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Abstract

Automatic protocol reverse engineering has recently received sigmifeiéentions due to its importance to
many security applications. However, previous methods are all limitedlinamalyzingplain-textcommunica-
tions wherein the exchanged messages are not encrypted (e.g., v8®logncryption). In this paper, we propose
ReFormat, a system that aims at deriving the message format even veh@essage is encrypted. When an en-
crypted input message is received, it will typically go through two maingssiog phases: message decryption
and normal protocol processing. Based on the observation that theati®ns used for message decryption is sig-
nificantly different from those used for normal protocol processingzaveidentify and separate these two phases
by profiling the instructions executed. Further, since the plain-text ngessased in normal protocol processing
are generated from the message decryption phase, we can then athelydagta lifetime of run-time buffers gen-
erated from the message decryption phase to accurately pinpoint thergnierations that contain the decrypted
(plain-text) message. Once it is determined, previous research dfficatsalyzing plain-text protocol messages
can be naturally applied to reveal the protocol message format. We rewatapped a prototype of ReFormat and
evaluated it with four real-world protocols, HTTPS, IRC, MIME, and aknown one used by a malware. Our
experiments show that ReFormat can accurately identify decryptedgeebksffers and then reveal the associated
message structure.

1 Introduction

With great potentials to many security applications, protocol reverse esrgigenas recently received signif-
icant attentions. For example, network-based firewalls or filters [4, @Brejuire the knowledge of protocol
specifications to understand the context of a particular network commumicsgssion. Similarly, fuzz testing
[13, 15, 27] can utilize the same knowledge to improve the fuzzing progegsrierating interesting inputs more
efficiently.

Traditionally, protocol reverse engineering was mostly a manual prabasss time-consuming and error-
prone. To alleviate this situation, a number of systems [3, 6, 10, 12, 18)a2&] been developed to allow for
automatic protocol reverse engineering. The Protocol Informatics et and Discoverer [10] take a network-
based approach and locate field boundaries from a large amount afrketaces by leveraging the sequence
alignment algorithm that has been used in bioinformatics for pattern digco@her systems such as Polyglot
[6], the work [28] by Wondracelet al, AutoFormat [18], and Tupni [12] take a program-based approatihdo
out the message format. While different in various aspects, these prdmrsed systems share a similar insight
that how a program parses and processes a message reveals rictaiitio about the message format.

Despite all the advances made by these systems, there still exists one majorrcéimitation: they are
unable to analyze encrypted messages. Particularly, network-bgzedelpes are unable to identify the format of
encrypted messages because the collected network traces are in tloé éguhrer-text, which completely destroys
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(a) An encrypted web request message captured by TCPDUMP (b) The protocol format identified by Wireshark

Figure 1. An encrypted web request message and its protocol f ormat identified by Wireshark

message field boundaries and thus unlikely exhibits any common patternsnaetwark packet level. Existing
program-based approaches are also unable to achieve their goatsyptet messages because it is not the input
message whose format we try to discover, but the decrypted one thatisatged at run-time. Unfortunately, none
of the existing program-based approaches is able to accurately locatmitisme memory buffers that contain the
decrypted plain-text message. From another perspective, we neetht@pt that, once the decrypted message
is determined, we can still apply the very same insight behind these progrsed-approaches to extract the
corresponding protocol format, i.e., by analyzing how the plain-text ngessaparsed in the normal protocol
processing phase.

In this paper, we propose ReFormat, a program-based system thatocaataly identify the run-time buffers
that contain the decrypted message. Our approach is based on the igéy ihatthe instructions used for
decrypting an encrypted message is significantly different from thoskefosprocessing a normal unencrypted
protocol messageAs a result, we can identify and separate the message decryption pitagkd normal protocol
processing phase based on the distribution of executed instructionlsef-uve observe that decrypted messages
are first generated from the message decryption phase and thesgm@aethe normal protocol processing phase.
Based on this observation, we can performahta lifetime analysisf run-time buffers that are generated from the
message decryption phase to pinpoint the memory buffers that contairctlypigel message. Once the decrypted
message is identified, we can take one of previous approaches [, 2B]10 analyze how it is being handled to
discover its format.

We have implemented a prototype of ReFormat and evaluated it with four ptstihat encrypt (or encode)
their network communications: HTTPS, IRC, MIME, and one unknown patased by a real-world malware.
For all these test cases, ReFormat can pinpoint with high accuracyrttigrme buffers that contain the decrypted
message, and then identify its format.

