1)Σ,S(D,B) = (Q4)Σ,S(D,B) = {{(1),
(1)}}. From the fact that Q1(D,B) and Q4(D,B) are
not the same bags, we conclude that Q1 ≡Σ,B/ Q4.

The same database D (which is set valued) would dis-
prove Q1 ≡Σ,BS Q4 (i.e., equivalence of Q1 and Q4

under Σ and bag-set semantics), even though it is true
by Theorem 2.1 that (Q1)Σ,S ≡BS (Q4)Σ,S. !

4.2 Sound Chase Steps
The problem highlighted in Example 4.1 is unsound-

ness of set-semantics chase when applied to query Q4
under bag or bag-set semantics. To rectify this prob-
lem, that is to make chase sound under these semantics,
we modify the definitions of chase steps.

Given a CQ query Q and a set of embedded depen-
dencies Σ, let Q′ be the result of applying to query
Q a dependency σ ∈ Σ. We say that the chase step
Q ⇒σ

B Q′ is sound under bag semantics [9] (Q ⇒σ
BS Q′

is sound under bag-set semantics, respectively) if it holds
that Q ≡Σ,B Q′ (that Q ≡Σ,BS Q′, respectively). By
extension of the above definitions, all chase steps under
embedded dependencies are sound under set semantics.
The definitions of sound chase steps are naturally ex-
tended to those of sound chase sequences under each se-
mantics. We say that a chase result Qn is sound w.r.t.
(Q,Σ) under bag semantics (under bag-set semantics,
respectively) whenever there exists a Σ-chase sequence
C that starts with the input query Q and ends with Qn,
and such that all chase steps in C are sound under bag
semantics (under bag-set semantics, respectively).

4.2.1 Regularized Assignment-Fixing Tgds
Toward ensuring soundness of chase under bag and

bag-set semantics, we will define key-based chase using
tgds, see Section 4.2.3. For our definition we will need

the technical notions of “regularized tgds” and “assign-
ment-fixing tgds”, which we formally define and charac-
terize in this subsection.

Regularized tgds.
Consider a tgd σ : φ(X̄, Ȳ) → ∃Z̄ ψ(X̄, Z̄) whose

right-hand side ψ has at least two relational atoms. Let
ψa and ψb be a partition of ψ (where ψ is viewed as set of
relational atoms) in σ into two disjoint nonempty sets,
that is ψa &= ∅, ψb &= ∅, ψa ∩ ψb = ∅, and ψa ∪ ψb = ψ.
Let Ā be all the variables in ψa, and let B̄ be all the
variables in ψb. We call ψa and ψb a nonshared partition
of ψ in σ whenever Ā ∩ B̄ ⊆ X̄. (Recall that all the
variables in X̄ are universally quantified in σ.) In case
where ψa and ψb are two disjoint nonempty sets such
that ψa ∪ψb = ψ and Ā∩ B̄ ∩ Z̄ &= ∅, we call ψa and ψb
a shared partition of ψ in σ.

Definition 4.1. (Regularized tgd, regularized
set of embedded dependencies) A tgd σ : φ → ψ
is a regularized tgd if there exists no nonshared parti-
tion of the set of relational atoms of ψ into two disjoint
nonempty sets.2 We say that a finite set Σ of embedded
dependencies is a regularized set of (embedded) depen-
dencies if each tgd in Σ is regularized. !

Sets {u(X, Z)} and {t(X, Y,W)} comprise a nonshared
partition of the right-hand side of tgd σ4 in Example 4.1;
therefore, the tgd σ4 is not regularized. For a tgd σ1 in
Example 4.2, where σ1 : p(X, Y) → ∃Z ∃W r(X, Z) ∧
s(Z,W), sets {r(X, Z)} and {s(Z,W)} comprise a shared
partition of the right-hand side of σ1, because an exis-
tential variable Z of σ1 is present in both elements of
the partition. This tgd is regularized by Definition 4.1.
The set Σ in Example 4.6 is a regularized set of depen-
dencies.

Consider a tgd σ : φ → ψ that is not regularized
by Definition 4.1. The process of regularizing σ is the
process of constructing from σ a set Σσ = {σ1, . . . ,σk}
of tgds, where k ≥ 2 and such that for each tgd σi in
Σσ, (i) the left-hand side of σi is the left-hand side φ
of σ; (ii) the right-hand side of σi is a nonempty set
of atoms ψi ⊆ ψ (recall that ψ is the right-hand side of
σ), with all the existential variables (of ψ) in ψi marked
as such in σi; (iii) σi is regularized by Definition 4.1;
and (iv) ∪k

i=1ψi = ψ . It is easy to see that given a
non-regularized tgd σ, the recursive algorithm of find-
ing nonshared partitions of the right-hand side of σ (a)
regularizes σ correctly, (b) results in a unique set Σσ,
and (c) has the complexity O(m2 log m), where m is
the number of relational atoms in the right-hand side
of σ. (The idea of the algorithm is to (1) give a unique
ID id(aψ) to each relational atom aψ of ψ, to then (2)
associate with each id(aψ) the set of all those variables
of aψ that are existentially quantified in σ, and to then
(3) recursively sort all the ids, each time by one fixed
variable in their associated variable lists, and to either
start a new nonshared partition using the sorted list, or
to add atoms to an existing nonshared partition, again
using the sorted list.) We call Σσ the regularized set of
σ.

Now given a finite set Σ of arbitrary embedded egds
and tgds, we regularize Σ by regularizing each tgd in
2Trivially, every tgd whose right-hand side has exactly one
atom is a regularized tgd.

Σ as described above. We say that Σ′ is a regularized
version of Σ if (i) for each egd σ in Σ, Σ′ also has σ,
(ii) for each tgd σ in Σ, Σ′ has the regularized set of
σ and, finally, (iii) Σ′ has no other dependencies. For
each Σ as above, it is easy to see that Σ′ is regularized
by Definition 4.1 and is unique.

The following results, in Proposition 4.1, are imme-
diate from Definition 4.1 and from the constructions in
this subsection.

Proposition 4.1. For a finite set Σ of embedded egds
and tgds defined on schema D, let Σ′ be the regularized
version of Σ. Then

• For every bag-valued database D with schema D,
D |= Σ iff D |= Σ′; and

• For every CQ query Q defined on D, chase of Q
under set semantics in presence of Σ terminates
in finite time iff chase of Q under set semantics
in presence of Σ′ terminates in finite time, and
(Q)Σ,S ≡S (Q)Σ′,S provided both chase results ex-
ist. !

Assignment-fixing tgds.
In the remainder of the paper, whenever we refer to

a set of embedded dependencies, we assume that we are
discussing (or using) its regularized version. We now
define assignment-fixing tgds. The idea is to be able to
determine easily which tgds ensure sound chase steps
under each of bag and bag-set semantics. The intuition
is as follows. Suppose chase with tgd σ is applicable to
a CQ query Q as defined in Section 2.4 (i.e., assuming
set semantics), but we are looking at the implications
of applying the chase under bag or bag-set semantics
rather than under set semantics. Suppose further that
the right-hand side of σ has existential variables. Then
we would like to add subgoals to Q, that is to perform
on Q the chase step Q ⇒σ Q′, exactly in those cases
where each consistent assignment to all body variables
of Q, w.r.t. any (arbitrary) database D that satisfies
the input dependencies, can be extended to one and
only one consistent assignment to all body variables of
Q′ w.r.t. D. Otherwise Q would not be equivalent to Q′

in presence of σ and under the chosen query-evaluation
semantics. It turns out that the characterization we
are seeking is, in general, query dependent. (See Exam-
ples 4.3 and 5.1.)

We now formalize this intuition of prohibiting, in chase,
“incorrect”multiplicity of the answer to the given query
in presence of the given dependencies, under bag or bag-
set semantics. Consider a CQ query Q(Ā) : − ζ(Ā, B̄),
and a regularized tgd σ : φ(X̄, Ȳ) → ∃Z̄ ψ(X̄, Z̄) that
has at least one existential variable, that is Z̄ is not
empty. Suppose that chase of Q with σ is applicable,
using a homomorphism h from φ to ζ. We come up
with a substitution θ of all existential variables Z̄ in
the right-hand side ψ of the tgd σ, such that θ replaces
each variable in Z̄ by a fresh variable that is not used in
any capacity (i.e., neither universally nor existentially
quantified) in σ or in ζ. (Observe that θ always exists.)
We use h and θ to define for Q and σ an associated test
query Qσ,h,θ:

Qσ,h,θ(Ā) : − ζ(Ā, B̄) ∧ ψ(h(X̄), Z̄) ∧ ψ(h(X̄), θ(Z̄)) .
(2)

Observe that for any pair (θ1, θ2) of substitutions that
satisfy the conditions on θ above, Qσ,h,θ1 and Qσ,h,θ2 are
isomorphic. Hence Qσ,h,θ is unique up to isomorphism
w.r.t. θ, and we choose one arbitrary θ for Qσ,h,θ in the
remainder of the paper.

We now treat the case where σ has no existential vari-
ables. In this case θ is trivially empty, θ = ∅, and we
define the associated test query Qσ,h,∅ for Q, σ, and h
as above as:

Qσ,h,∅(Ā) : −ζ(Ā, B̄) ∧ ψ(h(X̄), Z̄) . (3)

That is, Qσ,h,∅ is the result of applying to the query
Q a chase step using σ, as defined in Section 2.4 in this
paper.

We stress again that Equation 3 is defined only for
those cases where σ has no existential variables. How-
ever, Equation 3 can be obtained from Equation 2 by
setting θ = ∅ and by removing duplicate subgoals from
the body of the query in Equation 2. Therefore, in what
follows we adopt Equation 2 as the definition of the as-
sociated test query for Q and σ regardless of whether σ
has existential variables.

Definition 4.2. (Associated test query) Given a
CQ query Q and a regularized tgd σ such that chase
using σ is applicable to Q using homomorphism h, the
associated test query for Q, σ, and h is as shown in
Equation 2. !

We now define assignment-fixing tgds, which enable
sound chase steps under each of bag and bag-set se-
mantics, under an extra condition under bag seman-
tics that all the subgoals being added in the chase step
correspond to set-valued relations. We first ensure cor-
rectness of the definition of assignment-fixing tgds, by
making a straightforward observation.

Proposition 4.2. Given a CQ query Q and a finite
set Σ of tgds and egds, and for a regularized tgd3 σ ∈ Σ
such that chase using σ applies to Q with a homomor-
phism h. Then the terminal chase result (Qσ,h,θ)Σ,S

exists whenever (Q)Σ,S exists. !

Proof. (Sketch.) Trivial for the case where σ has no
existential variables. For the remaining case, the proof
is by contradiction. Suppose that (Qσ,h,θ)Σ,S does not
exist, that is, the body of (Qσ,h,θ)Σ,S has an infinite
number of relational subgoals, using an infinite num-
ber of variable names. We then show that the body of
(Q)Σ,S also has an infinite number of relational subgoals
(using an infinite number of variable names), and thus
arrive at the desired contradiction. The procedure is
to apply to Q all the chase steps that are applicable to
Qσ,h,θ. Specifically, for each chase step S that applies
on Qσ,h,θ using a homomorphism µ, we apply the same
chase step to the result Q′ of chase step on Q using σ
and the h of Qσ,h,θ. In each S we use the homomor-
phism that is a composition of µ with a homomorphism
that results from putting together the identity mapping
(on some of ths subgoals) and θ−1, for the θ used in
defining Qσ,h,θ. (By definition, θ is injective and thus
θ−1 exists.)
3Recall that we assume throughout the paper that Σ is the
regularized version of any given set of tgds and egds.

Observe that this “simulation” on Q′ of the infinite
chase on Qσ,h,θ cannot collapse the infinite number of
variables in (Qσ,h,θ)Σ,S into a finite number of variables
(and thus into a finite number of subgoals) in the“simu-
lation result”. The reason is, the language of embedded
dependencies cannot specify the instruction “generate
a new variable name, using the right-hand side of the
tgd in question, only if some variable names are not
the same in the left-hand side of the tgd in question”.
Q.E.D.

We are finally ready to define assignment-fixing gds.

Definition 4.3. (Assignment-fixing tgd) Given a
CQ query Q and a finite set Σ of tgds and egds such that
(Q)Σ,S exists, let σ ∈ Σ be a regularized tgd with exis-
tential variables Z1, . . . , Zk, k ≥ 0, such that chase of Q
with σ is applicable, with associated test query Qσ,h,θ.
Then σ is an assignment-fixing tgd w.r.t. Q and h if
(Qσ,h,θ)Σ,S has at most one of Zi and θ(Zi) for each
i ∈ {1, . . . , k}. Further, σ is an assignment-fixing tgd
w.r.t. Q if σ is an assignment-fixing tgd w.r.t. Q and
some homomorphism h. !

Proposition 4.3. In the setting of Definition 4.3,
whenever σ is a full tgd (i.e., tgd without existential
variables), then σ is an assignment-fixing tgd w.r.t. all
CQ queries Q such that chase using σ is applicable to
Q and such that (Q)Σ exists. !

Consider two illustrations of the determination whether
a tgd with existential variables is assignment fixing w.r.t.
a given CQ query. Example 4.2 is a positive example, in
that it establishes a tgd as assignment fixing, whereas
Example 4.3 is a negative example.

EXAMPLE 4.2. On database schema D = {P, R, S},
consider a regularized set of embedded dependencies Σ =
{σ1,σ2,σ3}, where σ1 is a tgd,

σ1 : p(X, Y) → ∃Z ∃W r(X, Z) ∧ s(Z,W),
egd σ2 establishes the first attribute of R as its superkey,
and, finally, egd σ3 is as follows:

σ3 : r(X, Y) ∧ s(Y, T) ∧ r(X, Z) ∧ s(Z,W) → T = W.

Let CQ query Q be Q(X) : − p(X, Y). Chase using
σ1 is applicable to Q, using homomorphism h = {X →
X, Y → Y }. For the query

Qσ1,h,θ(X) : − p(X, Y), r(X, Z), s(Z,W),
r(X, Z1), s(Z1,W1) .

constructed using θ = {Z → Z1,W → W1}, we have

(Qσ1,h,θ)Σ,S(X) : − p(X, Y), r(X, Z), s(Z,W) .

Thus, σ1 is an assignment-fixing tgd w.r.t. Q, because
the body of (Qσ1,h,θ)Σ,S(X) has only one of Z and Z1
and only one of W and W1. !

EXAMPLE 4.3. Using the database schema and de-
pendency σ2 of Example 4.2, we replace σ1 of that ex-
ample with a regularized tgd σ4:
σ4 : p(X, Y) → ∃Z,W, T r(X, Z) ∧ s(Z,W) ∧ s(X, T).

We also replace σ3 of the example with egd σ5, and
add an egd σ6:

σ5 : r(X, Z) ∧ s(Z,W) ∧ s(X, T) → W = T.
σ6 : p(X, Y) ∧ r(A,X) ∧ s(X, T) → X = T.

We denote by Σ′ the set of dependencies {σ2,σ4,σ5,σ6}.
Consider again query Q(X) : − p(X, Y). Chase us-

ing σ4 is applicable to Q, using the identity homomor-
phism h. For the query

Qσ4,h,θ(X) : − p(X, Y), r(X, Z), s(Z,W), s(X, T)
r(X, Z1), s(Z1,W1), s(X, T1) .

constructed using θ = {Z → Z1,W → W1, T → T1},
we have

(Qσ4,h,θ)Σ′,S(X) : − p(X, Y), r(X, Z),
s(Z,W), s(X, W), s(Z,W1), s(X, W1) .

Thus, σ4 is not an assignment-fixing tgd w.r.t. Q by
definition, because the body of (Qσ4,h,θ)Σ′,S(X) has both
of W and W1. !

4.2.2 Motivation for Regularized Assignment-Fixing
Tgds

One may wonder whether the notions introduced in
Section 4.2.1 are justified. In this subsection we illus-
trate that whenever a non-regularized tgds or a tgd that
is not assignment fixing is used in chase step Q ⇒σ Q′,
then the chase result Q′ may be nonequivalent to Q
under bag or bag-set semantics.

Examples 4.4 through 4.6 establish the need for reg-
ularized tgds and for the (traditional) definition of the
chase step for tgds, see Section 2.4 in this paper. Exam-
ple 4.7 shows an unsound chase step using a regularized
tgd that is not assignment fixing w.r.t. the query. Fi-
nally, Example 4.8 demonstrates a sound chase step us-
ing a regularized assignment-fixing tgd, and illustrates
how the notion of assignment-fixing tgds is strictly more
general than that of key-based dependencies (see Defi-
nition 5.1).

EXAMPLE 4.4. Consider Example 4.1, where tgd
σ4 is not key based in presence of the set Σ of embedded
dependencies in the example, by the definition of [9], see
Definition 5.1. For the reader convenience, we provide
here the tgd σ4 and query Q4 of Example 4.1.

σ4 : p(X, Y) → u(X, Z) ∧ t(X, Y,W)
Q4(X) : − p(X, Y).

