

A Measurement Framework of Alert Characteristics for False Positive
Mitigation Models

Sarah Heckman and Laurie Williams
North Carolina State University

sarah_heckman@ncsu.edu and williams@csc.ncsu.edu

Abstract
Automated static analysis tools can be used to identify
potential source code anomalies early in the software
process that could lead to field failures. However, only
a small portion of static analysis alerts may be
important to the developer (actionable). The remainder
are false positives (unactionable). Static analysis tools
may generate an overwhelming number of alerts, the
majority of which are likely to be unactionable. False
positive mitigation techniques utilize information about
static analysis alerts, called alert characteristics, to
predict actionable and unactionable alerts. This paper
presents a measurement framework for generating
static analysis alert characteristics for false positive
mitigation models.

1. Introduction
Automated static analysis tools can be used to identify
potential source code anomalies early in the software
process that could lead to field failures. Inspection of
each alert by a developer is required to determine if the
alert is an indication of an important anomaly that the
developer wants to fix, which we call a true positive
(TP) or an actionable alert [1, 15]. When an alert is not
an indication of an anomaly or is deemed unimportant
to the developer (e.g. the alert indicates a programmer
mistake inconsequential to program functionality), we
call the alert a false positive (FP) or an unactionable
alert [1, 15].

Static analysis tools may generate an overwhelming
number of alerts [9], the majority of which are likely to
be unactionable [6]. FP mitigation techniques utilize
information about the alerts, called alert characteristics
(AC), to prioritize alerts by the likelihood of being
actionable or to classify alerts into actionable and
unactionable groups [3, 8-10, 15, 16]. For any FP
mitigation model, we want to extract two types of
useful information from static analysis alert data: 1)
sets of ACs that are predictive of actionable alerts; and
2) which models (using the predictive ACs) are best at
classifying alerts as actionable or unactionable. Prior

research [3, 8-10, 15, 16] has shown that several ACs
are predictive of actionable or unactionable alerts. We
build on prior research by creating a measurement
framework for 51 candidate alert characteristics that
may be used to build FP mitigation models.

The rest of this paper is organized as follows: Section 2
provides related work on ACs used in other FP
mitigation techniques, Section 3 describes the sources
for ACs; Sections 4-8 discuss the five categories of
ACs and how each AC is generated in detail. Section 9
concludes with how the AC measurement framework
can be used.

2. Related Work
This section describes the ACs used by other FP
mitigation techniques. We include most of these ACs
in this work in addition to a few others.

Our prior research [3, 4] has proposed a project-
specific, in-process, FP mitigation prioritization
technique that utilizes the alert’s type and location at
the source folder, class, and method levels. The model,
AWARE-APM [3, 4], also uses developer feedback in the
form of alert suppression and alert closures.
Suppressing an alert is an explicit developer action to
indicate the alert is unactionable. Closure is
determined by comparing subsequent static analysis
runs. If the alert is not in the later run, the alert is
closed. After a developer inspects the alert and takes
an action on that alert, the prioritization of the
remaining alerts is adjusted from the feedback. We
evaluated three versions of AWARE-APM model on the
FAULTBENCH benchmark subject programs and found
an average accuracy of 67-76% [3]. The precision and
recall were in the 16-19% and 25-42% range,
respectfully, for the benchmark programs. The low
accuracy suggests that while the models may work well
for some programs, the models do not work well for
others. Additionally, the alert type and alert location
together and in isolation may not be the best predictors
of actionable alerts.

Ruthruff et al. [15] screened 33 ACs from 1,652 alerts
sampled from Google’s code base to develop logistic
regression models for predicting actionable and
unactionable alerts. Ruthruff et al. describe a screening
process whereby ACs were selected for the model.
The generated models contained 9-15 ACs and had an
accuracy ranging from 71-87%. Ruthruff et al. [15]
compared their generated models to a linear regression
model containing all ACs and models developed by
Bell et al. [2, 13] for predicting the number of faults.
Overall, the models generated by Ruthruff et al.
generally had a higher accuracy than the other models.
Additionally, the time to gather the data to build the
generated model was substantially shorter than the time
to build the model with all ACs. Many of the ACs
suggested by Ruthruff et al. are used in our research in
addition to other project specific metrics. We also
consider additional machine learners.