The rest of the paper is organized as follows. In Section 2, we degbah@oblem scope as well as associated
challenges. We present the system design and key techniques foryishgntiin-time buffers of the decrypted
message in Section 3. In Section 4, we show the evaluation results. Aftassliisg the related work in Section
5, we examine limitations of ReFormat and suggest possible improvement inrs@ctinally, we conclude this
paper in Section 7.

2 Problem Overview

To achieve the goal of automatic protocol reverse engineering, an impstég is to derive the protocol mes-
sage structure. As mentioned earlier, existing approaches have ekpéoieus solutions to uncover the structure
of plain-text messages. However, they cannot be applied to undetbtastiucture of encrypted messages. As a
concrete example, Figure 1 shows an encrypted web request messagetptured in a typical HTTPS session.
Specifically, Figure 1(a) shows the raw data of the web request measddeigure 1(b) illustrates the message
fields decoded by Wireshark [5]. These figures show that the requesssage is encapsulated in the Transport
Layer Security (TLS) record layer and fragmented into two TLS encrgp@cords. However, what we want to



void AES_decrypt(...)

/* round 1: */
t0 = TdO[sO >> 24] ~ Tdi[(s3 >> 16) & Oxff]

~n

Td2[(s2 >> 8) & Oxff] ~ Td3[sl & Oxff] ~ rk[ 4];
t1 = TdO[s1 >> 24] ~ Tdi[(sO >> 16) & Oxff] A

Td2[ (s3 >> 8) & Oxff] ~ Td3[s2 & Oxff] ~ rk[ 5];
t2 = TdO[s2 >> 24] ~ Tdi[(sl >> 16) & Oxff] A

Td2[ (sO >> 8) & Oxff] ~ Td3[s3 & Oxff] ~ rk[ 6];
t3 = TdO[s3 >> 24] ~ Tdi[(s2 >> 16) & Oxff] A

Td2[ (s1 >> 8) & Oxff] ~ Td3[sO & Oxff] ~ rk[ 7];
/* round 2: */
sO = TdO[tO >> 24] ~ Tdi[(t3 >> 16) & Oxff] ~

Td2[(t2 >> 8) & Oxff] ~ Td3[t1l & Oxff] ~ rk[ 8];

/* round 3: */

}

Figure 2. Code snippet from the OpenSSL-based AES decryptio n implementation

reverse engineer is the HTTP request (shown in Figure 1(b)) etectyp this message. Recall that all previous
protocol reverse engineering methods can only recover the formgaioftext message. One big gap in recover-
ing the format of encrypted message is how to recover the plain-text neeksagthe cipher-text message. The
goal of ReFormat is to fill this gap so that all previous program-basetbappes can benefit to handle not only
plain-text messages but also encrypted ones.

To fill the gap, there are several challenges: First, the memory buffattimtain the decrypted message
are not known priori as they can be dynamically allocated from the hetdpeatack. This is different from the
previous cases with plain-text messages where the memory buffers gbth@riassage can be easily identified and
monitored — as they are typically associated with particular system calls ssyis@ad Second, even worse,
the target buffers can be buried in hundreds or thousands of othermnénféers inside the same memory space
of a running process. In addition, these buffers can come from \&gources, including global variables, the
heap, or the stack. The obvious challenge is how to systematically identifyffeeshthat contain the decrypted
message (“a needle”) among all these memory buffers (“in the haystd€kglly, the decrypted memory buffers
may only exist for a short period of time as they could be discarded orimesdaback for other purposes right
after the processing.

3 System Design
3.1 Design Overview

The goal of our system is to, given an encrypted message and an #pplitet can decrypt the message and
then process it, output the content and format of the decrypted me&iage.an encrypted input message will be
first decrypted and then processed, there is a need to delineate thesaitwghases, i.e., message decryption and
normal protocol processing. To achieve that, our approach is basad mtuitive observationThe instruction
distribution of the message decryption phase and the normal protocoépsing phase are significantly different
Existing cryptography algorithms such as Triple-DES, AES and RC4 typicaliyain a large amount of arith-
metic and bitwise operations and they will be applied to all the bytes in the origiredages. As an example,
Figure 2 shows a code snippet of the functiBS decrypt()from a real-world AES-based decryption implemen-
tation in theOpenSSicryptographic library. When decrypting one block of an input message/olves at least
nine rounds of calculation and each round contains a large amount aghatithand bitwise operations such as
logical right shift and xor. In addition, this particular function will be apdli® every block of the encrypted
message. In comparison, in the normal protocol processing phaseaevikedy to observe significantly less
arithmetic and bitwise instructions. To validate this observation, we have prttideexecution of representative
decryption algorithms that are implemented in the OpenSSL library and comparedhits with a number of
existing applications that handle unencrypted messages of known deotoctormats). The comparison (shown



| Encryption/Message Typg Message Size (B) Arithmetic & Bitwise Instruction$ | Total Instruction$ | Percentage