Now consider the result of removing from Σ the tgd
σ2 of Example 4.1; we denote by Σ′ the set Σ′ = Σ −
{σ2}. In presence of Σ′, the tgd σ4 is still not key based.
However, if we refrain from applying σ4 to Q4 in chase
under bag or bag-set semantics, then we will miss the
rewriting Q3 (of Example 4.1) of Q4. Indeed, by the
results of this paper it holds that Q3 ≡Σ′,B Q4 and that
Q3 ≡Σ′,BS Q4. !

Observe that tgd σ4 in Example 4.4 is not regular-
ized, see Definition 4.1. We miss an equivalent rewrit-
ing of the input query Q4 by refraining from applying
the tgd. Consider now Example 4.5, where we do apply
the nonregularized tgd σ4 in its entirety to the query
Q4. However, instead of the query Q3, which is equiv-
alent to Q4 in presence of Σ′ under each of bag and
bag-set semantics, we obtain a formulation of Q4 that
is not equivalent to Q4 (in presence of Σ′) under either
semantics.

EXAMPLE 4.5. Consider the query Q4 and set Σ′

of dependencies in Example 4.4. We now attempt to
find the rewriting Q3 (of Example 4.1) that we failed to
obtain in Example 4.4.

Q3(X) : − p(X, Y), t(X, Y,W), s(X, Z).

To find the rewriting Q3, specifically to obtain its T -
subgoal, we apply the nonregularized dependency σ4 to
the query Q4. We denote by Q′

4 the result of the appli-
cation:

Q′
4(X) : − p(X, Y), t(X, Y,W), u(X, Z).

Recall from Example 4.1 that in presence of Σ′, re-
lation U does not have superkeys other than the set of
all its attributes. Using this information, we construct
a database D that is a counterexample to equivalence of
Q4 and Q′

4 in presence of Σ′ and under bag-set seman-
tics. (Thus, by definition, D is also a counterexample
to the equivalence of the queries in presence of Σ′ and
under bag semantics as well).

Let D = {P (1, 2), T (1, 2, 3), U(1, 4), U(1, 5)}. (Ob-
serve that D is a set-valued database and that D |=
Σ′.) On database D, Q4(D,BS) = {{ (1) }}, whereas
Q′

4(D,BS) = {{ (1), (1) }}. !

Note 1 on Example 4.5. The problem with applying
σ4 to query Q4 in the example is that σ4 is not regular-
ized. The regularized set for σ4 is {σ′

4,σ
′′
4}, where

σ′
4 : p(X, Y) → t(X, Y,W)

σ′′
4 : p(X, Y) → u(X, Z)

Observe that tgd σ′
4 is assignment fixing in presence of

(the egds in) Σ′ (of Example 4.4), whereas σ′′
4 is not.

Thus, σ′′
4 cannot be applied in sound chase of Q4 using

Σ′ under bag or bag-set semantics, by our main results
of this section. Using the regularized version of Σ′ (this
version also replaces σ1 of Example 4.1 with its regular-
ized set), we can perform sound chase Q4 to obtain the
above query Q3, which is equivalent to Q4 in presence
of Σ′ under each of bag and bag-set semantics (with the
usual restriction of set-valued relations in the case of
bag semantics).

We now examine the modified definition of chase, see
Section 2.4 of [5]. Indeed, using that definition we ob-
tain correctly the terminal chase results of the query
Q4 in Example 4.1, even though not all input tgds are
regularized, see Examples 4.1 and 5.1 of [5]. However,
as we see in the next example, using the modified def-
inition of chase does not result in sound chase (under
bag or bag-set semantics) for all problem inputs.

EXAMPLE 4.6. Consider query Q and set Σ = {ν1,
ν2} of dependencies, where

Q(X) : − p(X, Y), s(X, Z)
ν1 : p(X, Y) → ∃Z s(X, Z) ∧ t(Z, Y)
ν2 : t(X, Y) ∧ t(Z, Y) → X = Z

Observe that ν1 is a regularized tgd and is also assign-
ment fixing, w.r.t. Q, by our definitions in this section.
We now apply modified chase as defined in Section 2.4
of [5] and obtain query Q′:

Q′(X) : − p(X, Y), s(X, Z), t(Z, Y).

We show nonequivalence of Q to Q′ in presence of Σ
under each of bag and bag-set semantics, by constructing
a database D that is a counterexample to either equiva-
lence. Indeed, let D = {P (1, 2), S(1, 1), S(1, 3), T (3, 2)}.
(Observe that D is a set-valued database and that D |=
Σ.) On database D, Q(D,BS) = {{ (1), (1) }}, whereas
Q′(D,BS) = {{ (1) }}. !

Note on Example 4.6. The application of ν1 to Q
in the example is sound by the (incorrect) definition
of key-based chase steps in [5]. Still, the application
of the regularized and assignment-fixing tgd ν1 using
the modified definition of the chase step does result in
unsound chase as shown in Example 4.6.

We now show an example of using a regularized but
not assignment fixing tgd in a (traditional) chase step,
see Section 2.4 in this paper for the definition.

EXAMPLE 4.7. Recall the database schema D =
{P,R, S} and dependencies Σ′ = {σ2, σ4,σ5} of Ex-
ample 4.3.
σ2 : r(X, Y) ∧ r(X, Z) → Y = Z .
σ4 : p(X, Y) → ∃Z,W, T r(X, Z) ∧ s(Z,W) ∧ s(X, T) .
σ5 : r(X, Z) ∧ s(Z,W) ∧ s(X, T) → W = T .

Recall that σ4 is regularized but not assignment fixing
w.r.t. query Q(X) : − p(X, Y); see Example 4.3 for
the details. We apply the chase step using tgd σ4 to Q,
to obtain the result Q′′:
Q(X) : − p(X, Y) .
Q′′(X) : − p(X, Y), r(X, Z), s(Z,W), s(X, T) .

To construct a counterexample to equivalence of Q
and Q′′ in presence of Σ′, under each of bag and bag-
set semantics, we use the query (Qσ4,h,θ)Σ′,S of Exam-
ple 4.3. Specifically, we use as a counterexample the
canonical database, call it D, of (Qσ4,h,θ)Σ′,S; we have
that D is set valued and that D |= Σ′ by definition of
the query (Qσ4,h,θ)Σ′,S.

Consider the database D = {P (1, 2), R(1, 3), S(1, 4),
S(1, 5), S(3, 4), S(3, 5)}. (Recall that the canonical database
of a CQ query is isomorphic up to choice of constants.)
We have that Q(D,BS) = {{ (1) }}, whereas Q′(D,BS) =
{{ (1), (1), (1), (1) }}. !

By our main results in this section, for the Q, Σ, and
ν1 of Example 4.6, the application of ν1 to Q (using the
traditional definition of chase steps using tgds, see Sec-
tion 2.4 in this paper) is sound in presence of Σ under
each of bag and bag-set semantics (provided that for the
case of bag semantics, both S and T are set-valued rela-
tions in all instances of {P, S, T}). Example 4.8 shows
the chase step.

EXAMPLE 4.8. Consider the query Q and set Σ =
{ν1, ν2} of dependencies of Example 4.6. Recall that ν1
is a regularized tgd and is also assignment fixing w.r.t.
Q in presence of the egds of Σ. We now apply (tradi-
tional) chase as defined in Section 2.4 in this paper, to
obtain query Q′′:
Q′′(X) : − p(X, Y), s(X, Z), s(X, W), t(W,Y).

The difference from our application of ν1 in Exam-
ple 4.6 is that we now add a new S-subgoal in addition
to a new T -subgoal. By the definition of chase steps us-
ing tgds, the second attribute of S must be denoted by
different variables in the two S-subgoals in query Q′′. !

Note on Example 4.8. Recall that ν1 in the example
is assignment fixing w.r.t. the query, and thus by our
results can be applied in sound chase under bag and
bag-set semantics (provided that for the case of bag
semantics, both S and T are set-valued relations in all
instances of {P, S, T}). At the same time, ν1 is not key-
based by the definition of [9], see Definition 5.1 in this
paper. The problem is with the S-atom of ν1, which is
not key based in presence of Σ by Definition 5.1.

4.2.3 Assignment-Fixing Chase
We begin the exposition of the main results of this

section by defining assignment-fixing chase steps using
tgds.

Definition 4.4. (Assignment-fixing chase step
using tgd) Let σ be a regularized tgd in a finite set
Σ of embedded dependencies on schema D. Consider a
CQ query Q defined on D, such that (Q)Σ,S exists and
such that σ is applicable to Q. Then the chase step that
applies σ to Q is an assignment-fixing chase step using
σ whenever σ is an assignment-fixing tgd w.r.t. Q. !

We now provide necessary and sufficient conditions
for soundness of chase steps under bag semantics for
query evaluation.

Theorem 4.1. Given a CQ query Q and a set of em-
bedded dependencies4 Σ on schema D. Under bag se-
mantics, a chase step Q ⇒σ Q′ using σ ∈ Σ is sound
iff

1. Q ⇒σ Q′ is a (tgd) assignment-fixing chase step,
and for each subgoal s(pij) that the chase step adds
to Q, relation Pij is set valued on all databases
satisfying Σ; or

2. In Q ⇒σ Q′, σ is an egd; in this case, duplicates of
subgoal s(p) in Q′ can be removed only if relation
P is set valued in all instances of D. !

In Section 4.2.3, Example 4.7 shows an unsound chase
step using a regularized tgd that is not assignment fix-
ing w.r.t. the query. Example 4.8 in Section 4.2.3
demonstrates a sound (by Theorem 4.1) chase step us-
ing a regularized assignment-fixing tgd, provided that
both S and T are set-valued relations in all instances
of the database schema used in the example. Relaxing
this set-valued requirement would result in an unsound
chase step using the same tgd, as is easy to demonstrate
using a counterexample bag-valued database.

The requirement that certain stored relations be set
valued arises naturally if one seeks soundness of bag-
semantics chase, see [9]. We now show that constraints
that force certain relations to be sets on all instances of
a database schema can be formally defined as egds, pro-
vided that row (tuple) IDs are defined for the respective
relations. In the common practice of using tuple IDs in
database systems, each tuple in a (bag-valued) relation
is assigned a unique tuple ID. Then the set-enforcing
egd on relation P can be expressed as a functional de-
pendency (fd, defined in Appendix B), which specifies
that whenever two tuples of P agree on everything ex-
cept the tuple IDs, then the tuples must also agree on
the tuple IDs. Please see Appendix C for the details of
our set-enforcing framework based on tuple IDs.
4Recall that we consider only finite regularized sets of de-
pendencies throughout this paper.

We now discuss item 2 of Theorem 4.1. Given a
database schema D, suppose that for some of the re-
lation symbols {P1, . . . , Pk} ⊆ D it holds that the rela-
tion for each of P1, . . . , Pk is required to be set valued
in all instances D over D. For such scenarios, the bag-
equivalence test of Theorem 2.1 is no longer a necessary
condition for bag equivalence of CQ queries.

EXAMPLE 4.9. By Theorem 2.1, query Q3 of Ex-
ample 4.1 is not bag equivalent to query Q5:

Q5(X) : − p(X, Y), t(X, Y,W), s(X, Z), s(X, Z).

Here, the only difference between Q3 and Q5 is the extra
copy of subgoal s(X, Z) in Q5. At the same time, Q3
and Q5 are bag equivalent on all bag-valued databases
where relation S is required to be a set. Please see The-
orem 4.2 and Appendix D for the details. !

We now formulate the extended sufficient and neces-
sary condition. Please see Appendix D for the proof.

Theorem 4.2. Let {P1, . . . , Pk} ⊆ D be the maxi-
mal set of relation symbols in schema D such that the
relation for each of P1, . . . , Pk is required to be set val-
ued in all instances D over D. Given CQ queries Q1,
Q2 on D, let query Q′

1 (Q′
2, respectively) be obtained

by removing from Q1 (from Q2, respectively) all dupli-
cate subgoals whose predicates correspond to P1, . . . , Pk.
Then Q1 ≡B Q2 in the absence of all dependencies other
than the set-enforcing dependencies on P1, . . . , Pk of the
schema D if and only if Q′

1 and Q′
2 are isomorphic. !

The correctness of the duplicate-removal rule of item
2 in Theorem 4.1 is immediate from Theorem 4.2.

We now spell out the necessary and sufficient condi-
tions for soundness of chase steps under bag-set seman-
tics for query evaluation.

Theorem 4.3. Given a CQ query Q and a set of em-
bedded dependencies5 Σ. Under bag-set semantics, a
chase step Q ⇒σ Q′ using σ ∈ Σ is sound iff

1. Q ⇒σ Q′ is a (tgd) assignment-fixing chase step;
or

2. In Q ⇒σ Q′, σ is an egd. !

We use Examples 4.7 and 4.8 of Section 4.2.3 to make
here the same points as for Theorem 4.1. Observe that
(unlike the case of bag semantics) the set-valuedness re-
quirement is satisfied by definition of bag-set semantics.
See Example 4.1 for query Q2 that is obtained from Q4
by using, among other sound chase steps, a chase step
involving dependency σ3. By Theorem 4.1, σ3 may not
be used in sound chase under bag semantics, because
relation S is not guaranteed to be set valued in all in-
stances of the database schema of the example.

Proof. (Theorems 4.1 and 4.3, sketch.) We out-
line here the correctness proof for chase steps using
tgds. Please see Appendix E for the details of dis-
proving soundness of chase steps under bag semantics
whenever chase (using even regularized and assignment-
fixing tgds) adds query subgoals whose associated base
relations are not set valued in all instances of the given
database schema.
5Recall that we consider only finite regularized sets of de-
pendencies throughout this paper.

Consider a CQ query Q and a set of dependencies Σ
defined on schema D, such that (Q)Σ exists. Let σ ∈ Σ
be a regularized dependency such that chase using σ
applies to Q (using a homomorphism h) and results in
query Q′. (That is, Q ⇒σ Q′ is defined.) Further,
suppose that for all subgoals that are in Q′ but not in
Q, the respective base relations, call them collectively
S ⊆ D, are set valued in all instances of the schema D.

Case (1): Let σ be an assignment-fixing tgd w.r.t. the
query Q. We prove that on all instances D of D such
that D |= Σ and such that at least the relations in S
are set valued on D, it holds that Q(D,B) = Q′(D,B)
and that Q(D,BS) = Q′(D,BS). (Thus, the chase step
Q ⇒σ Q′ is sound under the conditions of Theorems 4.1
and 4.3.)

We fix an arbitrary database D as described above.
The idea of the proof is to establish a 1:1 correspondence
between all the assignments satisfied by Q w.r.t. D and
all the assignments satisfied by Q′ w.r.t. D. As a result
(and using the fact that the S-part of the base relations
in D is guaranteed to be set valued), we obtain that for
each tuple t ∈ Q(D,B), such that the multiplicity of t
in Q(D,B) is m > 0, the multiplicity of t in Q′(D,B)
is also m.

We establish the 1:1 correspondence as follows.

(i) For each assignment µ′ that satisfies Q′ w.r.t. D,
there exists exactly one assignment µ that (a) sat-
isfies Q w.r.t. D, and that (b) coincides with µ′

on the set of body variables of Q. (Recall that σ
is a tgd, and therefore the set of body variables of
Q′ is a superset of the set of body variables of Q.)

(ii) For each assignment µ that satisfies Q w.r.t. D,
there exists at least one assignment µ′ that (a) sat-
isfies Q′ w.r.t. D, and that (b) coincides with µ on
the set of body variables of Q. This is immediate
from the fact that D |= Σ.

(iii) From the fact that σ is assignment fixing w.r.t. Q,
we obtain that for each µ as in (ii) there exists at
most one corresponding µ′ as in (ii). Indeed, sup-
pose that for some such µ there exist at least two
assignments µ′1 and µ′2 that satisfy the conditions
of (ii). Then we show by obtaining the chase result
(Qσ,h,θ)Σ,S , in Definition 4.3, that µ′1 and µ′2 must
be identical on all databases satisfying Σ.

The observation that D is an arbitrary database satis-
fying the conditions above concludes the proof of Q ≡Σ,B

Q′ in this case (1). Further, Q ≡Σ,BS Q′ is immediate
from Q ≡Σ,B Q′.

Case (2): Let σ not be assignment fixing w.r.t. the
query Q. We construct a set-valued database D (with
schema D) such that D |= Σ and such that Q(D,BS) &=
Q′(D,BS). (As a result, neither of Q ≡Σ,B Q′ and
Q ≡Σ,BS Q′ holds, and therefore the chase step Q ⇒σ

Q′ is not sound in this case under bag or bag-set seman-
tics.)

As a counterexample database D we use the canonical
database of the query (Qσ,h,θ)Σ,S , see Definition 4.3.
Example 4.7 illustrates the construction.