Kim and Ernst [8, 9] describe two static analysis alert
prioritization techniques that utilize data mined from
source code repositories. The first prioritization
technique uses the average lifetime of alerts sharing the
same type to prioritize the alert types [8]. The lifetime
of an alert is the time (in days) between alert creation
and alert closure. Kim and Ernst assumed that alert
types with shorter lifetimes have a higher ranking (e.g.
alerts fixed quickly are likely important).

The second technique is a history-based alert
prioritization that weights alert types by the number of
alerts closed by fault- and non-fault-fixes. A fault-fix is
a source code change where the developer fixes a fault
or problem and a non-fault-fix is a change where a
fault is not fixed, like a feature addition [9]. Alerts
may be closed during any code modification, and are
therefore considered actionable, but Kim and Ernst
expect that those alerts closed during fault-fixes are
more important when predicting actionable alerts.

The history-based alert prioritization presented by Kim
and Ernst [9] improves the alert precision by over
100% when compared to the alert precision of alerts
prioritized by tool severity. However, the precision
ranged from 17-67%, which might be due to alert
closures not having causal relationships with the root
cause of an anomaly-fix. We include the alert lifetime,
measured in revisions instead of days, as a candidate
AC. We also utilize source code repository mining for
other ACs. Unlike Kim and Ernst, we are interested in
prioritizing or classifying individual alerts rather than
the alert type.

Williams and Hollingsworth [16] created a static
analysis tool which evaluates how often the return
values of method calls are checked in source code. A

method is flagged with an alert when the return value
for the method is inconsistently checked in calling
methods. Williams and Hollingsworth use the
HISTORYAWARE prioritization technique to prioritize
methods by the percentage of time the return value for
the methods are checked in the software repository and
the current version of the code. The results show a FP
rate of 70% and 76% when using the HISTORYAWARE
prioritization technique on two case studies involving
httpd1 and Wine2 applications, respectively. The
HISTORYAWARE technique mines data from the source
code repository, which we also do, but for different
ACs. Instead of using alert type specific information to
identify actionable alerts, we use ACs that can
prioritize or classify many alert types.

Kremenek et al. [10] show that static analysis alerts in
similar locations tend to be homogeneous. On average,
88% of methods, 52% of files, and 13% of directories
with two or more alerts contained homogeneous alerts.
Kremenek et al. created a FEEDBACK-RANK algorithm
whereby the developer’s feedback is used to prioritize
the remaining alerts. The static analysis tools used by
Kremenek et al. take advantage of understanding where
a static analysis tool checked for an alert, but did not
find a potential anomaly [11]. Kremenek et al. [10]
prioritize the alerts via a Bayesian Network [17].

3. AC Sources
There are three potential sources for static analysis
ACs: static analysis tools, source code metrics tools,
and source code repositories. Most static analysis
tools, like FindBugs [6], provide identifying
information about an alert like the location, type,
priority, etc. A static analysis tool may only provide a
listing of high priority alerts or of specific alert types
(e.g. null pointer alerts rather than style alerts).

Nagappan et al. [12] show that code complexity
metrics correlate with failure-prone modules.
Additionally, Bell et al. [2, 13] have utilized code size
metrics to predict fault counts. Actionable alerts could
be considered faults; therefore, software metrics could
be predictive of actionable alerts. There are many tools
that generate metrics at the file, package, and project
levels like JavaNCSS3 or Metrics v1.3.64. These tools
provide information about the size of source code by
lines and the complexity [5] of the programs (e.g.
cyclomatic complexity, depth of inheritance, etc.).

1 http://httpd.apache.org/
2 http://www.winehq.org/
3 http://www.kclee.de/clemens/java/javancss/
4 http://metrics.sourceforge.net/

The models by Williams and Hollingsworth [16], Kim
and Ernst [8, 9], and Ruthruff et al. [15] use ACs
obtained from a project’s source code repository to
predict actionable alerts. Using the source code
repository allows us to determine how the set of alerts
generated by static analysis and the code base has
changed over time: using the past to predict the future.

We categorize the ACs into five groups, which are
discussed in Sections 4-8: alert identifiers and alert
history, software metrics, source code history, source
code churn, and aggregate characteristics. In some
cases, there are ACs that are collected that are not used
in prediction models but that are instead used as part to
generate other metrics. The ACs not used in prediction
models will be signified with an asterisk (*).
Additionally, references will be provided where these
ACs have been used in related work.

4. Alert Identifiers and Alert History
This section discusses the alert identifiers generated by
static analysis tools and the alert history determined by
analyzing alerts generated across the history of the
project.