DES 2K 68921 69112 99.72%

CAST 2K 18917 21225 89.13%

RC4 2K 2709 3042 89.05%

AES 2K 6892 8475 81.32%

HTTP request 107 429 3227 13.29%

FTP port 28 421 5898 7.14%

DNS response 46 223 1687 13.22%

RPC bind 164 186 2342 7.94%

JPEG 3224 1112 12898 8.62%

BMP 3126 229 956 23.95%

Table 1. The percentages of arithmetic and bitwise operatio ns in typical implementations of existing

decryption algorithms and normal programs that handle know n plain-text protocol messages (  ': As
discussed in Section 3.2, we only count those instructions t hat operate on the input message.)
Execution Monitor |~ Phase Profiler — Data Lifetime Analyzer| _ Format Analyzer

Figure 3. ReFormat System Architecture

in Table 1) demonstrates that there exists a significant difference in tbenpage of arithmetic and bitwise oper-
ations between message decryption and normal protocol processimme®rand, more tha80% of instructions
are arithmetic and bitwise operations when an encrypted input messagedgsdeeinypted. On the other hand,
less thar25% of instructions are arithmetic and bitwise operations when a normal plain+eitgol message is
being processed. This empirically confirms our intuitive observation.

To achieve our goal, our system takes four key steps as shown in Big(ireExecution Monitor: We first mon-
itor the application execution and collect an execution trace recording leapilication decrypts and processes
an input message. (2) Phase Profiler: We then analyze the executieridngentify the two execution phases:
message decryptioand normal protocol processing(3) Data Lifetime Analyzer: After that, we perform data
lifetime analysis to locate buffers that contain the decrypted message. r(daFAnalyzer: Finally, we conduct
dynamic data flow analysis on the buffers located in the previous step toartbe format of the decrypted mes-
sage. Since the last step has been extensively studied in previousByagk P8, 18], we focus on the first three
steps in this paper. In our prototype, we use AutoFormat [18] as onnafioanalyzer but other systems [6, 12, 28]
should be equally applicable for the same purpose.

In the rest of this section, we will describe the execution monitor, phadédepr@nd data lifetime analyzer
in detail. To help illustrate our approach, we will use a running example. Imuheing example, ashttpd
web server [2] processes an encrypted HTTP request issueddty30], an HTTP client. The raw data of the
encrypted request message is shown in Figure 1(a).

3.2 Execution Monitor

Similar to other program-based approaches, by monitoring a prograntstexe ReFormat aims to record
how an input message is being processed by the program. In partigulatetzepting system calls that are used
to read from and write to file descriptors and/or network sockets, ReFdamés the input message and applies
the well-known taint analysis technique to keep track of the instructions ¢tcata tainted memory space. By
dynamically instrumenting the program execution, the taint information candpeedy propagated and a trace of



the instructions that operate on tainted data will be collected. We highlight thebtlected trace contaislythe
instructions that operate on the marked data, rather than all executedtiiosisu Inside the trace, we record the
address of the instruction and the current call stack when the instrucitamso Note that the run-time call stack
information is important for ReFormat. As to be shown in the following subsecsiach context information is
used in the phase profiler to determine the transition point between the messaggation phase and the normal
protocol processing phase. In our system, to acquire the run-time aK| 8ta mainly traverse the current stack
frames and retrieve the caller/callee information from the procedure-dedat&vation record on the stack. If the
debug information is embedded in the binary, we will derive the related func@mnes. This works well for
the program or library built with stack frame pointer support. However,aflimary is compiled without stack
frames, we can still build a shadow call stack by instrumenting the call/retumudtions. Similar to previous
work, we assume the boundaries of network messages can be identitidigaefore an execution trace contains
the processing of a single input message.

