
1

Using Production Rules to Aid Security
Requirements Acquisition from Legal Texts

Jeremy C. Maxwell

Annie I. Antón

Department of Computer Science

North Carolina State University

{jcmaxwe3, aianton}@ncsu.edu

http://www4.ncsu.edu/~jcmaxwe3/

http://www4.ncsu.edu/~aianton/

Abstract Regulatory compliance is an important consideration for requirements engineering

because recent government legislation imposes costly penalties for noncompliance. This paper

examines the feasibility of using production rules to model regulatory texts. A production rule

model’s largest strength is the ability and ease of querying the model for a specific answer to a

specific query. This aids requirements engineers in gaining valuable knowledge about legal texts

to know what domain knowledge is required to specify the corresponding software requirements.

Thus preparing the engineer for formal requirements elicitation sessions with legal domain experts.

Additionally, requirements can be validated after specification by querying the production rules

model to show concordance with the regulatory model. As an example of production rules

modeling, we present a case study based on four sections of the U.S. Heath Insurance Portability

and Accountability Act.

Keywords: Requirements engineering, logic programming, regulatory and legal

requirements, requirements elicitation

1 Introduction

As recent data breaches show, legal implications of poor data security and privacy can

be severe. Fines resulting from violations, cost of court representation and government

audits arising from violation of privacy laws can place a significant financial burden on

larger companies, and bankrupt smaller ones. The Choicepoint data breach cost the

company in excess of 27 million dollars to cover government fines and audits, legal fees,

and provide relief to identity theft victims [1]. Providence Health & Services, a Seattle,

U.S.A. based health care organization, was fined 100 thousand dollars for violating the

United State’s Heath Insurance Portability and Accountability Act (HIPAA) Privacy and

Security Rules, in addition to the cost of revising company policies, conducting

workforce training, and complying to government audits for three years [2]. While a

larger health care provider like Providence can handle these costs, a smaller doctor’s

office or clinic could struggle to meet this financial obligation. Because of the cost of

noncompliance, complying with legal regulations must be a focus area for software firms

when developing software.

2

In addition to the high cost of noncompliance, many view regulatory compliance as

increasing the information security of an organization. The 2007 Ernst & Young Global

Information Security Survey found that 80% of the respondents either agreed or strongly

agreed that compliance with government regulations improves security, while only five

percent disagreed or strongly disagreed that regulatory compliance improves security.

The surveyors also found that regulatory compliance and data privacy and protection

were the two top two drivers of information security in the surveyed organizations [3].

Regulatory compliant software, by definition, meets the constraints placed on it by

regulations that govern the target environment. Requirements describe the environment of

the system to be built [4], so it is important for requirements engineers to examine the

appropriate regulations to extract regulatory requirements. Building regulatory compliant

software is a difficult problem, however, due to problems with locating relevant

regulations, changing regulations, vague interpretations of such legislation, formalization

questions, and traceability issues [5]. Governmental regulations such as HIPAA and the

European Union’s privacy laws [6] require that personally identifiable information be

protected, yet extracting requirements from such legal texts is a difficult problem [5].

Thus, requirements engineers need new techniques and tools to aid in specifying and

designing compliant software.

In this paper, we examine how production rules can provide a mechanism to assist

requirements engineers in specifying security and privacy requirements derived from

regulations. Production rules, a knowledge representation technique used in artificial

intelligence [7], are usually stated in Horn clauses connected by logical operators [8]. In

other words, each rule is an if-then statement. Many such rules combine to create a

knowledge base, also called a rules base. To interact with this rules base, a query is

presented and viewed as a top-level goal. An inference engine then uses a reasoning

strategy, usually backwards chaining, to execute the rules in the rules base. The result is

an affirmation or a refutation of the original query [9].

The ability to answer specific queries has been identified as a requirement of any

model of legal texts [5, 10]. Querying is particularly useful to requirements engineers

unfamiliar with the regulations that govern the target environment. Typically, an engineer

would meet with a legal domain expert to gain familiarity with the relevant regulations.

However, a requirements engineer might be unprepared to elicit requirements from these

legal domain experts because of unfamiliarity with the regulatory text. The ability to

receive answers to queries from a production rules model allows the engineer to gain

valuable knowledge about the terminology, scope, structure, and substance of a legal text

as a pre-elicitation activity. Thus, an engineer can be better informed about what domain

knowledge is required to specify the requirements, allowing him or her to elicit regulatory

3

requirements from legal domain experts more effectively. It is important to note that we

are not proposing the replacement of legal domain experts. Instead, we propose the use of

production rule models as a tool to aid in acquiring legal requirements from legal domain

experts.

Aiding in requirements acquisition is the end use of production rules models. Our

work, however, focuses on the process for developing such a model. The case study

presented in this paper presents a methodology for translating a regulatory document that

governs privacy and security requirements into production rules. The legal text that serves

as the subject of our study is the U.S. HIPAA Privacy Rule [11]. Entering full affect in

2004, HIPAA regulates the use of patient records used by health insurance companies,

doctor offices, clinics, hospitals, and other organizations. It requires that privacy of

patient health records be maintained, except for well-defined circumstances such as

treatment by a doctor, filing a medical claim with an insurance company, etc.

One objection that could be raised is the usefulness of production rules models when

the U.S. Department of Health and Human Services has released informational fact sheets

and fliers [5]. These fact sheets describe the substance of the HIPAA Privacy Rule in

simpler language [12], and can be used in a capacity similar to production rule models to

provide requirements engineers with domain knowledge. Our work, however, has two

advantages over such informational sheets, namely: (1) our work is more comprehensive

by covering, in detail, all modeled subsections of the Privacy Rule, whereas the

informational flier only provides a summary of the legal text and only considers the most

common cases; and, (2) our work provides traceability back to the source subsection in

the Privacy Rule.

The remainder of this paper is organized as follows: Section 2 reviews work related to

production rule modeling techniques applied to the field of requirements engineering;

Section 3 reviews the methodology used in the HIPAA Privacy Rule case study; Section

4 reports the results of converting portions of portions of the HIPAA Privacy Rule into

Prolog; Section 5 discusses benefits and challenges of using production rule techniques;

Section 6 discusses threats to the validity of the case study; and Section 7 provides a

summary of this work and outlines areas of future work in the field.

2 Related Work

Recent work in obtaining regulatory requirements includes the Semantic

Parameterization methodology to extract rights and obligations from regulatory texts [13,

14, 15]. This methodology is an implementation of deontic logic, which is concerned with

the notions of permission and obligation. In particular, the work by Breaux and Antón

[13] provides a foundation for the methodology employed here. Just as their work

4

classifies regulatory statements into rights, obligations and permissions, the methodology

employed here uses production rules to model the rights, obligations, and permissions

imposed by the regulation. We also make use of implied rights, obligations and

permissions [14], that is, a right held by one group imposes an obligation others.

Knowledge representation techniques proposed for use in requirements engineering

include logic, semantic nets, frames and production rules [7]. Production rule modeling of

legal domains was a popular area of research in the late eighties and early nineties [16,

17, 18, 19, 20]. In particular, our work is most similar to the ESPLEX project [16]. The

land leasing legislation used by Biagioli et al. is a general regulation impacting multiple

domains. Similarly, the HIPAA Privacy Rule impacts multiple domains, including health

care, law enforcement, the correctional system, and educational institutions. Biagioli et al.

also present a methodology for conversion of legal texts to production rules and identify

rights, obligations and permissions in the legal text. However, there are several key areas

in which our work differs from the ESPLEX project. First, we have a specific goal to

analyze production rules models for their feasibility in extracting and understanding

regulatory requirements, whereas the ESPLEX project’s goal is to help a generic user

consult the statute. Second, our methodology differs from the one used in the ESPLEX

project. Biagioli et al. first convert the regulatory text to an intermediate form using a

normalization process based on the Hohfeld legal concepts. The methodology used in our

work does not require an intermediate form, and therefore can be more efficient and

accessible, because engineers are not required to have training in the normalization

process before translating legal texts into production rules.

