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Abstract

Automatic protocol reverse engineering has recently received significant attentions due to its importance to
many security applications. However, previous methods are all limited in only analyzingplain-textcommunica-
tions wherein the exchanged messages are not encrypted (e.g., withoutSSL encryption). In this paper, we propose
ReFormat, a system that aims at deriving the message format even when the message is encrypted. When an en-
crypted input message is received, it will typically go through two main processing phases: message decryption
and normal protocol processing. Based on the observation that the instructions used for message decryption is sig-
nificantly different from those used for normal protocol processing, wecan identify and separate these two phases
by profiling the instructions executed. Further, since the plain-text messages used in normal protocol processing
are generated from the message decryption phase, we can then analyzethe data lifetime of run-time buffers gen-
erated from the message decryption phase to accurately pinpoint the memory locations that contain the decrypted
(plain-text) message. Once it is determined, previous research effortsin analyzing plain-text protocol messages
can be naturally applied to reveal the protocol message format. We have developed a prototype of ReFormat and
evaluated it with four real-world protocols, HTTPS, IRC, MIME, and an unknown one used by a malware. Our
experiments show that ReFormat can accurately identify decrypted message buffers and then reveal the associated
message structure.

1 Introduction

With great potentials to many security applications, protocol reverse engineering has recently received signif-
icant attentions. For example, network-based firewalls or filters [4, 23, 26] require the knowledge of protocol
specifications to understand the context of a particular network communication session. Similarly, fuzz testing
[13, 15, 27] can utilize the same knowledge to improve the fuzzing process by generating interesting inputs more
efficiently.

Traditionally, protocol reverse engineering was mostly a manual processthat is time-consuming and error-
prone. To alleviate this situation, a number of systems [3, 6, 10, 12, 18, 28]have been developed to allow for
automatic protocol reverse engineering. The Protocol Informatics [3] project and Discoverer [10] take a network-
based approach and locate field boundaries from a large amount of network traces by leveraging the sequence
alignment algorithm that has been used in bioinformatics for pattern discovery. Other systems such as Polyglot
[6], the work [28] by Wondraceket al., AutoFormat [18], and Tupni [12] take a program-based approach tofind
out the message format. While different in various aspects, these program-based systems share a similar insight
that how a program parses and processes a message reveals rich information about the message format.

Despite all the advances made by these systems, there still exists one major common limitation: they are
unable to analyze encrypted messages. Particularly, network-based approaches are unable to identify the format of
encrypted messages because the collected network traces are in the formof cipher-text, which completely destroys
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(a) An encrypted web request message captured by TCPDUMP (b) The protocol format identified by Wireshark

Figure 1. An encrypted web request message and its protocol f ormat identified by Wireshark

message field boundaries and thus unlikely exhibits any common patterns at thenetwork packet level. Existing
program-based approaches are also unable to achieve their goals on encrypted messages because it is not the input
message whose format we try to discover, but the decrypted one that is generated at run-time. Unfortunately, none
of the existing program-based approaches is able to accurately locate the run-time memory buffers that contain the
decrypted plain-text message. From another perspective, we need to point out that, once the decrypted message
is determined, we can still apply the very same insight behind these program-based approaches to extract the
corresponding protocol format, i.e., by analyzing how the plain-text message is parsed in the normal protocol
processing phase.

In this paper, we propose ReFormat, a program-based system that can accurately identify the run-time buffers
that contain the decrypted message. Our approach is based on the key insight that the instructions used for
decrypting an encrypted message is significantly different from those used for processing a normal unencrypted
protocol message. As a result, we can identify and separate the message decryption phase from the normal protocol
processing phase based on the distribution of executed instructions. Further, we observe that decrypted messages
are first generated from the message decryption phase and then processed in the normal protocol processing phase.
Based on this observation, we can perform thedata lifetime analysisof run-time buffers that are generated from the
message decryption phase to pinpoint the memory buffers that contain the decrypted message. Once the decrypted
message is identified, we can take one of previous approaches [6, 12, 18, 28] to analyze how it is being handled to
discover its format.

We have implemented a prototype of ReFormat and evaluated it with four protocols that encrypt (or encode)
their network communications: HTTPS, IRC, MIME, and one unknown protocol used by a real-world malware.
For all these test cases, ReFormat can pinpoint with high accuracy the run-time buffers that contain the decrypted
message, and then identify its format.

The rest of the paper is organized as follows. In Section 2, we describethe problem scope as well as associated
challenges. We present the system design and key techniques for identifying run-time buffers of the decrypted
message in Section 3. In Section 4, we show the evaluation results. After discussing the related work in Section
5, we examine limitations of ReFormat and suggest possible improvement in Section 6. Finally, we conclude this
paper in Section 7.

2 Problem Overview

To achieve the goal of automatic protocol reverse engineering, an important step is to derive the protocol mes-
sage structure. As mentioned earlier, existing approaches have explored various solutions to uncover the structure
of plain-text messages. However, they cannot be applied to understandthe structure of encrypted messages. As a
concrete example, Figure 1 shows an encrypted web request message that is captured in a typical HTTPS session.
Specifically, Figure 1(a) shows the raw data of the web request messageand Figure 1(b) illustrates the message
fields decoded by Wireshark [5]. These figures show that the request message is encapsulated in the Transport
Layer Security (TLS) record layer and fragmented into two TLS encryption records. However, what we want to



    /* round 2: */
    s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ 
         Td2[(t2 >>  8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[ 8];
    ...
    /* round 3: */
 
    ...
}

void AES_decrypt(...) 
{
    ...