3.3 Phase Profiler

After collecting an execution trace, we divide it into different executioaggls in the phase profiler. An ap-
plication usually processes an encrypted input message and respitimds \encrypted output message in four
phases: (1) decrypt the input message, (2) process the decrypssdgee (3) generate the output message, (4)
encrypt the output message. Since our goal is to identify the decrypteshgeegand then uncover its format),
we only need to recognize the boundary between the first two phasesiniicity of presentation, we refer to
the first phase as the “message decryption” phase, and refer to thlerésesphases aggregately as the “normal
protocol processing” phase. To divide an execution trace into thesphases, we search for the transition point
between them, i.e., the last instruction executed in the message decryptien phas

We perform the search in two steps. First, we use the cumulative pereasftagthmetic and bitwise instruc-
tions to narrow down the search range where the transition point is loc&szbnd, we use the function-wise
percentage of arithmetic and bitwise instructions to identify the last functiorué@ in the message decryption
phase. We refer to this function as tensition function Therefore, the last instruction executed in this function
will be the transition point between the two phases. In other words, we asgotion of transition function to
indicate that no other function that executes after it will be performingaatyal message decryption. Next, we
describe these two steps in detail.

The cumulative percentage of arithmetic and bitwise instructions at-fieinstruction is defined to be the
percentage of arithmetic and bitwise instructions in the firsistructions. Note that an application may still use a
large amount of arithmetic and bitwise operations to encrypt the output neeastitge end of an execution trace.
However, the cumulative percentage during encryption is likely to be lovear the percentage in the message
decryption phase. The reason is that, before the output messageyigtedcthe application, when processing the
decrypted message and then generating an output plain-text messatikehyiihtroduce a significant amount of
instructions that are neither arithmetic nor bitwise. As such, we expect thelative percentage to reach its peak
value in the message decryption phase and to drop to its lowest value in thal pootocol processing phase. In
other words, the transition point must be between the instruction with the maximomlative percentage and
the one with the minimum percentage. After identifying these two instructions inxnution trace, we refer
to them as thenaximum instructiomnd theminimum instruction Next we narrow our search to the instructions
executed between them.

To better illustrate the second step, we define a new tkafi function A leaf function contains contiguous
instructions that belong to the same function. For instance, if a parertidong calls a child functionB and
there is no function called i, we will have three leaf functiond;s;, F'g, and F4o, whereF'4; contains all
instructions inA executed befor® is called andF 49 contains all instructions il executed afteB returns. An
important property is that each instruction in the execution trace belongstarahonly one leaf function. For
the maximum and minimum instructions identified previously, we refer to their l@atifans as thenaximum leaf
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Figure 4. Phase Profiler (Step I): Calculating the cumulativ. e percentage of arithmetic and bitwise
operations in the collected shttpd-based execution trace

functionand theminimum leaf function

After identifying the maximum and minimum instructions based on the cumulativege, we compute the
function-wisepercentage of arithmetic and bitwise instructions for each leaf function batthem. Here we use
the function-wise percentage instead of the cumulative percentagesiedt@ueaf functions foactualmessage
decryption are likely to have high function-wise percentage. Thereferedentify the last leaf function whose
percentage is above a given threshold as the transition function. Thedfattion executed in this function will
be used as the transition point. In our prototype, we set the threshold t0%eé&sed on the percentages of
arithmetic and bitwise operations shown in Table 1. As to be shown in Sectiois 4htbshold works well in all
test cases.

Meanwhile, we anticipate that, in certain applications, there may not existcéidarboundary between the
message decryption phase and the normal protocol processing pbasgample, some protocol implementation
may put message decryption and processing into a single big function. ageswe can alternatively compute
the percentage on a sliding window to determine the transition point. Specifigallyan have a sliding window
on each instruction and then treat each sliding window as a leaf functiompute the function-wise percentage
of arithmetic and bitwise instructions. However, since we do not encoumtércases in our evaluation (Section
4), we plan to research the selection of the sliding window size when suebdaamnises.

In our running example, the cumulative percentage of arithmetic and bitwisadtisns is shown in Figure 4.
The X-axis is the leaf functions in the temporal order, and the Y-axis is theulaiive percentage. At the very
beginning, there is a steady increase of the cumulative percentage ofietittand bitwise instructions until it
reaches the peak value at an instruction inside the funstiad block asmdata order. After that, the cumulative
percentage keeps decreasing until it reaches the lowest value atracting inside the functiotlMAC_Init_ex
In Figure 5 we show the function-wise percentage of arithmetic and bitwiseidtions for each leaf function
executed betweeshalblock asmdata orderandHMAC._Init_ex Given our threshold, we identify the last invo-
cation ofshalblock asmdataorder as the transition function, which is consistent with our manual analysis of
the shttpd source code. Also, in this running example, we found that mar®#34 of arithmetic instructions and
more than 90% of bitwise instructions actually occurred in the message tiearppase.