4.1. Alert Identifiers
A static analysis tool generates alert identifiers at alert
creation. Alert identifiers are typically generic across
static analysis tools and provide information about the
type of alert and where the alert is located.
Specifically, the alert identifiers generated by
FindBugs [6] are presented below.

 Project name: the name of the project under static

analysis. For our research a project can be loosely
defined as a logical grouping software, which is
“computer programs, procedures, and possibly
associated documentation and data pertaining to the
operation of a computer system” [7].

 Package name: In Java, the name of the package
containing the file which contains an alert. The
package name could also be generalized to the path
starting at the project to the file containing an alert
[3, 4, 10].

 File name: The name of the source file containing
an alert [3, 4, 10].

 Method signature: The name and parameter types
of the method or function containing the alert (e.g.
methodName(String, Object)) [3, 4, 10]. An alert
may not have an enclosing method (e.g. the alert is
on an instance or global variable).

 Alert type: The type of potential anomaly (e.g. null
pointer, etc.) as defined by the static analysis tool
[3, 4, 8, 9, 15, 16].

 Alert category: A high level categorization of alert
types (e.g. security, correctness) as defined by the
static analysis tool [15].

 Priority: The priority of the alert defined by a static
analysis tool [8, 15].

 File extension: The extension of the file containing
the static analysis alert [15]. Ruthruff et al. [15]
were able to use the file extension to differentiate
between files generated during project builds.

 Description*: Provides a description of the alert for
the developer to read to help determine if the alert is
actionable. The description is tool specific.

 Identifier*: An identifier for the alert generated by
the tool. FindBugs [6] provides an instance hash
for each alert.

 Line Number*: The line containing the alert. If
the alert spans more than one line, the line number
is typically the first line.

4.2. Alert History
The alert history is generated by iteratively going
through source code revisions, starting with the earliest
revision, to determine alert creation and closure. A
revision is a set of changes committed to the source
code repository together. The AC measured is the
number of times that an alert changes over the history
of the alert. We consider an alert modification to be
when an alert’s line number, identifier, or tool
generated priority are changed over time. An alert is
considered the same alert if the project name, package
name, file name, method signature, alert type, and
either of the identifier or line number is the same.

5. Software Metrics
Software size and complexity metrics have been used
to predict fault- and failure-prone software [2, 12, 13],
and could be useful for predicting actionable and
unactionable alerts. The metrics outlined below come
from the JavaNCSS metrics tool. Other metrics tools
or a combination of metrics tools could provide
additional metrics at the expense of increased runtime.

 Method Size: The number of non-comment source

statements (NCSS) within the method containing
the alert. If the alert is not within a method, then
the method size is set to -1.

 File Size: The number of non-comment source
statements (NCSS) within the file [15] containing
the alert. If the alert is not within a file, then the file
size is set to -1.

 Package Size: The number of non-comment source
statements (NCSS) within the package containing
the alert. If the alert is not within a package, then
the package size is set to -1.

 Number of Methods in File: The number of
method declarations within the file containing an
alert.

 Number of Classes in File: The number of class
declarations within the file containing an alert.
There could be more than one class in a Java file if
the file contains inner classes.

 Number of Methods in Package: The number of
method declarations within the package containing
an alert.

 Number of Classes in Package: The number of
class declarations within the package containing an
alert.

 Cyclomatic Complexity: Measures the number of
paths through a method [14] containing an alert.
Ruthruff et al. [15] use indentation as a measure of
complexity.

6. Source Code History
The source code history provides a record of how a
project has evolved over time. We can use the source
code history to find important events in an alert’s
lifetime. An alert is created or opened if the alert is not
in any of the prior revisions [3, 4]. An alert closure
occurs when the alert was in a prior revision, but is not
reported in a later revision [3, 4]. An alert is reopened
if the alert was closed in a prior revision and available
in a later revision. Additionally, the source code history
can reveal other important events that may influence if
an alert is actionable or unactionable.

 Alert Open Revision: The revision an alert is first

opened [8].
 Alert Close Revsion*: The latest revision an alert

is closed if the alert is closed.
 Developers: The set of developers who made

changes to the file containing an alert between prior
revision analyzed and the alert’s open revision [8].

 File Creation Revision: The revision a file is first
created [15].