    /* round 1: */
    t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff]  ^ 
         Td2[(s2 >>  8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[ 4];
    t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff]  ^ 
         Td2[(s3 >>  8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[ 5];
    t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff]  ^ 
         Td2[(s0 >>  8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[ 6];
    t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff]  ^ 
         Td2[(s1 >>  8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[ 7];

Figure 2. Code snippet from the OpenSSL-based AES decryptio n implementation

reverse engineer is the HTTP request (shown in Figure 1(b)) encrypted in this message. Recall that all previous
protocol reverse engineering methods can only recover the format of plain-text message. One big gap in recover-
ing the format of encrypted message is how to recover the plain-text message from the cipher-text message. The
goal of ReFormat is to fill this gap so that all previous program-based approaches can benefit to handle not only
plain-text messages but also encrypted ones.

To fill the gap, there are several challenges: First, the memory buffers that contain the decrypted message
are not known priori as they can be dynamically allocated from the heap orthe stack. This is different from the
previous cases with plain-text messages where the memory buffers of the input message can be easily identified and
monitored — as they are typically associated with particular system calls such assysread. Second, even worse,
the target buffers can be buried in hundreds or thousands of other memory buffers inside the same memory space
of a running process. In addition, these buffers can come from various sources, including global variables, the
heap, or the stack. The obvious challenge is how to systematically identify the buffers that contain the decrypted
message (“a needle”) among all these memory buffers (“in the haystack”). Finally, the decrypted memory buffers
may only exist for a short period of time as they could be discarded or reclaimed back for other purposes right
after the processing.

3 System Design

3.1 Design Overview

The goal of our system is to, given an encrypted message and an application that can decrypt the message and
then process it, output the content and format of the decrypted message.Since an encrypted input message will be
first decrypted and then processed, there is a need to delineate these twomain phases, i.e., message decryption and
normal protocol processing. To achieve that, our approach is based on an intuitive observation:The instruction
distribution of the message decryption phase and the normal protocol processing phase are significantly different.
Existing cryptography algorithms such as Triple-DES, AES and RC4 typicallycontain a large amount of arith-
metic and bitwise operations and they will be applied to all the bytes in the original messages. As an example,
Figure 2 shows a code snippet of the functionAESdecrypt()from a real-world AES-based decryption implemen-
tation in theOpenSSLcryptographic library. When decrypting one block of an input message,it involves at least
nine rounds of calculation and each round contains a large amount of arithmetic and bitwise operations such as
logical right shift and xor. In addition, this particular function will be applied to every block of the encrypted
message. In comparison, in the normal protocol processing phase, we are likely to observe significantly less
arithmetic and bitwise instructions. To validate this observation, we have profiled the execution of representative
decryption algorithms that are implemented in the OpenSSL library and compare the results with a number of
existing applications that handle unencrypted messages of known protocols (or formats). The comparison (shown



Encryption/Message Type Message Size (B) Arithmetic & Bitwise Instructions† Total Instructions† Percentage

DES 2K 68921 69112 99.72%

CAST 2K 18917 21225 89.13%

RC4 2K 2709 3042 89.05%

AES 2K 6892 8475 81.32%

HTTP request 107 429 3227 13.29%

FTP port 28 421 5898 7.14%

DNS response 46 223 1687 13.22%

RPC bind 164 186 2342 7.94%

JPEG 3224 1112 12898 8.62%

BMP 3126 229 956 23.95%

Table 1. The percentages of arithmetic and bitwise operatio ns in typical implementations of existing
decryption algorithms and normal programs that handle know n plain-text protocol messages ( †: As
discussed in Section 3.2, we only count those instructions t hat operate on the input message.)

Data Lifetime AnalyzerPhase ProfilerExecution Monitor Format Analyzer

Figure 3. ReFormat System Architecture

in Table 1) demonstrates that there exists a significant difference in the percentage of arithmetic and bitwise oper-
ations between message decryption and normal protocol processing. Onone hand, more than80% of instructions
are arithmetic and bitwise operations when an encrypted input message is being decrypted. On the other hand,
less than25% of instructions are arithmetic and bitwise operations when a normal plain-text protocol message is
being processed. This empirically confirms our intuitive observation.

To achieve our goal, our system takes four key steps as shown in Figure3: (1) Execution Monitor: We first mon-
itor the application execution and collect an execution trace recording how the application decrypts and processes
an input message. (2) Phase Profiler: We then analyze the execution trace to identify the two execution phases:
message decryptionandnormal protocol processing. (3) Data Lifetime Analyzer: After that, we perform data
lifetime analysis to locate buffers that contain the decrypted message. (4) Format Analyzer: Finally, we conduct
dynamic data flow analysis on the buffers located in the previous step to uncover the format of the decrypted mes-
sage. Since the last step has been extensively studied in previous work [6, 12, 28, 18], we focus on the first three
steps in this paper. In our prototype, we use AutoFormat [18] as our format analyzer but other systems [6, 12, 28]
should be equally applicable for the same purpose.

In the rest of this section, we will describe the execution monitor, phase profiler, and data lifetime analyzer
in detail. To help illustrate our approach, we will use a running example. In therunning example, anshttpd
web server [2] processes an encrypted HTTP request issued bywget [30], an HTTP client. The raw data of the
encrypted request message is shown in Figure 1(a).