3.4 Data Lifetime Analyzer

After determining the message decryption phase and the normal prot@oalsging phase, our next step is
to locate the memory buffers that contain the decrypted message. The leasis td identify the buffers (data)
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Figure 5. Phase Profiler (Step Il): Calculating the function -wise percentage of arithmetic and bitwise
operations within the search range

passed from the message decryption phase to the normal protocagimcphase. Specifically, the buffers must
be written in the former phase and read in the latter phase. To identify stfehshuve analyze théfetime of
memory buffers.

Before describing our algorithm, we first define the liveness of a memuaffgrb Note that a buffer is a con-
tiguous memory block, and we only care abtaintedbuffers. When an application starts, we mark all buffers
pre-allocated for global variables ge. Then, in the message decryption phase, after a buffer is allocated in the
heap or the stack, we mark it as live; after a live buffer is deallocated fhe heap or the stack (i.e., when a
stack frame is popped), we clear the “live” mark associated with the baffiethe buffer becomes “dead”. After
the application enters the normal protocol processing phase, we haadiletiess of memory buffers differently.
Specifically, after a buffer is deallocated or accessed (either readliter eperations), it becomes dead for the
following reasons: A deallocated buffer will become invalidated right dafterdeallocation operation. If a buffer
is being written, it will be marked dead as the buffer’s content is not framibssage decryption phase any more.
For read operations, we only need to care about the first read opeaatiowvill mark a buffer dead after it.

Based on the liveness definition, we identify the memory buffers that cottaidecrypted message in three
steps. First, we search for all the buffers that were written to in the meskagyption phase and are still live
when the application enters the normal protocol processing phase. f&vdaehis set of buffers as therite
set Second, we search for all the buffers that are live when they éng fiest read from in the normal protocol
processing phase. We refer to this set of buffers ascthe set Finally, we identify the buffers in the intersection
of the two sets as those that contain the decrypted message.

If the intersection of the write and read sets has only a single buffer, tHertwill be used as the decrypted
input message for the format analysis. If multiple buffers are found in tieesiection, we first sort them based on
the temporal order of the first read operations on them. Then, we tresbtteel buffers as a virtual single buffer
that contains the whole decrypted message.

In our running example, the write and read sets we identified are shownuneR3g4. After intersecting the
two sets, we find only one common buffer that start@d@t41748 f8 with the following content:

GET/HTTP/1.0..UserAgent : Wget/1.10.2.. Accept : x/*..Host : localhost..Connection : KeepAlive....

Based on the knowledge of the HTTP protocol, we know thatthébuffer that contains the decrypted message.
After identifying the decrypted message buffer, we then apply the Auto&iotool as the format analyzer and the
result is shown in Figure 7.
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(b) Theread setin the normal protocol processing phase

Figure 6. Data Lifetime Analyzer: Obtaining the  write setand read set

Accept: *MrinHost: localhost\r\nConnection: Keep-Alive\rin

User-Agent: Wget/1.10.2\\n Accept: */*\rn| m Connection: KeepfAhve\{\n
‘ oert 10% e Keepi#w [

Figure 7. Format Analyzer: Revealing the HTTPS request mess  age format

‘ GET / HTTP/1.0\nUser-Agent: Wget/1.10.2\A\n

GET/HTTP/LOVN

User-Agent Cunnecu%n

4 Implementation and Evaluation

We have implemented a ReFormat prototype based on the latest releaserowfdM@@] (version 3.2.3). Our
execution monitor is built on top of some features supported in Valgrind ssigisttuction translation, memory
marking, and propagation capabilities. Our phase profiler and data lifetialgzan are standalone python pro-
grams. Our format analyzer uses the AutoFormat tool [18]. We note thiatystem is not tightly coupled with
Valgrind and AutoFormat and can be implemented using other binary instrutioartizols such as Pin [19] and
QEMU [1] as well as other reverse engineering tools such as Polydlahgs system [28] by Wondracedt al.,
and Tupni [12]. Excluding the AuotFormat code, our ReFormat protohas 4626 lines of C and 1392 lines of
Python.