 File Deletion Revision: The latest revision the file
no longer exists in. If the file is re-created at a later
revision, the file deletion revision is set to -1.
Alerts closed due to a file deletion are not
considered actionable [8, 9, 15]. These alerts are
removed if the file deletion revision is less than or
equal to the closure revision. We can obtain the file
deletion revision at the exact revision of deletion,
but if a subset of revisions is analyzed for static
analysis alerts, the alerts closure revision may not
be the same as the file deletion revision.

 Latest File Modification Revision: The last
modification to a file containing an alert before the
last analyzed revision [15]. This AC provides
information about the latest changes that may

determine if an uninspected alert is actionable or
unactionable.

 Latest Package Modification Revision: The last
modification to a package containing an alert before
the last analyzed revision [15]. This AC provides
information about the latest changes that may
determine if an uninspected alert is actionable of
unactionable.

 Latest Project Modification Revision: The last
modification to a project containing an alert before
the last analyzed revision [15]. This AC provides
information about the latest changes that may
determine if an uninspected alert is actionable of
unactionable.

7. Source Code Churn
Source code churn measures the amount of change
made to a file, package, or project over time [15]. We
are specifically interested in the changes that occurred
at the file, package, and project level that may have
caused an alert to be created. Therefore, we measure
the source code churn that occurred on and before the
open revision for an alert. Specifically, we are
interested only in the changes that occurred between
the last analyzed revision of software and the alert’s
open revision. Source code repositories like CVS5 or
SVN6 record churn metrics at each commit. If there is
no repository for a project, then a diff utility7 may be
used.

 File Added lines: The number of lines added to a

file that were not there before [15]. These lines can
include comments and white-space.

 File Deleted lines: The number of lines deleted
from a file that were there before [15]. These lines
can include comments and white-space.

 File Growth: The difference between added and
deleted lines for a file [15].

 File Total modified lines: The sum of added and
deleted lines for a file [15].

 File Percent modified lines: Percent of file total
modified lines out of all churned lines for the
project [15].

 Package Added lines: The summation of all file
added lines for files in the same package [15].
These lines can include comments and white-space.

 Package Deleted lines: The summation of all file
deleted lines for files in the same package [15].
These lines can include comments and white-space.

 Package Growth: The difference between added
and deleted lines for a package [15].

5 http://ximbiot.com/cvs/wiki/
6 http://subversion.tigris.org/
7 http://www.gnu.org/software/diffutils/diffutils.html

 Package Total modified lines: The sum of added
and deleted lines for a package [15].

 Package Percent modified lines: Percent of
package total modified lines out of all churned lines
for the project [15].

 Project Added lines: The summation of all
package added lines for packages in the same
project [15]. These lines can include comments and
white-space.

 Project Deleted lines: The summation of all
package added lines for packages in the same
project [15]. These lines can include comments and
white-space.

 Project Growth: The difference between added
and deleted lines for a project [15].

 Project Total modified lines: The sum of added
and deleted lines for a project [15].

 Project Percent modified lines: Percent of file
total modified lines out of all churned lines for the
project [15]. If there is only one sub-project, then
this value will be 100%.

8. Aggregate Characteristics
Aggregate candidate ACs come from the above ACs
and provide a deeper understanding about an alert.
Prior models measure age in days [8, 15]. Instead, we
measure age as the number of revisions between two
revisions. Using revisions is still a measure of time,
but also provides a measure of work.

 Alerts for Revision: Number of alerts identified on

or before an alert’s open revision. As the revision
numbers increase the number of alerts for that
revision will increase as well.

 Open Alerts for Revision: Number of open alerts
identified on or before an alert’s open revision.
Unlike the alerts for revision AC, the number of
open alerts for revision will change due to alert
closures.

 Alert Lifetime: The age of the alert [8] in number
of revision. For a closed alert, the alert lifetime is
the difference between the close and open revisions.
Otherwise, the lifetime is the difference between the
last revision in the study and the open revision.

 File Age: The age of the file [15] in revisions. For
a deleted file, the file age is the difference between
the deletion and creation revision. Otherwise, the
file age is the difference between the last revision in
the study and the file creation revision.

 Alerts in Method: The number of alerts in the
method [3, 4] containing an alert across all
revisions. The number of alerts in a method
provides a relative measure of potential fault-
proneness for a method.

 Alerts in File: The number of alerts in the file [3, 4,
15] containing an alert across all revisions. The
number of alerts in a file provides a relative
measure of fault-proneness for a file.