3.2 Execution Monitor

Similar to other program-based approaches, by monitoring a program’s execution, ReFormat aims to record
how an input message is being processed by the program. In particular, by intercepting system calls that are used
to read from and write to file descriptors and/or network sockets, ReFormat taints the input message and applies
the well-known taint analysis technique to keep track of the instructions that access tainted memory space. By
dynamically instrumenting the program execution, the taint information can be properly propagated and a trace of



the instructions that operate on tainted data will be collected. We highlight that the collected trace containsonly the
instructions that operate on the marked data, rather than all executed instructions. Inside the trace, we record the
address of the instruction and the current call stack when the instruction occurs. Note that the run-time call stack
information is important for ReFormat. As to be shown in the following subsection, such context information is
used in the phase profiler to determine the transition point between the messagedecryption phase and the normal
protocol processing phase. In our system, to acquire the run-time call stack, we mainly traverse the current stack
frames and retrieve the caller/callee information from the procedure-related activation record on the stack. If the
debug information is embedded in the binary, we will derive the related function names. This works well for
the program or library built with stack frame pointer support. However, if the binary is compiled without stack
frames, we can still build a shadow call stack by instrumenting the call/return instructions. Similar to previous
work, we assume the boundaries of network messages can be identified, and therefore an execution trace contains
the processing of a single input message.

3.3 Phase Profiler

After collecting an execution trace, we divide it into different execution phases in the phase profiler. An ap-
plication usually processes an encrypted input message and responds with an encrypted output message in four
phases: (1) decrypt the input message, (2) process the decrypted message, (3) generate the output message, (4)
encrypt the output message. Since our goal is to identify the decrypted message (and then uncover its format),
we only need to recognize the boundary between the first two phases. For simplicity of presentation, we refer to
the first phase as the “message decryption” phase, and refer to the lastthree phases aggregately as the “normal
protocol processing” phase. To divide an execution trace into these twophases, we search for the transition point
between them, i.e., the last instruction executed in the message decryption phase.

We perform the search in two steps. First, we use the cumulative percentage of arithmetic and bitwise instruc-
tions to narrow down the search range where the transition point is located.Second, we use the function-wise
percentage of arithmetic and bitwise instructions to identify the last function executed in the message decryption
phase. We refer to this function as thetransition function. Therefore, the last instruction executed in this function
will be the transition point between the two phases. In other words, we use the notion of transition function to
indicate that no other function that executes after it will be performing anyactualmessage decryption. Next, we
describe these two steps in detail.

The cumulative percentage of arithmetic and bitwise instructions at then-th instruction is defined to be the
percentage of arithmetic and bitwise instructions in the firstn instructions. Note that an application may still use a
large amount of arithmetic and bitwise operations to encrypt the output message at the end of an execution trace.
However, the cumulative percentage during encryption is likely to be lower than the percentage in the message
decryption phase. The reason is that, before the output message is encrypted, the application, when processing the
decrypted message and then generating an output plain-text message, willlikely introduce a significant amount of
instructions that are neither arithmetic nor bitwise. As such, we expect the cumulative percentage to reach its peak
value in the message decryption phase and to drop to its lowest value in the normal protocol processing phase. In
other words, the transition point must be between the instruction with the maximum cumulative percentage and
the one with the minimum percentage. After identifying these two instructions in the execution trace, we refer
to them as themaximum instructionand theminimum instruction. Next we narrow our search to the instructions
executed between them.

To better illustrate the second step, we define a new term,leaf function. A leaf function contains contiguous
instructions that belong to the same function. For instance, if a parent function A calls a child functionB and
there is no function called inB, we will have three leaf functions,FA1, FB, andFA2, whereFA1 contains all
instructions inA executed beforeB is called andFA2 contains all instructions inA executed afterB returns. An
important property is that each instruction in the execution trace belongs to one and only one leaf function. For
the maximum and minimum instructions identified previously, we refer to their leaf functions as themaximum leaf
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Figure 4. Phase Profiler (Step I): Calculating the cumulativ e percentage of arithmetic and bitwise
operations in the collected shttpd-based execution trace

functionand theminimum leaf function.
After identifying the maximum and minimum instructions based on the cumulative percentage, we compute the

function-wisepercentage of arithmetic and bitwise instructions for each leaf function between them. Here we use
the function-wise percentage instead of the cumulative percentage because the leaf functions foractualmessage
decryption are likely to have high function-wise percentage. Thereforewe identify the last leaf function whose
percentage is above a given threshold as the transition function. The lastinstruction executed in this function will
be used as the transition point. In our prototype, we set the threshold to be 50% based on the percentages of
arithmetic and bitwise operations shown in Table 1. As to be shown in Section 4, this threshold works well in all
test cases.

Meanwhile, we anticipate that, in certain applications, there may not exist a function boundary between the
message decryption phase and the normal protocol processing phase.For example, some protocol implementation
may put message decryption and processing into a single big function. In thiscase, we can alternatively compute
the percentage on a sliding window to determine the transition point. Specifically,we can have a sliding window
on each instruction and then treat each sliding window as a leaf function to compute the function-wise percentage
of arithmetic and bitwise instructions. However, since we do not encounter such cases in our evaluation (Section
4), we plan to research the selection of the sliding window size when such a need arises.