In our evaluation, we performed two sets of experiments. The first sstgeriments involves input messages
from three known protocols, HTTPS, IRC, and MIME. The secondo$etxperiments was conducted on an
unknown protocol used by Agobot [38], a real-world malware. Tabkhows the list of protocols we tested
and the programs we used. These programs are obtained either directlyhz standard OS distribution or by
compiling the source code with the default configuration. In each expetimerran our prototype to obtain the
decrypted message and its format. The format accuracy is dependert factors: the accuracy of the decrypted



Protocol |  Application | Request Msg Type Msg Size(B)| write set| read set| write set N read set

Linux Wget 97 18 2 1
SHTTPD Linux Firefox 362 5 4 1
(version: 1.38) Windows IE 283 5 3 1
Google Chrome 431 6 3 1
HTTPS Linux Waet 102 13 9 1
A_paChe Linux Firefox 475 6 18 1
(version: 2.0.63)\y qous £ 286 19 11 1
Google Chrome 431 6 13 1
] JOIN message 16 8 2 1
IRC IRCP-Hyb“d MODE message 16 8 2 1
(version: 7.2.3) WHO message 15 7 2 1
Metamalil BASE64-encoded
MIME (version: 2.7) email message 1141 20 3 1
bot.status message 61 9 33 1
Unknown AgObOt bot.execute message 68 10 36 1
(version: 3-0.2.1) bot.sysinfo message 62 9 33 1

Table 2. Summary of experiments

message and the effectiveness of the format analyzer tool. Since wé\usE-ormat in our prototype and its
effectiveness was evaluated in [18], we focus on the accuracy afetiypted message in our experiments. By
accuracy, we measure whether the buffers we found after the data lifatiahgsis contains theompletedecrypted
input message andbthing else For completeness, we show the formats reverse engineered by Auat-dn

all our experiments, ReFormat accurately identified the decrypted messdhe rest of this section, we describe
our experimental results in detail.

4.1 Experiments with Known Protocols

HTTPS: We have experimented with two different HTTPS servers, SHTTPD Rijsfon 1.38) and Apache
[31] (version 2.0.36). In Section 3, we have used the SHTTPD welesas/our running example and presented
our experimental results. In this section, we focus on the Apache relsuttist Apache experiments, we monitored
the execution of an Apache web server and collected its execution traaeityprocessed an incoming HTTPS
request. To generate different HTTPS requests, we have usediiferent clients: GNU wgel30], Mozilla
Firefox{32], Microsoft IH33], andGoogle Chromg34]. In the following, we describe the results of the experiment
with Google Chrome. Other experimental results are summarized in Table 2.

In Figure 8, we show the cumulative percentage of arithmetic and bitwise étistra in the collected trace.
The cumulative percentage reaches its highest value when the functi®block_asm_host_order is executed
and drops to its lowest value when the functignncasecmp is executed. After computing the function-wise
percentage of arithmetic and bit instructions for each leaf function ex¢dgiveen these two functions, we
found thatmd5_block_asm_host_order is the only function that has a high percentage 90%) and all other
functions have their percentages less th@i$. Therefore, the transition functionisd5_block_asm_host_order.
Note that this transition function is different from the transition functiém1_block_asm_data_order in our
running example (see Figure 4). Our manual investigation shows that itésibe the former case uses the RC4
encryption algorithm with the MD5 checksum while the latter uses the AES pticnyalgorithm with the SHA1
checksum.

Our data lifetime analysis foun@l memory buffers in the write set (shown in Figure 9(a)) @3dmemory
buffers in the read set (shown in Figure 9(b)). The intersection of thesets has a single buffer at the address
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(b) Theread setin the normal protocol processing phase
Figure 9. Locating the decrypted message

020453edeb with the size of 431 bytes. We highlight this buffer in both figures and find itha indeed the
memory buffer with the decrypted message. Note that six bytes at the end biiffier in the write set isiot
included because they are not in the read set. We ran AutoFormat ondtyptéel message and obtained the
message structure shown in Figure 10.

IRC: In this experiment, we evaluated ReFormat with a secure IRC serverifi§pgg we monitored the
execution of the latestcd-hybrid server[35] (version: 7.2.3), and rachaf36], an IRC client, from another
physical machine to establish a secure connection. After the connectionlés me executed the IRC command



Figure 10. Revealing the Google Chrome-based HTTPS request =~ message format

f/join #channellto log into a specific channel. This command triggered three IRC messagestmidOIN
#channell\r\n, MODE #channell\r\n, andWHO #channell\r\n. Instead of showing our analysis on each
message separately, we combine the traces and show the phase prtffes aeaults collectively in Figure 11.
For each message, the cumulative percentage of arithmetic and bitwisetinesueaches the highest value when
the functionshl1_block_asm_data_order is executed and drops to the lowest value when the funetitlhread_n

is executed. For each message, we show at the bottom the decryptederidssdified by ReFormat. It is clear
that ReFormat identified all three decrypted messages accurately.