Let ν be the satisfying (by definition of canonical
databases and by definition of chase under set seman-
tics) assignment to the head variables X̄ of Qσ,h,θ w.r.t.

the database D. Observe that the vectors of head vari-
ables of all of Q, Q′, and Qσ,h,θ are the same by defi-
nition of Qσ,h,θ. By definition of Qσ,h,θ, there exists an
extension νQ of ν to all the body variables of Q such
that νQ satisfies Q w.r.t. D, and there exists an exten-
sion ν′Q′ of ν to all the body variables of Q′ such that
ν′Q′ satisfies Q′ w.r.t. D.

We make the following observations about the an-
swers to Q and Q′ under bag-set semantics on the set-
valued database D.

(i) For each assignment µ′ such that µ′|X̄ = ν and
such that µ′ satisfies Q′ w.r.t. D (we have shown
that there exists at least one such assignment µ′),
there exists exactly one assignment µ that (a) sat-
isfies Q w.r.t. D, and that (b) coincides with µ′

on the set of body variables of Q. (See (i) under
case (1) of the proof.) Observe that µ|X̄ = ν by
definition of µ.

(ii) For each assignment µ such that µ|X̄ = ν and such
that µ satisfies Q w.r.t. D (we have shown that
there exists at least one such assignment µ), there
exists at least one assignment µ′ that (a) satisfies
Q′ w.r.t. D, and that (b) coincides with µ on the
set of body variables of Q. (See (ii) under case (1)
of the proof.) Observe that µ′|X̄ = ν by definition
of µ′.

(iii) On our counterexample database D, there exists
at least one µ with µ|X̄ = ν and such that µ is a
satisfying assignment w.r.t. Q and D, such that µ
corresponds to at least two distinct satisfying as-
signments µ′1 and µ′2 w.r.t. Q′ and D, where each
of µ′1 and µ′2 coincides with µ on all the body vari-
ables of Q. Indeed, we recall that D is the canon-
ical database of (Qσ,h,θ)Σ,S . If the distinct µ′1 and
µ′2 as above did not exist, then chase of Qσ,h,θ us-
ing Σ under set semantics would lead to the “elim-
ination of the distinction between” the groups of
subgoals ψ(h(X̄), Z̄) and ψ(h(X̄), θ(Z̄)) of Qσ,h,θ,
see Equation 2 and Definition 4.3, in the terminal
chase result of Qσ,h,θ using Σ. But if ψ(h(X̄), Z̄)
and ψ(h(X̄), θ(Z̄)) collapse into the same group
in (Qσ,h,θ)Σ,S , then σ is an assignment-fixing tgd
w.r.t. Q by Definition 4.3, which is a contradiction
with our assumption.

We conclude that in Case (2), the multiplicity of the
tuple ν(X̄) is strictly greater in Q′(D,BS) than in Q(D,BS)
on our counterexample database D. Thus, Q′(D,BS) &=
Q(D,BS). Q.E.D.

5. UNIQUE RESULT OF SOUND CHASE
In this section we show that the result of sound chase

of CQ queries using arbitrary finite sets of embedded
dependencies is unique under each of bag and bag-set
semantics for query evaluation. Further, we provide an
algorithm for constructing, for a given CQ query Q and
an arbitrary finite set of embedded depedencies Σ, the
maximal subset Σmax

B (Q,Σ) of Σ such that D(Qn) |=
Σmax

B (Q, Σ), where Qn is the result of sound chase of Q
under bag semantics. We also outline a version of the
algorithm that works for the case of bag-set semantics.

5.1 Why Not Key-Based Tgds?
We begin the discussion by examining the question

of why the definition of assignment-fixing chase steps
(Definition 4.4) cannot be simplified. The intuition
behind the notion of assignment-fixing chase steps is
that of ensuring that in each assignment-fixing chase
step Q ⇒σ

B Q′, using some tgd σ ∈ Σ, each tuple
in the bag Q(D,B) would have the same multiplicity
in the bag Q′(D,B), for each database D |= Σ, in
presence of the requisite set-enforcing constraints (of
Appendix C). The intuition is the same for bag-set-
semantics. It appears that a simpler notion, that of
key-based tgds, would suffice. In the definition that fol-
lows, we use the notation of Definition 4.4.

Definition 5.1. (Key-based tgd) Let σ : φ(X̄, Ȳ) →
∃Z̄ ψ(Ȳ , Z̄) be a tgd on database schema D. Then σ is
a key-based tgd if, for each atom p(Ȳ ′

j , Z̄ ′
j) in ψ, Ȳ ′

j is
a superkey of relation P in D and, in addition, P is set
valued on all instances of D. !

The notion of key-based tgds is equivalent to that of
UWDs of [9]. Note that by Definition 4.4, all chase steps
using key-based tgds are assignment fixing. However,
the class of assignment-fixing tgds (w.r.t. the given CQ
query and set of dependencies) includes not just key-
based tgds, as illustrated in Example 4.8. In addition,
unlike assignment-fixing chase steps specified in Defini-
tion 4.4, a key-based tgd is defined independently of the
queries being chased. Deutsch [9] showed that the re-
sult of sound chase of CQ queries under bag semantics
is unique up to isomorphism, provided that all tgds in
the given set of dependencies are key based.

It turns out that the “key-basedness” constraints of
Definition 5.1 on tgds are not necessary for soundness
of chase under either of bag and bag-set semantics. In-
deed, consider a modification of Example 4.3:

EXAMPLE 5.1. In the setting of Example 4.3, we
replace the query Q by a query Q′(X) : − p(X, Y), r(A,X),
and keep the set Σ′ of dependencies of Example 4.3. We
can show that tgd σ4 ∈ Σ′ is assignment fixing w.r.t. Q′.
Recall that σ4 is not an assignment-fixing tgd w.r.t. the
query Q of Example 4.3. !

5.2 Uniqueness of Result of Sound Chase
We now show that the result of sound chase of CQ

queries using arbitrary sets of embedded dependencies6
is unique under bag and bag-set semantics, up to equiv-
alence in the absence of dependencies (except for the
set-enforcing dependencies under bag semantics). (Re-
call that throughout the paper we assume that all given
sets of embedded dependencies are finite and regular-
ized.) We give here a formulation of our result only
for the case of bag semantics. The version of Theo-
rem 5.1 for the case of bag-set semantics (formulated in
Appendix G) is straightforward.

Theorem 5.1. Given a CQ query Q and set Σ of
embedded dependencies on schema D, such that there
exists a set-chase result (Q)Σ,S for Q and Σ. Then
there exists a result (Q)Σ,B of sound chase for Q and
Σ under bag semantics, unique up to isomorphism after
6Cf. the result of [9] on uniqueness of sound bag chase for
key-based tgds only; see Section 5.1 for the discussion.

dropping duplicate subgoals that correspond to set-valued
relations in D.7 That is, for two sound-chase results
(Q)(1)Σ,B and (Q)(2)Σ,B for Q and Σ, (Q)(1)Σ,B ≡B (Q)(2)Σ,B

in the absence of all dependencies other than the set-
enforcing dependencies on stored relations. !

By Theorem 4.1, sound bag chase adds or drops only
those subgoals whose predicates correspond to relations
required to be sets. Thus, it is natural to use the con-
ditions of Theorem 4.2, rather than of Theorem 2.1, in
characterizing bag equivalence of terminal chase results.

To prove Theorem 5.1, we make the following straight-
forward observation.

Proposition 5.1. Given CQ query Q and embedded
dependencies Σ such that there exists a set-chase result
(Q)Σ,S. Then sound chase of Q using Σ terminates in
finite time under each of bag and bag-set semantics. !

This result is immediate from Theorems 4.1 and 4.3.
The rest of the proof of Theorem 5.1 is an adaptation,

to sound chase steps, of the proof of the fact (see [10])
that all set-chase results (when defined) for a given CQ
query are equivalent in the absence of dependencies.
Please see Appendix G for the details.

We now establish the complexity of sound bag and
bag-set chase under weakly acyclic dependencies [14].
Intuitively, weakly acyclic dependencies cannot gener-
ate an infinite number of new variables, hence set-chase
under such dependencies terminates in finite time; please
see Appendix H for the definition. All sets of dependen-
cies in examples in this paper are weakly acyclic.

Theorem 5.2. Given a CQ query Q and set Σ of
weakly acyclic embedded dependencies on schema D.
Then sound chase of Q using Σ, under each of bag and
bag-set semantics, terminates in time polynomial in the
size of Q and exponential in the size of Σ. !

The upper bound is immediate from Proposition 5.1
and from the results in [1, 11, 14] for set semantics. For
the lower bound, we exhibit an infinite family of pairs
(Q,Σ), where the size of each of (Q)Σ,B and (Q)Σ,BS is
polynomial in the size of Q and exponential in the size
of Σ. Please see Appendix H for the details.

5.3 Satisfiable Dependencies Are Query Based
We now provide a constructive characterization of the

result of sound chase under bag and bag-set semantics.
This characterization, formulated in Theorem 5.3 for
bag semantics, settles the problem of which dependen-
cies Σ′ are satisfied by the canonical database D(Qn) of
Qn. Here, Qn is the result of sound chase of CQ query
Q using embedded dependencies Σ. (We assume that
set chase of Q using Σ terminates in finite time.)

Given a CQ query Q and a set of embedded depen-
dencies Σ, consider the canonical database D(Qn) of the
result Qn = (Q)Σ,B of sound chase of Q using Σ under
bag semantics. Clearly, at least some sets Σ′ such that
D(Qn) |= Σ′ do not coincide with the original Σ. (We re-
fer here to the discussion in the beginning of Section 4.)
For instance, in Example 4.1 the canonical database for
query Q3 does not satisfy dependency σ4. Observe that
Q3 is the (unique, by Theorem 5.1) result of sound chase
of Q4 using Σ under bag semantics.
7See discussion of Theorem 4.2 in Section 4.2.

At the same time, for each pair (Q,Σ) there exists
a unique maximal-size set Σmax

B (Q, Σ) ⊆ Σ, such that
D(Qn) |= Σmax

B (Q,Σ). (Appendix I has proof of Theo-
rem 5.3 and the analogous result for bag-set semantics.)

Theorem 5.3. (Unique Σmax
B (Q, Σ) ⊆ Σ) Given a

CQ query Q and set Σ of embedded dependencies, such
that there exists a set-chase result (Q)Σ,S for Q and Σ.
Let Qn be the result of sound chase for Q and Σ under
bag semantics, with canonical database D(Qn). Then
there exists a unique subset Σmax

B (Q,Σ) of Σ, such that:

• D(Qn) |= Σmax
B (Q,Σ), and

• for each proper superset Σ′ of Σmax
B (Q, Σ) such

that Σ′ ⊆ Σ, D(Qn) |= Σ′ does not hold. !

It turns out that the set Σmax
B (Q,Σ) is the result of re-

moving from Σ exactly those tgds σ such that the chase
step Qn ⇒σ

B Q′, with some CQ outcome Q′, is not
sound under bag semantics. This claim is immediate
from the observation that for each dependency σ in Σ
such that σ is applicable to Qn, σ is unsoundly applica-
ble to Qn. See Appendix I for the details. We make the
same observation about the unique set Σmax

BS (Q,Σ) ⊆ Σ
such that Σmax

BS (Q,Σ) is the maximal set of dependen-
cies satisfied by the canonical database of the result of
sound chase of Q using Σ under bag-set semantics.

Not surprisingly, each of Σmax
B (Q,Σ) and Σmax

BS (Q,Σ)
is query dependent. Recall that in Example 4.1 the
canonical database of the query Q3 = (Q4)Σ,B does not
satisfy dependency σ4 in the set Σ given in the example.
At the same time, it is easy to see that for query Q(X) :
− p(X, Y), u(X, Z), the canonical database of the query
(Q)Σ,B does satisfy dependency σ4 in the same set Σ.

We now establish a relationship between Σmax
B (Q,Σ)

and Σmax
BS (Q, Σ) for a fixed pair (Q,Σ). This relation-

ship is immediate from Theorems 4.1, 4.3, 5.3, and I.1.

Proposition 5.2. For (Q,Σ) satisfying conditions of
Theorem 5.3, Σmax

B (Q,Σ) ⊆ Σmax
BS (Q,Σ) ⊆ Σ. !

Query Q4 and dependencies Σ of Example 4.1 can
be used to show that both subset relationships can be
proper: Σmax

B (Q,Σ) ⊂ Σmax
BS (Q, Σ) ⊂ Σ.

We now outline algorithm Max-Bag-Σ-Subset, which
accepts as inputs a CQ query Q and a finite set Σ of
embedded dependencies such that (Q)Σ,S exists. The
algorithm constructs the set Σmax

B (Q, Σ) as specified in
Theorem 5.3. The counterpart of Max-Bag-Σ-Subset
for bag-set semantics can be found in Appendix I.

Algorithm 1: Max-Bag-Σ-Subset(Q, Σ)
Input : CQ query Q, set Σ of embedded dependencies

such that chase result (Q)Σ,S exists.
Output : Σmax

B (Q, Σ) ⊆ Σ specified in Theorem 5.3.
1. (Q)Σ,B := soundChase(B, Q, Σ);
2. Σmax

B (Q, Σ) := Σ;
3. for each σ in Σ do

4. if soundChaseStep(σ, B, (Q)Σ,B) = false then
5. Σmax

B (Q, Σ) := Σmax
B (Q, Σ)− {σ};

6. return Σmax
B (Q, Σ);

The algorithm begins (line 1 of the pseudocode) by
computing the result (Q)Σ,B of sound chase of Q using
Σ under bag semantics (B). This result exists and is

unique by Theorem 5.1. Then the algorithm removes
from the set Σ all dependencies that are unsoundly ap-
plicable to (Q)Σ,B , see lines 2-5 of the pseudocode. Pro-
cedure soundChaseStep(σ, B, (Q)Σ,B) (line 4) returns
true if and only if the bag-chase step using σ on (Q)Σ,B
is sound by Theorem 4.1.

We obtain the following result by construction of al-
gorithm Max-Bag-Σ-Subset.

Theorem 5.4. (Correctness and complexity of
Max-Bag-Σ-Subset) Given a CQ query Q and set of
embedded dependencies Σ, such that there exists a set-
chase result (Q)Σ,S for Q and Σ. Then algorithm Max-
Bag-Σ-Subset returns in finite time the set Σmax

B (Q, Σ)
specified in Theorem 5.3. If dependencies Σ are weakly
acyclic, then the runtime of the algorithm is polynomial
in the size of Q and exponential in the size of Σ. !

6. Σ-EQUIVALENCE TESTS FOR CQ AND
CQ-AGGREGATE QUERIES

We begin this section by providing equivalence tests
for CQ queries in presence of embedded dependencies
under bag and bag-set semantics, see Section 6.1. These
results allow us to develop: (1) Equivalence tests for CQ
queries with grouping and aggregation in presence of em-
bedded dependencies, see Section 6.2, and (2) Sound
and complete (whenever set-chase on the inputs ter-
minates) algorithms for solving instances of the CQ
class of the Query-Reformulation Problem under each
of bag and bag-set semantics, as well as for the CQ-
aggregate class of the problem, see Section 6.3. (Recall
that throughout the paper we assume that all given sets
of embedded dependencies are finite and regularized.)

6.1 Equivalence Tests for CQ Queries
The main results of this section for CQ queries, The-

orems 6.1 and 6.2, are the analogs, for bag and bag-set
semantics, of the dependency-free test of Theorem 2.2
for equivalence of CQ queries under set semantics and
under embedded dependencies.

Theorem 6.1. Given CQ queries Q and Q′, and a
set of embedded dependencies Σ such that there exist
set-chase results (Q)Σ,S for Q and (Q′)Σ,S for Q′. Then
Q ≡Σ,B Q′ if and only if (Q)Σ,B ≡B (Q′)Σ,B in the
absence of all dependencies other than the set-enforcing
dependencies on stored relations.8 !

Theorem 6.2. Given CQ queries Q and Q′, and a
set of embedded dependencies Σ such that there exist
set-chase results (Q)Σ,S for Q and (Q′)Σ,S for Q′. Then
Q ≡Σ,BS Q′ if and only if (Q)Σ,BS ≡BS (Q′)Σ,BS in the
absence of dependencies. !

The proofs of Theorems 6.1 and 6.2 follow from Propo-
sition 5.1 and from Theorem 5.1 and its analog for bag-
set semantics. See Appendix J for the details.

We now formulate Proposition 6.1, which is the dep-
endency-based version of Proposition 2.1. The proof of
Proposition 6.1 can be found in Appendix K.

Proposition 6.1. For CQ queries Q and Q′ and set
of embedded dependencies Σ, such that there exists the
set-chase result for each of Q and Q′ using Σ. Then (1)
(Q)Σ,B ≡B (Q′)Σ,B, in the absence of all dependencies
other than the set-enforcing constraints on stored rela-
tions, implies (Q)Σ,BS ≡BS (Q′)Σ,BS, and (2) (Q)Σ,BS

≡BS (Q′)Σ,BS implies (Q)Σ,S ≡S (Q′)Σ,S. !
8See Theorem 4.2 and discussion of Theorem 5.1.

Observe that queries (Q)Σ,B , (Q)Σ,BS , and (Q)Σ,S
may be distinct queries for the same query Q and set
Σ. For an illustration, please see the chase results Q1
through Q3 of query Q4 in Example 4.1.