The very nature of the HIPAA legislation is different from the legislation used in these

works in production rule modeling of legal texts [16, 17, 18, 19]. The legal documents

used in these efforts usually seek to answer a single question. For example, in the

Supplementary Benefits legislation [17], the goal is to determine if a particular individual

is covered under the legislation and therefore entitled to monetary help from the

government. In the British Nationality Act [18], the query considered is whether an

individual is a British citizen or not. In contrast, the HIPAA Privacy Rule does not have

one query that unifies the document. Instead, the broad nature of the legal text allows

many possible queries, including queries about access control, the right of notice,

requesting restrictions and amendments to health information, interaction with business

associates, law enforcement officers, and other external organizations. The broader range

of the Privacy Rule makes it difficult to predict potential queries. We choose to use the

concepts of rights, obligations, and permissions to capture a broader range of potential

queries on the model.

5

Another work similar to ours is the work by Mitchell et al. on the HIPAA Compliance

Checker [21, 22]. They are creating tools usable by health care organizations to enable

regulatory compliant expression privacy policies, analyzing and enforcing policies,

supporting privacy audits, and discovering inconsistencies in the legal text. Their tool is

written in Prolog to check for privacy violations of messages sent to or from a health care

organization, and has a web-based front end. A beta version of their present tool is

available online
1
. Our work differs from theirs in several respects. First, whereas their

goals are varied, we have a narrower focus on assisting requirements elicitation and

clarification from legal domain experts. Additionally, the methodology they used to

translate the regulation into Prolog is unknown as they have yet to publish a report about

this project. We developed a two-activity process to perform this translation, as discussed

in Section 3.

3 Methodology

In this section we present concrete examples from our analysis to illustrate how to

translate legal texts to production rules to aid in security requirements acquisition. Section

3.1 describes the materials used in our case study. Section 3.2 defines the terminology we

will use throughout the translation process. Figure 1 provides an overview of the two

activities we employed to perform the translation. The first activity is raw translation of

the legal text directly into Prolog using a five step process discussed in Section 3.3. The

second activity refactors the rules base to remove duplicate rules and group conditions,

and is described in Section 3.4. Translation occurs iteratively; one portion is translated,

then the entire rules base is checked for refactoring opportunities.

Figure 1. Overview of Translation Activities

1
 http://crypto.stanford.edu/privacy/HIPAA/

6

We chose Prolog to encode production rules for this paper because of its relatively

straightforward design and its prior use in the area of legal knowledge representation. The

syntax of a Prolog rule is:

<result> :-
<condition1>,
<condition2>,
...
<conditionN>.

Where the symbol :- is interpreted as the if conditional, the comma symbol is

interpreted as logical-and, and the period symbol is interpreted as a full stop (the end of a

rule). The result is evaluated to true only if {condition1, condition2,...,

conditionN} are evaluated to true. The Prolog rule:

father(X,Y) :- male(X), child(Y,X).

is read “X is the father of Y if X is male and Y is the child of X.”

Prolog does have the logical-or construct, but its use is discouraged, because of the

branching it causes during execution. Instead, every rule is encouraged to only use

logical-and. Logical disjunction has been previously utilized when using Prolog to model

legal texts [20], but we have chosen to follow conventions and avoid its use.

In Prolog, an atom is a name, quoted string, or a sequence of special characters (:- is

one example). A term is the basic unit in Prolog; a term can be an atom, an integer value,

a variable or a compound term. A variable signifies a single yet unspecified quantity. A

compound term consists of a predicate and its arguments, where a predicate is a

relationship between atoms [9]. A predicate that has a single argument is often the

assignment of an attribute to the argument. For example, the predicate isLHCP(doctor)

models the fact that a doctor has the attribute licensed health care professional.

The production rules model makes use of two built-in Prolog commands. The

assert(NewFact) command adds a new fact to the knowledge base, namely the

parameter of the command. Similarly, the retract(Fact) command removes the first

occurrence of the specified fact from the knowledge base [9].

The strength of Prolog to answer queries comes from two concepts: unification and

backtracking [23]. Unification occurs when the inference engine attempts to find a single

value to bind to multiple occurrences of a variable. For example, unification would occur

if a single value was found for the variable Org in the following rule:

coveredEntity(Org) :-
healthPlan(Org).

The inference engine uses backtracking to determine the result of a query. The initial

query is treated as a top-level goal, then the engine searches the rules base to determine

7

the value of the goal. For a concrete example, consider a world with only the following

facts:

man(john).
man(zebulon).
man(johnBoy).
father(zebulon, john).
father(john, johnBoy).
inMilitary(johnBoy).

Consider the query:

father(X, Y) , inMilitary(Y).

This query represents the question “Which fathers have children in the military, and what

children would those be?” The inference engine will attempt to first show father(X, Y)

to be true, then do the same for inMilitary(Y). The engine searches for variables that

make the top-level goal, the term father(X, Y), to be true. Two candidates are found,

namely X = zebulon and Y = john. Now the inference engine places the next goal,

inMilitary(Y), onto the goal stack. However, Y has already been unified to the term

john, so the fact inMilitary(john) is checked. The inference engine fails to verify this

fact because this fact does not exist in the rules base, and no rules can show this fact to be

true. The engine backtracks to the previous goal, father(X, Y), and attempts to find new

values for these variables to satisfy the original query. The new values found for these

variables are X = john and Y = johnBoy. The engine succeeds when it re-attempts the

next goal, inMilitary(Y), because the fact inMilitary(johnBoy) is in the rules base.

Thus, the answer to the original query is John and John-Boy.

3.1 Materials

The materials used in our case study were the same sections of the HIPAA Privacy

Rule (§164.520, §164.522, §164.524 and §164.526) that were used by Breaux et al. [14].

We analyzed and converted these sections into Prolog production rules using the SWI-

Prolog2 implementation.

3.2 Terminology

We adopted several conventions to assist us in the translation work. The term actor

signifies an individual or organization that has a right, is constrained by an obligation, or

is permitted to perform some action. Some examples of actors identified during the

translation process are shown in Table 1. For naming conventions, noun phrases in the

legal text are modeled by a Prolog term bearing that name in mixed case with spaces

2
 http://www.swi-prolog.org/

8

removed. For example, “correctional institution” is modeled by the term

correctionalInstitution. The only exception to this rule occurs when a noun phrase is

typically an acronym in normal use, and for brevity purposes. For example, “health

maintenance organization” is modeled by the Prolog term hmo.

Table 1. Sample Actors Identified During Translation

Actor or Object Name in Prolog Description

individual The individual whose privacy HIPAA protects.
correctionalInstitution A correctional institution.
hmo A health maintenance organization.
doctor A licensed medical doctor.

Building on prior work in regulatory compliance [13, 14], the key query mechanisms

are rights, obligations, and permissions of covered entities. These relationships have a

loose parallel to faculty (permission), obligation and prohibition previously used in

production rule modeling [16].

There are four primary rule types. They are: rights, obligations, permissions, and

definitions. Rights, obligations, and permissions all have a pattern we followed when

expressing them in Prolog. Rights are encoded in the form:

right(A, Y, R, Source)

Where the variable A signifies the actor that holds the right, the variable Y signifies the

actor that must honor that right, the variable R is actual right, and Source is the name of

the subsection of HIPAA that specifies this right.

Obligations are actions an actor is legally bound to perform, and are encoded in the

form:

must(A, O, Source)

Where the variable A indicates the actor that must carry out the obligation, the variable

O indicates the name of the obligation, and Source is the subsection of HIPAA that

specifies this obligation.