In our running example, the cumulative percentage of arithmetic and bitwise instructions is shown in Figure 4.
The X-axis is the leaf functions in the temporal order, and the Y-axis is the cumulative percentage. At the very
beginning, there is a steady increase of the cumulative percentage of arithmetic and bitwise instructions until it
reaches the peak value at an instruction inside the functionsha1block asmdata order. After that, the cumulative
percentage keeps decreasing until it reaches the lowest value at an instruction inside the functionHMAC Init ex.
In Figure 5 we show the function-wise percentage of arithmetic and bitwise instructions for each leaf function
executed betweensha1block asmdata order andHMAC Init ex. Given our threshold, we identify the last invo-
cation ofsha1block asmdata order as the transition function, which is consistent with our manual analysis of
the shttpd source code. Also, in this running example, we found that more than 99% of arithmetic instructions and
more than 90% of bitwise instructions actually occurred in the message decryption phase.

3.4 Data Lifetime Analyzer

After determining the message decryption phase and the normal protocol processing phase, our next step is
to locate the memory buffers that contain the decrypted message. The basic idea is to identify the buffers (data)
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Figure 5. Phase Profiler (Step II): Calculating the function -wise percentage of arithmetic and bitwise
operations within the search range

passed from the message decryption phase to the normal protocol processing phase. Specifically, the buffers must
be written in the former phase and read in the latter phase. To identify such buffers, we analyze thelifetime of
memory buffers.

Before describing our algorithm, we first define the liveness of a memory buffer. Note that a buffer is a con-
tiguous memory block, and we only care abouttaintedbuffers. When an application starts, we mark all buffers
pre-allocated for global variables aslive. Then, in the message decryption phase, after a buffer is allocated in the
heap or the stack, we mark it as live; after a live buffer is deallocated from the heap or the stack (i.e., when a
stack frame is popped), we clear the “live” mark associated with the bufferand the buffer becomes “dead”. After
the application enters the normal protocol processing phase, we handle the liveness of memory buffers differently.
Specifically, after a buffer is deallocated or accessed (either read or write operations), it becomes dead for the
following reasons: A deallocated buffer will become invalidated right afterthe deallocation operation. If a buffer
is being written, it will be marked dead as the buffer’s content is not from the message decryption phase any more.
For read operations, we only need to care about the first read operation and will mark a buffer dead after it.

Based on the liveness definition, we identify the memory buffers that containthe decrypted message in three
steps. First, we search for all the buffers that were written to in the message decryption phase and are still live
when the application enters the normal protocol processing phase. We refer to this set of buffers as thewrite
set. Second, we search for all the buffers that are live when they are being first read from in the normal protocol
processing phase. We refer to this set of buffers as theread set. Finally, we identify the buffers in the intersection
of the two sets as those that contain the decrypted message.

If the intersection of the write and read sets has only a single buffer, this buffer will be used as the decrypted
input message for the format analysis. If multiple buffers are found in the intersection, we first sort them based on
the temporal order of the first read operations on them. Then, we treat thesorted buffers as a virtual single buffer
that contains the whole decrypted message.

In our running example, the write and read sets we identified are shown in Figure 3.4. After intersecting the
two sets, we find only one common buffer that starts at0x041748f8 with the following content:

GET/HTTP/1.0..UserAgent : Wget/1.10.2..Accept : ∗/∗..Host : localhost..Connection : KeepAlive....

Based on the knowledge of the HTTP protocol, we know that it isthebuffer that contains the decrypted message.
After identifying the decrypted message buffer, we then apply the AutoFormat tool as the format analyzer and the
result is shown in Figure 7.



   41748f8  97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

   417e0b5 133: .....GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive
                ......m...1.q..D.%....u............
   4197bc0  20: ......d...6T../.b.f.
   4197c58  20: .@].l...Y...7T...!.k
   4197cf0  20: O.#..31.r.^......T.
   4197d0c  20: .".Rxvj.Ns.1...‘".~W
   4197d88  20: ......d...6T../.b.f.
   4197e20  20: .@].l...Y...7T...!.k
   4197eb8  20: .m...1..D..q..%..u..
   4197ee0  52: TEGaH / /PTT.0.1esU.gA-r:tneegW .1/t2.01cA..tpec/* :
  bee82cfc  20: ..k..w....b......J.K
  bee82de0  16: ...V.31..|....$.
  bee832f0  20: ......\...}.....m...
  bee83348  56: ....TEGaH / /PTT.0.1esU.gA-r:tneegW .1/t2.01cA..tpec/* :
  bee833cc  20: m........CG.q..AX.G.
  bee83408  20: .....\...}.........m
  bee834d0  20: 1S....VY....-.M....T
  bee835dc  20: ..m...1.q..D.%....u.
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(a) Thewrite setin the message decryption phase

41748f8 97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

4197f50 97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

(b) Theread setin the normal protocol processing phase

Figure 6. Data Lifetime Analyzer: Obtaining the write setand read set

ROOT

GET / HTTP/1.0\r\nUser−Agent: Wget/1.10.2\r\n

Accept: */*\r\nHost: localhost\r\nConnection: Keep−Alive\r\n
\r\n

GET / HTTP/1.0\r\n User−Agent: Wget/1.10.2\r\n Accept: */*\r\n Host: localhost\r\n Connection: Keep−Alive\r\n

GET  /  HTTP/ 1.0 \r\n User−Agent: Wget/1.10.2 \r\n Accept: */* \r\n Host: localhost \r\n Connection: Keep−Alive \r\n