A corollary of Proposition 6.1 establishes a set-cont-
ainment relationship between a CQ query and the re-
sults of its sound chase under a given set of embedded
dependencies. Please see Appendix K for a proof.

Proposition 6.2. For (Q,Σ) that satisfy conditions
of Thm. 5.3, (Q)Σ,S #S (Q)Σ,BS #S (Q)Σ,B #S Q. !

Queries Q4, Q3 = (Q4)Σ,B , Q2 = (Q4)Σ,BS , and
Q1 = (Q4)Σ,S of Example 4.1 provide an illustration.
6.2 Equivalence Tests for Aggregate Queries

We now provide dependency-free tests for equivalence
of CQ queries with grouping and aggregation under em-
bedded dependencies. The results of this subsection are
immediate from Theorems 2.2, 2.3, and 6.2.

Theorem 6.3. Given compatible aggregate queries Q
and Q′, and a set of embedded dependencies Σ such that
there exist set-chase results (Q̆)Σ,S for the core Q̆ of
Q and (Q̆′)Σ,S for the core Q̆′ of Q′. Then (1) For
max or min queries Q and Q′, Q ≡Σ Q′ if and only
if (Q̆)Σ,S ≡S (Q̆′)Σ,S in the absence of dependencies.
(2) For sum or count queries Q and Q′, Q ≡Σ Q′ if
and only if (Q̆)Σ,BS ≡BS (Q̆′)Σ,BS in the absence of
dependencies. !

6.3 Sound and Complete Reformulation of
CQ and CQ-Aggregate Queries

Theorems 6.1 and 6.2 allow us to extend the algo-
rithm C&B of [11] to (a) reformulation of CQ queries in
presence of embedded dependencies under bag or bag-
set semantics, and to (b) reformulation of CQ queries
with grouping and aggregation in presence of embedded
dependencies. Our proposed algorithm Bag-C&B re-
turns Σ-minimal reformulations Q′ of CQ query Q such
that Q′ ≡Σ,B Q under the given embedded dependen-
cies Σ. The only modifications to C&B that are required
to obtain Bag-C&B are (i) to replace the set-chase
procedure by the sound bag-chase procedure as defined
in this paper, and (ii) to replace the dependency-free
equivalence test of Theorem 2.2 by the test of Theo-
rem 6.1. The algorithm Bag-Set-C&B for the case of
bag-set semantics is obtained in an analogous fashion.

We have also developed algorithms that accept sets of
embedded dependencies and CQ queries with grouping
and aggregation: Max-Min-C&B accepts CQ queries
with aggregate function max or min, and Sum-Count-
C&B accepts CQ queries with aggregate function sum
or count. Max-Min-C&B uses C&B to obtain all Σ-
minimal reformulations Q′ ≡Σ,S Q̆ of the core Q̆ of the
input query Q, and for each such query Q′ returns a
query Q′′ whose head is the head of Q and whose body is
the body of Q′. Sum-Count-C&B works analogously,
except that it uses Bag-Set-C&B to produce queries
Q′ ≡Σ,BS Q̆. By Theorem 6.3, for each output Q′′ of
Max-Min-C&B or of Sum-Count-C&B it holds that
Q′′ ≡Σ Q whenever set-chase of Q using Σ terminates.

All our algorithms are sound and complete whenever
set-semantics chase of Q using Σ terminates.

Theorem 6.4. Given CQ query Q and set Σ of em-
bedded dependencies such that set chase of Q under Σ
terminates in finite time. Then Bag-C&B returns all
Σ-minimal reformulations Q′ such that Q′ ≡Σ,B Q. !

The analogs of Theorem 6.4 for (a) CQ queries under
bag-set semantics, and for (b) aggregate CQ queries can
be found in Appendix K. All the theorems follow from
the soundness and completeness of C&B of [11] (see
Appendix A) and from the results of this paper.

7. RELATED WORK
Chandra and Merlin [2] developed the NP-complete

containment test of two CQ queries under set seman-
tics. This test has been used in optimization of CQ
queries, as well as in developing algorithms for rewrit-
ing queries (both equivalently and nonequivalently) us-
ing views. Please see [11, 17, 21, 23] for discussions
of the state of the art and of the numerous practical
applications of query rewriting using views.

The problem of developing tests for equivalence of CQ
queries under bag and bag-set semantics was solved by
Chaudhuri and Vardi in [4]. The results on containment
tests for CQ queries under bag semantics have proved
to be more elusive. Please see Jayram and colleagues
[18] for original undecidability results for containment
of CQ queries with inequalities under bag semantics.
The authors point out that it is not known whether
the problem of bag containment for CQ queries is even
decidable. On the other hand, the problem of contain-
ment of CQ queries under bag-set semantics reduces to
the problem of containment of aggregate queries with
aggregate function count(*). The latter problem is
solvable using the methods proposed in [7].

Studies of dependencies have been motivated by the
goal of good database-schema design. See [1, 10] for
overviews and references on dependencies and chase.
In [9], Deutsch developed chase methods for bag-specific
constraints (UWDs), and proved completeness of the
view-based version of the Chase and Backchase algo-
rithm (C&B, [11]) for mixed semantics and for set and
bag dependencies, in case where all given tuple-generat-
ing dependencies are UWDs. In contrast, the algorithm
in [13] is complete in presence of just functional de-
pendencies. Algorithms that are complete in the ab-
sence of dependencies are given in [20] for set semantics,
in [3] for bag semantics, and in [16] for bag-set seman-
tics. Finally, Cohen in [6] presented an equivalence test
for CQ queries in presence of inclusion dependencies,9
for the cases of bag-set semantics and of the semantics
where queries are evaluated on set-valued databases us-
ing both bag-valued and set-valued intermediate results.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] A. Chandra and P. Merlin. Optimal implementation of

conjunctive queries in relational data bases. In STOC, 1977.
[3] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and

K. Shim. Optimizing queries with materialized views. In
ICDE, pages 190–200, 1995.

[4] S. Chaudhuri and M. Vardi. Optimization of real
conjunctive queries. In PODS, pages 59–70, 1993.

[5] R. Chirkova and M. Genesereth. Equivalence of SQL queries
in presence of embedded dependencies. In PODS, 2009.

[6] S. Cohen. Equivalence of queries combining set and bag-set
semantics. In PODS, pages 70–79, 2006.

[7] S. Cohen, W. Nutt, and Y. Sagiv. Containment of
aggregate queries. In ICDT, pages 111–125, 2003.

9An inclusion dependency is a tgd with a single relational
atom on each of the left-hand side and right-hand side.

[8] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate
queries using views. In PODS, pages 155–166, 1999.

[9] A. Deutsch. XML Query Reformulation over Mixed and
Redundant Storage. PhD thesis, Univ. Pennsylvania, 2002.

[10] A. Deutsch, A. Nash, and J. Remmel. The chase revisited.
In PODS, pages 149–158, 2008.

[11] A. Deutsch, L. Popa, and V. Tannen. Query reformulation
with constraints. SIGMOD Record, 35(1):65–73, 2006.

[12] A. Deutsch and V. Tannen. Reformulation of XML queries
and constraints. In ICDT, pages 225–241, 2003.

[13] O. M. Duschka and M. R. Genesereth. Answering recursive
queries using views. In PODS, pages 109–116, 1997.

[14] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: semantics and query answering. Theoretical
Computer Science, 336(1):89–124, 2005.

[15] H. Garcia-Molina, J. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2002.

[16] G. Gou, M. Kormilitsin, and R. Chirkova. Query evaluation
using overlapping views: completeness and efficiency. In
SIGMOD Conf., pages 37–48, 2006.

[17] A. Halevy. Answering queries using views: A survey. VLDB
Journal, 10(4):270–294, 2001.

[18] T. Jayram, P. Kolaitis, and E. Vee. The containment
problem for real conjunctive queries with inequalities. In
PODS, pages 80–89, 2006.

[19] A. Klug. On conjunctive queries containing inequalities.
Journal of the ACM, 35(1):146–160, 1988.

[20] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In PODS, 1995.

[21] C. Li. Rewriting queries using views. Encyclopedia of
Database Systems, Springer, in print, 2008.

[22] W. Nutt, Y. Sagiv, and S. Shurin. Deciding equivalences
among aggregate queries. In PODS, pages 214–223, 1998.

[23] J. D. Ullman. Information integration using logical views.
Theoretical Computer Science, 239(2):189–210, 2000.

APPENDIX
A. THE C&B ALGORITHM OF [10]

In this section of the appendix we give an overview of
the Chase and Backchase (C&B) algorithm by Deutsch
and colleagues, see [11] for the details. Under set se-
mantics for query evaluation and given a CQ query Q,
C&B outputs all equivalent Σ-minimal conjunctive re-
formulations of Q in presence of the given embedded
dependencies Σ, whenever chase of Q under Σ termi-
nates in finite time.

C&B proceeds in two phases. The first phase of C&B,
its chase phase, does chase of Q using Σ under set se-
mantics, to obtain terminal chase result (Q)Σ,S . This
output of the chase phase is called the universal plan U
for Q. Note that by construction of U , Q ≡Σ,S U .

The second phase of C&B, its backchase phase, pro-
ceeds as follows:

1. Iterate over all queries U ′ whose head is head(U)
and whose body is not empty and is body(U) with
zero or more atoms dropped.

2. Chase each U ′ using Σ, to obtain terminal chase
result (U ′)Σ,S .

3. C&B outputs each U ′ such that for the terminal
result (U ′)Σ,S of chasing the candidate reformula-
tion U ′ under Σ (under set semantics), it holds that
(U ′)Σ,S ≡S U , that is, each U ′ for which by Theo-
rem 2.2 it holds that U ′ ≡Σ,S Q.

Theorem A.1. (C&B is sound and complete)
For an arbitrary instance of the Query-Reformulation

Problem with a CQ query Q, set semantics for query
evaluation, and a set of embedded dependencies Σ such
that chasing Q under Σ terminates in finite time, C&B
outputs all Σ-minimal conjunctive reformulations Q′ of
Q such that Q′ ≡Σ,S Q. !

The proof of Theorem A.1 is by construction of C&B.

B. KEYS OF RELATIONS
This section of the appendix provides basic definitions

for the standard notion of a key of a relation [15].

B.1 Attributes and Relations
Let U be a countably infinite set of attributes. The

universe U is a finite subset of U . A relation schema R
of arity k is a subset of U of cardinality k. A database
schema (or, simply, schema) D over U is a finite set of
relation schemas {R1, . . . , Rt} with union U , of arities
k1, . . . , kt, respectively.

Each attribute A ∈ U has an associated set of values
∆(A), called A’s domain. The domain is the set of
values ∆ =

⋃
A ∆(A). Let D be a schema over U , R ∈ D

a relation schema and X a subset of U . An X-tuple t
is a mapping from X into ∆, such that each attribute
A ∈ X is mapped to an element of ∆(A). A (generally
bag-valued) relation r over R is a finite collection of R-
tuples. A database (instance) D ofD is a set of relations,
with one relation for each relation schema of D.

B.2 Functional Dependencies and Keys
Consider a database schema D with n-ary relation

symbol P such that n > 1. A functional dependency
(fd) on relation P in D is an egd of the form p(X̄, Y, Z̄)∧
p(X̄, Y ′, Z̄ ′) → Y = Y ′, such that predicate p corre-
sponds to relation P . Here, Y and Y ′ must be in the
same position in the respective atoms, meaning the fol-
lowing. Let Y be the ith argument of atom p(X̄, Y, Z̄),
for some 1 ≤ i ≤ n. Then Y ′ is the ith argument of
atom p(X̄, Y ′, Z̄ ′). Similarly, we require each element
of the vector X̄ to be in the same position in each of
p(X̄, Y, Z̄) and p(X̄, Y ′, Z̄ ′).

Definition B.1. (Implied functional dependency)
Let σ be an fd on relation R, and let Σ be a set of fds
on R. Then σ is a functional dependency implied by Σ
if σ holds on all instances of relation R that satisfy Σ.
!

Standard textbooks (see, e.g., [15]) describe algorithms
for solving the problem of finding all fds implied by a
given set of dependencies on the schema of a relation.

Let K = {Ai1, . . . , Aip} be a nonempty proper subset
of the set of attributes of n-ary relation R(A1, . . . , An),
with n > 1. That is, 1 ≤ p < n and Aij ∈ {A1, . . . , An}
for each j ∈ {1, . . . , p}. In the definitions that follow, we
will use the following notation: Let σ(K|Ai), for some
i ∈ {1, . . . , n} such that Ai /∈ K, denote an fd that
equates the values of attribute Ai of R whenever the
two r-atoms in the left-hand side of σ(K|Ai) agree on
the values of all and only attributes in K. For example,
if the schema of R is R(A,B,C, D) and K = {A,C},
then σ(A,C|B) is defined as

σ(A,C|B) : r(A,B1, C,D1) ∧ r(A,B2, C, D2) → B1 = B2.

Definition B.2. (Superkey of relation) K is a
superkey of relation R if for each attribute A in the set
{A1, . . . , An}−K, it holds that fd σ(K|A) is implied by
the set Σ of fds on R. !

The set of all attributes of R is also a superkey of R.

Definition B.3. (Key of relation) K is a key of
relation R if (1) K is a superkey of R, and (2) for each
nonempty proper subset K′ of K, K′ is not a superkey
of R. !

C. TUPLE IDS FOR RELATIONS
In this section of the appendix we present a solu-

tion to the problem of ensuring, under bag semantics,
that certain base relations are sets in all database in-
stances. To this end, we provide here a formal frame-
work for tuple IDs, which are unique tuple identifiers
commonly used in implementations of real-life database-
management systems [15]. Our approach to ensuring
that some relations are always set valued is to use func-
tional dependencies (Appendix B) to force certain re-
lations to be set valued, by restricting tuples with the
same “contents” (that is, all values with the exception
of the tuple ID) to have the same tuple ID.

Assume bag semantics for query evaluation and con-
sider relation symbol Ri in database schema D. (Sec-
tion B.1 has the relevant definitions.) We follow the
approach taken in implementations of real-life database-
management systems [15] by incrementing the arity of
Ri. As a result, the arity of each relation Ri becomes
ki+1 instead of the original ki as defined in Section 2.10

Let D′ be the schema resulting from such arity mod-
ification in D for each relation Ri. By D′ we denote
instances of D′. In the schema of Ri in D′, let the last
attribute of Ri be the attribute for the tuple ID. The
values of all tuple IDs are required to be distinct in all
instances of D′, which is formally specified as follows.

Definition C.1. (Tuple ID.) For a relation symbol
Ri of arity ki+1 in database schema D′, let queries QRi

tid
and QRi

vals be as follows:

QRi
tid(Xki+1) : − Ri(X1, . . . , Xki , Xki+1).

QRi
vals(X1, . . . , Xki) : − Ri(X1, . . . , Xki , Xki+1).

Then the (ki + 1)st attribute of Ri in D′ is the tuple
ID for Ri if in all instances D′ of D′, the following
relationship holds between the relations QRi

tid(D
′, B) and

QRi
vals(D

′, B):

|coreSet(QRi
tid(D

′, B))| = |QRi
vals(D

′, B)|.

Here, coreSet(B) denotes the core-set of bag B, and
|B| denotes cardinality of B. !

We now study the relationship between instances D′

of D′ and instances D of D. Suppose that for relation Ri
of arity ki +1 in D′, the last attribute of Ri is the tuple
ID of Ri. By definition of tuple IDs, for each instance
D of D, relation Ri in D can be obtained from some

10We emulate the standard implementation practice that tu-
ple IDs be invisible to the users of the database system; that
is, in our approach the user assumes that the arity of each
relation Ri is still ki.

instance D′ of D′, by evaluating query QRi
vals under bag

semantics on Ri in D′:

QRi
vals(X1, . . . , Xki) : − Ri(X1, . . . , Xki , Xki+1).

Now suppose that in (the original) schema D, a rela-
tion with symbol Ri and arity ki is required to be set
valued in all instances of D. We enforce this require-
ment by the functional dependency

σRi
tid : Ri(X1, . . . , Xki , Xki+1)∧

Ri(X1, . . . , Xki , Yki+1) → Xki+1 = Yki+1

on Ri in schema D′. This functional dependency en-
forces the same tuple ID for each pair of tuples that
agree on the values of all other attributes of Ri. In con-
junction with Definition C.1, which ensures uniqueness
of each tuple ID within each instance of D′, σRi

tid enforces
that the answer to query QRi

vals (i.e., Ri in schema D)
be set valued when computed under bag semantics.

In the context of Example 4.1, in presence of tuple
IDs we could formally define dependency σ6 as an egd:

σ6 : t(X, Y, Z, U) ∧ t(X, Y, Z,W) → U = W.

Here, the fourth attribute of relation T is the tuple-ID
attribute.

D. PROOF OF THEOREM 4.2
This section of the appendix provides a proof of The-

orem 4.2. We first supply the details of Example 4.9.