Permissions are allowances an actor is provided. That is, an actor may perform some

action or another. These permissions are encoded in the form:

may(A, P, Source)

9

Where the variable A indicates the actor that holds the permission, the variable P is the

actual permission, and Source is the subsection of the HIPAA Privacy Rule that specifies

this permission.

Definitional rules are the final rule type. These rules do not have a set format like the

other rule types. Instead, they typically introduce a new actor or predicate into the rules

base. Definitional rules represent a basic domain knowledge that must be translated to

Prolog to adequately model the healthcare domain, for example, defining what

organizations are considered covered entities or health plans, what is protected health

information, etc. Sample definitional rules can be viewed in Figure 2. Many of these rules

are derived from definitional sections of the regulation, such as §160.103 and §164.501 of

the Privacy Rule.

coveredEntity(Org) :-
healthPlan(Org).

coveredEntity(healthCareProvider).
healthPlan(groupHealthPlan).
healthPlan(hmo).
isPHI(phi).
uses(CE, PHI) :-

coveredUnderHIPAA(CE, individual, PHI).

Figure 2. Sample Definitional Rules

3.3 Raw Translation Activity

Translating regulatory texts into production rules involves five steps, described in this

subsection. We followed a systematic procedure that we innovated to express the HIPAA

Privacy Rule as Prolog production rules as follows:

1. Classify rules according to type. The rule types include: right, obligation,

permission or definition. We used normative phrase analysis [14, 24] to

determine the type of rule depending on what phrase is present in the legal

statement.

2. Identify rule parameters. These are the parameters required for the rules types

identified in step 1.

3. Identify preconditions. Identify the conditions that cause the rule to be true.

4. Remove rule disjunctions. Because disjunctions (logical-or) are discouraged,

any logical disjunctions in the regulatory text are removed by case splitting the

statement into separate rules.

5. Identify implied rights, obligations and permissions. Implied obligations and

permissions are identified and added to the knowledge base, using right and

obligation balancing [14].

10

The five step process is iterated over every subsection of the legal text to acquire the

production rules model. As an illustration, consider the portion of HIPAA Privacy Rule

section displayed in Figure 3.

§164.522(a)(1)(i) A covered entity must permit an individual to request that the covered entity

restrict:

(A) Uses or disclosures of the protected health information about the individual to carry out

treatment, payment, or health care operations;

Figure 3. HIPAA Privacy Rule Excerpt

An application of the raw translation process to Figure 3 is given below:

1. Classify rules according to type. We identify this is an obligation by the

vocabulary “A covered entity must…”.

2. Identify actors. The actors in this rule are a covered entity and the individual.

3. Identify preconditions. There are several conditions that must hold for this rule

to be applied. First, an organization must be a covered entity and the individual

must be covered under this covered entity (for example, if the covered entity is a

health plan, the individual must be enrolled in the health plan). The information

the organization uses or discloses must be classified as protected health

information (PHI) under the HIPAA Privacy Rule, and the organization must

actually use or disclose the individual’s PHI.

4. Remove rule disjunctions. To remove disjunctions from the rule, they must be

identified and split into separate rules. There are two logical disjunctions in the

legal text (“Uses or disclosures of the protected health information about the

individual to carry out treatment, payment, or health care operations”). Therefore,

to split this rule, six Prolog rules are required. Namely, three rules for restriction

requests for uses of PHI for treatment, payment and healthcare operations, and

three rules for restriction requests for disclosures of PHI for treatment, payment

and healthcare operations.

5. Add implied rights, obligations and permissions The permission allowing an

individual to make a restriction request is an implied permission in this rule.

Twelve Prolog rules were generated as a result of the direct translation to Prolog from

the text in Figure 3 using steps 1-5. Figure 4 displays these production rules, numbered

for convenience of discussion. Six rules grant an individual rights to restrict uses and

disclosure of protected health information for treatment, payment and healthcare

operations. An additional six rules grant permission to an individual to request a

restriction of the uses and disclosures of that information.

11

This example shows the need for the refactoring activity. One statement in the legal

text translated to twelve Prolog rules. A resulting state space explosion could occur if

every legal statement required multiple rules to effectively model. We explain the

refactoring activity in Section 3.4.

/*1*/right(individual, CE, requests(individual, CE, restrict(uses(CE, PHI) for
treatment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
uses(CE, PHI) for treatment,
isPHI(PHI).

/*2*/right(individual, CE, requests(individual, CE, restrict(uses(CE, PHI) for
payment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
uses(CE, PHI) for payment,
isPHI(PHI).

/*3*/right(individual, CE, requests(individual, CE, restrict(uses(CE, PHI) for
healthCareOperations)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
uses(CE, PHI) for healthCareOperations,
isPHI(PHI).

/*4*/right(individual, CE, requests(individual, CE, restrict(discloses(CE, PHI)
for treatment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for treatment,
isPHI(PHI).

/*5*/right(individual, CE, requests(individual, CE, restrict(discloses(CE, PHI)
for payment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for payment,
isPHI(PHI).

/*6*/right(individual, CE, requests(individual, CE, restrict(discloses(CE, PHI)
for healthCareOperations)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for healthCareOperations,
isPHI(PHI).

/*7*/may(individual, requests(individual, CE, restrict(uses(CE, PHI) for
treatment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for healthCareOperations,
isPHI(PHI).

/*8*/may(individual, requests(individual, CE, restrict(uses(CE, PHI) for
payment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for healthCareOperations,
isPHI(PHI).

/*9*/may(individual, requests(individual, CE, restrict(uses(CE, PHI) for
healthCareOperations)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for healthCareOperations,
isPHI(PHI).

/*10*/may(individual, requests(individual, CE, restrict(discloses(CE, PHI) for
treatment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for healthCareOperations,
isPHI(PHI).

/*11*/may(individual, requests(individual, CE, restrict(discloses(CE, PHI) for
payment)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for healthCareOperations,
isPHI(PHI).

12

/*12*/may(individual, requests(individual, CE, restrict(discloses(CE, PHI) for
healthCareOperations)), '164.522(a)(1)(i)(A)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
discloses(CE, PHI) for healthCareOperations,
isPHI(PHI).

Figure 4. Raw Translation of HIPAA §164.522(a)(1)(i)(A)

3.4 Refactoring Activity

During translation, we employed several rule refactoring techniques. The goal of rule

refactoring is to identify patterns or similarities in the rules base to reduce rule and

condition count. By reducing the number of rules and conditions, we can make the rules

base more readable and easier to manage. These techniques may be applied in any order,

and should be applied iteratively, and the application of one technique may enable the

application of another. Section 4 discusses the impact of refactoring on the rules base.

3.4.1 Refactoring Techniques

Refactor by grouping cases. This refactoring applies when cases, previously split

during step 4 of raw translation, can be consolidated, specifically, when the cases consist

of multiple items belong in the same set, and the rule is conditioned on one or more of the

set members being present. For example, notice the subtle differences in the rules. Rules

1-3 differ only by the purpose of the uses condition. Likewise, rules 4-6 differ only by

the purpose of the discloses condition. Therefore, we can combine these purposes into

one set, valid_HIPAA_tpo, and modify the conditions to reflect this change. By the

introduction of this new predicate, valid_HIPAA_tpo, and applying this characteristic to

the treatment, payment and healthcareOperations atoms, we reduced the number of

required rules. There is some indication that treatment, payment and healthcare operations

are meant to be grouped, being called “essential health care functions” [25]. In a similar

manner, we recognize in Figure 4 that rules 1 and 4, 2 and 5, and 3 and 6 only differ in

the activity the covered entity is using PHI for, namely uses or discloses. Therefore, we

can group the uses and discloses terms into a new term, usesOrDiscloses, that is true

when either one of the original terms is true. This reduces the rules count even further.