 Alerts in Package: The number of alerts in the
package [3, 4] containing an alert across all
revisions. The number of alerts in a package
provides a relative measure of fault-proneness for a
package.

 Alerts in Project: The number of alerts in the
project [15] containing an alert across all revisions.
The number of alerts in a project provides a relative
measure of fault-proneness for a project.

 File Staleness: The amount of time between the last
change of a file containing an alert and the last
revision analyzed of the project [15].

 Package Staleness: The amount of time between
the last change of a package containing an alert and
the last revision analyzed of the project [15].

 Project Staleness: The amount of time between the
last change of a project containing an alert and the
last revision analyzed of the project [15].

9. AC Measurement Framework
The AC measurement framework is used to generate
ACs for use in building FP mitigation models. For any
project, the above ACs are gathered from static
analysis tools, metrics tools, and the source code
repository. By providing a measurement framework,
AC generation can be shared between different FP
mitigation models allowing for more direct comparison
of FP mitigation models.

10. References
[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J.

Penix, and Y. Zhou, "Evaluating Static Analysis
Defect Warnings On Production Software," 7th
ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, San
Diego, CA, USA, June 13-14, 2007, pp. 1-8.

[2] R. M. Bell, T. J. Ostrand, and E. J. Weyuker,
"Looking for Bugs in All the Right Places,"
International Symposium on Software Testing and
Analysis, 2006, pp. 61-71.

[3] S. Heckman and L. Williams, "On Establishing a
Benchmark for Evaluating Static Analysis Alert
Prioritization and Classification Techniques, to
appear," 2nd International Symposium on
Empirical Software Engineering and
Measurement, Kaiserslautern, Germany, October
9-10, 2008.

[4] S. S. Heckman, "Adaptively Ranking Alerts
Generated from Automated Static Analysis," in
ACM Crossroads. vol. 14, no. 1, 2007, pp. 16-20.

[5] B. Henderson-Sellers, Object-Oriented Metrics:
Measures of Complexity: Prentice Hall, 1996.

[6] D. Hovemeyer and W. Pugh, "Finding Bugs is
Easy," 19th ACM Conference on Object-Oriented
Programming, Systems, Languages, and
Applications, Vancouver, British Columbia,
Canada, October 24-28, 2004, pp. 132-136.

[7] IEEE, "IEEE Standard 610.12-1990, IEEE
Standard Glossary of Software Engineering
Terminology," 1990.

[8] S. Kim and M. D. Ernst, "Prioritizing Warning
Categories by Analyzing Software History,"
International Workshop on Mining Software
Repositories, Minneapolis, MN, USA, May 19-20,
2007, p. 27.

[9] S. Kim and M. D. Ernst, "Which Warnings Should
I Fix First?," 6th Joint Meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of
Software Engineering, Dubrovnik, Croatia,
September 3-7, 2007, pp. 45-54.

[10] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler,
"Correlation Exploitation in Error Ranking," 12th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport
Beach, CA, USA, 2004, pp. 83-93.

[11] T. Kremenek and D. Engler, "Z-Ranking: Using
Statistical Analysis to Counter the Impact of Static
Analysis Approximations," 10th International
Static Analysis Symposium, San Diego, California,
2003, pp. 295-315.

[12] N. Nagappan, T. Ball, and A. Zeller, "Mining
Metrics to Predict Component Failures," 28th
International Conference on Software
Engineering, Shanghai, China, May 20-28, 2006,
pp. 452-461.

[13] T. J. Ostrand, E. J. Weyuker, and R. M. Bell,
"Where the Bugs Are," International Symposium
on Software Testing and Analysis, 2004, pp. 86-96.

[14] R. S. Pressman, Software Engineering: A
Practitioner's Approach, 6th ed. Boston: McGraw
Hill, 2005.

[15] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S.
Elbaum, and G. Rothermel, "Predicting Accurate
and Actionable Static Analysis Warnings: An
Experimental Approach," 30th International
Conference on Software Engineering, Leipzig,
Germany, May 10-18, 2008, pp. 341-350.

[16] C. C. Williams and J. K. Hollingsworth,
"Automatic Mining of Source Code Repositories
to Improve Bug Finding Techniques," IEEE
Transactions on Software Engineering, vol. 31, no.
6, pp. 466-480, 2005.

[17] I. H. Witten and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques, 2nd ed.
Amsterdam: Morgan Kaufmann, 2005.