EXAMPLE D.1. To show that query Q3 of Exam-
ple 4.1 is not bag equivalent to query Q5,

Q3(X) : − p(X, Y), t(X, Y,W), s(X, Z).
Q5(X) : − p(X, Y), t(X, Y,W), s(X, Z), s(X, Z).

we construct a bag-valued database D, with the following
relations: P = {{(1, 2)}}, R = ∅, S = {{(1, 3), (1, 3)}},
T = {{(1, 2, 5)}}, and U = ∅. On this database D,
the answer to Q3 is Q3(D,B) = {{(1), (1)}}, whereas
Q5(D,B) = {{(1), (1), (1), (1)}}, by rules of bag seman-
tics. From the fact that Q3(D,B) and Q5(D,B) are
not the same bags, we conclude that bag equivalence
Q3 ≡B Q5 does not hold.

At the same time, by Theorem 4.2 it holds that Q3 and
Q5 are bag equivalent on all databases where relation S
is required to be a set. !

We now prove Theorem 4.2. The If part of the proof
is straightforward. For the Only-If part, we argue that
the only way for Q1 and Q2 to be bag equivalent under
the set-enforcing constraints of database schema D is
for Q1 and Q2 to satisfy the conditions of Lemma D.1.
The proof of Lemma D.1 completes the proof of Theo-
rem 4.2, by showing by contrapositive that bag equiva-
lence of Q1 and Q2 under the set-enforcing constraints
of database schema D has to entail isomorphism of the
queries Q′

1 and Q′
2 defined in the statement of Theo-

rem 4.2.
Proof. (Theorem 4.2)
If. Let database schema D have a relation symbol P ,

such that the relation for P is set valued in all (bag-
valued) instances D over D. (Appendix C provides
an approach to enforcing this set-valuedness constraint
using functional dependencies that involve tuple IDs.)

Consider an arbitrary CQ query Q1 that has a subgoal
with predicate p corresponding to relation P ; w.l.o.g.
let the subgoal be p(W̄). Let Q2 be a CQ query ob-
tained by adding to the body of Q1 a duplicate of p(W̄).

We argue that for Q1 and Q2 as described above, it
holds that Q1 ≡B Q2 under the set-enforcing depen-
dencies of the schema D. (The claim of the If direc-
tion of the theorem is immediate from this observation.)
Indeed, consider an arbitrary instance D of database
schema D, such that D satisfies the set-enforcing de-
pendencies of the schema D. From the definition of bag
semantics for query evaluation it follows that each as-
signment satisfying the body of Q1 w.r.t. D is also a
satisfying assignment for the body of Q2 w.r.t. D, and
vice versa. Further, each such satisfying assignment γ
maps p(W̄), in the body of Q1, into a single tuple t in
relation P in D, and similarly γ maps both copies of
p(W̄), in the body of Q2, into the same single tuple t,
due to relation P being set valued in the database D.
It follows that each such satisfying assignment γ con-
tributes to each of Q1(D,B) and Q2(D,B) the same
number of tuples under bag semantics for query evalu-
ation. The claim of the If direction of Theorem 4.2 is
immediate from the above observation.

Only-If. The proof is by contrapositive. For two CQ
queries Q1 and Q2, let Q1 ≡B Q2 hold in the absence
of all dependencies other than the set-enforcing depen-
dencies of the schema D. Consider queries Q′

1 and Q′
2

defined in the statement of Theorem 4.2. We assume
that Q′

1 and Q′
2 are not isomorphic, and obtain from

this assumption that Q1 and Q2 are not bag equivalent
on at least one database that satisfies the set-enforcing
dependencies of schema D, in contradiction with what
we are given.

W.l.o.g., let s be a subgoal of query Q′
1 such that

either Q′
2 has no subgoals with the predicate of s, or

Q′
2 has fewer (but still a positive number of) subgoals

with the predicate of s than Q′
1 does. Consider first

the case where Q′
2 has no subgoals with the predicate

of s; it follows from the construction of queries Q′
1 and

Q′
2 that Q2 does not have subgoals with the predicate

of s either, whereas Q1 has at least one occurrence of
subgoal with the predicate of s. Observe that in this
case, set equivalence between Q1 and Q2 does not hold
by the results of [2]. From the result of [4] (see Propo-
sition 2.1 in this current paper) that bag equivalence
implies set equivalence, it follows immediately that bag
equivalence of Q1 and Q2 cannot hold either, in pres-
ence of the set-enforcing dependencies in the schema
D. (This follows from the fact that Q2 #S/ Q1 implies
existence of a set-valued database on which Q2 under
set semantics produces a tuple t, such that t is not in
the set-semantics answer to Q1 on the same database.)
Thus, we have arrived at a contradiction with our as-
sumption that Q1 ≡B Q2 on all databases satisfying the
set-enforcing dependencies of the schema D.

We now consider the remaining case concerning the
number in Q′

2 of subgoals with the predicate of s, that
is the case where Q′

2 has fewer (but still a positive num-
ber of) subgoals with the predicate of s than Q′

1 does.
Suppose first that there is no bag-set equivalence be-
tween Q1 and Q2. That is, by Theorem 2.1 we as-
sume that the canonical representations of Q′

1 and of
Q′

2 (which are the same as the canonical representa-

tions of Q1 and of Q2, respectively) are not isomorphic.
Then similarly to the previous case considered in this
proof, from Proposition 2.1 we obtain immediately the
contradiction to Q1 ≡B Q2 under the set-enforcing de-
pendencies of schema D. (Similarly to the case above,
Q1 ≡BS Q2 would have to be violated on a set-valued
database, therefore the set-enforcing dependencies of
the schema D would be satisfied in that Q1 ≡B Q2
would be violated on the same database.)

Thus, for the rest of this proof we assume that (1)
Q1 ≡BS Q2, and (2) Q′

1 ≡BS Q′
2 (from Q1 ≡BS Q2 and

by construction of Q′
1 and Q′

2). That is, for both pairs
of queries the canonical representations are isomorphic.
Under these restrictions, the only way Q′

1 and Q′
2 can

be nonisomorphic is the case where Q′
1 (w.l.o.g.) has

more subgoals (than Q′
2) whose predicate corresponds

to a relation, say R, that is not required to be a set in all
instances of schema D. (Indeed, if Q1 and Q2 have this
number-of-subgoals discrepancy for a predicate whose
relation is required to be a set in all instances of D, then
Q′

1 and Q′
2 must have the same number of such subgoals

by Q1 ≡BS Q2 and by construction of Q′
1 and Q′

2.)
Note that in this case, relation symbol R must belong
to D−{P1, . . . , Pk} (“−” is set difference), and thus the
subset relationship {P1, . . . , Pk} ⊆ D is proper in this
case, that is {P1, . . . , Pk} ⊂ D. Recall that {P1, . . . , Pk}
is the maximal subset of D such that all symbols in
{P1, . . . , Pk} correspond to relations required to be set
valued in all instances of D.

We finish the proof of Theorem 4.2 by proving Lemma
D.1, which constructs a database D satisfying the set-
enforcing dependencies of schema D. By construction,
database D is a counterexample to Q1 ≡B Q2 (on
databases satisfying the set-enforcing dependencies of
schema D), whenever Q′

1 has more subgoals (than Q′
2)

whose predicate corresponds to a relation that is not
required to be a set in all instances of schema D.

Lemma D.1. Let D, {P1, . . . , Pk} ⊂ D, Q1, Q2, Q′
1,

and Q′
2 be as specified in Theorem 4.2, and let Q1 ≡BS

Q2. Let R be a relation symbol in the set D−{P1, . . . , Pk};
that is, relation R is not required to be a set in all in-
stances of D. Suppose that Q′

1 has strictly more subgoals
whose predicate corresponds to R than Q′

2 does. Then
there exists an instance D of D such that all of relations
P1, . . . , Pk are set valued in D, and such that Q1(D,B)
is not the same bag as Q2(D,B). !

By the above characterization, database D is a coun-
terexample to queries Q1 and Q2 being bag equivalent
on all instances of D that satisfy the set-enforcing re-
strictions of schema D.

The intuition for the proof of Lemma D.1 is as follows.
Let query Q1 have n1 > 1 subgoals whose predicate cor-
responds to relation R, such that R is not required to
be set valued in instances of schema D. (Part of the
proof is to show that by the properties of this relation
symbol R and by construction of Q′

1 from Q1, it holds
that Q1 and Q′

1 have exactly the same number of sub-
goals whose predicate corresponds to R. We make the
same observation about Q2 and Q′

2.) Further, let query
Q2 have a positive number (by proof of Theorem 4.2)
n2 < n1 of subgoals whose predicate corresponds to R.
We build a database D on which Q1 produces at least
m(n1) copies of some (distinct) tuple t∗, with the posi-
tive integer value of m to be determined. We then “let”

Q2 have as many satisfying assignments for the body of
Q2 w.r.t. this database D as possible. That is, we as-
sume the best case for Q2 of producing as many tuples
on database D as possible. We then show that if the
value of m is chosen in a certain way, then the number
m(n1) of copies of tuple t∗ in the bag Q1(D,B) is greater
than the maximal (i.e., best-case) number N of all tu-
ples (counting all duplicate tuples as separate tuples)
that can be contributed by Q2 to the bag Q2(D,B).
The reason that we can make such a choice of the value
of m is that this maximal number N grows asymptoti-
cally as m(n2), with 0 < n2 < n1, whereas the number
of copies of tuple t∗ in the bag Q1(D,B) is m(n1).

Proof. (Lemma D.1) Let n1 be the number of sub-
goals in Q′

1 whose predicate corresponds to R, and let
n2 be the number of subgoals in Q′

2 whose predicate
corresponds to R; n2 > 0 by Q1 ≡BS Q2. By our as-
sumption, n1 ≥ n2 + 1. By construction of Q′

1, Q1
has the same number n1 of subgoals whose predicate
corresponds to R as Q′

1 does; we make the same obser-
vation about the relationship between the number n2 of
subgoals in Q2 whose predicate corresponds to R and
the (same) number n2 of subgoals of the same type in
Q′

2. (See proof of Theorem 4.2 for the details of the
argument.)

Let D′ be the (set-valued by definition, see Section 2.1)
canonical database for the canonical representation of
Q′

1. (From the proof of Theorem 4.2, we have that
Q1, Q′

1, Q2, and Q′
2 all have the same canonical repre-

sentation.) We construct from D′ our counterexample
database D as follows.

1. For each relation symbol S in D − {R}, the rela-
tion S in D is the same as the relation S in D′. By
construction of D′, all the relations in {P1, . . . , Pk} are
set valued in database D. Thus, database D satisfies
the set-enforcing restrictions of the schema D.

2. We build relation R in D by “putting together”
m > 0 copies of relation R in D′, with the value of m
to be determined shortly. That is, for each tuple t such
that t is in the set-valued relation R in D′, relation R in
D has m copies of tuple t; further, R in D has no other
tuples.

By definition of bag semantics for query evaluation,
see Section 2.2, the bag Q1(D,B) has at least m(n1)

copies of some individual tuple. Indeed, consider the
assignment mapping γ from Q1 to D such that γ was
used to generate the canonical database D′ of the canon-
ical representation of Q1. (See Section 2.1 for the de-
scription of the process of construction of a canonical
database for a CQ query.) Observe that γ is a satisfying
assignment for the body of Q1 w.r.t. database D. The
assignment γ maps each of the R-subgoals of Q1 to at
least m tuples of R, by construction of relation R in D,
and γ maps each non-R subgoal (if any) of Q1 to exactly
one tuple. Thus, for the tuple t∗ = γ(X̄) ∈ Q1(D,B),
where Q1(X̄) is the head of the query Q1, the multiplic-
ity of t∗ in Q1(D,B) is at least m(n1). (The “at least”
part comes from the possibility that extra copies of the
tuple t∗ could be contributed to the bag Q1(D,B) by
one or more satisfying assignments γ′ for the body of
Q1 w.r.t. database D, such that each such γ′ is not
identical to the assignment γ.)

At the same time, we show that the total size of the

bag Q2(D,B) cannot exceed

n(2n2)
1 × n(n3−n2)

4 ×m(n2) (4)
tuples, in case the total number n3 of subgoals of query
Q2 is greater than n2; n4 is the number of subgoals of
Q1 whose (subgoals’) predicate does not correspond to
relation symbol R. (By Q1 ≡BS Q2 we have that n4 > 0
whenever n3 > n2.) In this case, we set the value m∗ of
m to

m∗ := 1 + n(2n2)
1 × n(n3−n2)

4 . (5)
It follows that

(m∗)(n1−n2) > n(2n2)
1 × n(n3−n2)

4 . (6)

That is (recall that 0 < n2 < n1),

(m∗)(n1) > n(2n2)
1 × n(n3−n2)

4 × (m∗)(n2). (7)
We conclude that on the database D where the value
of m is fixed at m∗, the number of copies of tuple t∗ in
the bag Q1(D,B) exceeds the number of all tuples in
the bag Q2(D,B). Therefore, the bag Q1(D,B) is not
the same bag as Q2(D,B).

(In case the total number n3 of subgoals of query Q2
is equal to n2, we show that the bag Q2(D,B) cannot
have more than

n(2n2)
1 ×m(n2) (8)

tuples. In this case, we set the value m∗ of m to

m := 1 + n(2n2)
1 . (9)

It follows that at this value m∗ of m, we have that

(m∗)(n1−n2) > n(2n2)
1 . (10)

That is (recall that 0 < n2 < n1),

(m∗)(n1) > n(2n2)
1 × (m∗)(n2). (11)

We conclude that on the database D where the value
of m is fixed at m∗, the number of copies of tuple t∗

in the bag Q1(D,B) exceeds the number of all tuples
in the bag Q2(D,B). Therefore, the bag Q1(D,B) is
not the same bag as Q2(D,B). The proof of this case is
straightforward from the proof, see below, of Equation 4
for the case where the total number n3 of subgoals of
query Q2 is greater than n2.)

We now explain why the bag Q2(D,B) cannot be of
greater cardinality than the number of tuples specified
in Equation 4, in the case where the total number n3 of
subgoals of query Q2 is greater than n2. The idea of the
proof is to “let”Q2 have as many satisfying assignments
for the body of Q2 w.r.t. database D as possible. That
is, we assume the best case for Q2 of producing as many
tuples on database D as possible. We take the following
specific steps in building the upper bound:

1. We assume the best case for Q2 of the number of
satisfying assignments, w.r.t. database D, for the
n3−n2 subgoals of Q2 whose (subgoals’) predicates
do not correspond to R. The maximal number of
such assignments cannot exceed

n(n3−n2)
4 . (12)

That is, the best case for Q2 is to assume that all
of the n3− n2 subgoals of Q2 have the same predi-
cate, say predicate s corresponding to the relation

symbol S, where S may or may not be one of the
relation symbols P1, . . . , Pk specified in the formu-
lation of this Lemma. We also assume that the
n4 > 0 non-R subgoals of Q1 also have the same
predicate s. Database D has at most n4 tuples in
relation S (by construction of canonical databases).
We assume the best case for Q2 that each of the
n3−n2 subgoals of Q2 can map independently into
each of the (at most) n4 tuples, hence the formula
of Equation 12.

2. For each of the above n(n3−n2)
4 assignments, Q2

may have at most

n(n2)
1 (13)

satisfying assignments, w.r.t. database D, for all
the n2 subgoals of Q2 whose predicate corresponds
to the relation symbol R. The computations are
similar to those that we used in explaining Equa-
tion 12.

3. For each of the n(n2)
1 satisfying assignments, w.r.t.

database D, for all the n2 subgoals of Q2 whose
predicate corresponds to the relation symbol R, Q2
can produce on database D at most

(n1 ×m)(n2) (14)
tuples. We obtain the formula of Equation 14 by
assuming that the evaluation of Q2 admits a Carte-
sian product of n2 copies of the relation R, where
relation R has at most n1 ×m tuples on D.

4. We combine Equations 12, 13, and 14, to obtain
that the total number of satisfying assignments for
the body of Q2 w.r.t. database D cannot exceed

n(n2)
1 × n(n3−n2)

4 (15)

(satisfying assignments); and that, further, for each
one of these assignments Q2 produces on database
D at most

(n1 ×m)(n2) (16)
tuples (where each duplicate is counted separately)
in the bag Q2(D,B). (Recall that all relations ex-
cept R are set valued in database D.) We conclude
that the total number of tuples (including dupli-
cates) that query Q2 produces on database D is at
most

(n1)2(n2) × n(n3−n2)
4 ×m(n2) (17)

tuples. Equation 17 gives us an upper bound on
the size of the bag Q2(D,B). Q.E.D.

Consider an illustration to the proof of Lemma D.1.

EXAMPLE D.2. Let CQ queries Q7 and Q8 be de-
fined as

Q7(X) : − p(X, Y), r(X), r(X).
Q8(X) : − p(X, Y), r(X).

in the setting of Example 4.1. To illustrate the proof
of Lemma D.1, we construct a counterexample database
to the claim that Q7 and Q8 are bag equivalent on all
databases that satisfy just the set-enforcing dependen-
cies of Example 4.1. We use the fact that query Q7 has

two copies of subgoal r(X), whereas Q8 has just one
copy of that subgoal. (Recall that relation R is not re-
quired to be a set on all instances of the database schema
D of Example 4.1.)