Figure 5 displays the set of completely refactored rules, after all possible refactoring

techniques have been applied.

13

/*1*/valid_HIPAA_tpo(treatment).

/*2*/valid_HIPAA_tpo(payment).

/*3*/valid_HIPAA_tpo(healthCareOperations).

/*4*/coveredUnderHIPAA(CE, individual, PHI) :-
coveredEntity(CE),
coveredUnder(individual, CE),
isPHI(PHI).

/*5*/usesOrDiscloses(uses(CE, PHI), CE, PHI) :-
coveredUnderHIPAA(CE, individual, PHI),
uses(CE, PHI).

/*6*/usesOrDiscloses(discloses(CE, PHI), CE, PHI) :-
coveredUnderHIPAA(CE, individual, PHI),
discloses(CE, PHI).

/*7*/right(individual, CE, requests(individual, CE, restrict(Activity for
Purpose)), '164.522(a)(1)(i)(A)') :-
valid_HIPAA_tpo(Purpose),
coveredUnderHIPAA(CE, individual, PHI),
usesOrDiscloses(Activity, CE, PHI),
Activity for Purpose.

/*8*/may(individual, requests(individual, CE, restrict(Activity for Purpose)),
'164.522(a)(1)(i)(A)') :-
valid_HIPAA_tpo(Purpose),
coveredUnderHIPAA(CE, individual, PHI),
usesOrDiscloses(Activity, CE, PHI),
Activity for Purpose.

Figure 5. Prolog Rules After Complete Refactoring

Group common conditions. This refactoring technique groups common rule conditions.

If a section in the regulatory text produces multiple rules, all with the same conditions,

then a new term can be introduced that is true if the common conditions are true. For

example, in Figure 4, many of the Prolog rules have the conditions

coveredEntity(CE),
coveredUnder(individual, CE),
isPHI(PHI)

in common. We introduce a new predicate, coveredUnderHIPAA, that is true if these three

conditions are true. We replace any reference to these three conditions with the new

predicate coveredUnderHIPAA. Even though a new rule is added to the rules base, the

overall condition count decreases, especially if many of the rules contain the common

conditions. Figure 5 displays the result of applying this refactoring technique.

Replace implied rights, obligations and permissions with actual rights, obligations and

permissions wherever possible. Consider the following Privacy Rule excerpt:

§164.524(a)(1) Except as otherwise provided in paragraph (a)(2) or (a)(3) of this section,

an individual has a right of access to inspect and obtain a copy of protected health

information about the individual in a designated record set.

This section expresses an individual’s right to request access to his or her PHI. This

implies a covered entity must allow such requests to be made. Therefore, when

14

performing a raw translation of this section, a Prolog rule expressing this implied

obligation will be created. Consider the next subsection:

§164.524(b)(1) The covered entity must permit an individual to request access to inspect

or to obtain a copy of the protected health information about the individual that is
maintained in a designated record set.

The previously identified implied obligation is explicitly stated here. The original

implied obligation associated with §164.524(a)(1) is now replaced with the actual

obligation from §164.524(b)(1). This refactoring technique is important because, ideally,

each right, obligation, and permission should be traceable to an actual regulation

statement rather than an implied one.

Name complex compound terms to improve their readability. This refactoring

technique is similar to the group common conditions technique. However, instead of

introducing new predicates for common conditions, we introduce new predicates for

common compound terms. The legal text presented in Figure 6 lists a condition under

which a covered entity has permission to deny an individual’s request for access to his or

her PHI.

§164.524(a)(3) Reviewable grounds for denial. A covered entity may deny an individual provided

that the individual is given a right to have such denials reviewed, as required by paragraph

(a)(4) of this section, in the following circumstances.

(i) A licensed health care professional has determined, in the exercise of professional judgment,

that the access requested is reasonably likely to endanger the life or physical safety of the

individual or another person.

Figure 6. §164.524(a)(3) of the Privacy Rule

The denial of the request can be represented in Prolog by the fact:

denies(CE, request(individual, CE, receive(individual, CE, PHI))).

Because of the length of this compound term, it may be awkward to use in other rules

as an argument or condition. To make the rules base more readable, a complicated

compound term can be replaced with a shorter predicate. For example, we introduce the

predicate accessDenial(CE, individual, PHI) to replace denies(CE,

request(individual, CE, receive(individual, CE, PHI))). This is most useful

when the complex compound term appears in many rules. For instance, the new predicate

accessDenial can be used in §164.524(a)(4), §164.524(b)(2)(i)(B), and §164.524(d) of

15

the Privacy Rule. To perform the replacement, we add the following rule to the rules

base:

denies(CE, receive(individual, CE, PHI)) :-
accessDenial(CE, individual, PHI).

We can now replace the longer denies term with the shorter accessDenial predicate.

We condition the original compound term by the original term to ensure that no

information is lost through the replacement of the original term.

3.4.2 Avoiding Over-Refactoring

When to stop refactoring is an important question to consider. For example, consider

§164.526(f) of the Privacy Rule, which discusses required documentation for PHI

amendment requests:

§164.526(f) A covered entity must document the titles of the persons or offices
responsible for receiving and processing requests for amendments by individuals and

retain the documentation as required by §164.530(j).

Prolog rules created during the raw translation activity for this section are listed in

Figure 7.

must(CE, document(Title) accordingTo ‘164.530(j)’, ‘164.526(f)’) :-
coveredEntity(CE),
is164_526f_title(Title).

is164_526f_title(Title) :-
title(Title, Person),
person(Person),
responsible(Person, receiving(requests(individual, CE, amends(CE, PHI)))),
responsible(Person, processing(requests(individual, CE, amends(CE, PHI)))),
isPHI(PHI).

is164_526f_title(Title) :-
title(Title, Office),
office(Office),
responsible(Office, receiving(requests(individual, CE, amends(CE, PHI)))),
responsible(Office, processing(requests(individual, CE, amends(CE, PHI)))),
isPHI(PHI).

Figure 7. Rules for §164.526(f)

The title and office predicates were not referenced by any other sections of the Privacy

Rule that we modeled. Therefore, one may be tempted to refactor the rules in Figure 7 by

combining the title into a single Prolog term:

must(CE, document(‘Titles of person or office responsible for receiving
and processing amendment requests’ accordingTo ‘164.530(j)’,
‘164.526(f)’) :-
coveredEntity(CE).

16

Because Prolog predicates used in the raw translation (i.e. title, office, etc.) are not

referenced by any other sections that we modeled, this may seem to be a valid refactoring

technique. However, this is an example of over-refactoring. While using the previously

mentioned refactoring techniques, we retained the original predicates used in the raw

translation; we simply moved them to a separate rule, introduced a new predicate to group

common conditions, etc. We over-refactor when reasoning power is removed from the

model by removing predicates from the rules base entirely. Rules must not be refactored

further if application of a refactoring technique would cause the model to lose

expressiveness or meaning. This opens the door for non-compliance. For example, an

external legal text might cross-reference this section of the Privacy Rule, or it might be

possible for the covered entity’s documentation to be incomplete. Therefore, the stopping

criteria for refactoring is: if refactoring a given rule (or set of rules) opens the door for

potential non-compliance, then do not refactor the rule.

3.5 Keyword Discovery

During the translation process, a number of keywords were discovered that were

required to model certain properties or relationships. Prolog predicates were created to

model these keywords. This set of keywords (shown in Table 2) is reminiscent of the

common privacy policy keywords discovered by Antón et al. [26].

