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Abstract 
Automated static analysis tools can be used to identify 
potential source code anomalies early in the software 
process that could lead to field failures.  However, only 
a small portion of static analysis alerts may be 
important to the developer (actionable).  The remainder 
are false positives (unactionable).  Static analysis tools 
may generate an overwhelming number of alerts, the 
majority of which are likely to be unactionable.  False 
positive mitigation techniques utilize information about 
static analysis alerts, called alert characteristics, to 
predict actionable and unactionable alerts.  This paper 
presents a measurement framework for generating 
static analysis alert characteristics for false positive 
mitigation models. 
 
1. Introduction 
Automated static analysis tools can be used to identify 
potential source code anomalies early in the software 
process that could lead to field failures.  Inspection of 
each alert by a developer is required to determine if the 
alert is an indication of an important anomaly that the 
developer wants to fix, which we call a true positive 
(TP) or an actionable alert [1, 15].  When an alert is not 
an indication of an anomaly or is deemed unimportant 
to the developer (e.g. the alert indicates a programmer 
mistake inconsequential to program functionality), we 
call the alert a false positive (FP) or an unactionable 
alert [1, 15].   
 
Static analysis tools may generate an overwhelming 
number of alerts [9], the majority of which are likely to 
be unactionable [6].  FP mitigation techniques utilize 
information about the alerts, called alert characteristics 
(AC), to prioritize alerts by the likelihood of being 
actionable or to classify alerts into actionable and 
unactionable groups [3, 8-10, 15, 16].  For any FP 
mitigation model, we want to extract two types of 
useful information from static analysis alert data: 1) 
sets of ACs that are predictive of actionable alerts; and 
2) which models (using the predictive ACs) are best at 
classifying alerts as actionable or unactionable. Prior 

research [3, 8-10, 15, 16] has shown that several ACs 
are predictive of actionable or unactionable alerts.  We 
build on prior research by creating a measurement 
framework for 51 candidate alert characteristics that 
may be used to build FP mitigation models. 
 
The rest of this paper is organized as follows: Section 2 
provides related work on ACs used in other FP 
mitigation techniques, Section 3 describes the sources 
for ACs; Sections 4-8 discuss the five categories of 
ACs and how each AC is generated in detail.  Section 9 
concludes with how the AC measurement framework 
can be used. 
 
2. Related Work 
This section describes the ACs used by other FP 
mitigation techniques.  We include most of these ACs 
in this work in addition to a few others.   
 
Our prior research [3, 4] has proposed a project-
specific, in-process, FP mitigation prioritization 
technique that utilizes the alert’s type and location at 
the source folder, class, and method levels.  The model, 
AWARE-APM [3, 4], also uses developer feedback in the 
form of alert suppression and alert closures. 
Suppressing an alert is an explicit developer action to 
indicate the alert is unactionable.  Closure is 
determined by comparing subsequent static analysis 
runs.  If the alert is not in the later run, the alert is 
closed.  After a developer inspects the alert and takes 
an action on that alert, the prioritization of the 
remaining alerts is adjusted from the feedback.  We 
evaluated three versions of AWARE-APM model on the 
FAULTBENCH benchmark subject programs and found 
an average accuracy of 67-76% [3].  The precision and 
recall were in the 16-19% and 25-42% range, 
respectfully, for the benchmark programs.  The low 
accuracy suggests that while the models may work well 
for some programs, the models do not work well for 
others.  Additionally, the alert type and alert location 
together and in isolation may not be the best predictors 
of actionable alerts. 
 



Ruthruff et al. [15] screened 33 ACs from 1,652 alerts 
sampled from Google’s code base to develop logistic 
regression models for predicting actionable and 
unactionable alerts.  Ruthruff et al. describe a screening 
process whereby ACs were selected for the model.  
The generated models contained 9-15 ACs and had an 
accuracy ranging from 71-87%.  Ruthruff et al. [15] 
compared their generated models to a linear regression 
model containing all ACs and models developed by 
Bell et al. [2, 13] for predicting the number of faults. 
Overall, the models generated by Ruthruff et al. 
generally had a higher accuracy than the other models.  
Additionally, the time to gather the data to build the 
generated model was substantially shorter than the time 
to build the model with all ACs.  Many of the ACs 
suggested by Ruthruff et al. are used in our research in 
addition to other project specific metrics.  We also 
consider additional machine learners. 
 