Queries Q7 and Q8, as well as the database schema
D of Example 4.1 together with its set-enforcing con-
straints, satisfy all the conditions of Lemma D.1. Ob-
serve that query Q′

7 (defined in the statement of Theo-
rem 4.2) is isomorphic to Q7, because relation R is not
required to be a set. Similarly, query Q′

8 is isomorphic
to Q8. Further, the canonical representation of each of
Q7, Q8, Q′

7, and Q′
8 is isomorphic to query Q8.

Consider query Q′
8 and its canonical database D′,

with P = {{(1, 2)}} and R = {{(1)}}. From D′, we
construct a bag-valued database D, with relations P =
{{(1, 2)}} (same as P in D′) and with m > 0 copies of tu-
ple (1) in relation R. That is, R = {{(1), . . . , (1)}}, with
cardinality m of bag R in D. Let relations S, T , U be
empty sets in D. Then D satisfies all the set-enforcing
dependencies of Example 4.1.

Now using the notation of the proof of Lemma D.1,
we have n1 = 2. Here, n1 is the number of subgoals of
Q′

7 – and thus also of Q7 – whose predicate corresponds
to R. At the same time, n2 = 1 < n1, where n2 is the
number of subgoals of Q′

8 – and thus also of Q8 – whose
predicate corresponds to R. Further, the total number
n3 of subgoals of Q8 is n3 = 2, and the number n4 of
non-R subgoals of Q7 is n4 = 1.

It is easy to verify that the bag Q7(D,B) has m(n1) =
m2 copies of tuple (1). At the same time, by the argu-
ment justifying Equation 4 in the proof of Lemma D.1,
the total number of tuples (where each duplicate is counted
separately) in the bag Q8(D,B) cannot exceed

n(2n2)
1 × n(n3−n2)

4 ×m(n2) = 22 × 1(2−1) ×m1 = 4m

tuples. It is easy to see that for any value m∗ of m
such that m∗ > 4, the number of copies of tuple (1) in
the bag Q7(D,B) is always going to be greater than the
cardinality of the bag Q8(D,B).

In fact, the upper bound of Equation 4 is not tight for
this example, as can be observed from the facts that
• the total number of copies of tuple (1) in bag Q8(D,B)

is m, and
• the core-set of the bag Q8(D,B) has no tuples other

than (1); therefore, the cardinality of the bag Q8(D,B)
is m as well.

!

E. PROOFS OF THE THEOREMS ON
SOUND CHASE STEPS

We provide here representative parts of proofs for
Theorems 4.1 and 4.3. The idea of the complete proofs
is to show, for an arbitrary embedded dependency, one
of the following two things:

(1) Either using the dependency results in sound chase
steps, under the appropriate semantics, for all CQ queries,
in case the format of the dependency is described in the
applicable theorem (i.e., either Theorem 4.1 or Theo-
rem 4.3). Please see Proposition E.1 in Section E.2 for
an example of such a claim.

(2) Or using the dependency results in unsound chase,
in case the format of the dependency is not described in
the theorem for the respective query-evaluation seman-
tics (i.e., either Theorem 4.1 or Theorem 4.3). Please

see Propositions E.2 and E.3 in Section E.2 for examples
of such claims.

All the remaining proofs for Theorems 4.1 and 4.3 are
analogous to the proofs of Propositions E.1 through E.3.

E.1 Bag Projection
This subsection of the appendix defines bag projec-

tion. We use the definition in the proof of Proposi-
tion E.1 in Section E.2.

Given positive integers m, k and i(1), . . . , i(k), such
that for each j ∈ {1, . . . , k} it holds that 1 ≤ i(j) ≤
m. Then for an m-tuple t = (a1, . . . , am), we say that
a k-tuple t′ = (ai(1), . . . , ai(k)) is a projection of t on
attributes in positions i(1), . . . , i(k), denoted
t′ = t[i(1), . . . , i(k)].
Further, for the m, k and i(1), . . . , i(k) as above and for
an m-ary relation P , a bag of tuples B is a bag projection
of P on attributes in positions i(1), . . . , i(k), denoted
B = πbag

i(1),...,i(k)(P), if each tuple t ∈ P contributes to
B a separate tuple t′ = t[i(1), . . . , i(k)], and if B has
no other tuples. B can be interpreted as the answer
Q(D,B) on database {P} to query
Q(Xi(1), . . . , Xi(k)) : − p(X1, . . . , Xm),
where the predicate p corresponds to relation P .

E.2 The Proofs

Proposition E.1. Given a CQ query Q and a set
of embedded dependencies Σ. Under bag semantics for
query evaluation, a chase step Q ⇒σ

B Q′ using tgd σ ∈ Σ
is sound if Q ⇒σ

B Q′ is (tgd) key-based, and for each
subgoal s(pij) that the chase step adds to Q, relation Pij
is set valued on all databases satisfying Σ. !

Proof. Let σ be of the form
σ : φ(X̄, Ȳ) → ∃Z̄ p1(Ȳ1, Z̄1) ∧ . . . ∧ pn(Ȳn, Z̄n),

with n > 0. Here, the set of variables in each Ȳi, i ∈
{1, . . . , n}, is the maximal subset, in the set of variables
in Ȳi

⋃
Z̄i, of the set of variables in Ȳ . (We abuse the

notation by treating Ȳi
⋃

Z̄i as a set of variables and
constants.) We show that the chase step Q ⇒σ

B Q′

using σ is sound whenever for all i ∈ {1, . . . , n} such
that pi(Ȳi, Z̄i) corresponds to a subgoal in Q′ that is
not a subgoal of Q, it holds that (1) Ȳi is a superset
of the key of relation symbol Pi in D, and (2) Pi is set
valued in all databases with schema D.

By our assumption that σ is applicable to Q, (1) there
exists a mapping µ from a (not necessarily proper) su-
perset ξ of φ to a subset of subgoals of Q. By the same
assumption, (2) there does not exist a mapping µ′ such
that µ′ is an extension of µ and such that µ′(ψ) is also a
subset of subgoals of Q. Here, ψ is the right-hand side
of the tgd σ.

Consider a mapping ν from φ to the body of Q, such
that ν agrees with µ on all the variables in ξ (note that
all of Ȳ are in ξ), and such that ν maps the subset of
variables Z̄ in ψ−ξ (here, “ψ−ξ” is read as set difference
between sets of conjuncts ψ and ξ) into distinct fresh
variables. By definition of chase step for tgds, ν(ψ) adds
at least one subgoal to Q, which results in query Q′.
Let one such new subgoal S be the result of applying
ν to atom pi(Ȳi, Z̄i) in the ψ part of σ, for some i ∈
{1, . . . , n}.

Consider an arbitrary database D with schema D,
such that D satisfies the dependencies Σ. To finalize our
proof, it remains to show that on D, the following two
relations are the same as bags: Q(D,B) and Q′′(D,B),
where Q′′ results from adding the subgoal S to the body
of Q. Here, each of Q(D,B) and Q′′(D,B) is to be
computed under bag semantics for query evaluation.

Let bQ(D,B) be the relation, on D, for the body
of Q(D,B), and let bQ′′(D,B) be the relation, on D,
for the body of Q′′(D,B). Note that if bQ(D,B) and
bQ′′(D,B) are the same bags modulo the columns of
bQ(D,B), then Q(D,B) and Q′′(D,B) are the same
bags as well. (Recall that the heads of Q and Q′′ are the
same by definition of Q′′.) When we say “bQ(D,B) and
bQ′′(D,B) are the same bags modulo the columns of
bQ(D,B)”, the meaning is as follows: If we do bag pro-
jection on bQ′′(D,B) on just the columns of bQ(D,B),
then we will obtain precisely bQ(D,B). (Please see Ap-
pendix E.1 for the definition of bag projection.)

We now show that bQ(D,B) and bQ′′(D,B) are the
same bags modulo the columns of bQ(D,B), which fi-
nalizes our proof. The case where bQ(D,B) is empty is
trivial, thus we assume for the remainder of the proof
that bQ(D,B) is not an empty bag. Consider an as-
signment mapping λ that was used to obtain a tuple t
in bag bQ(D,B). By definition of (tgd) key-based chase
step for σ, there is exactly one way (up to duplicates of
stored tuples) to extend λ, to obtain a (distinct) tuple
t′ ∈ Pi, such that t′ “matches” t according to the join
conditions between the body of Q and the new subgoal
S in Q′′.11 Further, from the fact that the relation Pi
is a set on D, we obtain that t′ is a unique tuple (i.e., it
has no duplicates in Pi) that “matches” t in the above
sense. As a result, each single tuple in bQ(D,B) corre-
sponds, for the purposes of computing bQ′′(D,B) from
bQ(D,B), to exactly one tuple in Pi.

Observe that the above procedure for computing
bQ′′(D,B) from bQ(D,B) corresponds to a valid plan
for computing bQ′′(D,B) from only the stored relations
in D. (This plan is a left-linear plan, such that Pi
is the right input of the top join-operator node in the
tree. For the basics on query-evaluation plans, please
see [15].) We conclude that bQ(D,B) and bQ′′(D,B)
are the same bags modulo the columns of bQ(D,B).

Proposition E.2. Given a CQ query Q and a set of
embedded dependencies Σ. Consider a key-based chase
step Q ⇒σ

B Q′ using tgd σ ∈ Σ,

σ : φ(X̄, Ȳ) → ∃Z̄ ψ(Ȳ , Z̄).

Suppose that at least one relation Pi used in ψ is not set
valued. Further, suppose that in the chase step Q ⇒σ

B
Q′ using σ, Q′ is obtained by adding to the body of Q
a new Pi-subgoal s(Pi) (possibly alongside other sub-
goals).12 Then under bag semantics for query evalua-

11That is, the extension of λ is a satisfying assignment for the
body of Q′′ w.r.t database D. In this and other proofs, we
can use “procedural” evaluation of queries under each of bag
and bag-set semantics. The correctness of this usage stems
from the fact that our definitions for query evaluation under
bag and bag-set semantics, see Section 2.2, are consistent
with the operational semantics of evaluating CQ queries in
the SQL standard, as shown in [4].

12I.e., in the chase step Q ⇒σ
B Q′, applying σ to Q may

generate other new subgoals besides the Pi-subgoal.

tion, the chase step Q ⇒σ
B Q′ using σ is not sound.

!

Proof. Let σ be of the form

σ : φ(X̄, Ȳ) → ∃Z̄ p1(Ȳ1, Z̄1) ∧ . . . ∧ pn(Ȳn, Z̄n),

with n > 0. Here, for each j ∈ {1, . . . , n}, Ȳj is the
maximal subset of Ȳ in the set Ȳj

⋃
Z̄j , please see proof

of Proposition E.1 for the notation. In addition, the
relation Pi for pi(Ȳi, Z̄i) is not a set-valued relation for
at least one i ∈ {1, . . . , n}. Given this assumption on Pi,
the proof of the claim of Proposition E.2 is by providing
a bag-valued database D, such that D satisfies Σ and
such that Q(D,B) and Q′(D,B) are not the same bags.

We build the database D as follows. Let D′ be the
canonical database for query Q′. We obtain D by adding
to D′ a single duplicate of the tuple for the subgoal
s(Pi) of Q′. We now follow the reasoning in the proof
of Proposition E.1, to observe that the bag Q′(D,B)
has at least one more tuple than the bag Q(D,B), due
to the fact that the two identical tuples of relation Pi
add to Q′(D,B) an extra copy of at least one tuple in
Q(D,B). This observation concludes the proof.

We now provide an illustration that shows the main
points of the proof of Proposition E.2.

EXAMPLE E.1. Consider a set Σ = {σ1,σ2} of
embedded dependencies, where

σ1 : p(X, Y) ∧ p(X, Z) → Y = Z.
σ2 : r(X, Y) → p(X, Y).

Observe that chase steps using σ2 are (tgd) key-based
in presence of the egd σ1, and that Σ does not include
dependencies that would restrict the relation P , in the
right-hand side of σ2, to be set valued.

Consider a CQ query Q defined as

Q(A) : − r(A,B).

Applying σ2 to the query Q, in chase step Q ⇒σ2
B Q′,

results in query Q′ defined as

Q′(A) : − r(A,B), p(A,B).

We now illustrate the construction of the database
D in the proof of Proposition E.2. First, the canoni-
cal database D′ of Q′ has relations R = {{(a, b)}} and
P = {{(a, b)}}. D is constructed from D′ by adding to
relation P a duplicate of the tuple (a, b), that is D has
relations R = {{(a, b)}} and P = {{(a, b), (a, b)}}. Note
that database D is bag valued and satisfies all the de-
pendencies in Σ.

Now by the bag semantics for query evaluation, Q(D,B)
= {{(a)}}, while Q′(D,B) = {{(a), (a)}}. Thus, database
D is a counterexample to Q ≡Σ,B Q′, which proves that
the chase step Q ⇒σ2

B Q′ using σ2 is not sound. !

Proposition E.3. Given a CQ query Q and a set of
embedded dependencies Σ. Let σ ∈ Σ be a tgd,

σ : φ(X̄, Ȳ) → ∃Z̄ p1(Ȳ1, Z̄1) ∧ . . . ∧ pn(Ȳn, Z̄n),

with n > 0.13 Consider a chase step Q ⇒σ
BS Q′ us-

ing σ, such that Q′ is obtained by adding to the body of
13For the notation, please see proof of Proposition E.1.

Q a new Pi-subgoal s(Pi) (possibly alongside other sub-
goals), where s(Pi) corresponds to conjunct pi(Ȳi, Z̄i)
in the consequent ψ of σ. Suppose that Ȳi is not a su-
perkey of Pi. Then under bag-set semantics, the chase
step Q ⇒σ

BS Q′ using σ is not sound. !

(Proposition E.3 is formulated for the case of bag-set
semantics, which allows us to show the flavor of the
proofs that are required to establish Theorem 4.3.)

Proof. (Proposition E.3) Given the assumption that
for the conjunct pi(Ȳi, Z̄i) used in ψ, it holds that Ȳi is
not a superkey of Pi, the proof of the claim of Proposi-
tion E.3 is by providing a set-valued database D, such
that D satisfies Σ and such that Q(D,BS) and Q′(D,BS)
are not the same bags.

Fix i such that Ȳi in pi(Ȳi, Z̄i) is not a superkey of Pi

and such that pi(Ȳi, Z̄i) corresponds to a subgoal in Q′

that (subgoal) is not in Q, in chase step Q ⇒σ
BS Q′. We

begin the construction of the database D by building
the canonical database D′ for query Q′. We obtain D
by adding to D′ a single extra (nonduplicate) tuple for
the subgoal s(Pi) of Q′, as follows.

Without loss of generality, let pi(Ȳi, Z̄i) be of the form
pi(Ȳi, Z̄ ′

i, Z̄
′′
i), where Z̄ ′

i is not empty, Ȳi
⋃

Z̄ ′
i is a su-

perkey of Pi, and no proper subset of Ȳi
⋃

Z̄ ′
i is a su-

perkey of Pi. Now suppose ν was the mapping used
to generate s(Pi) from pi(Ȳi, Z̄ ′

i, Z̄
′′
i) in the chase step

Q ⇒σ
BS Q′. (See proof of Proposition E.1 for the details

on ν.) Then s(Pi) is of the form pi(Ā, C̄, Ē), where Ā
(C̄, Ē, respectively) is the image of Ȳi (of Z̄ ′

i, of Z̄ ′′
i ,

respectively) under ν. By construction of the canonical
database D′ of Q′, the tuple for s(Pi) in relation Pi in
D′ is (ā, c̄, ē). We construct the database D from D′ by
adding to Pi of D′ a tuple (ā, c̄′, ē), such that at least
one constant in c̄′ is not equal to the same-position con-
stant in c̄. By construction, database D is set valued
and satisfies the dependencies Σ. (Recall that no proper
subset of Ȳi

⋃
Z̄ ′

i in pi(Ȳi, Z̄ ′
i, Z̄

′′
i) is a superkey of Pi.)

We now follow the reasoning in the proof of Propo-
sition E.1, to observe that the bag Q′(D,BS) has at
least one more tuple than the bag Q(D,BS). The rea-
son is, tuples (ā, c̄, ē) and (ā, c̄′, ē) in relation Pi add
to Q′(D,BS) an extra copy of at least one tuple in
Q(D,BS). This observation concludes the proof.

We now provide an illustration that shows the main
points of the proof of Proposition E.3.

EXAMPLE E.2. Consider a set Σ = {σ} of embed-
ded dependencies, where

σ : r(X, Y) → p(X, Z).

Given a CQ query Q,

Q(A) : − r(A,B).

applying σ to the query Q results in query Q′,

Q′(A) : − r(A,B), p(A,C).