Table 2. List of Relational Keywords

acknowledges agrees at denies

determines discloses discusses documents

enrolled for grant in

informs intends knows maintains

permits provides receives requests

restrict states through to

We expect to discover more keywords as more of the HIPAA Privacy Rule and other

regulations are modeled. Breaux and Antón’s catalog of constraint categories on rights,

obligations and refrainments [13] often parallels the keyword list in Table 2. They review

different levels of legal, medical and personal belief determinations, which are indicated

by the determines, intends, and knows keywords. Contractual constraints parallel multiple

keywords, including through, states, informs and agrees; the purpose constraints are

indicated by the for and to keywords. Additionally, this list of relational keywords can

serve as an initial list for a data glossary or dictionary as proposed in [5].

17

4 Results of Translation to Prolog

We converted sections §164.520, §164.522, §164.524 and §164.526 of the HIPAA

Privacy Rule into Prolog using the methodology introduced in Section 3. The translation

process occurred in two phases. During the initial phase, we analyzed the legal test and

created a prototypical translation of selected portions of the Privacy Rule to Prolog. From

this initial phase, we developed the methodology presented in Section 3, and gained

insight on challenging portions of the legal text, which we will review later in this

section. During the second phase, we applied the methodology to translate the four

sections to create a production rules model. The first phase took approximately took

approximately 35 person hours to accomplish, while the second phase took approximately

30 person hours.

Before refactoring, we translated the four sections of the Privacy Rule into 265

production rules, with an average of 3.08 conditions per rule. The rules count reduced to

241 after refactoring, with an average of 2.39 conditions per rule. Table 3 displays the

number of production rules, broken down by section, and Table 4 displays the average

number of conditions per rule, again broken down by section. These counts are for non-

definitional rules, definitional rules will be discussed later in this section.

Table 3. Non-Definitional Rule Count Comparison

 Before

Refactoring

After

Refactoring

§164.520 Rules 109 99

§164.522 Rules 49 36

§164.524 Rules 58 57

§164.526 Rules 49 49

Total Non-Definitional Rule Count 265 241

Table 4. Average Number of Conditions per Non-Definitional Rule
Comparison

 Before

Refactoring

After

Refactoring

Avg. Conditions per §164.520 Rule 2.95 2.53

Avg. Conditions per §164.522 Rule 3.16 2.50

Avg. Conditions per §164.524 Rule 3.06 2.18

Avg. Conditions per §164.526 Rule 3.27 2.27

Avg. Conditions per Rule (All Sections) 3.08 2.39

Applying the refactoring techniques eliminated 24 rules, or 9.0% of the unrefactored

rules base, and reduced the average number of conditions per rule from 3.08 to 2.39, a

reduction of 22.4%. It was our experience, however, that a significant portion of the

average conditions per rule reduction came from the introduction of a single predicate,

18

coveredUnderHIPAA, as described in Section 3.4. We noticed that we applied this

particular predicate less often in section §164.520, so the more modest 13.7% reduction

in the average conditions per rule might be a more accurate value.

The anomaly in Tables 3 and 4 is §164.520 of the Privacy Rule, as this section resulted

in nearly twice as many production rules as the next highest section, and accounts for

41% of the total rules count. Section §164.520 is not appreciably longer than the next

closes section, §164.524, as displayed in Table 5—there are only 356 more words in

§164.520. We would not expect a doubling of the rule count for this word increase.

Upon further examination, we discovered the reason for the high rule count is the topic

of §164.520. A subsection of §164.520, namely §164.520(b), describes the content of a

notice of uses and disclosures of PHI. This section does not place constraints on a

covered entity, but rather on the notice a covered entity must maintain. To model this

subsection in Prolog, we used rules of the form contains(notice, X), where X is a

requirement placed on the notice by the Privacy Rule. We obtained 37 production rules of

this form for §164.520 before refactoring, and 32 rules after refactoring. Excluding these

rules, there are 72 production rules associated with §164.520 before refactoring, and 67

afterwards. These rule counts are within what we would expect, comparing the length of

§164.520 with the other sections.

Table 5. Length of Each Section in the HIPAA Privacy Rule

Section Number of Words

§164.520 2,256

§164.522 556

§164.524 1,903

§164.526 1,253

Table 6 displays a breakdown of the number of rules that follow the right, obligation,

and permission patterns, expressed in Prolog with the predicates right, must, and may

respectively, as previously discussed in Section 3.2. The rule counts before and after

refactoring are presented, as well as the number of rules that do not follow one of the

three patterns, grouped into a category called “No Pattern”.

Table 6. Rules Partitioned by Pattern

Before Refactoring After Refactoring

Section R O P NP R O P NP

§164.520 9 36 3 61 7 36 3 53

§164.522 7 11 21 10 2 6 13 15

§164.524 3 22 18 15 3 21 17 16

§164.526 2 24 15 8 2 19 12 16

Totals 19 93 57 94 12 82 45 100

Key: (R)ights Pattern, (O)bligation Pattern, (P)ermission Pattern, (NP) No Pattern

19

The counts in Table 6 reflect the number of production rules extracted during the

translation process, and not the number of rights, obligations, or permissions found in the

Privacy Rule. A single right, obligation, or permission in the Privacy Rule may require

several production rules to model properly. It is interesting to note that we discovered

fewer rights in the Privacy Rule than discovered by Breaux et al. [14]. This possibly

arises from extracting differing amounts of implied rights from the legal text.

Definitional rules are the last set of rules in the model. Definitional rules describe

relationships in the Privacy Rule, examples of which can be viewed in Section 3.2, Figure

2. Before refactoring, we made use of 28 definitional rules, derived from the definitional

sections of the Privacy Rule, such as §160.103 and §164.501. After refactoring, an

additional 12 definitional rules were added to bring the total definitional rules count up to

40. These rules were the result of applying refactoring techniques from Section 3.4 that

added new rules to the rules base. For example, we considered the predicates

coveredUnderHIPAA and valid_HIPAA_tpo in Figure 5 to be a definitional rule. Table 7

illustrates the definitional rule counts and average number of conditions per rule, both

before and after refactoring. These counts include the rules derived from the definitional

sections of the Privacy Rule as well as rules from applying refactoring techniques. If a

definition of a term appears in a translated section, however, and that term was only used

in the section it is defined in, it was counted as a rule for that section. Several of the

sample definitional rules in Figure 2 do not have any conditions—they are simple facts

that are unconditionally true. This explains why the average condition per definitional

rule count in Table 7 is less than one.

Table 7. Definitional Rule Comparison

 Before

Refactoring

After

Refactoring

Definitional Rule Count 28 40

Avg. Conditions per Definitional Rule 0.43 0.63

4.1 Sample Model Interaction

To interact with the model, the user executes a series of assert statements. These

statements are facts that are added to the knowledge base to prepare it for querying. For

convenience of discussion, we use the term situation to denote a set of assert statement

the user employs to set up a particular query. Figure 8 displays a transcript of a sample

interaction with the SWI-Prolog model.

20

1 ?- assert(coveredUnder(individual, hmo)).

Yes
2 ?- right(X,Y,Z,S).

X = individual,
Y = hmo,
Z = requests(individual, hmo, restrict(uses(hmo, phi)for treatment)),
S = '164.522(a)(1)(i)(A)' ;

X = individual,
Y = hmo,
Z = requests(individual, hmo, restrict(discloses(hmo, phi)for treatment)),
S = '164.522(a)(1)(i)(A)'

Yes
3 ?- assert(requests(individual, hmo, restrict(discloses(hmo, phi)))).

Yes
4 ?- assert(grant(hmo, requests(individual, hmo, restrict(discloses(hmo, phi))))).

Yes
5 ?- must(hmo,Obligation,Source).

Obligation = not(discloses(hmo, phi)),
Source = '164.522(a)(1)(iii)' ;

Obligation = permit(requests(individual, hmo, receive(individual, hmo, phi))),
Source = '164.524(b)(1)'

Yes
6 ?- retract(coveredUnder(individual, hmo)).