Figure 7. Format Analyzer: Revealing the HTTPS request mess age format

4 Implementation and Evaluation

We have implemented a ReFormat prototype based on the latest release of Valgrind [20] (version 3.2.3). Our
execution monitor is built on top of some features supported in Valgrind such as instruction translation, memory
marking, and propagation capabilities. Our phase profiler and data lifetime analyzer are standalone python pro-
grams. Our format analyzer uses the AutoFormat tool [18]. We note that our system is not tightly coupled with
Valgrind and AutoFormat and can be implemented using other binary instrumentation tools such as Pin [19] and
QEMU [1] as well as other reverse engineering tools such as Polyglot [6], the system [28] by Wondraceket al.,
and Tupni [12]. Excluding the AuotFormat code, our ReFormat prototype has 4626 lines of C and 1392 lines of
Python.

In our evaluation, we performed two sets of experiments. The first set ofexperiments involves input messages
from three known protocols, HTTPS, IRC, and MIME. The second setof experiments was conducted on an
unknown protocol used by Agobot [38], a real-world malware. Table2 shows the list of protocols we tested
and the programs we used. These programs are obtained either directly from the standard OS distribution or by
compiling the source code with the default configuration. In each experiment, we ran our prototype to obtain the
decrypted message and its format. The format accuracy is dependent ontwo factors: the accuracy of the decrypted



Protocol Application Request Msg Type Msg Size(B) write set read set write set ∩ read set

Linux Wget 97 18 2 1
SHTTPD

Linux Firefox 362 5 4 1
(version: 1.38)

Windows IE 283 5 3 1
Google Chrome 431 6 3 1

HTTPS
Linux Wget 102 13 9 1

Apache
Linux Firefox 475 6 18 1

(version: 2.0.63)
Windows IE 286 19 11 1

Google Chrome 431 6 13 1
JOIN message 16 8 2 1

IRC IRCD-Hybrid
MODE message 16 8 2 1

(version: 7.2.3)
WHO message 15 7 2 1

Metamail BASE64-encoded
MIME (version: 2.7) email message 1141 20 3 1

bot.status message 61 9 33 1
Unknown Agobot

bot.execute message 68 10 36 1
(version: 3-0.2.1)

bot.sysinfo message 62 9 33 1

Table 2. Summary of experiments

message and the effectiveness of the format analyzer tool. Since we uses AutoFormat in our prototype and its
effectiveness was evaluated in [18], we focus on the accuracy of thedecrypted message in our experiments. By
accuracy, we measure whether the buffers we found after the data lifetimeanalysis contains thecompletedecrypted
input message andnothing else. For completeness, we show the formats reverse engineered by AutoFormat. In
all our experiments, ReFormat accurately identified the decrypted message. In the rest of this section, we describe
our experimental results in detail.

4.1 Experiments with Known Protocols

HTTPS: We have experimented with two different HTTPS servers, SHTTPD [2] (version 1.38) and Apache
[31] (version 2.0.36). In Section 3, we have used the SHTTPD web server as our running example and presented
our experimental results. In this section, we focus on the Apache results.In our Apache experiments, we monitored
the execution of an Apache web server and collected its execution trace when it processed an incoming HTTPS
request. To generate different HTTPS requests, we have used fourdifferent clients: GNU wget[30], Mozilla
Firefox[32], Microsoft IE[33], andGoogle Chrome[34]. In the following, we describe the results of the experiment
with Google Chrome. Other experimental results are summarized in Table 2.

In Figure 8, we show the cumulative percentage of arithmetic and bitwise instructions in the collected trace.
The cumulative percentage reaches its highest value when the functionmd5 block asm host order is executed
and drops to its lowest value when the functionstrncasecmp is executed. After computing the function-wise
percentage of arithmetic and bit instructions for each leaf function executed between these two functions, we
found thatmd5 block asm host order is the only function that has a high percentage (> 90%) and all other
functions have their percentages less than10%. Therefore, the transition function ismd5 block asm host order.
Note that this transition function is different from the transition functionsha1 block asm data order in our
running example (see Figure 4). Our manual investigation shows that it is because the former case uses the RC4
encryption algorithm with the MD5 checksum while the latter uses the AES encryption algorithm with the SHA1
checksum.

Our data lifetime analysis found6 memory buffers in the write set (shown in Figure 9(a)) and13 memory
buffers in the read set (shown in Figure 9(b)). The intersection of the two sets has a single buffer at the address
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Figure 8. The cumulative percentage of arithmetic and bitwi se operations in the collected Google
Chrome-related execution trace

   453ede5 447: GET / HTTP/1.1..User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13 
                (KHTML, like Gecko) Chrome/0.2.149.29 Safari/525.13..Accept-Language: en-US,en..Accept: text/xml,
                application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5..
                Cache-Control: max-age=0..Accept-Charset: ISO-8859-1,*,utf-8..Accept-Encoding: gzip,deflate,bzip2
                ..Host: 172.16.237.128..Connection: Keep-Alive....#..>.8._...... 9
   454bf80 452: .......$l.....q.G.nUt2.0._.......%...D..bgP.k..$.T.j..(..7/..._F.....s1..GJ...;.......".eoc.~....h}
                .~...............5...Vv......v.hk.....&%(lv...}6K...U.A.[...l.’...3...@.......a....j......m....w...
                P;.~.....p.6.@...%.QSq....Y..)T...3.W/....I..F....Dn......26@..c<...G.l.u..X...>.#^/D.......FJ...*F
                ._.O.^!.*.l...a_..M.......uF....l‘..wf.".RV;.FF...9..S..t.....xr......i..8)....>.Ke9...[x.i%.L....O
                ...4B.."..B.G......U.W<......g....H........!#3.%K.......
   455a888  16: #..>.8._...... 9
   455a8a0  16: X__TJ(F.d...b.Y.
  beb82268  16: X__TJ(F.d...b.Y.
  beb8242c  16: #..>.8._...... 9