Observe that chase step Q ⇒σ
BS Q′ using σ is not key-

based, as the set of all attributes of P is the only key of
P .

We now illustrate the construction of the database D
in the proof of Proposition E.3. First, the canonical

database D′ of Q′ has relations R = {(a, b)} and P =
{(a, c)}. D is constructed from D′ by adding to relation
P a new tuple (a, d), that is D has relations R = {(a, b)}
and P = {(a, c), (a, d)}. Note that database D is set
valued and satisfies the dependency σ.

Now by the bag-set semantics for query evaluation,
Q(D,BS) = {{(a)}}, whereas Q′(D,BS) = {{(a), (a)}}.
Thus, database D is a counterexample to Q ≡{σ},BS Q′,
which proves that the chase step Q ⇒σ

BS Q′ using σ is
not sound. !

F. COUNTEREXAMPLE DATABASE FOR
EXAMPLE 5.1

This section of the appendix provides the counterex-
ample database for Example ??. Database D is a coun-
terexample to soundness of chase step Q4 ⇒σ1

B Q(1)
4 . In

D, let the relations be as follows: P = {{(1, 2)}}, R = ∅,
S = {{(1, 3)}}, T = {{(1, 4, 5), (1, 6, 7)}}, and U = ∅.
Note that D |= Σ, for the set of dependencies Σ in Ex-
ample ??.

On this database D, the answer to Q4 is Q4(D,B) =
{{(1)}}, whereas Q(1)

4 (D,B) = {{(1), (1)}}, by rules of
bag semantics. From the fact that Q4(D,B) and Q(1)

4 (D,B)
are not the same bags, we conclude that the chase step
Q4 ⇒σ1

B Q(1)
4 is not sound under bag semantics.

G. UNIQUENESS THEOREMS FOR CHASE
RESULTS

We begin this section of the appendix by formulat-
ing the version of Theorem 5.1 for the case of bag-set
semantics.

Theorem G.1. Given a CQ query Q and a set Σ
of embedded dependencies on database schema D, such
that there exists a chase result (Q)Σ,S for Q and Σ un-
der set semantics. Then there exists a result (Q)Σ,BS
of sound chase for Q and Σ under bag-set semantics,
unique up to isomorphism of its canonical representa-
tion.14 That is, for two sound-chase results (Q)(1)Σ,BS

and (Q)(2)Σ,BS for Q and Σ, (Q)(1)Σ,BS ≡BS (Q)(2)Σ,BS in
the absence of dependencies. !

We now provide a proof for Theorem 5.1. An adap-
tation of the proof to the statement of Theorem G.1 is
straightforward.

Proof. (Theorem 5.1) We first establish that, by the
definition of soundness of the chase result (Q)(1)Σ,B , there
exists a chase sequence C1 using Σ, such that C1 starts
with Q and ends with (Q)(1)Σ,B , and such that all chase
steps in C1 are sound under bag semantics. Similarly,
we establish that there exists a chase sequence C2 using
Σ, such that C2 starts with Q and ends with (Q)(2)Σ,B ,
and such that all chase steps in C2 are sound under bag
semantics.

The proof of Theorem 5.1 is by contrapositive. As-
sume, toward contradiction, that (Q)(1)Σ,B and (Q)(2)Σ,B

are not isomorphic after removal of duplicate subgoals
14See Theorem 2.1 in Section 2.3.

that correspond to set-valued relations in the database
schema D. Let us denote by (Q̄)(1)Σ,B the result of remov-
ing such “set-valued” duplicate subgoals from (Q)(1)Σ,B ,
and let us use the analogous notation (Q̄)(2)Σ,B for (Q)(2)Σ,B .

Suppose, w.l.o.g., that (Q̄)(1)Σ,B has a nonempty set
of subgoals p1(X̄1), . . . , pm(X̄m) such that this set of
subgoals does not have a counterpart in the image of
any injective homomorphism from (Q̄)(1)Σ,B to (Q̄)(2)Σ,B .
It is clear that p1(X̄1), . . . , pm(X̄m) cannot be a subset
of all the subgoals in the body of the original query Q.
(By definition of sound chase steps, no chase steps using
embedded dependencies ever remove original query sub-
goals.) Then, from the sound chase sequence C1, we can
form a sequence C ′

1 of sound chase steps that (i) uses a
subsequence of the sequence of dependencies applied in
C1, and (ii) starts with Q and ends with adding all the
subgoals in p1(X̄1), . . . , pm(X̄m) to Q. By definition of
sound chase, there must exist a nonempty suffix subse-
quence C ′′

1 of C ′
1 such that all chase steps in C ′′

1 apply to
the chase result (Q)(2)Σ,B of chase sequence C2, and such
that applying the respective (to C ′′

1) dependencies in Σ
to (Q)(2)Σ,B would result in adding to (Q)(2)Σ,B a set of sub-
goals that would be an image of p1(X̄1), . . . , pm(X̄m) in
some injective homomorphism from (Q̄)(1)Σ,B to (Q̄)(2)Σ,B .
We thus arrive at a contradiction with the condition of
Theorem 5.1, which states that (Q)(2)Σ,B is a (terminal)
result of sound chase for Q using Σ under bag seman-
tics. (That is, the contradiction is with the assumption
that no sound chase steps of the form (Q)(2)Σ,B ⇒σ

B Q′

are possible, where σ ∈ Σ.)
The case where some of p1(X̄1), . . . , pm(X̄m) were

eliminated in (Q)(2)Σ,B by use of one or more egds in Σ is
analogous to the above tgd case, except that the con-
tradiction in the case of egds is with our assumption
that (Q)(1)Σ,B is a (terminal) result of sound chase for Q
using Σ under bag semantics. That is, those same egds
can be applied to (Q)(1)Σ,B , hence (Q)(1)Σ,B is not a result
of sound chase under bag semantics.

H. COMPLEXITY OF SOUND CHASE
In this section of the appendix, we establish for The-

orem 5.2 the lower bound on the complexity of sound
chase under each of bag and bag-set semantics, using
sets of weakly acyclic dependencies.

H.1 Weakly Acyclic Dependencies
We provide here the definition and discussion of [11]

for weakly acyclic dependencies.
The chase-termination property under set semantics

is in general undecidable for CQ queries and dependen-
cies given by tgds and egds. However, the notion of
weak acyclicity of a set of dependencies is sufficient to
guarantee that any chase sequence terminates. This is
the least restrictive sufficient termination condition that
has been generally studied in the literature (but see [10]
for a generalization). The weak acyclicity condition ap-
pears to hold in all practical scenarios.

Definition H.1. (Weakly acyclic set of depen-
dencies) Let Σ be a set of tgds over a fixed schema.
Construct a directed graph, called the dependency graph,
as follows: (1) there is a node for every pair (R,A), with
R a relation symbol of the schema and A an attribute
of R; call such pair (R,A) a position; (2) add edges as
follows: for every tgd φ(X̄) → ∃Ȳ ψ(X̄, Ȳ) in Σ and
for every X in X̄ that occurs in ψ:

For every occurrence of X in φ in position (R,Ai):
(a) for every occurrence of X in ψ in position (S, Bj),

add an edge (R,Ai) → (S, Bj);
(b) in addition, for every existentially quantified vari-

able Y and for every occurrence of Y in ψ in posi-
tion (T,Ck), add a special edge (R,Ai) →∗ (T,Ck).

Note that there may be two edges in the same direction
between two nodes, if exactly one of the two edges is
special. Then Σ is weakly acyclic if the dependency
graph has no cycle going through a special edge. We
say that a set of tgds and egds is weakly acyclic if the
set of all its tgds is weakly acyclic. !

Theorem H.1. [12, 14] If Σ is a weakly acyclic set
of tgds and egds, then the chase with Σ of any CQ query
Q under set semantics terminates in finite time. !

The complexity of the chase. For a fixed database
schema and set Σ of dependencies, if Σ is weakly acyclic
then under set semantics any chase sequence terminates
in polynomial time in the size of the query being chased
(as shown in [12, 14]). The fixed-size assumption about
schemas and dependencies is often justified in practice,
where one is usually interested in repeatedly reformulat-
ing incoming queries for the same setting with schemas
and dependencies. Nonetheless, the degree of the poly-
nomial depends on the size of the dependencies and care
is needed to implement the chase efficiently. Successive
implementations have shown that in practical situations
the chase is eminently usable [11].

The complexity of reformulation under set se-
mantics (in C&B). Assume that under set semantics
the chase of any query with Σ terminates in polyno-
mial time (for fixed database schema). Then checking
whether a CQ query Q admits a reformulation is NP-
complete in the size of Q. Checking whether a given
query Q′ is a Σ-minimal reformulation of Q is NP-
complete in the sizes of Q and Q′. For arbitrary sets of
dependencies (for which the chase may not even termi-
nate), the above problems are undecidable.

H.2 The Lower Complexity Bound
We now establish for Theorem 5.2 the lower bound

on the complexity of sound chase using weakly acyclic
dependencies under each of bag and bag-set semantics,
as follows.

EXAMPLE H.1. On a database schema D =
{P1, P2, . . . , Pm} where each relation symbol has arity
2, consider a query Q with a single subgoal p1:
Q(X, Y) : − p1(X, Y).

Suppose the database schema D satisfies a set Σ of
tgds of the following form:

σ(1)
i,j : pi(X, Y) → ∃Z pj(Z,X)

σ(2)
i,j : pi(X, Y) → ∃W pj(Y,W)

Σ has one tgd σ(1)
i,j and one tgd σ(2)

i,j for each pair (i, j),
where i ∈ {1, . . . ,m−1} and j ∈ {i+1, . . . ,m}. Thus,
the number of dependencies in Σ is quadratic in m.

We show one partial chase result (under set seman-
tics) of the query Q under dependencies Σ, for m ≥ 2:

Q′(X, Y) : − p1(X, Y), p2(Z1, X), p2(Y, Z2).

Q′ is the result of applying to Q tgds σ(1)
1,2 and σ(2)

1,2.
Observe that Q′ has a self-join of the relation P2. !

For the terminal result (Q)Σ,S of chase of the query Q
using the tgds Σ under set semantics in Example H.1,
we can show that the size of (Q)Σ,S is exponential in
the size of Q and Σ. Specifically, the size of (Q)Σ,S is
exponential in the size m of the database schema D.
Intuitively, just as Q′ has two subgoals for predicate p2,
the query (Q)Σ,S has two subgoals for p2, four subgoals
for p3, and so on.

EXAMPLE H.2. We continue Example H.1. We
build a set Σ′ of dependencies from the set Σ of Ex-
ample H.1 by adding 3m functional dependencies (fds):
For each i ∈ {1, . . . ,m}, we add the following three fds
for the relation Pi in D:
σ(1)

i : pi(X, Y) ∧ pi(X, Z) → Y = Z

σ(2)
i : pi(Y,X) ∧ pi(Z,X) → Y = Z

σ(3)
i : pi(X, Y, Z1) ∧ pi(X, Y, Z2) → Z1 = Z2

That is, in all databases that satisfy the first two fds
for i in Σ′, the core-set of Pi does not have repeated
values of either attribute. The third fd for Pi guaran-
tees that relation Pi is set valued in all instances of the
database schema D. Here, the third attribute of Pi is its
tuple-id attribute. Please see Appendix C for the details
on using egds for enforcing set-valuedness of relations
in all instances of a given database schema.

Note that the addition of these fds transforms the tgds
Σ of Example H.1 into key-based tgds Σ′ (see Defini-
tion 5.1). Thus, for the terminal result (Q)Σ′,B of sound
chase of the query Q under the dependencies Σ′ under
bag semantics, the size of (Q)Σ′,B is exponential in the
size of Q and Σ′. The same relationship holds under
bag-set semantics between the size of (Q)Σ′,BS and the
sizes of Q and Σ. !

By the results of Section 4, chase of CQ query Q under
key-based tgds Σ results in a query that is equivalent to
Q under Σ under each of bag and bag-set semantics for
query evaluation. Observing that the dependencies Σ′

of Example H.2 are weakly acyclic (and, in fact, strictly
acyclic), completes the construction of the infinite fam-
ily of pairs (Q,Σ′), one pair for each natural-number
value of m, such that the size of each of (Q)Σ,B and
(Q)Σ,BS (both constructed using sound chase) is poly-
nomial in the size of Q and exponential in size of Σ.

I. SATISFIABLE DEPENDENCIES ARE
QUERY BASED

In this section of the appendix we provide Theorem I.1,
which is the analog of Theorem 5.3 for the case of bag-
set semantics. We then supply a proof of Theorem 5.3;
the proof of Theorem I.1 is similar. Finally, we outline
the counterpart of algorithm Max-Bag-Σ-Subset (of
Section 5.3) for the case of bag-set semantics.

Theorem I.1. (Unique Σmax
BS (Q,Σ) ⊆ Σ) Given a

CQ query Q and set Σ of embedded dependencies, such
that there exists a set-chase result (Q)Σ,S for Q and Σ.
Let Qn be the result of sound chase for Q and Σ un-
der bag-set semantics, with canonical database D(Qn).
Then there exists a unique subset Σmax

BS (Q,Σ) of Σ, such
that:
• D(Qn) |= Σmax

BS (Q,Σ), and
• for each proper superset Σ′ of Σmax

BS (Q, Σ) such that
Σ′ ⊆ Σ, D(Qn) |= Σ′ does not hold. !

We now turn to the proof of Theorem 5.3. We first
observe that the process of sound chase of a CQ query
using a set Σ of embedded dependencies under bag se-
mantics can be modeled as state transitions for Σ, with
certain conditions on the final state, which corresponds
to obtaining the result of the chase. The termination
conditions are formalized in Proposition I.1; we first
set up the terminology required to formulate Proposi-
tion I.1.

Suppose we are given a CQ query Q and a finite set
Σ of embedded dependencies, such that there exists a
set-chase result (Q)Σ,S for Q and Σ. Consider an ar-
bitrary chase sequence C = Q0, Q1, . . ., such that (i)
Q0 = Q, and (ii) every query Qi+1 (i ≥ 0) in C is ob-
tained from Qi by a sound chase step Qi ⇒σ

B Qi+1 using
a dependency σ ∈ Σ. By Proposition 5.1, the chase se-
quence C is finite, that is, C = Q0, Q1, . . . , Qn, such
that n ∈ N ∪ {0} and such that query Qn = (Q)Σ,B .
Moreover, by Theorem 5.1 we have that the query Qn is
bag-equivalent in the absence of dependencies15 to the
terminal queries in all sound-chase sequences for Q and
Σ under bag semantics.

Given a chase sequence C as defined above, with chase
result Qn = (Q)Σ,B , we assign a unique ID to each sub-
goal of Qn. We then“propagate the IDs back” to all the
queries in C, so that the enumeration of the subgoals
is consistent across all the elements of C. If extra sub-
goals are encountered in non-terminal elements of C,
we assign unique IDs to those subgoals as well. (The
only case when a query Qi, i < n, in C could have an
extra subgoal compared to Qn is when the procedure
of dropping duplicate subgoals has been applied to ei-
ther Qi or its successors in C. See Theorems 2.1, 4.1,
and 4.2.) In what follows, we refer to the jth subgoal
of query Qi as s(i)

j .
Fix an arbitrary i ∈ {0, . . . , n}, and consider query

Qi in the chase sequence C. Given an arbitrary depen-
dency σ ∈ Σ, of the form σ : φ(Ū , W̄) → ∃V̄ ψ(Ū , V̄),
we define the state of σ w.r.t. Qi in C as follows:
• Dependency σ is pre-applicable to Qi if the chase

of none of Q0, Q1, . . . , Qi with σ is applicable; that
is, for each j ∈ {0, . . . , i}, there does not exist a
homomorphism from the left-hand side φ of σ to
the body of the query Qj .

• Dependency σ is soundly applicable to set of sub-
goals S = {s(i)

j1 , . . . , s(i)
jk } of query Qi, for some

k > 0, if there exists a proper subset θ, of size
k′ ≥ k, of φ ∧ ψ (of σ), with the following proper-
ties:
– θ is a superset of φ;

15Other than the set-enforcing dependencies on stored rela-
tions, see Theorem 5.1.

– there exists a homomorphism h from θ to ex-
actly the subgoals s(i)

j1 , . . . , s(i)
jk of query Qi, such

that h cannot be extended to a homomorphism
from φ∧ψ to the body of the query Qi (see Sec-
tion 2.4 for further details on this definition);
and

– chase step Qi ⇒σ
B Q′, where Q′ is a CQ query,

is sound; that is, Q′ ≡Σ,B Qi.
• Dependency σ is unsoundly applicable to set of sub-

goals S = {s(i)
j1 , . . . , s(i)

jk } of query Qi, for some
k > 0, if there exists a proper subset θ, of size
k′ ≥ k, of φ ∧ ψ (of σ), with the following proper-
ties:
– θ is a superset of φ;
– there exists a homomorphism h from θ to ex-

actly the subgoals s(i)
j1 , . . . , s(i)

jk of query Qi, such
that h cannot be extended to a homomorphism
from φ∧ψ to the body of the query Qi (see Sec-
tion 2.4 for further details on this definition);
and

– chase step Qi ⇒σ
B Q′, where Q′ is a CQ query,

is unsound; that is, Q′ ≡Σ,B Qi does not hold.
• Finally, dependency σ is post-applicable to Qi (as-

suming i > 0) if (a) σ is neither soundly applicable
nor unsoundly applicable to Qi, and (b) there ex-
ists a j ∈ {0, . . . , i−1} such that σ has been used in
a sound chase step Qj ⇒σ

B Qj+1. Observe that in
this case, by definition of (sound) chase steps there
exists a homomorphism from the conjunction of the
left-hand side φ of σ with the right-hand side ψ of
σ to the body of the query Qi.