Yes
7 ?- right(X,Y,Z,S).

No

Figure 8. Sample Model Execution

Here, three separate situations are queried. The first assert statement in prompt
3
 1 adds

the fact to the knowledge base that the individual is covered under a health maintenance

organization (HMO). The model responds with the answer Yes, meaning the update

completed successfully. Prompts 3 and 4 introduce a new situation, where we assert: (a)

the individual makes a request for the HMO to restrict disclosures of PHI, and (b) the

HMO grants such a request. The third situation is set up in prompt 6 where we retract the

assertion the individual is covered under the HMO.

Queries are presented to the model in prompts 2, 5, and 7. The first query in prompt 2

asks the inference engine to determine valid values for each of the variables in the query,

which is equivalent to the natural language question “What rights does anyone have, and

what sections of the Privacy Rule grant such rights?”. The model determines one set of

valid values, and lists them, namely, an individual’s right to request the HMO to restrict

uses of PHI for treatment. The user can prompt the model for another solution by pressing

the ; key (logical-or in Prolog). The inference engine backtracks, looking for another

solution, and finds one, namely that an individual has right to request the HMO to restrict

3
 SWI-Prolog uses a command line interface, and the prompts are of the form N ?-, where N is

a counter that increases with each command entered.

21

disclosures of PHI for treatment. The user can continue to prompt the more solutions until

no more exist, at which point the model would respond No. This user can also abort

execution by pressing the a key, which we did after discovering two solutions.

The query in prompt 5 is executed after the second situation is set up. This query is

equivalent to asking the natural language question “What obligations does the HMO

have, and what sections of the Privacy Rule impose such obligations?”. Again, the model

returns a solution, and the user can either repeatedly prompt for other solutions or abort

execution. The final query in prompt 7 is executed after the third situation is set up. This

third query is the exact same as the first, and the answer is No, meaning that there are no

rights specified by the Privacy Rule for this situation. This is because the individual is not

covered under any covered entity, so the Rule does not apply.

A drawback of this interaction is the high level of familiarity the user must have with

the production rules model—the user must know what actors and predicates are available

in the model, and how to assert new facts in a meaningful way to be able to query the

model. This concern will be discussed in Section 7, where we identify an improved user

interface as an area of future work.

5 Discussion

In this section, we discuss several challenges to production rule modeling and

regulatory compliance, including traceability, adaptability, ambiguity and complexity of

regulations, manual translation, and how to handle temporal conditions.

5.1 Traceability

An important aspect of requirements engineering is traceability, particularly with

respect to regulatory requirements. The ability to trace requirements to the originating

portion of regulatory law provides the ability to demonstrate due diligence [13].

In our case study, traceability is present in the Prolog rules themselves. We adopted

Sherman’s solution, adding an additional parameter to each predicate specifying the

source of the rule [19]. This is the final field in the right, must, and may predicates

presented in Section 3.2. The standard manner of encoding the source is a quoted string of

that paragraph name. For instance, if the source of a particular production rule is

§164.520(a)(1) of the Privacy Rule, the rule is expressed as:

right(X ,Y, Z, ‘164.520(a)(1)’)

Extending this, commands can be built into the model that trace the rules applied for a

particular query result. Being able to trace the source sections of the legal text facilitates

22

discussions with legal domain experts, because a requirements engineer can refer to those

sections when eliciting requirements from those experts.

Another difficulty in developing any model of legal texts is proving the interpretation

used in the model is an accurate interpretation of the law. In discussions with legal

domain experts, it might be discovered the interpretation used in the production rules

model is incorrect. Traceability allows for correction of the incorrect rules. Another use

of traceability is when changes are made to a legal text. The engineer will be able to trace

which production rules are impacted by the changes to each section of the legal text and

update the rules base accordingly.

5.2 Adaptability

Revisions to regulations are frequent and legal domain experts can reinterpret

regulatory documents using case law. Schild and Herzog adopt the use of meta-rules to

handle changes in production rule models [27]. Meta-rules support reasoning about

production rules in the knowledge base. A common practice in legislation is to have a

general case and a special case [10]: the general case applies for every instance except

when some condition is met, in which the special case applies. This can be represented

generally as follows:

A :- not(B).

B :- <condition>

C :- B.

Rule A is the general case and rule C is the special case, which is triggered when rule

B––the condition—is satisfied. Meta-rules can model precedence of laws, legal heuristics

and case law [27], and implement characteristics that Otto and Antón suggested should be

present in any regulatory model, including rule prioritization, rule exceptions and

regulatory evolution [5].

5.3 Ambiguity and Complexity of Regulations

Researchers have noted that legal texts contain intentional ambiguity and unintentional

ambiguity [5, 13]. Intentional ambiguities are those built into the legal texts that allow

generalization of the text [5]. Unintentional ambiguity refers to ambiguity that arises from

unclear language or other sources where the ambiguity is inadvertent [28].

Consider §164.524(a)(3)(i) of the Privacy Rule presented in Section 3.4, Figure 6.

There are several ambiguities expressed in this subsection that need to be resolved before

a system is deployed. It is unclear, for example, what “exercise of professional judgment”

or “reasonably likely to endanger” someone’s life or safety actually mean. In addition, it

23

is unclear what type or how much evidence must be present for a licensed health care

professional to render such a judgment.

To address ambiguity, May et al. make the distinction between conditions a computer

system can verify and those that it cannot [29]. The subsection of the Privacy Rule

presented in Figure 6 contains several conditions that cannot be verified by a computer

system. The determination made by a licensed health care professional is one such

example. To model unverifiable conditions, May et al. propose solutions to set or look for

an environmental flag that this condition must be or has already been fulfilled, or delay

execution until the condition can be verified by an authorized individual.

In the case study, the following rule was used when modeling Figure 6:

may(CE, reviewable(deny(CE, receive(individual, CE, PHI))),
'164.524(a)(3)(i)') :-
coveredEntity(CE),
coveredUnder(individual, CE),
isPHI(PHI),
determines(lhcp, 'Likely to endanger individual or others').

In the model, a relationship between the licensed health care professional (denoted by

the atom lhcp) and the determination made by the licensed health care professional

evaluates to either true or false. Thus, the ambiguity must be resolved externally and

encoded in the model by establishing the appropriate relationship; for example, to

establish the relationship, an assert statement could add a fact to the knowledge base that

the health care professional has made the determination. To establish a determination has

not been made, an assert statement can add a fact explicitly stating this, or no assertion

has to be made at all—the Prolog inference engine assumes a fact is false if there is no

evidence in the knowledge base that it is true.

Another difficult challenge in modeling regulatory texts is the complexity of legal

texts. Specifically, frequent cross-referencing to other portions of the text or to separate

legislation entirely increases the complexity of a legal document [5, 13]. References to

portions of the same legal text are called internal cross-references, while external cross

references refer to other legal texts.

The inference engine used to model regulatory texts with production rules aids in

checking internal cross-references—this entails invoking the rules associated with the

referenced portion. To view an example of cross-referencing, consider portions of

sections §164.524(a)(1)-(2)(i) of the HIPAA Privacy Rule, displayed in Figure 9.

24

§ 164.524 Access of individuals to protected health information.

(a) Standard: Access to protected health information.

(1) Right of access. Except as otherwise provided in paragraph (a)(2) or (a)(3) of this section, an

individual has a right of access to inspect and obtain a copy of protected health information

about the individual in a designated record set, for as long as the protected health information is

maintained in the designated record set, except for:

(i) Psychotherapy notes;

(ii) Information compiled in reasonable anticipation of, or for use in, a civil, criminal, or

administrative action or proceeding; and

(iii) Protected health information maintained by a covered entity that is:

(A) Subject to the Clinical Laboratory Improvements Amendments of 1988, 42 U.S.C. 263a, to the

extent the provision of access to the individual would be prohibited by law; or

(B) Exempt from the Clinical Laboratory Improvements Amendments of 1988, pursuant to 42

CFR 493.3(a)(2).