(a) Thewrite setin the message decryption phase

   45345c8 431: GET / HTTP/1.1..User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13
                (KHTML, like Gecko) Chrome/0.2.149.29 Safari/525.13..Accept-Language: en-US,en..Accept: text/xml,
                application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5..
                Cache-Control: max-age=0..Accept-Charset: ISO-8859-1,*,utf-8..Accept-Encoding: gzip,deflate,bzip2
                ..Host: 172.16.237.128..Connection: Keep-Alive....
   4538330  16: GET / HTTP/1.1..
   45383a0   8: HTTP/1.1
   45383b0 132: User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13 (KHTML, like Gecko) 
                Chrome/0.2.149.29 Safari/525.13..
   4538438  27: Accept-Language: en-US,en..
   4538488 109: Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,
                */*;q=0.5..
   45384f8  26: Cache-Control: max-age=0..
   4538548  36: Accept-Charset: ISO-8859-1,*,utf-8..
   4538598  37: Accept-Encoding: gzip,deflate,bzip2..
   45385e8  22: Host: 172.16.237.128..
   4538638  24: Connection: Keep-Alive..
   4538718  14: 172.16.237.128
   453ede5 431: GET / HTTP/1.1..User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/525.13 
                (KHTML, like Gecko) Chrome/0.2.149.29 Safari/525.13..Accept-Language: en-US,en..Accept: text/xml,
                application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5..
                Cache-Control: max-age=0..Accept-Charset: ISO-8859-1,*,utf-8..Accept-Encoding: gzip,deflate,bzip2
                ..Host: 172.16.237.128..Connection: Keep-Alive....

(b) Theread setin the normal protocol processing phase

Figure 9. Locating the decrypted message

0x0453ede5 with the size of 431 bytes. We highlight this buffer in both figures and find that it is indeed the
memory buffer with the decrypted message. Note that six bytes at the end of the buffer in the write set isnot
included because they are not in the read set. We ran AutoFormat on the decrypted message and obtained the
message structure shown in Figure 10.

IRC: In this experiment, we evaluated ReFormat with a secure IRC server. Specifically, we monitored the
execution of the latestircd-hybrid server[35] (version: 7.2.3), and ranxchat[36], an IRC client, from another
physical machine to establish a secure connection. After the connection is made, we executed the IRC command



ROOT

GET / HTTP/1.1\r\n

User−Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en−US) 

AppleWebKit/525.13 (KHTML, like Gecko) Chrome/0.2.149.29 Safari/525.13\r\n

Accept−Language: en−US,en\r\nAccept: text/xml,application/xml,

application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5\r\n

Cache−Control: max−age=0\r\nAccept−Charset: ISO−8859−1,*,utf−8\r\n

Accept−Encoding: gzip,deflate,bzip2\r\n

Host: 172.16.237.129\r\nConnection: Keep−Alive\r\n\r\n

GET

 

/

 

HTTP/1.1

\r\n

User−Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en−US)

 AppleWebKit/525.13 (KHTML, like Gecko) Chrome/0.2.149.29 Safari/525.13\r\n

Accept−Language: en−US,en\r\n

Accept: text/xml,application/xml,application/xhtml+xml,

text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5\r\n

Cache−Control: max−age=0\r\n

Accept−Charset: ISO−8859−1,*,utf−8\r\n

Accept−Encoding: gzip,deflate,bzip2\r\n

Host: 172.16.237.129\r\n

Connection: Keep−Alive\r\n

\r\n

User−Agent:

 

Mozilla/5.0 (Windows; U; Windows NT 5.1; en−US)

 AppleWebKit/525.13 (KHTML, like Gecko) Chrome/0.2.149.29 Safari/525.13

\r\n

Accept−Language:

 

en−US,en

\r\n

Accept:

 

text/xml,application/xml,application/xhtml+xml,

text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

\r\n

Cache−Control:

 

max−age=0

\r\n

Accept−Charset:

 

ISO−8859−1,*,utf−8

\r\n

Accept−Encoding:

 

gzip,deflate,bzip2

\r\n

Host:

 

172.16.237.129

\r\n

Connection:

 

Keep−Alive

\r\n

172

.

16

.

237

.

129

Figure 10. Revealing the Google Chrome-based HTTPS request message format

/join #channel1to log into a specific channel. This command triggered three IRC messages to besent: JOIN
#channel1\r\n, MODE #channel1\r\n, andWHO #channel1\r\n. Instead of showing our analysis on each
message separately, we combine the traces and show the phase profile analysis results collectively in Figure 11.
For each message, the cumulative percentage of arithmetic and bitwise instructions reaches the highest value when
the functionsh1 block asm data order is executed and drops to the lowest value when the functionssl3 read n
is executed. For each message, we show at the bottom the decrypted message identified by ReFormat. It is clear
that ReFormat identified all three decrypted messages accurately.