Kim and Ernst [8, 9] describe two static analysis alert 
prioritization techniques that utilize data mined from 
source code repositories.  The first prioritization 
technique uses the average lifetime of alerts sharing the 
same type to prioritize the alert types [8]. The lifetime 
of an alert is the time (in days) between alert creation 
and alert closure.  Kim and Ernst assumed that alert 
types with shorter lifetimes have a higher ranking (e.g. 
alerts fixed quickly are likely important).   
 
The second technique is a history-based alert 
prioritization that weights alert types by the number of 
alerts closed by fault- and non-fault-fixes. A fault-fix is 
a source code change where the developer fixes a fault 
or problem and a non-fault-fix is a change where a 
fault is not fixed, like a feature addition [9].  Alerts 
may be closed during any code modification, and are 
therefore considered actionable, but Kim and Ernst 
expect that those alerts closed during fault-fixes are 
more important when predicting actionable alerts.  
 
The history-based alert prioritization presented by Kim 
and Ernst [9] improves the alert precision by over 
100% when compared to the alert precision of alerts 
prioritized by tool severity.  However, the precision 
ranged from 17-67%, which might be due to alert 
closures not having causal relationships with the root 
cause of an anomaly-fix.  We include the alert lifetime, 
measured in revisions instead of days, as a candidate 
AC.  We also utilize source code repository mining for 
other ACs.  Unlike Kim and Ernst, we are interested in 
prioritizing or classifying individual alerts rather than 
the alert type. 
 
Williams and Hollingsworth [16] created a static 
analysis tool which evaluates how often the return 
values of method calls are checked in source code.  A 

method is flagged with an alert when the return value 
for the method is inconsistently checked in calling 
methods.  Williams and Hollingsworth use the 
HISTORYAWARE prioritization technique to prioritize 
methods by the percentage of time the return value for 
the methods are checked in the software repository and 
the current version of the code.  The results show a FP 
rate of 70% and 76% when using the HISTORYAWARE 
prioritization technique on two case studies involving 
httpd1 and Wine2 applications, respectively.  The 
HISTORYAWARE technique mines data from the source 
code repository, which we also do, but for different 
ACs.  Instead of using alert type specific information to 
identify actionable alerts, we use ACs that can 
prioritize or classify many alert types. 
 
Kremenek et al. [10] show that static analysis alerts in 
similar locations tend to be homogeneous.  On average, 
88% of methods, 52% of files, and 13% of directories 
with two or more alerts contained homogeneous alerts.  
Kremenek et al. created a FEEDBACK-RANK algorithm 
whereby the developer’s feedback is used to prioritize 
the remaining alerts.  The static analysis tools used by 
Kremenek et al. take advantage of understanding where 
a static analysis tool checked for an alert, but did not 
find a potential anomaly [11].  Kremenek et al. [10] 
prioritize the alerts via a Bayesian Network [17]. 
 
3. AC Sources 
There are three potential sources for static analysis 
ACs: static analysis tools, source code metrics tools, 
and source code repositories.  Most static analysis 
tools, like FindBugs [6], provide identifying 
information about an alert like the location, type, 
priority, etc.  A static analysis tool may only provide a 
listing of high priority alerts or of specific alert types 
(e.g. null pointer alerts rather than style alerts).   
 
Nagappan et al. [12] show that code complexity 
metrics correlate with failure-prone modules.  
Additionally, Bell et al. [2, 13] have utilized code size 
metrics to predict fault counts.  Actionable alerts could 
be considered faults; therefore, software metrics could 
be predictive of actionable alerts.  There are many tools 
that generate metrics at the file, package, and project 
levels like JavaNCSS3 or Metrics v1.3.64.  These tools 
provide information about the size of source code by 
lines and the complexity [5] of the programs (e.g. 
cyclomatic complexity,  depth of inheritance, etc.). 
 