Interestingly, for each message shown in Figure 11, there are two freakked as 1, and 2 in the figure) in
the cumulative percentage of arithmetic and bitwise operations. Furthetijatesn reveals that an encrypted
message such as the one corresponding/tO #channell\r\n is encapsulated into two 32-byte SSL record
layers and each SSL record layer will be independently decryptethéifste being combined together for normal
protocol processing. In other words, for each encrypted mesgag#l, go through two rounds of decryption,
hence leading to two peak values in the corresponding portion of the cuRigure 11.
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Hybrid-based execution trace

MIME/BASE®64: In this experiment, we tested our system on an email client that is capabladifgea
BASE64encoded messagBASEG6G4s a binary-to-text encoding scheme that works as follows: Given a gessa
text as a string of bytes, each three 8-bit bytes are splited into four &ipjiets and each is then used as an offset
to index into an array of 64 printable characters. To decode the messagean simply reverse this process. Note
thatBASE64s widely used in the MIME support that extends the format of e-mail to sti@peariety of objects
(e.g., pictures) other than the text in ASCII character sets.

In our experiment, we used a Linux-based email client cattedamail37] (version 2.7) and monitored its
execution when it openedBASE64encoded email message. From the trace, we found thatetemailprogram
wrote the decoded message into a temporary file and then created a chddgtimexecute thkin/lesscommand
to display the content. Note that, since thim/lesscommand was executed as a child process, our system naturally
collected its execution trace and considered it as part of the messagsginmcinstructions. In the meantime,
since the decoded message, as a tainted data, was written into a local diskrfisgstem tracked the related
“dirty” file operations. Specifically, when a piece of tainted data is being writtea file, our system will record
additional information such as the file name, the current file position, therdcane the number of bytes that are
written into the file. In our implementation, we essentially create a virtual memofgriiofemulate the disk file.
Later on, when the same file is open and the data being read falls into thdedeange, we will emulate a read
operation from the virtual memory buffer and naturally re-taint the cpomeding destination memory buffer. With
that, ReFormat successfully discovered the transition functionfroeg4 Further, ReFormat correctly identified
the virtual memory buffer that emulated the disk file as the memory buffer tinéios the decrypted message.

4.2 Experiments with Unknown Protocols

We now present our second set of experiments to show that ReForrbt te ancover the format of encrypted
protocol messages used by a real world bot program. Specifically, wéared the execution of a bot software
calledagobot[38] and this particular bot contains its own (proprietary) SSL implementatdmen the bot runs,
it persistently attempts to connect to a pre-specified IRC server and log hdodecoded channel. To confine
potential damages, we performed a controlled experiment where the botiection request was redirected to a
local IRC server under our control. In addition, we usedxtieatprogram to connect to the IRC server, join the
secure channel, and issue commands to the bot. In the meantime, we collecredingon trace of the agobot.
We learned about the channel name and control commands from our omumah®nalysis and other reverse
engineering efforts [38]. We want to point out that such manual sfine simply for our controlled experiments
and ReFormat is exactly designed to automatically reverse engineer the cdrfumaat.
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Figure 13. The function-wise percentage of arithmetic and b itwise operations when agobothandles
the .bot.execute /bin/psommand

By analyzing the execution trace, we found that the agobot receivedeEsages in total: two messages for
the SSL handshake, seven messages for establishing the securetioontoethe IRC server and logging into a
specified IRC channel, and six messages for the commands receimeddramwn botmaster. In our experiment,
we focused on a single command messalet.execute /bin/ps

Figure 12 shows the cumulative percentage of arithmetic and bitwise instrsicAonording to the cumulative
percentage, we identified the functicstsalblock asmdata orderandCBot::HandleCommands the maximum
and minimum functions. Further, based on the function-wise percentagétohetic and bit instructions (shown
in Figure 13), we identified thathalblock asmdata orderis the transition function. The write set and the read
set are shown in Figure 14(a) and 14(b), respectively. The inteyseaf the two sets has only one buffer at the
address 0x04285b8d. We find its content is the same as the command igsoedxichat program, We then
applied AutoFormat to uncover the format of this decrypted message anestlieis shown in Figure 15.

5 Related Work

In this section, we describe the related work and compare it with ReFormée. thist the execution monitor
in ReFormat leverages the generic techniques of dynamic taint analysié, mdve been widely investigated. In
this section, we omit detailed discussion on this area. Interested reaeeedaared to a number of recent efforts
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Figure 15. Revealing the .bot.executeommand message format

on taint analysis [7, 9, 14, 22, 24, 25, 29].