Interestingly, for each message shown in Figure 11, there are two peaks(marked as 1, and 2 in the figure) in
the cumulative percentage of arithmetic and bitwise operations. Further investigation reveals that an encrypted
message such as the one corresponding toWHO #channel1\r\n is encapsulated into two 32-byte SSL record
layers and each SSL record layer will be independently decrypted firstbefore being combined together for normal
protocol processing. In other words, for each encrypted message,it will go through two rounds of decryption,
hence leading to two peak values in the corresponding portion of the curvein Figure 11.
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Figure 11. The cumulative percentage of arithmetic and bitw ise operations in the collected Ircd-
Hybrid-based execution trace

MIME/BASE64: In this experiment, we tested our system on an email client that is capable of reading a
BASE64-encoded message.BASE64is a binary-to-text encoding scheme that works as follows: Given a message
text as a string of bytes, each three 8-bit bytes are splited into four 6-bit snippets and each is then used as an offset
to index into an array of 64 printable characters. To decode the message,one can simply reverse this process. Note
thatBASE64is widely used in the MIME support that extends the format of e-mail to support a variety of objects
(e.g., pictures) other than the text in ASCII character sets.

In our experiment, we used a Linux-based email client calledmetamail[37] (version 2.7) and monitored its
execution when it opened aBASE64-encoded email message. From the trace, we found that themetamailprogram
wrote the decoded message into a temporary file and then created a child process to execute the/bin/lesscommand
to display the content. Note that, since the/bin/lesscommand was executed as a child process, our system naturally
collected its execution trace and considered it as part of the message processing instructions. In the meantime,
since the decoded message, as a tainted data, was written into a local disk file,our system tracked the related
“dirty” file operations. Specifically, when a piece of tainted data is being written to a file, our system will record
additional information such as the file name, the current file position, the content and the number of bytes that are
written into the file. In our implementation, we essentially create a virtual memory buffer to emulate the disk file.
Later on, when the same file is open and the data being read falls into the recorded range, we will emulate a read
operation from the virtual memory buffer and naturally re-taint the corresponding destination memory buffer. With
that, ReFormat successfully discovered the transition function, i.e.,from64. Further, ReFormat correctly identified
the virtual memory buffer that emulated the disk file as the memory buffer that contains the decrypted message.

4.2 Experiments with Unknown Protocols

We now present our second set of experiments to show that ReFormat is able to uncover the format of encrypted
protocol messages used by a real world bot program. Specifically, we monitored the execution of a bot software
calledagobot[38] and this particular bot contains its own (proprietary) SSL implementation.When the bot runs,
it persistently attempts to connect to a pre-specified IRC server and log into ahard-coded channel. To confine
potential damages, we performed a controlled experiment where the bot’s connection request was redirected to a
local IRC server under our control. In addition, we used thexchatprogram to connect to the IRC server, join the
secure channel, and issue commands to the bot. In the meantime, we collected theexecution trace of the agobot.
We learned about the channel name and control commands from our own manual analysis and other reverse
engineering efforts [38]. We want to point out that such manual efforts are simply for our controlled experiments
and ReFormat is exactly designed to automatically reverse engineer the command format.
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Figure 12. The cumulative percentage of arithmetic and bitw ise operations in the collected trace
when agobothandles the .bot.execute /bin/pscommand
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Figure 13. The function-wise percentage of arithmetic and b itwise operations when agobothandles
the .bot.execute /bin/pscommand

By analyzing the execution trace, we found that the agobot received 15messages in total: two messages for
the SSL handshake, seven messages for establishing the secure connection to the IRC server and logging into a
specified IRC channel, and six messages for the commands received from our own botmaster. In our experiment,
we focused on a single command message:.bot.execute /bin/ps.

Figure 12 shows the cumulative percentage of arithmetic and bitwise instructions. According to the cumulative
percentage, we identified the functionssha1block asmdata order andCBot::HandleCommandas the maximum
and minimum functions. Further, based on the function-wise percentage ofarithmetic and bit instructions (shown
in Figure 13), we identified thatsha1block asmdata order is the transition function. The write set and the read
set are shown in Figure 14(a) and 14(b), respectively. The intersection of the two sets has only one buffer at the
address 0x04285b8d. We find its content is the same as the command issued by our xchatprogram, We then
applied AutoFormat to uncover the format of this decrypted message and theresult is shown in Figure 15.

5 Related Work

In this section, we describe the related work and compare it with ReFormat. Note that the execution monitor
in ReFormat leverages the generic techniques of dynamic taint analysis, which have been widely investigated. In
this section, we omit detailed discussion on this area. Interested readers are referred to a number of recent efforts



   4285b88  5: ....‘
   4285b8d 96: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps...8.C@...M.3....2...2..B...
   4b6edcc 20: _.[........._..._.[.
   429aeb0 16: ........_..._.[.
   42c50d8 60: :F..MtoB!rtstoB~rtsM271@.61..732RP 1SMVIA# Genog.: t.tobcexe
   4b6ed24 60: :F..MtoB!rtstoB~rtsM271@.61..732RP 1SMVIA# Genog.: t.tobcexe
   42c50d4 16: ....4...f...;.&9
   4b6ed20 16: ....4...f...;.&9
   42c50b8 20: C.8....@.3.M2...2...
   4b6ee90 20: .8.C@...M.3....2...2