                                                 
1 http://httpd.apache.org/ 
2 http://www.winehq.org/ 
3 http://www.kclee.de/clemens/java/javancss/ 
4 http://metrics.sourceforge.net/ 



The models by Williams and Hollingsworth [16], Kim 
and Ernst [8, 9], and Ruthruff et al. [15] use ACs 
obtained from a project’s source code repository to 
predict actionable alerts.  Using the source code 
repository allows us to determine how the set of alerts 
generated by static analysis and the code base has 
changed over time: using the past to predict the future. 
 
We categorize the ACs into five groups, which are 
discussed in Sections 4-8: alert identifiers and alert 
history, software metrics, source code history, source 
code churn, and aggregate characteristics.  In some 
cases, there are ACs that are collected that are not used 
in prediction models but that are instead used as part to 
generate other metrics.  The ACs not used in prediction 
models will be signified with an asterisk (*).  
Additionally, references will be provided where these 
ACs have been used in related work. 
 
4. Alert Identifiers and Alert History 
This section discusses the alert identifiers generated by 
static analysis tools and the alert history determined by 
analyzing alerts generated across the history of the 
project. 
 
4.1. Alert Identifiers 
A static analysis tool generates alert identifiers at alert 
creation.  Alert identifiers are typically generic across 
static analysis tools and provide information about the 
type of alert and where the alert is located.  
Specifically, the alert identifiers generated by 
FindBugs [6] are presented below. 
 
 Project name: the name of the project under static 

analysis.  For our research a project can be loosely 
defined as a logical grouping software, which is 
“computer programs, procedures, and possibly 
associated documentation and data pertaining to the 
operation of a computer system” [7].     

 Package name: In Java, the name of the package 
containing the file which contains an alert.  The 
package name could also be generalized to the path 
starting at the project to the file containing an alert 
[3, 4, 10]. 

 File name: The name of the source file containing 
an alert [3, 4, 10].  

 Method signature: The name and parameter types 
of the method or function containing the alert (e.g. 
methodName(String, Object)) [3, 4, 10].  An alert 
may not have an enclosing method (e.g. the alert is 
on an instance or global variable).  

 Alert type: The type of potential anomaly (e.g. null 
pointer, etc.) as defined by the static analysis tool 
[3, 4, 8, 9, 15, 16]. 

 Alert category: A high level categorization of alert 
types (e.g. security, correctness) as defined by the 
static analysis tool [15]. 

 Priority: The priority of the alert defined by a static 
analysis tool [8, 15]. 

 File extension: The extension of the file containing 
the static analysis alert [15].  Ruthruff et al. [15] 
were able to use the file extension to differentiate 
between files generated during project builds.  

 Description*: Provides a description of the alert for 
the developer to read to help determine if the alert is 
actionable.  The description is tool specific. 

 Identifier*: An identifier for the alert generated by 
the tool.  FindBugs [6] provides an instance hash 
for each alert. 

 Line Number*: The line containing the alert.  If 
the alert spans more than one line, the line number 
is typically the first line. 

 
4.2. Alert History 
The alert history is generated by iteratively going 
through source code revisions, starting with the earliest 
revision, to determine alert creation and closure.  A 
revision is a set of changes committed to the source 
code repository together. The AC measured is the 
number of times that an alert changes over the history 
of the alert.  We consider an alert modification to be 
when an alert’s line number, identifier, or tool 
generated priority are changed over time.  An alert is 
considered the same alert if the project name, package 
name, file name, method signature, alert type, and 
either of the identifier or line number is the same. 
 
5. Software Metrics 
Software size and complexity metrics have been used 
to predict fault- and failure-prone software [2, 12, 13], 
and could be useful for predicting actionable and 
unactionable alerts.  The metrics outlined below come 
from the JavaNCSS metrics tool.  Other metrics tools 
or a combination of metrics tools could provide 
additional metrics at the expense of increased runtime. 
 