As mentioned earlier, automatic protocol reverse engineering has receglyed significant attentions due to
its importance to many security applications. The Protocol Informatics (Bjeéqir[3] and Discoverer [10] aim
at extracting protocol format from collected network traces. They tagedvantage of conveniently collecting
network traces when a parsing program is unavailable. However, dueyte less effective in the face of encrypted
network traffic. Unlike the Pl and Discoverer projects, several systrols as Polyglot [6], the system in [28],
AutoFormat [18], and Tupni [12] share the key insight that how a Enogparses and processes a message reveals
rich information about the message format. Based on this insight, they eemegineer input message formats
by using dynamic data flow analysis to understand how a program consumiegut message. However, these
systems work only for plain-text input messages. ReFormat complemengssystems by providing an effective
scheme to discern the protocol processing phase from the messagptidecphase and then pinpoint the run-
time memory buffers that contain the decrypted message. And naturally,dhe plingram-based systems can be
integrated in ReFormat to reverse engineer the format of the decryptasadgees

In addition, there has been related work that studies reverse engmderispecific applications such as
application-level replay. For example, RolePlayer [11] and ScriptGén1I] replay a recorded network pro-
tocol session with another entity by identifying and updating certain inpusftalat are embedded in the recorded
session. Replayer [21] uses binary analysis to replay an applicatiehdieog. None of these systems can han-



dle encrypted application-level communications. Protocol analyzersasu@¥ireshark [5] have the capability of
properly formatting a protocol message, but they require prior knowletigut those protocols and are of less use
when analyzing unknown or encrypted protocols.

ReFormat relies on another general technique, i.e., data lifetime analysisate khe decrypted memory
buffers. Along with dynamic taint analysis, this technique has been pedposanother different problem con-
text [7, 8] that aims to detect potential leakage of sensitive data suclsswqals and social security numbers in
the memory. ReFormat differs from them by focusing on the identificationeofuih-time memory buffers of the
decrypted message.

6 Limitations and Future Work

In this section, we discuss the limitations in ReFormat and suggest possiblevenpaots for future work.

First, ReFormat relies on the observation that the instruction distribution fesamge decryption is significantly
different from normal protocol processing. While this observation itlde for many applications as we have
shown in previous sections, it may not be the case when the normal pgrptocessing would be essentially doing
some intensive decryption-like operations. In other words, when theepsing of a message content involves
significant arithmetic and bitwise operations, our system may not work gyop®ne possible way to solve
these problems is to uncover other characteristics of the message detphase and use such characteristics to
differentiate it from the normal protocol processing phase.

Second, ReFormat is designed to handle benign programs and malwate tiwd intentionally obfuscate their
executions to thwart program analysis. In other words, the analysielBbiiat can be potentially evaded if a
program deliberately introduces redundant instructions to manipulate thibtisn, e.g., embedding unnecessary
arithmetic or bitwise operations in normal protocol processing or injectingeassary non-arithmetic or non-
bitwise instructions into message decryption. How to make ReFormat applicabl#uscated programs still
remains a technical challenge.

Third, ReFormat assumes an application first decrypts an encryptedgeemsd then processes the decrypted
message. If an application does not follow this assumption, e.g., it deggptsef the message and processes
it before decrypting and processing the rest, ReFormat may not identifyhiole decrypted message correctly.
To handle such applications, we would need to divide an execution traceuitiple decryption and processing
phases. We leave this to future work.

Finally, ReFormat analyzes one input message at a time and does nédteamaltiple messages in the same
protocol session. Extending ReFormat to further reconstruct the entitecol state machine is part of our future
work.

7 Conclusion

We have presented ReFormat, a system that allows existing automatic pnaeeae engineering tools to
handle encrypted messages. ReFormat is based on the insight that tnetioms$rused for message decryption is
substantially different from those for normal protocol processingaBglyzing the percentage of arithmetic and
bitwise instructions, ReFormat can discern the message decryption pithdeanormal protocol phase. Further-
more, with the insight that the decrypted message is generated in the messggdion phase and handled in the
normal protocol processing phase, ReFormat can analyze the data litdtiome-time buffers to accurately pin-
point the memory buffers that contain the decrypted message. We have impdenaegorototype of ReFormat and
evaluated it with a variety of protocol messages from real-world (knavwmbknown) protocols. Our experimental
results show that ReFormat achieves high accuracy in locating the tlednyiessage buffers and extracting the
related message structure.
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