(a) Thewrite setin the message decryption phase

   ... ...
   4285b8d 68: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps
   42c51c8 32: :BotMstr!~BotMstr@172.16.237.1 
   ... ...
   42c6228  9: BotMstr!~
   42c6230 21: ~BotMstr@172.16.237.1
   42c6440 59: ~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps
   ... ...
   42c677d 15: :.bot.execute /
   42c68c8 12: 172.16.237.1
   42c6908 12: 172.16.237.1
   42c6948 32: :BotMstr!~BotMstr@172.16.237.1 P
   ... ...
   42c6fc8 14: .bot.execute /
   42c70b8 14: .bot.execute /
   4b6afca 68: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

(b) Theread setin the normal protocol processing phase

Figure 14. Locating the decrypted message for the .bot.executecommand

ROOT

:BotMstr ! ~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

~BotMstr @ 172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

~ BotMstr 172.16.237.1 PRIVMSG # Agonet :.bot.execute /bin/ps

172.16.237.1  PRIVMSG  # : .bot.execute  /bin/ps

Figure 15. Revealing the .bot.executecommand message format

on taint analysis [7, 9, 14, 22, 24, 25, 29].
As mentioned earlier, automatic protocol reverse engineering has recentlyreceived significant attentions due to

its importance to many security applications. The Protocol Informatics (PI) project [3] and Discoverer [10] aim
at extracting protocol format from collected network traces. They havethe advantage of conveniently collecting
network traces when a parsing program is unavailable. However, they become less effective in the face of encrypted
network traffic. Unlike the PI and Discoverer projects, several systemssuch as Polyglot [6], the system in [28],
AutoFormat [18], and Tupni [12] share the key insight that how a program parses and processes a message reveals
rich information about the message format. Based on this insight, they reverse engineer input message formats
by using dynamic data flow analysis to understand how a program consumesan input message. However, these
systems work only for plain-text input messages. ReFormat complements these systems by providing an effective
scheme to discern the protocol processing phase from the message decryption phase and then pinpoint the run-
time memory buffers that contain the decrypted message. And naturally, the above program-based systems can be
integrated in ReFormat to reverse engineer the format of the decrypted message.

In addition, there has been related work that studies reverse engineering for specific applications such as
application-level replay. For example, RolePlayer [11] and ScriptGen [16, 17] replay a recorded network pro-
tocol session with another entity by identifying and updating certain input fields that are embedded in the recorded
session. Replayer [21] uses binary analysis to replay an application-level dialog. None of these systems can han-



dle encrypted application-level communications. Protocol analyzers suchas Wireshark [5] have the capability of
properly formatting a protocol message, but they require prior knowledge about those protocols and are of less use
when analyzing unknown or encrypted protocols.

ReFormat relies on another general technique, i.e., data lifetime analysis, to locate the decrypted memory
buffers. Along with dynamic taint analysis, this technique has been proposed in another different problem con-
text [7, 8] that aims to detect potential leakage of sensitive data such as passwords and social security numbers in
the memory. ReFormat differs from them by focusing on the identification of the run-time memory buffers of the
decrypted message.

6 Limitations and Future Work

In this section, we discuss the limitations in ReFormat and suggest possible improvements for future work.
First, ReFormat relies on the observation that the instruction distribution for message decryption is significantly

different from normal protocol processing. While this observation holds true for many applications as we have
shown in previous sections, it may not be the case when the normal protocol processing would be essentially doing
some intensive decryption-like operations. In other words, when the processing of a message content involves
significant arithmetic and bitwise operations, our system may not work properly. One possible way to solve
these problems is to uncover other characteristics of the message decryption phase and use such characteristics to
differentiate it from the normal protocol processing phase.

Second, ReFormat is designed to handle benign programs and malware that do not intentionally obfuscate their
executions to thwart program analysis. In other words, the analysis of ReFormat can be potentially evaded if a
program deliberately introduces redundant instructions to manipulate the distribution, e.g., embedding unnecessary
arithmetic or bitwise operations in normal protocol processing or injecting unnecessary non-arithmetic or non-
bitwise instructions into message decryption. How to make ReFormat applicable toobfuscated programs still
remains a technical challenge.

Third, ReFormat assumes an application first decrypts an encrypted message and then processes the decrypted
message. If an application does not follow this assumption, e.g., it decryptspart of the message and processes
it before decrypting and processing the rest, ReFormat may not identify the whole decrypted message correctly.
To handle such applications, we would need to divide an execution trace intomultiple decryption and processing
phases. We leave this to future work.

Finally, ReFormat analyzes one input message at a time and does not correlate multiple messages in the same
protocol session. Extending ReFormat to further reconstruct the entireprotocol state machine is part of our future
work.

7 Conclusion

We have presented ReFormat, a system that allows existing automatic protocolreverse engineering tools to
handle encrypted messages. ReFormat is based on the insight that the instructions used for message decryption is
substantially different from those for normal protocol processing. Byanalyzing the percentage of arithmetic and
bitwise instructions, ReFormat can discern the message decryption phase and the normal protocol phase. Further-
more, with the insight that the decrypted message is generated in the message decryption phase and handled in the
normal protocol processing phase, ReFormat can analyze the data lifetimeof run-time buffers to accurately pin-
point the memory buffers that contain the decrypted message. We have implemented a prototype of ReFormat and
evaluated it with a variety of protocol messages from real-world (known or unknown) protocols. Our experimental
results show that ReFormat achieves high accuracy in locating the decrypted message buffers and extracting the
related message structure.
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