 Method Size: The number of non-comment source 

statements (NCSS) within the method containing 
the alert.  If the alert is not within a method, then 
the method size is set to -1. 

 File Size: The number of non-comment source 
statements (NCSS) within the file [15] containing 
the alert.  If the alert is not within a file, then the file 
size is set to -1. 

 Package Size: The number of non-comment source 
statements (NCSS) within the package containing 
the alert.  If the alert is not within a package, then 
the package size is set to -1. 



 Number of Methods in File: The number of 
method declarations within the file containing an 
alert. 

 Number of Classes in File: The number of class 
declarations within the file containing an alert.  
There could be more than one class in a Java file if 
the file contains inner classes. 

 Number of Methods in Package: The number of 
method declarations within the package containing 
an alert. 

 Number of Classes in Package: The number of 
class declarations within the package containing an 
alert. 

 Cyclomatic Complexity: Measures the number of 
paths through a method [14] containing an alert.  
Ruthruff et al. [15] use indentation as a measure of 
complexity. 

 
6. Source Code History 
The source code history provides a record of how a 
project has evolved over time.  We can use the source 
code history to find important events in an alert’s 
lifetime.  An alert is created or opened if the alert is not 
in any of the prior revisions [3, 4].  An alert closure 
occurs when the alert was in a prior revision, but is not 
reported in a later revision [3, 4].  An alert is reopened 
if the alert was closed in a prior revision and available 
in a later revision. Additionally, the source code history 
can reveal other important events that may influence if 
an alert is actionable or unactionable. 
 
 Alert Open Revision: The revision an alert is first 

opened [8]. 
 Alert Close Revsion*: The latest revision an alert 

is closed if the alert is closed. 
 Developers: The set of developers who made 

changes to the file containing an alert between prior 
revision analyzed and the alert’s open revision [8]. 

 File Creation Revision: The revision a file is first 
created [15].  

 File Deletion Revision: The latest revision the file 
no longer exists in.  If the file is re-created at a later 
revision, the file deletion revision is set to -1.  
Alerts closed due to a file deletion are not 
considered actionable [8, 9, 15].  These alerts are 
removed if the file deletion revision is less than or 
equal to the closure revision.  We can obtain the file 
deletion revision at the exact revision of deletion, 
but if a subset of revisions is analyzed for static 
analysis alerts, the alerts closure revision may not 
be the same as the file deletion revision. 

 Latest File Modification Revision: The last 
modification to a file containing an alert before the 
last analyzed revision [15].  This AC provides 
information about the latest changes that may 

determine if an uninspected alert is actionable or 
unactionable. 

 Latest Package Modification Revision: The last 
modification to a package containing an alert before 
the last analyzed revision [15].  This AC provides 
information about the latest changes that may 
determine if an uninspected alert is actionable of 
unactionable. 

 Latest Project Modification Revision: The last 
modification to a project containing an alert before 
the last analyzed revision [15].  This AC provides 
information about the latest changes that may 
determine if an uninspected alert is actionable of 
unactionable. 

 
7. Source Code Churn 
Source code churn measures the amount of change 
made to a file, package, or project over time [15].  We 
are specifically interested in the changes that occurred 
at the file, package, and project level that may have 
caused an alert to be created.  Therefore, we measure 
the source code churn that occurred on and before the 
open revision for an alert.  Specifically, we are 
interested only in the changes that occurred between 
the last analyzed revision of software and the alert’s 
open revision.  Source code repositories like CVS5 or 
SVN6 record churn metrics at each commit.  If there is 
no repository for a project, then a diff utility7 may be 
used.   
 
 File Added lines: The number of lines added to a 

file that were not there before [15].  These lines can 
include comments and white-space. 

 File Deleted lines: The number of lines deleted 
from a file that were there before [15].  These lines 
can include comments and white-space. 