In the above definition of the state of σ ∈ Σ w.r.t. Qi
in C, the only difference between the states “soundly
applicable” and“unsoundly applicable” is the soundness
property of the chase step in question. Specifically, in
the state “σ is soundly applicable to Qi” the chase step
Qi ⇒σ

B Q′ is sound under bag semantics, whereas in the
state “σ is unsoundly applicable to Qi”, the chase step
Qi ⇒σ

B Q′ is unsound.
We now define the state of the set of embedded depen-

dencies Σ w.r.t. Qi in C, as a total mapping sC
i from Σ

to the set of the four above states (pre-applicable, post-
applicable, soundly-applicable, and unsoundly-applicable),
where the state sC

i (σ) of each σ ∈ Σ w.r.t. Qi in C is
as follows:
• sC

i (σ) = “soundly-applicable” if and only if there
exists a set S of subgoals of Qi such that σ is
soundly applicable to S in Qi;

• sC
i (σ) =“unsoundly-applicable” if and only if there

exists no subset S of subgoals of Qi such that σ is
soundly applicable to S in Qi, and there exists a
set S′ of subgoals of Qi such that σ is unsoundly
applicable to S′ in Qi;

• sC
i (σ) = “post-applicable” if σ and Qi satisfy the

conditions (a) and (b) of post-applicability, see above;
and

• sC
i (σ) = “pre-applicable” if σ and Qi satisfy the

conditions of pre-applicability, see above.
We now establish straightforward facts about the states

of Σ w.r.t. particular queries in the sound-chase se-
quence C = Q0, . . . , Qn, where Qn is the result of the

sound chase of Q using Σ under bag semantics. The
proofs of all the claims in Proposition I.1 are immedi-
ate from the definitions in this section of the appendix
and from the definitions of chase steps, see Section 2.4.

Proposition I.1. For a CQ query Q and a set of
embedded dependencies Σ such that there exists a set-
chase result (Q)Σ,S for Q and Σ. Let C = Q0, . . . , Qn
be a sound-chase sequence for Q and Σ under bag se-
mantics. In C, Q0 = Q, and Qn is the result (Q)Σ,B
of the sound chase of Q using Σ under bag semantics.
Then the following holds about the states of Σ w.r.t.
queries in C.
1. Suppose that in the state sC

0 of Σ w.r.t. query Q0 in
chase sequence C, for all σ ∈ Σ it holds that sC

0 (σ)
is either “pre-applicable” or “unsoundly-applicable”.
Then C = Q0. That is, Q is isomorphic to (Q)Σ,B.

2. Consider the state sC
n of Σ w.r.t. query Qn in chase

sequence C. Then for all σ ∈ Σ it must hold that
sC

n (σ) is one of “pre-applicable”, “post-applicable”,
and “unsoundly-applicable”.

3. For an arbitrary i ∈ {0, . . . , n− 1} (assuming n >
0), consider the state sC

i of Σ w.r.t. query Qi and
the state sC

i+1 of Σ w.r.t. query Qi+1. Then
(a) there must exist a σ∗ ∈ Σ such that sC

i (σ∗) is
“soundly applicable”, and

(b) for each σ ∈ (Σ− {σ∗}), sC
i (σ) = sC

i+1(σ). !

We are now ready to prove Theorem 5.3.
Proof. (Theorem 5.3) Consider a fixed pair (Q,Σ)

satisfying the conditions of Theorem 5.3, and let Qn
be the result of sound chase for Q and Σ under bag
semantics, with canonical database D(Qn). We show
that the set Σmax

B (Q,Σ) is the result of removing from Σ
exactly those tgds σ such that the chase step Qn ⇒σ

B Q′,
with some CQ query Q′ being the outcome of the chase
step, is unsound under bag semantics. This claim is,
in fact, immediate from Proposition I.1, in which it is
shown that, for each dependency σ in Σ such that σ is
applicable to Qn, σ is unsoundly applicable to Qn.

Finally, we outline the counterpart of algorithm Max-
Bag-Σ-Subset (of Section 5.3) for the case of bag-set
semantics.

Algorithm 2: Max-Bag-Set-Σ-Subset(Q, Σ)
Input : CQ query Q, set Σ of embedded dependencies

such that chase result (Q)Σ,S exists
Output : Σmax

BS (Q, Σ) ⊆ Σ s. t.
(1) D((Q)Σ,BS) |= Σmax

BS (Q, Σ), and
(2) ∀ Σ′ such that Σmax

BS (Q, Σ) ⊂ Σ′ ⊆ Σ,
D((Q)Σ,BS) |=/ Σ′

1. (Q)Σ,BS := soundChase(BS, Q, Σ);
2. Σmax

BS (Q, Σ) := Σ;
3. for each σ in Σ do

4. if soundChaseStep(σ, BS, (Q)Σ,BS) = false
then

5. Σmax
BS (Q, Σ) := Σmax

BS (Q, Σ)− {σ};

6. return Σmax
BS (Q, Σ);

The correctness and complexity results for Max-Bag-
Set-Σ-Subset are the same as their counterparts for

algorithm Max-Bag-Σ-Subset, see Theorem 5.4 and
Section 5.3 for the details.

J. PROOFS OF Σ-EQUIVALENCE-TESTS
FOR CQ QUERIES

To prove Theorems 6.1 and Theorem 6.2, we first
make a straightforward observation, as follows.

Proposition J.1. Given two queries Q and Q′ and
a set of embedded dependencies Σ. Let X be one of B,
BS, S, which stand for bag, bag-set, and set semantics,
respectively. Then Q ≡X Q′ implies Q ≡Σ,X Q′. !

The proof of Proposition J.1 is straightforward from
the definitions of query equivalence in presence and in
the absence of dependencies.

The proof of Theorem 6.1 is immediate from Propo-
sitions 5.1 and J.1, from Theorem 5.1, and from Lem-
mas J.1 and J.2. Similarly, the proof of Theorem 6.2
is immediate from Propositions 5.1 and J.1, from the
analog of Theorem 5.1 for bag-set semantics (see The-
orem G.1), and from straightforward analogs of Lem-
mas J.1 and J.2 for the case of bag-set semantics for
query evaluation.

Lemma J.1. Given CQ queries Q and Q′, and given
a set of embedded dependencies Σ on schema D such
that there exist set-chase results (Q)Σ,S for Q and (Q′)Σ,S

for Q′. Then Q ≡Σ,B Q′ implies (Q)Σ,B ≡B (Q′)Σ,B
in the absence of all dependencies other than the set-
enforcing dependencies on D. !

Proof. First, from Proposition 5.1 we obtain that
sound chase of each of Q and Q′ using Σ is guaranteed
to terminate under bag semantics. Further, from The-
orem 5.1 it follows that there exist (1) a unique result
(Q)Σ,B of sound chase for Q, and (2) a unique result
(Q′)Σ,B of sound chase for Q′ . Both results are unique
in the absence of all dependencies other than the set-
enforcing dependencies on D, call these set-enforcing
dependencies Σ′ ⊆ Σ.

From Q ≡Σ,B Q′ and by the soundness of chase in
obtaining (Q)Σ,B and (Q′)Σ,B , we have (Q)Σ,B ≡Σ,B

(Q′)Σ,B . That is, on each bag-valued database D that
satisfies Σ, we have that Q(D,B) and Q′(D,B) are the
same as bags.

To show that (Q)Σ,B ≡B (Q′)Σ,B in the absence of
all dependencies other than Σ′, it remains to prove that
Q(D,B) and Q′(D,B) are also the same as bags on each
database D that does not satisfy Σ but does satisfy Σ′.
There are two cases:

Case 1: Suppose D violates only those dependen-
cies that are not relevant in sound chase to either Q
or Q′. (In the terminology of Section I, those would
be exactly the dependencies that are pre-applicable to
each of (Q)Σ,B and (Q′)Σ,B .) In this case, D does not
violate any dependencies as far as (Q)Σ,B or (Q′)Σ,B
are concerned, as formalized in Theorem 5.3. Thus
from (Q)Σ,B ≡Σ,B (Q′)Σ,B we obtain that Q(D,B) and
Q′(D,B) are the same as bags on D.

Case 2: Suppose D violates at least one dependency
that is relevant in sound chase to either Q or Q′. (In
the terminology of Section I, those would be exactly the
dependencies that are post-applicable to each of (Q)Σ,B

and (Q′)Σ,B .) Still, by Theorem 5.3 the definitions of

(Q)Σ,B and of (Q′)Σ,B ensure that all such relevant de-
pendencies are enforced (i.e., do not fail) on all assign-
ments γ that satisfy each of (Q)Σ,B and (Q′)Σ,B w.r.t.
D. Let DQ be the union of all tuples in all such sat-
isfying assignments for (Q)Σ,B w.r.t D; DQ′ is defined
analogously for (Q′)Σ,B . Then D′ = DQ

⋃
DQ′ satis-

fies all the dependencies of Σ that are relevant in chase
to either Q or Q′. Thus, from (Q)Σ,B ≡Σ,B (Q′)Σ,B

we obtain that Q(D′, B) and Q′(D′, B) are the same as
bags. From the fact that none of the tuples of D that
are not in D′ participates in forming either Q(D,B) or
Q′(D,B), it follows that Q(D,B) and Q′(D,B) are the
same as bags on database D.

Lemma J.2. Given CQ queries Q, Q′, and given em-
bedded dependencies Σ on schema D such that there ex-
ist set-chase results (Q)Σ,S for Q and (Q′)Σ,S for Q′.
Then Q ≡Σ,B Q′ holds whenever (Q)Σ,B ≡B (Q′)Σ,B
in the absence of all dependencies other than the set-
enforcing dependencies on D. !

The proof of Lemma J.2 is immediate from the fact
that each of (Q)Σ,B and (Q′)Σ,B was obtained using
sound chase steps under bag semantics (which implies
(Q)Σ,B ≡Σ,B Q and (Q′)Σ,B ≡Σ,B Q′), as well as from
Propositions 5.1 and J.1 and from transitivity of bag
equivalence in presence of dependencies.

K. Σ-BASED VERSION OF PROP. 2.1
In this appendix we provide the proof of Proposi-

tion 6.1, which is the dependency-based version of Propo-
sition 2.1 ([4], see Section 2.3 of this current paper). By
Theorems 6.1 and 6.2, the proof works both for the for-
mulation of Proposition 6.1 and for the formulation that
parallels Proposition 2.1 (see Proposition K.1 below.)
We also provide a proof of Proposition 6.2. Finally, we
provide the analogs of Theorem 6.4 for (a) CQ queries
under bag-set semantics, and for (b) CQ queries with
grouping and aggregation.

Proof. (Proposition 6.1)

Proof of (1): Assume

Q ≡Σ,B Q′. (18)

or, equivalently (by Theorem 6.1), assume

(Q)Σ,B ≡B (Q′)Σ,B (19)
in the absence of all dependencies other than the set-
enforcing dependencies of the given database schema.
Then Equation 20

(Q)Σ,B ≡BS (Q′)Σ,B . (20)
follows from Equation 19 by Proposition 2.1. Equa-
tion 21

(Q)Σ,B ≡Σ,BS (Q′)Σ,B . (21)
follows from Equation 20 by Proposition J.1. Equa-
tion 22

((Q)Σ,B)Σ,BS ≡BS ((Q′)Σ,B)Σ,BS . (22)
follows from Equation 21 by Theorem 6.2. Equation 23

(Q)Σ,BS ≡BS (Q′)Σ,BS . (23)
follows from Equation 22 for the following reasons:

• By Proposition 5.2 (also see Theorem 4.1 and the
definitions of chase steps), the set Σ1 ⊆ Σ of de-
pendencies that are soundly applicable to a query
under bag semantics is a subset of the set Σ2 ⊆ Σ
of dependencies that are soundly applicable to the
same query under bag-set semantics.

• From Theorem 5.1 and its analog for bag-set se-
mantics (Theorem G.1), it follows that
((Q)Σ,B)Σ,BS ≡BS (Q)Σ,BS , and similarly
((Q′)Σ,B)Σ,BS ≡BS (Q′)Σ,BS .

• By transitivity of ≡BS , we obtain Equation 23.
Finally, Equation 24

Q ≡Σ,BS Q′. (24)

follows from Equation 23 by Theorem 6.2.

Proof of (2): Assume

Q ≡Σ,BS Q′. (25)

or, equivalently (by Theorem 6.2), assume

(Q)Σ,BS ≡BS (Q′)Σ,BS . (26)

Then Equation 27

(Q)Σ,BS ≡S (Q′)Σ,BS . (27)

follows from Equation 26 by Proposition 2.1. Equa-
tion 28

(Q)Σ,BS ≡Σ,S (Q′)Σ,BS . (28)
follows from Equation 27 by Proposition J.1. Equa-
tion 29

((Q)Σ,BS)Σ,S ≡S ((Q′)Σ,BS)Σ,S . (29)

follows from Equation 28 by Theorem 2.2. Equation 30

(Q)Σ,S ≡S (Q′)Σ,S . (30)

follows from Equation 29 for the following reasons:
• By Proposition 5.2 (also see Theorem 4.3 and the

definitions of chase steps), the set Σ1 ⊆ Σ of depen-
dencies that are soundly applicable to a query un-
der bag-set semantics is a subset of the set Σ2 ⊆ Σ
of dependencies that are (always soundly) applica-
ble to the same query under set semantics.

• From the analog of Theorem 5.1 for bag-set se-
mantics (Theorem G.1) and from the definitions
of chase steps, it follows that ((Q)Σ,BS)Σ,S ≡S

(Q)Σ,S , and similarly ((Q′)Σ,BS)Σ,S ≡S (Q′)Σ,S .
• By transitivity of ≡S , we obtain Equation 30.
Finally, Equation 31

Q ≡Σ,S Q′. (31)

follows from Equation 30 by Theorem 2.2.

Proposition K.1. Given two CQ queries Q1 and Q2,
and a set of embedded dependencies Σ, such that there
exists the set-chase result in chase of each of Q1 and Q2
using Σ. Then (1) Q1 ≡Σ,B Q2 implies Q1 ≡Σ,BS Q2,
and (2) Q1 ≡Σ,BS Q2 implies Q1 ≡Σ,S Q2. !

We next provide a proof of Proposition 6.2.

Proof. (Proposition 6.2) Consider a pair (Q,Σ) that
satisfies conditions of Theorem 5.3. By definition of
chase steps (see Section 2.4), in an arbitrary set-chase
sequence C = Q,Q1, . . . for Q and Σ, for each ele-
ment Qi of C such that Qi+1 is also an element of
C, it holds that Qi+1 #S Qi in the absence of de-
pendencies. (Also, trivially, for each CQ query Q it
holds that Q #S Q.) By transitivity and reflexivity
of #S , for an arbitrary pair (Qi, Qi+j) (for j ≥ 0) of
elements of C, it holds that Qi+j #S Qi. By defini-
tion of sound chase under bag and bag-set semantics
(see Section 4), the same set-containment relationship
Qi+j #S Qi holds for an arbitrary pair (Qi, Qi+j) (for
j ≥ 0) of elements of a sound-chase sequence C′ un-
der bag or bag-set semantics. The rest of the proof of
Proposition 6.2 is immediate from the result of Propo-
sition 5.2 that Σmax

B (Q,Σ) ⊆ Σmax
BS (Q,Σ) ⊆ Σ for the

above fixed pair (Q,Σ) and from Proposition 6.1.

We now provide the analog of Theorem 6.4 for CQ
queries under bag-set semantics.

Theorem K.1. Given CQ query Q and set Σ of em-
bedded dependencies such that set chase of Q under Σ
terminates in finite time. Then Bag-Set-C&B returns
all Σ-minimal reformulations Q′ such that Q′ ≡Σ,BS Q.
!

Finally, we provide the analog of Theorem 6.4 for CQ
queries with grouping and aggregation.

Theorem K.2. Given CQ query Q with aggregate
function max, min, sum, or count, and set Σ of em-
bedded dependencies such that set chase of the core of
Q under Σ terminates in finite time. Then (1) If the
aggregate function of Q is max or min, then Max-
Min-C&B returns all Σ-minimal reformulations Q′ of
Q such that Q′ ≡Σ Q; (2) If the aggregate function of
Q is sum or count, then Sum-Count-C&B returns all
Σ-minimal reformulations Q′ of Q such that Q′ ≡Σ Q.
!