(2) Unreviewable grounds for denial. A covered entity may deny an individual access without

providing the individual an opportunity for review, in the following circumstances.

(i) The protected health information is excepted from the right of access by paragraph (a)(1) of this

section.

Figure 9. Cross References in the Privacy Rule

Both internal cross-referencing and external cross-referencing can be viewed in this

section. The internal cross-referencing is present in §164.524(2)(i), where a reference is

made back to §164.524(a)(1). This cross-reference is resolved by referencing the rules

associated with that section, displayed in Figure 10. The inference engine, when

evaluating the rule associated with §164.524(2)(i) (rule 6 in Figure 10), will attempt to

resolve s164_524_a_1_exception(PHI) as a goal. When resolving this goal, the

inference engine will invoke the rules associated with §164.524(a)(1). In this manner, the

inference engine can be leveraged to resolve internal cross-references. For the purposes of

our case study, internal references that reference portions of the Privacy Rule not

included in the model are treated as external cross-references, which we now describe.

/*1*/right(individual,CE, receive(individual,CE,PHI), '164.524(a)(1)') :-
coveredUnderHIPAA(CE, individual, PHI),
maintains(CE, PHI),
not(s164_524_a_1_exception(PHI)).

/*2*/s164_524_a_1_exception(psychotherapyNotes).

/*3*/s164_524_a_1_exception(PHI) :-
PHI for courtProceeding.

/*4*/s164_524_a_1_exception(PHI) :-
subjectToClinicalLabImprovements1988_42USC_263a(PHI).

/*5*/s164_524_a_1_exception(PHI) :-
exemptFromClinicalLabImprovements1988_42CFR_493_3a2(PHI).

/*6*/may(X, unreviewable(denies(X, receive(individual, X, PHI))),
'164.524(a)(2)(i)') :-
coveredEntity(X),
coveredUnder(individual, X),
s164_524_a_1_exception(PHI),
isPHI(PHI).

Figure 10. Cross References in the Production Rules Model

25

Cross-referencing with external legislation is more difficult than internal cross-

referencing. In Figure 9, external cross-references exist in §164.524(a)(1)(iii)(A-B) to the

Clinical Laboratory Improvements Amendments of 1988. One could analyze this external

legislation, model it using production rules, and insert a reference to that knowledge base

in the HIPAA Privacy Rule model. The problem with this solution, however, could be a

large number of legal texts that need to the modeled, if the Improvements Amendments

referenced some other legal document, that referenced some other legal document, etc.

Indeed, this is the method of choice for the most complete and extensive model, but it is

out of scope for our case study.

Instead, we treat external cross referencing as a condition the computer system cannot

verify, and rely on an environmental variable to track value of the condition. In Figure 10,

we use the two predicates subjectToClinicalLabImprovements1988_42USC_263a(PHI)

and exemptFromClinicalLabImprovements1988_42CFR_493_3a2(PHI) in rules 4 and 5,

respectively. By default, no rule is present that would cause these predicates to evaluate

to true. During execution, however, the user can use assertions to set which predicates are

true. In this manner, external cross-referencing must be resolved externally by the user of

the model.

5.4 Manual Translation

Manual translation of a regulatory text into any representation is costly because it must

be verified. Human error can introduce inconsistencies in the model. Therefore, an expert

in the legal domain often must be consulted to verify the correctness of the representation.

This only applies in creation of the model, however. Reuse of the model may offset this

cost. Regulatory text only needs to be translated once and could be reused by

requirements engineers for multiple projects subject to the same regulations. Developing

this type of tool-supported process is an area of future research for modeling legal texts

using production rules.

5.5 The Issue of Time

Researchers have identified temporality—the ordering of past, present, and future

events—as a particularly challenging issue to handle in a production rule model of laws

[17, 19]. For example, a legal text can place a limit on the time frame an action may be

performed in, illustrated by section §164.524(b)(2)(i) of the HIPAA Privacy Rule. This

section requires a covered entity to act on an individual’s request for protected health

information within 30 days.

26

We view the production rules model as a snapshot of reality at a particular moment in

time. With this view, the model can make no claims about the future nor can it reason

about possible future worlds. Instead, our primary concern is the modeling of

preconditions and postconditions for use in rule conditions. To model such conditions, we

adapted the keywords introduced for capturing time operations [24]. Predicates such as

after and within were utilized for modeling temporal conditions. These predicates were

not used to create a total ordering on the events in the model, but instead were strictly

used to capture temporal conditions in the legal text.

6 Threats to Validity

In this paper, we describe a methodology to translate a legal text into production rules.

We used four sections of the HIPAA Privacy Rule as a cases study to both develop and

apply the methodology. Our case study is an exploratory case study, and therefore

internal validity is not a concern [30]. Internal validity addresses causal relationships—

we make no inferences as the result of our case study, and so internal validity is not

applicable. Construct validity, external validity, and reliability do concern our case study,

which we now discuss.

6.1 Construct Validity

Construct validity addresses the degree to which a case study is in accordance with the

theoretical concepts used [30]. The key concepts we made use of in our case study were

production rules, rights, obligation, and permissions. Our use of the term production rules

model accords with standard uses of the term in the literature (for example [8]). Likewise,

we derive our use of the concepts of right, obligation, and permission from their uses in

the literature (for example [14]).

6.2 External Validity

External validity addresses the ability of a case study’s findings to be generalized to

other domains under different settings [30]. We recognize several threats to the external

validity of our case study. We only examine one legal text, the HIPAA Privacy Rule,

which regulates only one domain, the healthcare industry. Furthermore, we only

translated a portion of the Privacy Rule to production rules.

Mitigating these threats, the selected portions of the Privacy Rule exhibit many of the

previously identified properties of legal texts [5], including internal and external cross-

referencing, domain knowledge of the definitions used, and ambiguous language used in

the legal text. Further studies in other domains and with different legal texts will serve to

validate and refine the methodology developed here.

27

6.3 Reliability

Reliability addresses the ability to repeat a case study and reproduce similar results

[30]. Researchers repeating our case study would potentially make use of different Prolog

predicates, state rules and conditions differently, and identify different patterns to be

refactored. Thus, there is very little chance that the exact production rules model created

in our case study could be replicated in a repeat case study. Application of the two step

methodology introduced in Section 3 would indeed produce a production rules model,

however. Thus, reliability is improved by measuring reliability by the criterion that some

production rules model is produced by application of our methodology, and not

measuring reliability by the exact production rules model we created.

7 Summary and Areas of Future Work

This paper presents a methodology to translate legal texts into a production rules

model. This includes a two activity process that is applied iteratively on each section of

the legal text. First, a raw translation is produced, then the entire rules base is refactored

by repeated application of refactoring techniques. A production rules model is useful to

requirements engineers by providing access to domain knowledge. An engineer can

become familiar with the structure, concepts and terminology used by a legal text by

querying a production rules model. An engineer familiar with a legal text can have more

efficient requirements elicitation sessions with legal domain experts, and thus be able to

more effectively elicit the security and privacy requirements a system must meet to

comply with law.

There are several limitations of using production rules models. The querying process is

lengthy, and an engineer must know what predicates are available to query. An improved

user interface is expected to overcome these limitations. A web-based interface, similar to

the work by Mitchell et al. [21, 22] as discussed in Section 2, is a possible solution. Any

user interface for a production rules model must contain:

• an indication of the actors in the model,

• a list of predicates that can be used in assertions, and

• documentation for each predicate to indicate to the user the arguments and

intended use of the predicate.