 File Growth: The difference between added and 
deleted lines for a file [15]. 

 File Total modified lines: The sum of added and 
deleted lines for a file [15]. 

 File Percent modified lines: Percent of file total 
modified lines out of all churned lines for the 
project [15]. 

 Package Added lines: The summation of all file 
added lines for files in the same package [15].  
These lines can include comments and white-space. 

 Package Deleted lines: The summation of all file 
deleted lines for files in the same package [15].  
These lines can include comments and white-space. 

 Package Growth: The difference between added 
and deleted lines for a package [15]. 

                                                 
5 http://ximbiot.com/cvs/wiki/ 
6 http://subversion.tigris.org/ 
7 http://www.gnu.org/software/diffutils/diffutils.html 



 Package Total modified lines: The sum of added 
and deleted lines for a package [15]. 

 Package Percent modified lines: Percent of 
package total modified lines out of all churned lines 
for the project [15].  

 Project Added lines: The summation of all 
package added lines for packages in the same 
project [15].  These lines can include comments and 
white-space. 

 Project Deleted lines: The summation of all 
package added lines for packages in the same 
project [15].  These lines can include comments and 
white-space. 

 Project Growth: The difference between added 
and deleted lines for a project [15]. 

 Project Total modified lines: The sum of added 
and deleted lines for a project [15]. 

 Project Percent modified lines: Percent of file 
total modified lines out of all churned lines for the 
project [15].  If there is only one sub-project, then 
this value will be 100%. 

 
8. Aggregate Characteristics 
Aggregate candidate ACs come from the above ACs 
and provide a deeper understanding about an alert. 
Prior models measure age in days [8, 15]. Instead, we 
measure age as the number of revisions between two 
revisions.  Using revisions is still a measure of time, 
but also provides a measure of work.  
 
 Alerts for Revision: Number of alerts identified on 

or before an alert’s open revision.  As the revision 
numbers increase the number of alerts for that 
revision will increase as well. 

 Open Alerts for Revision: Number of open alerts 
identified on or before an alert’s open revision.  
Unlike the alerts for revision AC, the number of 
open alerts for revision will change due to alert 
closures. 

 Alert Lifetime: The age of the alert [8] in number 
of revision.  For a closed alert, the alert lifetime is 
the difference between the close and open revisions.  
Otherwise, the lifetime is the difference between the 
last revision in the study and the open revision. 

 File Age: The age of the file [15] in revisions.  For 
a deleted file, the file age is the difference between 
the deletion and creation revision.  Otherwise, the 
file age is the difference between the last revision in 
the study and the file creation revision. 

 Alerts in Method: The number of alerts in the 
method [3, 4] containing an alert  across all 
revisions.  The number of alerts in a method 
provides a relative measure of potential fault-
proneness for a method. 

 Alerts in File: The number of alerts in the file [3, 4, 
15] containing an alert across all revisions.  The 
number of alerts in a file provides a relative 
measure of fault-proneness for a file.  

 Alerts in Package: The number of alerts in the 
package [3, 4] containing an alert across all 
revisions.  The number of alerts in a package 
provides a relative measure of fault-proneness for a 
package. 

 Alerts in Project: The number of alerts in the 
project [15]  containing an alert across all revisions.  
The number of alerts in a project provides a relative 
measure of fault-proneness for a project. 

 File Staleness: The amount of time between the last 
change of a file containing an alert and the last 
revision analyzed of the project [15].   

 Package Staleness: The amount of time between 
the last change of a package containing an alert and 
the last revision analyzed of the project [15]. 

 Project Staleness: The amount of time between the 
last change of a project containing an alert and the 
last revision analyzed of the project [15]. 

 
9. AC Measurement Framework 
The AC measurement framework is used to generate 
ACs for use in building FP mitigation models.  For any 
project, the above ACs are gathered from static 
analysis tools, metrics tools, and the source code 
repository.  By providing a measurement framework, 
AC generation can be shared between different FP 
mitigation models allowing for more direct comparison 
of FP mitigation models. 
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