Performing a complete translation of the remaining sections of the Privacy Rule and

constructing a user interface that meets the above criteria would create a usable tool that

allows requirements engineers to use a production rules model of the Privacy Rule

effectively.

28

A study of the utility of production rules models in an actual requirements engineering

setting is an important area of future work. In addition, little work has examined the affect

of changing legislation on regulatory requirements. We plan to study the affect changes

have on a production rules model, in terms of the rules modified, as HIPAA case law

develops. In addition, work is needed to study the affects of external cross-references in a

legal text. In our work, we rely on environmental flags to resolve cross-references, but

this places the onus on the user to check the external legislation for compliance. This is an

important area of research that has yet to be considered.

References

[1] Otto, P.N., Antón, A.I., Baumer, D.L., “The Choicepoint Dilemma: How Data Brokers Should

Handle the Privacy of Personal Information”, IEEE Security and Privacy, vol. 5, no. 5, Sep.-

Oct. 2007, pp. 15-23.

[2] U.S. Dept. of Health and Human Services, “HHS, Providence Health & Services Agree on

Corrective Action Plan to Protect Health Information”, News release, July 17, 2008,

<http://www.hhs.gov/news/press/ 2008pres/07/20080717a.html>

[3] Ernst & Young, Global Information Security Survey 2007,

<http://www.ey.com/global/content.nsf/International/AABS_-_TSRS_-_GISS_2007_Request_

Form>.

[4] Jackson, M. “The Meaning of Requirements”, Annals of Software Engineering, vol. 3, Baltzer

Science Publishers, 1997, pp. 5-21.

[5] Otto, P.N., and Antón, A.I. “Addressing Legal Requirements in Requirements Engineering”,

Proc. of the 15th IEEE International Requirements Engineering Conference, New Dehli, Oct.

15-19, 2007, pp. 5-14.

[6] Council Directive 95/46/EC, 1995 O.J. (L 281) 31.

[7] Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., and Rifaut, A., “A Knowledge

Representation Language for Requirements Engineering”, Transactions of the IEEE, vol. 74,

no. 10. Oct. 1986, pp. 1431-1444.

[8] Brachman, R.J., and Levesque, H.J., Knowledge Representation and Reasoning, San Francisco:

Elsevier, 2004.

[9] Sterling, L., and Shapiro, E., The Art of Prolog: Advanced Programming Techniques,

Cambridge, Mass.: MIT Press, 1994, 2nd ed.

[10] Antoniou, G., Billington, D. and Maher, M.J., “On Analysis of Regulations using Defeasible

Rules”, Proc. of the 32nd Hawaii Intl. Conf. on System Sciences, 1999, pp. 1-7.

[11] Health Insurance Portability and Accountability Act of 1996, 42 U.S.C.A. 1320d to d-8 (West

Supp. 1998).

[12] U.S. Department of Health and Human Services Office of Civil Rights, “Your Health

Information Privacy Rights”, Informational Flier, <http://

www.hhs.gov/ocr/hipaa/consumer_rights.pdf>

[13] Breaux, T.D. and Antón, A.I., “Analyzing Regulatory Rules for Privacy and Security

Requirements”, IEEE Trans. on Software Engineering, Vol. 34, No. 1, Jan.-Feb. 2008, pp. 5-

20.

[14] Breaux, T.D., Vail, M.W., and Antón, A.I., “Towards Regulatory Compliance: Extracting

Rights and Obligations to Align Requirements with Regulations”, Proc. of the 14th IEEE Intl.

Requirements Engineering Conf., Minneapolis, Sep. 11-15, 2006, pp. 46-55.

[15] Breaux, T.D., Antón, A.I., and Doyle, J., “Semantic Parameterization: A Process for

Modeling Domain Descriptions”, ACM Trans. on Soft. Eng. Methodologies, (In Press) 2009.

[16] Biagioli, C., Mariani, P., and Tiscornia, D., “Esplex: A Rule and Conceptual Model for

Representing Statutes”, Proc. of the 1st ACM Intl. Conf. on Artificial Intelligence and Law,

Boston, 1987, pp. 240-251.

29

[17] Bench-Capon, T.J.M., Robinson, G.O., Routen, T.W., and Sergot, M.J., “Logic Programming

for Large Scale Applications in Law: A Formalisation of Supplementary Benefit Legislation”,

Proc. of the 1st ACM Intl. Conf. on Artificial Intelligence and Law, Boston, May 1987, pp. 190-

198.

[18] Sergot, M.J., Sadri, F., Kowalski, A., Kriwaczek, F., Hammond, P., and Cory, H.T., “The

British Nationality Act as a Logic Program”, Comm. of the ACM, Vol. 29, No. 5, May 1986, pp.

370-386.

[19] Sherman, D.M. “A Prolog Model of the Income Tax Act of Canada”, Proc. of the 1st ACM

Intl. Conf. on Artificial Intelligence and Law, ACM, Boston, May 1987, pp. 127-136.

[20] Sergot, M.J., Kamble, A.S., Bajaj, K.K., “Indian Central Civil Service Pension Rules: A Case

Study in Logic Programming Applied to Regulations”, Proc. of the 3rd ACM Intl. Conf. on

Artificial Intelligence and Law, Oxford, 1991, pp. 118-127.

[21] Ho, Anthony, and Sundaram, Sharada, A Prolog Based HIPAA Online Compliance Auditor,

Unpublished class report, Mar. 20, 2008, <www.stanford.edu/class/cs259/projects/ cs259-final-

Sharada%20Sundaram%20Anthony%20 Ho/report.pdf>.

[22] Mitchell, J.C., Medical Privacy and Business Process Design, Presentation, Stanford

Computer Forum, March 17, 2008, <http://forum.stanford.edu/events/2008slides/Security%20

Workshop%20Slides/John%20Mitchell-forum-workshop-08.pdf>.

[23] Sethi, R., Programming Languages: Concepts and Constructs, Reading, Mass.: Addison-

Wesley, 1990.

[24] Breaux, T.D., and Antón, A.I., “Mining Rule Semantics to Understand Legislative

Compliance”, Proc. of the 2005 ACM Workshop on Privacy in the Electronic Society,

Alexandria, USA, Nov. 7, 2005, pp. 51-54.

[25] United States Dept. of Health and Human Services, Protected Health Information,

Presentation, 2003, http://www.dhhs.gov/ocr/hipaa/conference/udmn.pdf.

[26] Antón, A. I., Earp, J.B., He., Q., Stufflebeam, S., Bolchini, D., and Jensen, C., “Financial

Privacy Policies and the Need for Standardization”, IEEE Security and Privacy, vol. 2, no. 2,

Mar./Apr. 2004, pp. 36-45.

[27] Schild, U.J, and Herzog, S. “The Use of Meta-Rules in Rule Based Legal Computer

Systems”, Proc. of the 4th ACM Intl. Conf. on Artificial Intelligence and Law, Amsterdam,

1993, pp. 100-109.

[28] Layman, L.E., “Symbolic Logic: A Razor-Edge Tool for Drafting and Interpreting Legal

Documents”, The Yale Law Journal, Vol. 66, No. 6, May 1957, pp. 833-879.

[29] May, M.J., Gunter, C.A., and Lee, I., “Privacy API’s: Access Control Techniques to Analyze

and Verify Legal Privacy Policies”, Proc. of the 19th IEEE Computer Security Foundations

Workshop, Venice, Italy, Jul. 5-7, 2006, 13 pp.

[30] Yin, R.K., Case Study Research: Design and Methods, in Applied Social Research Methods

Series, Vol. 5, Thousand Oaks, CA: Sage Publications, 2003, 3rd ed.

